Upgrade to Pro — share decks privately, control downloads, hide ads and more …

RxJava - Goto Aarhus 2013

RxJava - Goto Aarhus 2013

RxJava is a library for composing asynchronous and event-based programs by using observable sequences for the Java VM. It supports Java 6+, Clojure, Scala, Groovy, JRuby, and Java 8 lambdas. In this session, learn how the Netflix API uses RxJava to implement highly concurrent Web services against asynchronous datasources without blocking, synchronization, or thread safety concerns by using declarative functional reactive composition.

See what functional reactive programming looks like, how it fits into Java, and what use cases it addresses.

Presented at Goto Aarhus 2013: http://gotocon.com/aarhus-2013/presentation/Functional%20Reactive%20Programming%20with%20RxJava

RxJava at Netflix: http://techblog.netflix.com/2013/02/rxjava-netflix-api.html

RxJava on Github: https://github.com/ReactiveX/RxJava

Video: http://youtu.be/_t06LRX0DV0

Ben Christensen

October 02, 2013
Tweet

More Decks by Ben Christensen

Other Decks in Programming

Transcript

  1. Ben Christensen Software Engineer – Edge Platform at Netflix @benjchristensen

    http://www.linkedin.com/in/benjchristensen http://techblog.netflix.com/ GOTO Aarhus - October 2013 function reactive functional reactive programming with rxjava
  2. function composablefunctions reactive reactivelyapplied This presentation is about how the

    Netflix API application applies a functional programming style in an imperative Java application to apply functions reactively to asynchronously retrieved data ...
  3. function functional lambdas closures (mostly) pure composable asynchronous push events

    values reactive We have been calling this approach “functional reactive” since we use functions (lambdas/closures) in a reactive (asynchronous/push) manner.
  4. Observable.from("one",  "two",  "three")          .take(2)    

         .subscribe((arg)  -­‐>  {                    System.out.println(arg);          }); Java8 Observable("one",  "two",  "three")    .take(2)    .subscribe((arg:  String)  =>  {            println(arg)    }) Scala (-­‐>      (Observable/from  ["one"  "two"  "three"])    (.take  2)      (.subscribe  (rx/action  [arg]  (println  arg)))) Clojure    Observable.from("one",  "two",  "three")        .take(2)          .subscribe({arg  -­‐>  println(arg)}) Groovy    Observable.from("one",  "two",  "three")        .take(2)          .subscribe(lambda  {  |arg|  puts  arg  }) JRuby Simple examples showing RxJava code in various languages supported by RxJava (https://github.com/Netflix/RxJava/tree/master/language-adaptors). Java8 works with rxjava-core and does not need a language-adaptor. It also works with Java 6/7 but without lambdas/closures the code is more verbose.
  5. Observable.from("one",  "two",  "three")          .take(2)    

         .subscribe((arg)  -­‐>  {                    System.out.println(arg);          }); Java8 Observable("one",  "two",  "three")    .take(2)    .subscribe((arg:  String)  =>  {            println(arg)    }) Scala (-­‐>      (Observable/from  ["one"  "two"  "three"])    (.take  2)      (.subscribe  (rx/action  [arg]  (println  arg)))) Clojure    Observable.from("one",  "two",  "three")        .take(2)          .subscribe({arg  -­‐>  println(arg)}) Groovy    Observable.from("one",  "two",  "three")        .take(2)          .subscribe(lambda  {  |arg|  puts  arg  }) JRuby Most examples in the rest of this presentation will be in Groovy ...
  6. Observable.from("one",  "two",  "three")          .take(2)    

         .subscribe((arg)  -­‐>  {                    System.out.println(arg);          }); Java8 Observable("one",  "two",  "three")    .take(2)    .subscribe((arg:  String)  =>  {            println(arg)    }) Scala (-­‐>      (Observable/from  ["one"  "two"  "three"])    (.take  2)      (.subscribe  (rx/action  [arg]  (println  arg)))) Clojure    Observable.from("one",  "two",  "three")        .take(2)          .subscribe({arg  -­‐>  println(arg)}) Groovy    Observable.from("one",  "two",  "three")        .take(2)          .subscribe(lambda  {  |arg|  puts  arg  }) JRuby ... with a handful in Java 8
  7. “a library for composing asynchronous and event-based programs using observable

    sequences for the Java VM” A Java port of Rx (Reactive Extensions) https://rx.codeplex.com (.Net and Javascript by Microsoft) RxJava http://github.com/Netflix/RxJava RxJava is a port of Microsoft’s Rx (Reactive Extensions) to Java that attempts to be polyglot by targeting the JVM rather than just Java the language.
  8. Netflix is a subscription service for movies and TV shows

    for $7.99USD/month (about the same converted price in each countries local currency).
  9. More than 37 million Subscribers in 50+ Countries and Territories

    Netflix has over 37 million video streaming customers in 50+ countries and territories across North & South America, United Kingdom, Ireland, Netherlands and the Nordics.
  10. Netflix accounts for 33% of Peak Downstream Internet Traffic in

    North America Netflix subscribers are watching more than 1 billion hours a month Sandvine report available with free account at http://www.sandvine.com/news/global_broadband_trends.asp
  11. API traffic has grown from ~20 million/day in 2010 to

    >2 billion/day 0 500 1000 1500 2000 2010 2011 2012 Today millions of API requests per day
  12. Netflix API Dependency A Dependency D Dependency G Dependency J

    Dependency M Dependency P Dependency B Dependency E Dependency H Dependency K Dependency N Dependency Q Dependency C Dependency F Dependency I Dependency L Dependency O Dependency R The Netflix API serves all streaming devices and acts as the broker between backend Netflix systems and the user interfaces running on the 1000+ devices that support Netflix streaming. This presentation is going to focus on why the Netflix API team chose the functional reactive programming model (Rx in particular), how it is used and what benefits have been achieved. Other aspects of the Netflix API architecture can be found at http://techblog.netflix.com/search/label/api and https://speakerdeck.com/benjchristensen/.
  13. Discovery of Rx began with a re-architecture ... More information

    about the re-architecture can be found at http://techblog.netflix.com/2013/01/optimizing-netflix-api.html
  14. ... that collapsed network traffic into coarse API calls ...

