Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Core ML / Vision Frameworkを使ってできること / What can ...
Search
Shinichi Goto
June 30, 2017
Programming
3
4.2k
Core ML / Vision Frameworkを使ってできること / What can we achieve using Core ML and Vision framework
2017/06/30 WWDC - Developer's Living #lifull_wwdc
Shinichi Goto
June 30, 2017
Tweet
Share
More Decks by Shinichi Goto
See All by Shinichi Goto
WWDC18 ML Overview
_shingt
1
1.4k
Core ML 🏃 iOS Engineer
_shingt
1
560
Wantedly Peopleのスキャン画面の裏側 / Wantedly People Scanning Screen
_shingt
6
6.4k
Providing Better Feedback in Real-time Object Detection Apps
_shingt
2
1.5k
Value Types in WWDC16
_shingt
3
2.6k
debug-remote-local-notification-on-watchos
_shingt
0
10k
Server Side Swift question
_shingt
3
1k
Other Decks in Programming
See All in Programming
複雑なフォームを継続的に開発していくための技術選定・設計・実装 #tskaigi / #tskaigi2025
izumin5210
12
6.4k
「兵法」から見る質とスピード
ickx
0
200
AIにコードを生成するコードを作らせて、再現性を担保しよう! / Let AI generate code to ensure reproducibility
yamachu
7
6.1k
❄️ tmux-nixの実装を通して学ぶNixOSモジュール
momeemt
1
120
REST API設計の実践 – ベストプラクティスとその落とし穴
kentaroutakeda
2
320
Javaのルールをねじ曲げろ!禁断の操作とその代償から学ぶメタプログラミング入門 / A Guide to Metaprogramming: Lessons from Forbidden Techniques and Their Price
nrslib
1
290
PT AI без купюр
v0lka
0
200
primeNumberでのRBS導入の現在 && RBS::Traceでinline RBSを拡充してみた
mnmandahalf
0
260
抽象データ型について学んだ
ryounasso
0
210
從零到一:搭建你的第一個 Observability 平台
blueswen
0
220
漸進。
ssssota
0
1.2k
Passkeys for Java Developers
ynojima
1
210
Featured
See All Featured
Visualization
eitanlees
146
16k
Making Projects Easy
brettharned
116
6.2k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
850
Scaling GitHub
holman
459
140k
The Cult of Friendly URLs
andyhume
78
6.4k
[RailsConf 2023] Rails as a piece of cake
palkan
55
5.6k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
180
53k
Facilitating Awesome Meetings
lara
54
6.4k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.6k
The World Runs on Bad Software
bkeepers
PRO
68
11k
How GitHub (no longer) Works
holman
314
140k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.2k
Transcript
Core ML / Vision Framework ΛͬͯͰ͖Δ͜ͱ ɹ 2017/06/30 WWDC -
Developer's Living @ LIFULL shingt (Shinichi Goto)
shingt (Shinichi Goto) GitHub: @shingt Twi5er: @_shingt 2
Core ML Vision Framework 3
4
Outline • Core MLͷ֓ཁ • Vision Frameworkͷ֓ཁ • Ͱ͖Δ͜ͱ /
ࣄྫհ 5
Core ML 6
ML (Machine Learning) 7
8
9
10
Core ML • ֶशࡁͷModelΛར༻ͯ͠ͷਪʹಛԽ • Core ML model format (**.mlmodel)
• Xcode͕Swi6ͷΠϯλʔϑΣΠεΛࣗಈੜ • αϯϓϧϞσϧApple͕ެ։ • Accerelate / Metal্ʹࡌ͓ͬͯΓϋΠύϑΥʔϚϯε • coremltools 11
ɹ let animalModel = AnimalModel() if let prediction = try?
animalModel.prediction(animalImage: image) { return prediction.animalType } 12
ɹ let animalModel = AnimalModel() if let prediction = try?
animalModel.prediction(animalImage: image) { return prediction.animalType } 13
ɹ let animalModel = AnimalModel() if let prediction = try?
animalModel.prediction(animalImage: image) { return prediction.animalType } 14
ɹ let animalModel = AnimalModel() if let prediction = try?