    nested, conditional, concurrent execution Within a single request we now must achieve at least the same level of concurrency as previously achieved by the parallel network requests and preferably better as we can leverage the power of server hardware, lower latency network communication and eliminate redundant calls performed per incoming request.
  15. ... and we wanted to allow anybody to create endpoints,

    not just the “API Team” User interface client teams now build and deploy their own webservice endpoints on top of the API Platform instead of the “API Team” being the only ones who create endpoints.
  16. We wanted to retain flexibility to use whatever JVM language

    we wanted as well as cater to the differing skills and backgrounds of engineers on different teams. Groovy was the first alternate language we deployed in production on top of Java.
  17. Concurrency without each engineer reading and re-reading this → (awesome

    book ... everybody isn’t going to - or should have to - read it though, that’s the point)
  18. What if the implementation needs to change from synchronous to

    asynchronous? How should the client execute that method without blocking? spawn a thread? public  Data  getData(); Owner of api should retain control of concurrency behavior.
  19. Iterable pull Observable push T next() throws Exception returns; onNext(T)

    onError(Exception) onCompleted() Observable/Observer is the asynchronous dual to the synchronous Iterable/Iterator. More information about the duality of Iterable and Observable can be found at http://csl.stanford.edu/~christos/pldi2010.fit/meijer.duality.pdf and http://codebetter.com/matthewpodwysocki/2009/11/03/introduction-to-the-reactive- framework-part-ii/
  20. Iterable pull Observable push T next() throws Exception returns; onNext(T)

    onError(Exception) onCompleted()  //  Iterable<String>    //  that  contains  75  Strings  getDataFromLocalMemory()    .skip(10)    .take(5)    .map({  s  -­‐>        return  s  +  "_transformed"})    .forEach(          {  println  "next  =>  "  +  it})  //  Observable<String>    //  that  emits  75  Strings  getDataFromNetwork()    .skip(10)    .take(5)    .map({  s  -­‐>        return  s  +  "_transformed"})    .subscribe(          {  println  "onNext  =>  "  +  it}) The same way higher-order functions can be applied to an Iterable they can be applied to an Observable.
  21. Iterable pull Observable push T next() throws Exception returns; onNext(T)

    onError(Exception) onCompleted()  //  Iterable<String>    //  that  contains  75  Strings  getDataFromLocalMemory()    .skip(10)    .take(5)    .map({  s  -­‐>        return  s  +  "_transformed"})    .forEach(          {  println  "onNext  =>  "  +  it})  //  Observable<String>    //  that  emits  75  Strings  getDataFromNetwork()    .skip(10)    .take(5)    .map({  s  -­‐>        return  s  +  "_transformed"})    .subscribe(          {  println  "onNext  =>  "  +  it})
  22. Single Multiple Sync T getData() Iterable<T> getData() Async Future<T> getData()

    Observable<T> getData() Grid of synchronous and asynchronous duals for single and multi-valued responses. The Rx Observable is the dual of the synchronous Iterable.
  23. Single Multiple Sync T getData() Iterable<T> getData() Async Future<T> getData()

    Observable<T> getData() String s = getData(args); if (s.equals(x)) { // do something } else { // do something else } Typical synchronous scalar response with subsequent conditional logic.
  24. Single Multiple Sync T getData() Iterable<T> getData() Async Future<T> getData()

    Observable<T> getData() Iterable<String> values = getData(args); for (String s : values) { if (s.equals(x)) { // do something } else { // do something else } } Similar to scalar value except conditional logic happens within a loop.
  25. Single Multiple Sync T getData() Iterable<T> getData() Async Future<T> getData()

    Observable<T> getData() Future<String> s = getData(args); if (s.get().equals(x)) { // do something } else { // do something else } As we move to async a normal Java Future is asynchronous but to apply conditional logic requires dereferencing the value via ‘get()’.
  26. Single Multiple Sync T getData() Iterable<T> getData() Async Future<T> getData()

    Observable<T> getData() Future<String> s = getData(args); if (s.get().equals(x)) { // do something } else { // do something else } And this leads to the typical issue in nested, conditional asynchronous code with Java Futures where asynchronous quickly becomes synchronous and blocking again.
  27. Single Multiple Sync T getData() Iterable<T> getData() Async Future<T> getData()

    Observable<T> getData() Future<String> s = getData(args); Futures.addCallback(s, new FutureCallback<String> { public void onSuccess(String s) { if (s.equals(x)) { // do something } else { // do something else } } }, executor); There are better Futures though, one of them is from Guava ...
  28. Single Multiple Sync T getData() Iterable<T> getData() Async Future<T> getData()

    Observable<T> getData() Future<String> s = getData(args); Futures.addCallback(s, new FutureCallback<String> { public void onSuccess(String s) { if (s.equals(x)) { // do something } else { // do something else } } }, executor); ... and it allows callbacks ...
  29. Single Multiple Sync T getData() Iterable<T> getData() Async Future<T> getData()

    Observable<T> getData() Future<String> s = getData(args); Futures.addCallback(s, new FutureCallback<String> { public void onSuccess(String s) { if (s.equals(x)) { // do something } else { // do something else } } }, executor); ... so the conditional logic can be put inside a callback and prevent us from blocking and we can chain calls together in these callbacks.
  30. Single Multiple Sync T getData() Iterable<T> getData() Async Future<T> getData()

    Observable<T> getData() CompletableFuture<String> s = getData(args); s.thenApply((v) -> { if (v.equals(x)) { // do something } else { // do something else } }); New CompletableFuture in Java 8 are composable with higher-order functions.
  31. Single Multiple Sync T getData() Iterable<T> getData() Async Future<T> getData()

    Observable<T> getData() CompletableFuture<String> s = getData(args); s.thenApply((v) -> { if (v.equals(x)) { // do something } else { // do something else } });
  32. Future<String> s = getData(args); s.map({ s -> if (s.equals(x)) {

    // do something } else { // do something else } }); Single Multiple Sync T getData() Iterable<T> getData() Async Future<T> getData() Observable<T> getData() Akka/Scala Futures are also composable and provide higher-order functions ...
  33. Future<String> s = getData(args); s.map({ s -> if (s.equals(x)) {

    // do something } else { // do something else } }); Single Multiple Sync T getData() Iterable<T> getData() Async Future<T> getData() Observable<T> getData() ... that get us to where we want to be so that we can now compose conditional, nested data flows while remaining asynchronous.
  34. Future<String> s = getData(args); s.map({ s -> if (s.equals(x)) {

    // do something } else { // do something else } }); Single Multiple Sync T getData() Iterable<T> getData() Async Future<T> getData() Observable<T> getData() The composable Future ...
  35. Single Multiple Sync T getData() Iterable<T> getData() Async Future<T> getData()

    Observable<T> getData() Observable<String> s = getData(args); s.map({ s -> if (s.equals(x)) { // do something } else { // do something else } }); ... is very similar to the Rx Observable except that an Rx Observable supports multiple values which means it can handle a single value, a sequence of values or an infinite stream.
  36. Single Multiple Sync T getData() Iterable<T> getData() Async Future<T> getData()

    Observable<T> getData() Observable<String> s = getData(args); s.map({ s -> if (s.equals(x)) { // do something } else { // do something else } }); We wanted to be asynchronous to abstract away the underlying concurrency decisions and composable Futures or Rx Observables are good solutions.
  37. Single Multiple Sync T getData() Iterable<T> getData() Async Future<T> getData()

    Observable<T> getData() Observable<String> s = getData(args); s.map({ s -> if (s.equals(x)) { // do something } else { // do something else } }); One reason we chose the Rx Observable is because it gives us a single abstraction that accommodates our needs for both single and multi-valued responses while giving us the higher-order functions to compose nested, conditional logic in a reactive manner.
  38. class  VideoService  {      def  VideoList  getPersonalizedListOfMovies(userId);    

     def  VideoBookmark  getBookmark(userId,  videoId);      def  VideoRating  getRating(userId,  videoId);      def  VideoMetadata  getMetadata(videoId); } class  VideoService  {      def  Observable<VideoList>  getPersonalizedListOfMovies(userId);      def  Observable<VideoBookmark>  getBookmark(userId,  videoId);      def  Observable<VideoRating>  getRating(userId,  videoId);      def  Observable<VideoMetadata>  getMetadata(videoId); } ... create an observable api: instead of a blocking api ... With Rx blocking APIs could be converted into Observable APIs and accomplish our architecture goals including abstracting away the control and implementation of concurrency and asynchronous execution.
  39. One of the other positives of Rx Observable was that

    it is abstracted from the source of concurrency. It is not opinionated and allows the implementation to decide. For example, an Observable API could just use the calling thread to synchronously execute and respond.
  40. Or it could use a thread-pool to do the work

    asynchronously and callback with that thread.
  41. Or it could use multiple threads, each thread calling back

    via onNext(T) when the value is ready.
  42. Or a thread-pool/actor that does the work but then performs

    the callback via an event-loop so the thread-pool/actor is tuned for IO and event-loop for CPU. All of these different implementation choices are possible without changing the signature of the method and without the calling code changing their behavior or how they interact with or compose responses.
  43. client code treats all interactions with the api as asynchronous

    the api implementation chooses whether something is blocking or non-blocking and what resources it uses
  44.        Observable.create({  observer  -­‐>        

       try  {                  observer.onNext(new  Video(id))                observer.onCompleted();            }  catch(Exception  e)  {                observer.onError(e);            }        }) Observable<T> create(Func1<Observer<T>, Subscription> func) Let’s look at how to create an Observable and what its contract is. An Observable receives an Observer and calls onNext 1 or more times and terminates by either calling onError or onCompleted once. More information is available at https://github.com/Netflix/RxJava/wiki/Observable
  45. Observable        Observable.create({  observer  -­‐>      

         try  {                  observer.onNext(new  Video(id))                observer.onCompleted();            }  catch(Exception  e)  {                observer.onError(e);            }        }) Observable<T> create(Func1<Observer<T>, Subscription> func) An Observable is created by passing a Func1 implementation...
  46.        Observable.create({  observer  -­‐>        

       try  {                  observer.onNext(new  Video(id))                observer.onCompleted();            }  catch(Exception  e)  {                observer.onError(e);            }        }) Observable<T> create(Func1<Observer<T>, Subscription> func) Observer ... that accepts an Observer ...
  47.        Observable.create({  observer  -­‐>        

       try  {                  observer.onNext(new  Video(id))                observer.onCompleted();            }  catch(Exception  e)  {                observer.onError(e);            }        }) Observable<T> create(Func1<Observer<T>, Subscription> func) ... and when executed (subscribed to) it emits data via ‘onNext’ ...
  48.        Observable.create({  observer  -­‐>        

       try  {                  observer.onNext(new  Video(id))                observer.onCompleted();            }  catch(Exception  e)  {                observer.onError(e);            }        }) Observable<T> create(Func1<Observer<T>, Subscription> func) ... and marks its terminal state by calling ‘onCompleted’ ...
  49.        Observable.create({  observer  -­‐>        

       try  {                  observer.onNext(new  Video(id))                observer.onCompleted();            }  catch(Exception  e)  {                observer.onError(e);            }        }) Observable<T> create(Func1<Observer<T>, Subscription> func) ... or ‘onError’ if a failure occurs. Either ‘onCompleted’ or ‘onError’ must be called to terminate an Observable and nothing can be called after the terminal state occurs. An infinite stream that never has a failure would never call either of these.
  50.        def  Observable<VideoRating>  getRating(userId,  videoId)  {    