animalModel.prediction(animalImage: image) { return prediction.animalType } 15
coremltools • "iOS্Ͱѻ͏ͨΊͷModelΛͲ͏༻ҙ͢Δ͔" ͷղܾࡦ • ओཁͳػցֶशπʔϧͷֶशࡁModelΛCore ML༻ͷModelม • Keras,
Caffe, scikit-learn, etc. 16
17
6/28ʹKeras 2.0αϙʔτʢൃද࣌1.2.2ͷΈͩͬͨʣ h"ps:/ /forums.developer.apple.com/thread/81196 18
Vision Framework 19
Vision Framework • Core ML্ʹࡌͬͨը૾ೝࣝɾମݕग़ͳͲͷը૾ղੳ༻ͷϑϨʔϜϫʔΫ • Detec,on • Face, Face
landmarks, Rectangle, Barcode, Text, Horizon • طଘͷͷਫ਼্ʢDeep Learningͷ׆༻ʣ • Tracking • Image Registra,on • Core MLͱͷΈ߹Θͤ 20
21
Tracking • ը૾ʢಈըʣதͷମͷ • إͷTrackingCIDetectorͰՄೳͩͬͨ • ҙͷରʹରͯ͠ͷTracking͕Մೳʹ • VisionͰͷݕग़݁Ռ •
ҙͷྖҬࢦఆ 22
23
Demo (Rectangle Detec,on + Tracking) h"ps:/ /github.com/shingt/VisionTrackerSample 24
զʑCV/MLͷΤΩεύʔτͰ͋Δඞཁͳ͍ ʢͱɺAppleηογϣϯதʹݴ͍ͬͯΔʣ 25
Կ͕Ͱ͖Δͷ͔ʁ ʢΞϓϦέʔγϣϯΤϯδχΞͱͯ͠ͷࢹ͔Βʣ 26
27
28
ࣄྫհ 29
ମݕग़ 30
31
YOLO • YOLO (You only look once) • ߴͳ͜ͱ͕ಛͷମݕग़༻ͷ χϡʔϥϧωοτϫʔΫ
• h1ps:/ /www.youtube.com/watch? v=VOC3huqHrss • ͜ΕҰൠతͳYOLO 32
• iOSࣄྫ • YOLO: Core ML versus MPSNNGraph • Core
MLΛ༻͍ͯiOS্ͰYOLOΛಈ࡞ • Tiny YOLOʢެ։͞Ε͍ͯΔModelʣΛར༻ 33
34
ը૾ੜ 35
Goodfellow, Ian J.; Pouget-Abadie, Jean; Mirza, Mehdi; Xu, Bing; Warde-Farley,
David; Ozair, Sherjil; Courville, Aaron; Bengio, Yoshua. GeneraIve Adversarial Networks. arXiv:1406.2661, 2014. 36
Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representa>on learning
with deep convolu>onal genera>ve adversarial networks. arXiv preprint arXiv:1511.06434, 2015. 37
• GAN (Genera+ve Adversarial Nets) • ֶशσʔλͱࣅͨσʔλΛੜ͢ΔϞσϧͷҰछ • iOSࣄྫ •
Crea+ve AI on the iPhone: Genera+ve Adversarial Networks (GAN) with Apple's CoreML Tools • MNISTΛσʔληοτͱͯ͠ɺCore MLΛ༻͍ͯiOS্Ͱࣈ ʢʹࣅͨʣը૾Λੜ 38
39
Summary • Core ML / Vision Framework • iOS্Ͱͷը૾ղੳٕज़ͷར༻ϋʔυϧ͕Լ •
ͱ͍͑ࣝ͋Δఔඞཁʢͱײͨ͡ʣ • Ͱ͖Δ͜ͱ • ը૾ೝࣝ / τϥοΩϯά / ମݕग़ / ը૾ੜ / etc. • Follow @mhollemans 40
ࢀߟηογϣϯ • Introducing Core ML • Core ML in depth
• Vision Framework: Building on Core ML 41
ࢀߟࢿྉ • iOS 11: Machine Learning for everyone • Google’s
MobileNets on the iPhone • YOLO: Core ML versus MPSNNGraph • CreaAve AI on the iPhone: GeneraAve Adversarial Networks (GAN) with Apple's CoreML Tools - Zedge • Why Core ML will not work for your app (most likely) • θϩ͔Β࡞ΔDeep Learning 42
Thanks! 43
ʢิʣͰ͖ͳ͍͜ͱ / ੍ͳͲ • ֶशෆՄ • αϙʔτ͍ͯ͠ΔػցֶशϑϨʔϜϫʔΫʹ͍ͭͯɺಛఆͷόʔδϣϯʹറΒΕΔʢগͳ͘ͱ ݱঢ়ʣ • Kerasͷ2.0αϙʔτೖͬͨ͠ɺࠓޙ͍͛ͯ͘ͷ͔
• ModelͷαΠζ͕େ͖͗͢Δ • RegressionͱClassifica5onͷΈʢ☓ ΫϥελϦϯάɺϥϯΩϯάֶशɺetc.ʣ • ϥϯλΠϜͰϢʔβͷೖྗɾߦಈΛModelʹөͤ͞Δ͜ͱͰ͖ͳ͍ • etc. 44