               //  fetch  the  VideoRating  for  this  user  asynchronously                return  Observable.create({  observer  -­‐>                        executor.execute(new  Runnable()  {                                def  void  run()  {                                    try  {                                          VideoRating  rating  =  ...  do  network  call  ...                                        observer.onNext(rating)                                        observer.onCompleted();                                      }  catch(Exception  e)  {                                        observer.onError(e);                                      }                                      }                        })                })        } Asynchronous Observable with Single Value Example Observable implementation that executes asynchronously on a thread-pool and emits a single value. This explicitly shows an ‘executor’ being used to run this on a separate thread to illustrate how it is up to the Observable implementation to do as it wishes, but Rx always has Schedulers for typical scenarios of scheduling an Observable in a thread-pool or whatever a Scheduler implementation dictates.
  51.        def  Observable<VideoRating>  getRating(userId,  videoId)  {    

               //  fetch  the  VideoRating  for  this  user  asynchronously                return  Observable.create({  observer  -­‐>                        executor.execute(new  Runnable()  {                                def  void  run()  {                                    try  {                                          VideoRating  rating  =  ...  do  network  call  ...                                        observer.onNext(rating)                                        observer.onCompleted();                                      }  catch(Exception  e)  {                                        observer.onError(e);                                      }                                      }                        })                })        } Asynchronous Observable with Single Value Example Observable implementation that executes asynchronously on a thread-pool and emits a single value. This explicitly shows an ‘executor’ being used to run this on a separate thread to illustrate how it is up to the Observable implementation to do as it wishes, but Rx always has Schedulers for typical scenarios of scheduling an Observable in a thread-pool or whatever a Scheduler implementation dictates.
  52. Synchronous Observable with Multiple Values        def  Observable<Video>

     getVideos()  {                return  Observable.create({  observer  -­‐>                      try  {                              for(v  in  videos)  {                                observer.onNext(v)                          }                          observer.onCompleted();                      }  catch(Exception  e)  {                          observer.onError(e);                      }                })        } Caution: This example is eager and will always emit all values regardless of subsequent operators such as take(10) Example Observable implementation that executes synchronously and emits multiple values. Note that the for-loop as implemented here will always complete so should not have any IO in it and be of limited length otherwise it should be done with a lazy iterator implementation or performed asynchronously so it can be unsubscribed from.
  53. Synchronous Observable with Multiple Values        def  Observable<Video>

     getVideos()  {                return  Observable.create({  observer  -­‐>                      try  {                              for(v  in  videos)  {                                observer.onNext(v)                          }                          observer.onCompleted();                      }  catch(Exception  e)  {                          observer.onError(e);                      }                })        } Caution: This example is eager and will always emit all values regardless of subsequent operators such as take(10) Example Observable implementation that executes synchronously and emits multiple values. Note that the for-loop as implemented here will always complete so should not have any IO in it and be of limited length otherwise it should be done with a lazy iterator implementation or performed asynchronously so it can be unsubscribed from.
  54. Asynchronous Observable with Multiple Values  def  Observable<Video>  getVideos()  {  

         return  Observable.create({  observer  -­‐>              executor.execute(new  Runnable()  {                    def  void  run()  {                        try  {                                for(id  in  videoIds)  {                                  Video  v  =  ...  do  network  call  ...                                  observer.onNext(v)                              }                              observer.onCompleted();                          }  catch(Exception  e)  {                              observer.onError(e);                          }                      }              })        })  } Example Observable implementation that executes asynchronously on a thread-pool and emits multiple values. Note that for brevity this code does not handle the subscription so will not unsubscribe even if asked. See the ‘getListOfLists'  method  in the following for an implementation with unsubscribe handled: https://github.com/Netflix/RxJava/blob/master/language-adaptors/rxjava-groovy/src/examples/groovy/rx/lang/groovy/examples/ VideoExample.groovy#L125
  55. Asynchronous Observable with Multiple Values  def  Observable<Video>  getVideos()  {  

         return  Observable.create({  observer  -­‐>              executor.execute(new  Runnable()  {                    def  void  run()  {                        try  {                                for(id  in  videoIds)  {                                  Video  v  =  ...  do  network  call  ...                                  observer.onNext(v)                              }                              observer.onCompleted();                          }  catch(Exception  e)  {                              observer.onError(e);                          }                      }              })        })  } Example Observable implementation that executes asynchronously on a thread-pool and emits multiple values. Note that for brevity this code does not handle the subscription so will not unsubscribe even if asked. See the ‘getListOfLists'  method  in the following for an implementation with unsubscribe handled: https://github.com/Netflix/RxJava/blob/master/language-adaptors/rxjava-groovy/src/examples/groovy/rx/lang/groovy/examples/ VideoExample.groovy#L125
  56. Asynchronous Observer getVideos().subscribe(new  Observer<Video>()  {          

         def  void  onNext(Video  video)  {                println("Video:  "  +  video.videoId)        }                def  void  onError(Exception  e)  {                println("Error")                e.printStackTrace()        }                def  void  onCompleted()  {                println("Completed")        } }) Moving to the subscriber side of the relationship we see how an Observer looks. This implements the full interface for clarity of what the types and members are ...
  57. getVideos().subscribe(        {  video  -­‐>      

             println("Video:  "  +  video.videoId)        },  {  exception  -­‐>                  println("Error")                e.printStackTrace()        },  {                  println("Completed")        } ) Asynchronous Observer ... but generally the on* method implementations are passed in as functions/lambdas/closures similar to this.
  58. getVideos().subscribe(        {  video  -­‐>      

             println("Video:  "  +  video.videoId)        },  {  exception  -­‐>                  println("Error")                e.printStackTrace()        } ) Asynchronous Observer Often the ‘onCompleted’ function is not needed.
  59. Transform: map, flatmap, reduce, scan ... Filter: take, skip, sample,

    takewhile, filter ... Combine: concat, merge, zip, combinelatest, multicast, publish, cache, refcount ... Concurrency: observeon, subscribeon Error Handling: onerrorreturn, onerrorresume ... functions composable This is a list of some of the higher-order functions that Rx supports. More can be found in the documentation (https://github.com/Netflix/RxJava/wiki) and many more from the original Rx.Net implementation have not yet been implemented in RxJava (but are all listed on the RxJava Github issues page tracking the progress). We will look at some of the important ones for combining and transforming data as well as handling errors asynchronously.
  60. Combining via Merge The ‘merge’ operator is used to combine

    multiple Observable sequences of the same type into a single Observable sequence with all data. The X represents an onError call that would terminate the sequence so once it occurs the merged Observable also ends. The ‘mergeDelayError’ operator allows delaying the error until after all other values are successfully merged.
  61. Observable<SomeData>  a  =  getDataA(); Observable<SomeData>  b  =  getDataB(); Observable.merge(a,  b)

           .subscribe(                {  element  -­‐>  println("data:  "  +  element)})
  62. Observable<SomeData>  a  =  getDataA(); Observable<SomeData>  b  =  getDataB(); Observable.merge(a,  b)

           .subscribe(                {  element  -­‐>  println("data:  "  +  element)}) Each of these Observables are of the same type...
  63. Observable<SomeData>  a  =  getDataA(); Observable<SomeData>  b  =  getDataB(); Observable.merge(a,  b)

           .subscribe(                {  element  -­‐>  println("data:  "  +  element)}) ... and can be represented by these timelines ...
  64. Observable<SomeData>  a  =  getDataA(); Observable<SomeData>  b  =  getDataB(); Observable.merge(a,  b)

           .subscribe(                {  element  -­‐>  println("data:  "  +  element)}) ... that we pass through the ‘merge’ operator ...
  65. Observable<SomeData>  a  =  getDataA(); Observable<SomeData>  b  =  getDataB(); Observable.merge(a,  b)

           .subscribe(                {  element  -­‐>  println("data:  "  +  element)}) ... which looks like this in code ...
  66. Observable<SomeData>  a  =  getDataA(); Observable<SomeData>  b  =  getDataB(); Observable.merge(a,  b)

           .subscribe(                {  element  -­‐>  println("data:  "  +  element)}) ... and emits a single Observable containing all of the onNext events plus the first terminal event (onError/onCompleted) from the source Observables ...
  67. Observable<SomeData>  a  =  getDataA(); Observable<SomeData>  b  =  getDataB(); Observable.merge(a,  b)

           .subscribe(                {  element  -­‐>  println("data:  "  +  element)}) ... and these are then subscribed to as a single Observable.
  68. Combining via Zip The ‘zip’ operator is used to combine

    Observable sequences of different types.
  69. Observable<SomeData>  a  =  getDataA(); Observable<String>  b  =  getDataB(); Observable.zip(a,  b,

     {x,  y  -­‐>  [x,  y]})        .subscribe(                {  pair  -­‐>  println("a:  "  +  pair[0]                                                +  "  b:  "  +  pair[1])})
  70. Observable<SomeData>  a  =  getDataA(); Observable<String>  b  =  getDataB(); Observable.zip(a,  b,

     {x,  y  -­‐>  [x,  y]})        .subscribe(                {  pair  -­‐>  println("a:  "  +  pair[0]                                                +  "  b:  "  +  pair[1])}) Here are 2 Observable sequences with different types ...
  71. Observable<SomeData>  a  =  getDataA(); Observable<String>  b  =  getDataB(); Observable.zip(a,  b,

     {x,  y  -­‐>  [x,  y]})        .subscribe(                {  pair  -­‐>  println("a:  "  +  pair[0]                                                +  "  b:  "  +  pair[1])}) ... represented by 2 timelines with different shapes ...
  72. Observable<SomeData>  a  =  getDataA(); Observable<String>  b  =  getDataB(); Observable.zip(a,  b,

     {x,  y  -­‐>  [x,  y]})        .subscribe(                {  pair  -­‐>  println("a:  "  +  pair[0]                                                +  "  b:  "  +  pair[1])}) ... that we pass through the zip operator that contains a provided function to apply to each set of values received.
  73. Observable<SomeData>  a  =  getDataA(); Observable<String>  b  =  getDataB(); Observable.zip(a,  b,

     {x,  y  -­‐>  [x,  y]})        .subscribe(                {  pair  -­‐>  println("a:  "  +  pair[0]                                                +  "  b:  "  +  pair[1])}) The transformation function is passed into the zip operator ...
  74. Observable<SomeData>  a  =  getDataA(); Observable<String>  b  =  getDataB(); Observable.zip(a,  b,

     {x,  y  -­‐>  [x,  y]})        .subscribe(                {  pair  -­‐>  println("a:  "  +  pair[0]                                                +  "  b:  "  +  pair[1])}) ... and in this case is simply taking x & y and combining them into a tuple or pair and then returning it.
  75. Observable<SomeData>  a  =  getDataA(); Observable<String>  b  =  getDataB(); Observable.zip(a,  b,

     {x,  y  -­‐>  [x,  y]})        .subscribe(                {  pair  -­‐>  println("a:  "  +  pair[0]                                                +  "  b:  "  +  pair[1])}) The output of the transformation function given to the zip operator is emitted in a single Observable sequence ...
  76. Observable<SomeData>  a  =  getDataA(); Observable<String>  b  =  getDataB(); Observable.zip(a,  b,

     {x,  y  -­‐>  [x,  y]})        .subscribe(                {  pair  -­‐>  println("a:  "  +  pair[0]                                                +  "  b:  "  +  pair[1])}) ... that gives us our pairs when we subscribe to it.
  77. Error Handling Observable<SomeData>  a  =  getDataA(); Observable<String>  b  =  getDataB();

    Observable.zip(a,  b,  {x,  y  -­‐>  [x,  y]})        .subscribe(                {  pair  -­‐>  println("a:  "  +  pair[0]                                                +  "  b:  "  +  pair[1])},                {  exception  -­‐>  println("error  occurred:  "                                                                +  exception.getMessage())},                {  println("completed")  }) If an error occurs then the ‘onError’ handler passed into the ‘subscribe’ will be invoked...
  78. onNext(T) onError(Exception) onCompleted() Observable<SomeData>  a  =  getDataA(); Observable<String>  b  =

     getDataB(); Observable.zip(a,  b,  {x,  y  -­‐>  [x,  y]})        .subscribe(                {  pair  -­‐>  println("a:  "  +  pair[0]                                                +  "  b:  "  +  pair[1])},                {  exception  -­‐>  println("error  occurred:  "                                                                +  exception.getMessage())},                {  println("completed")  }) Error Handling
  79. onNext(T) onError(Exception) onCompleted() Observable<SomeData>  a  =  getDataA(); Observable<String>  b  =

     getDataB(); Observable.zip(a,  b,  {x,  y  -­‐>  [x,  y]})        .subscribe(                {  pair  -­‐>  println("a:  "  +  pair[0]                                                +  "  b:  "  +  pair[1])},                {  exception  -­‐>  println("error  occurred:  "                                                                +  exception.getMessage())},                {  println("completed")  }) Error Handling ... but this is the final terminal state of the entire composition so we often want to move our error handling to more specific places. There are operators for that ...
  80. Observable<SomeData>  a  =  getDataA(); Observable<String>  b  =  getDataB()    

                                                    Observable.zip(a,  b,  {x,  y  -­‐>  [x,  y]})        .subscribe(                {  pair  -­‐>  println("a:  "  +  pair[0]                                                +  "  b:  "  +  pair[1])},                {  exception  -­‐>  println("error  occurred:  "                                                                +  exception.getMessage())})
  81. Observable<SomeData>  a  =  getDataA(); Observable<String>  b  =  getDataB()    

                                                   .onErrorResumeNext(getFallbackForB()); Observable.zip(a,  b,  {x,  y  -­‐>  [x,  y]})        .subscribe(                {  pair  -­‐>  println("a:  "  +  pair[0]                                                +  "  b:  "  +  pair[1])},                {  exception  -­‐>  println("error  occurred:  "                                                                +  exception.getMessage())}) If we want to handle errors on Observable ‘b’ we can compose it with ‘onErrorResumeNext’ and pass in a function that when invoked returns another Observable that we will resume with if onError is called.
  82. Observable<SomeData>  a  =  getDataA(); Observable<String>  b  =  getDataB()    

                                                   .onErrorResumeNext(getFallbackForB()); Observable.zip(a,  b,  {x,  y  -­‐>  [x,  y]})        .subscribe(                {  pair  -­‐>  println("a:  "  +  pair[0]                                                +  "  b:  "  +  pair[1])},                {  exception  -­‐>  println("error  occurred:  "                                                                +  exception.getMessage())}) So ‘b’ represents an Observable sequence ...
  83. Observable<SomeData>  a  =  getDataA(); Observable<String>  b  =  getDataB()    

                                                   .onErrorResumeNext(getFallbackForB()); Observable.zip(a,  b,  {x,  y  -­‐>  [x,  y]})        .subscribe(                {  pair  -­‐>  println("a:  "  +  pair[0]                                                +  "  b:  "  +  pair[1])},                {  exception  -­‐>  println("error  occurred:  "                                                                +  exception.getMessage())}) ... that emits 3 values ...
  84. Observable<SomeData>  a  =  getDataA(); Observable<String>  b  =  getDataB()    

                                                   .onErrorResumeNext(getFallbackForB()); Observable.zip(a,  b,  {x,  y  -­‐>  [x,  y]})        .subscribe(                {  pair  -­‐>  println("a:  "  +  pair[0]                                                +  "  b:  "  +  pair[1])},                {  exception  -­‐>  println("error  occurred:  "                                                                +  exception.getMessage())}) ... and then fails and calls onError ...
  85. Observable<SomeData>  a  =  getDataA(); Observable<String>  b  =  getDataB()    

                                                   .onErrorResumeNext(getFallbackForB()); Observable.zip(a,  b,  {x,  y  -­‐>  [x,  y]})        .subscribe(                {  pair  -­‐>  println("a:  "  +  pair[0]                                                +  "  b:  "  +  pair[1])},                {  exception  -­‐>  println("error  occurred:  "                                                                +  exception.getMessage())}) ... which being routed through ‘onErrorResumeNext’ ...
  86. Observable<SomeData>  a  =  getDataA(); Observable<String>  b  =  getDataB()    

                                                   .onErrorResumeNext(getFallbackForB()); Observable.zip(a,  b,  {x,  y  -­‐>  [x,  y]})        .subscribe(                {  pair  -­‐>  println("a:  "  +  pair[0]                                                +  "  b:  "  +  pair[1])},                {  exception  -­‐>  println("error  occurred:  "                                                                +  exception.getMessage())}) ... triggers the invocation of ‘getFallbackForB()’ ...
  87. Observable<SomeData>  a  =  getDataA(); Observable<String>  b  =  getDataB()    

                                                   .onErrorResumeNext(getFallbackForB()); Observable.zip(a,  b,  {x,  y  -­‐>  [x,  y]})        .subscribe(                {  pair  -­‐>  println("a:  "  +  pair[0]                                                +  "  b:  "  +  pair[1])},                {  exception  -­‐>  println("error  occurred:  "                                                                +  exception.getMessage())}) ... which provides a new Observable that is subscribed to in place of the original Observable ‘b’ ...
  88. Observable<SomeData>  a  =  getDataA(); Observable<String>  b  =  getDataB()    

                                                   .onErrorResumeNext(getFallbackForB()); Observable.zip(a,  b,  {x,  y  -­‐>  [x,  y]})        .subscribe(                {  pair  -­‐>  println("a:  "  +  pair[0]                                                +  "  b:  "  +  pair[1])},                {  exception  -­‐>  println("error  occurred:  "                                                                +  exception.getMessage())}) ... so the returned Observable emits a single sequence of 5 onNext calls and a successful onCompleted without an onError.
  89. ... except that it returns a specific value instead of

    an Observable. Various ‘onError*’ operators can be found in the Javadoc: http://netflix.github.com/RxJava/javadoc/rx/Observable.html
  90. HTTP Request Use Case ObservableHttp.createRequest(      HttpAsyncMethods.createGet("http://www.wikipedia.com"),  client)  

                  HTTP requests will be used to demonstrate some simple uses of Observable.
  91. HTTP Request Use Case ObservableHttp.createRequest(      HttpAsyncMethods.createGet("http://www.wikipedia.com"),  client)  

                 .toObservable()  //  Observable<ObservableHttpResponse>                 The request is lazy and we turn it into an Observable that when subscribed to will execute the request and callback with the response.
  92. HTTP Request Use Case ObservableHttp.createRequest(      HttpAsyncMethods.createGet("http://www.wikipedia.com"),  client)  

                 .toObservable()  //  Observable<ObservableHttpResponse>                .flatMap((ObservableHttpResponse  response)  -­‐>  {                        //  access  to  HTTP  status,  headers,  etc                          //  response.getContent()  -­‐>  Observable<byte[]>                        return  response.getContent().map((bb)  -­‐>  {                                return  new  String(bb);  //  Observable<String>                        });                  })                 Once we have the ObservableHttpResponse we can choose what to do with it, including fetching the content which returns an Observable<byte[]>.
  93. HTTP Request Use Case ObservableHttp.createRequest(      HttpAsyncMethods.createGet("http://www.wikipedia.com"),  client)  

                 .toObservable()  //  Observable<ObservableHttpResponse>                .flatMap((ObservableHttpResponse  response)  -­‐>  {                        //  access  to  HTTP  status,  headers,  etc                        //  response.getContent()  -­‐>  Observable<byte[]>                          return  response.getContent().map((bb)  -­‐>  {                                return  new  String(bb);  //  Observable<String>                        });                  })                 We use flatMap as we want to perform nested logic that returns another Observable, ultimately an Observable<String> in this example.
  94. HTTP Request Use Case ObservableHttp.createRequest(      HttpAsyncMethods.createGet("http://www.wikipedia.com"),  client)  

                 .toObservable()  //  Observable<ObservableHttpResponse>                .flatMap((ObservableHttpResponse  response)  -­‐>  {                        //  access  to  HTTP  status,  headers,  etc                          //  response.getContent()  -­‐>  Observable<byte[]>                        return  response.getContent().map((bb)  -­‐>  {                                return  new  String(bb);  //  Observable<String>                        });                  })                 We use map to transform from byte[] to String and return that.
  95. HTTP Request Use Case ObservableHttp.createRequest(      HttpAsyncMethods.createGet("http://www.wikipedia.com"),  client)  

                 .toObservable()  //  Observable<ObservableHttpResponse>                .flatMap((ObservableHttpResponse  response)  -­‐>  {                        //  access  to  HTTP  status,  headers,  etc                        //  response.getContent()  -­‐>  Observable<byte[]>                        return  response.getContent().map((bb)  -­‐>  {                                return  new  String(bb);  //  Observable<String>                        });                  })                .subscribe((resp)  -­‐>  {                          System.out.println(resp);                }); We can subscribe to this asynchronously ...
  96. HTTP Request Use Case ObservableHttp.createRequest(      HttpAsyncMethods.createGet("http://www.wikipedia.com"),  client)  

                 .toObservable()  //  Observable<ObservableHttpResponse>                .flatMap((ObservableHttpResponse  response)  -­‐>  {                        //  access  to  HTTP  status,  headers,  etc                        //  response.getContent()  -­‐>  Observable<byte[]>                        return  response.getContent().map((bb)  -­‐>  {                                return  new  String(bb);  //  Observable<String>                        });                  })                .subscribe((resp)  -­‐>  {                          System.out.println(resp);                }); ... which will execute all of the lazily defined code above and receive String results.
  97. HTTP Request Use Case ObservableHttp.createRequest(      HttpAsyncMethods.createGet("http://www.wikipedia.com"),  client)  

                 .toObservable()  //  Observable<ObservableHttpResponse>                .flatMap((ObservableHttpResponse  response)  -­‐>  {                        //  access  to  HTTP  status,  headers,  etc                        //  response.getContent()  -­‐>  Observable<byte[]>                        return  response.getContent().map((bb)  -­‐>  {                                return  new  String(bb);  //  Observable<String>                        });                  })                .toBlockingObservable()                .forEach((resp)  -­‐>  {                          System.out.println(resp);                }); Or if we need to be blocking (useful for unit tests or simple demo apps) we can use toBlockingObservable().forEach() to iterate the responses in a blocking manner.
  98. HTTP Request Use Case ObservableHttp.createGet("http://www.wikipedia.com"),  client)        

           .toObservable()  //  Observable<ObservableHttpResponse>                .flatMap((ObservableHttpResponse  response)  -­‐>  {                        //  access  to  HTTP  status,  headers,  etc                        //  response.getContent()  -­‐>  Observable<byte[]>                        return  response.getContent().map((bb)  -­‐>  {                                return  new  String(bb);  //  Observable<String>                        });                  })                 This example has shown just a simple request/response.
  99. HTTP Request Use Case ObservableHttp.createGet("http://www.wikipedia.com"),  client)        

           .toObservable()  //  Observable<ObservableHttpResponse>                .flatMap((ObservableHttpResponse  response)  -­‐>  {                        //  access  to  HTTP  status,  headers,  etc                        //  response.getContent()  -­‐>  Observable<byte[]>                        return  response.getContent().map((bb)  -­‐>  {                                return  new  String(bb);  //  Observable<String>                        });                  })                 If we change the request ...
  100. ObservableHttp.createGet("http://hostname/hystrix.stream"),  client)                .toObservable()

     //  Observable<ObservableHttpResponse>                .flatMap((ObservableHttpResponse  response)  -­‐>  {                        //  access  to  HTTP  status,  headers,  etc                        //  response.getContent()  -­‐>  Observable<byte[]>                        return  response.getContent().map((bb)  -­‐>  {                                return  new  String(bb);  //  Observable<String>                        });                  })                 HTTP Request Use Case ... to something that streams results (mime-type text/event-stream) we can see a more interesting use of Observable.
  101. ObservableHttp.createGet("http://hostname/hystrix.stream"),  client)                .toObservable()

     //  Observable<ObservableHttpResponse>                .flatMap((ObservableHttpResponse  response)  -­‐>  {                        //  access  to  HTTP  status,  headers,  etc                        //  response.getContent()  -­‐>  Observable<byte[]>                        return  response.getContent().map((bb)  -­‐>  {                                return  new  String(bb);  //  Observable<String>                        });                  })                  .filter((s)  -­‐>  {                        s.startsWith(":  ping");                  })                  .take(30);                 HTTP Request Use Case We will receive a stream (potentially infinite) of events.
  102. ObservableHttp.createGet("http://hostname/hystrix.stream"),  client)                .toObservable()

     //  Observable<ObservableHttpResponse>                .flatMap((ObservableHttpResponse  response)  -­‐>  {                        //  access  to  HTTP  status,  headers,  etc                        //  response.getContent()  -­‐>  Observable<byte[]>                        return  response.getContent().map((bb)  -­‐>  {                                return  new  String(bb);  //  Observable<String>                        });                  })                  .filter((s)  -­‐>  {                        s.startsWith(":  ping");                  })                  .take(30);                 HTTP Request Use Case We can filter out all “: ping” events ...
  103. ObservableHttp.createGet("http://hostname/hystrix.stream"),  client)                .toObservable()

     //  Observable<ObservableHttpResponse>                .flatMap((ObservableHttpResponse  response)  -­‐>  {                        //  access  to  HTTP  status,  headers,  etc                        //  response.getContent()  -­‐>  Observable<byte[]>                        return  response.getContent().map((bb)  -­‐>  {                                return  new  String(bb);  //  Observable<String>                        });                  })                  .filter((s)  -­‐>  {                        s.startsWith(":  ping");                  })                  .take(30);                 HTTP Request Use Case ... and take the first 30 and then unsubscribe. Or we can use operations like window/buffer/groupBy/scan to group and analyze the events.
  104. Netflix API Use Case Now we’ll move to a more

    involved example of how Rx is used in the Netflix API that demonstrates some of the power of Rx to handle nested asynchronous composition.
  105. This marble diagram represents what the code in subsequent slides

    is doing when retrieving data and composing the functions.
  106. Observable<Video> emits n videos to onNext() First we start with

    a request to fetch videos asynchronously ...
  107. def  Observable<Map>  getVideos(userId)  {        return  VideoService.getVideos(userId)  

                 //  we  only  want  the  first  10  of  each  list              .take(10) } Takes first 10 then unsubscribes from origin. Returns Observable<Video> that emits 10 Videos.
  108. Takes first 10 then unsubscribes from origin. Returns Observable<Video> that

    emits 10 Videos. The take operator subscribes to the Observable from VideoService.getVideos, accepts 10 onNext calls ...
  109. Takes first 10 then unsubscribes from origin. Returns Observable<Video> that

    emits 10 Videos. ... and then unsubscribes from the parent Observable so only 10 Video objects are emitted from the ‘take’ Observable. The parent Observable receives the unsubscribe call and can stop further processing, or if it incorrectly ignores the unsubscribe the ‘take’ operator will ignore any further data it receives.
  110. def  Observable<Map>  getVideos(userId)  {        return  VideoService.getVideos(userId)  

                 //  we  only  want  the  first  10  of  each  list              .take(10)              .map({  Video  video  -­‐>                      //  transform  video  object              })       } The ‘map’ operator allows transforming the input value into a different output. We now apply the ‘map’ operator to each of the 10 Video objects we will receive so we can transform from Video to something else.
  111.        Observable<R>  b  =  Observable<T>.map({  T  t  -­‐>

                 R  r  =  ...  transform  t  ...            return  r;        }) The ‘map’ operator allows transforming from type T to type R.
  112.        Observable<R>  b  =  Observable<T>.map({  T  t  -­‐>

                 R  r  =  ...  transform  t  ...            return  r;        }) The ‘map’ operator allows transforming from type T to type R.
  113. def  Observable<Map>  getVideos(userId)  {        return  VideoService.getVideos(userId)  

                 //  we  only  want  the  first  10  of  each  list              .take(10)              .map({  Video  video  -­‐>                      //  transform  video  object              })       } The ‘map’ operator allows transforming the input value into a different output.
  114. def  Observable<Map>  getVideos(userId)  {        return  VideoService.getVideos(userId)  

                 //  we  only  want  the  first  10  of  each  list              .take(10)              .flatMap({  Video  video  -­‐>                      //  for  each  video  we  want  to  fetch  metadata                  def  m  =  video.getMetadata()                          .map({  Map<String,  String>  md  -­‐>                                //  transform  to  the  data  and  format  we  want                              return  [title:  md.get("title"),length:  md.get("duration")]                    })                  //  and  its  rating  and  bookmark                  def  b  ...                  def  r  ...              })       } We change to ‘mapMany’/‘flatMap’ which is like merge(map()) since we will return an Observable<T> instead of T. But since we want to do nested asynchronous calls that will result in another Observable being returned we will use flatMap (also knows as mapMany or selectMany) which will flatten an Observable<Observable<T>> into Observable<T> as shown in the following marble diagram ...
  115.  Observable<R>  b  =  Observable<T>.mapMany({  T  t  -­‐>      

       Observable<R>  r  =  ...  transform  t  ...        return  r;  }) flatMap The ‘flatMap’/‘mapMany’ operator allows transforming from type T to type Observable<R>. If ‘map’ were being used this would result in an Observable<Observable<R>> which is rarely what is wanted, so ‘flatMap’/‘mapMany’ flattens this via ‘merge’ back into Observable<R>. This is generally used instead of ‘map’ anytime nested work is being done that involves fetching and returning other Observables.
  116.  Observable<R>  b  =  Observable<T>.mapMany({  T  t  -­‐>      

       Observable<R>  r  =  ...  transform  t  ...        return  r;  }) flatMap A single flattened Observable<R> is returned instead of Observable<Observable<R>>
  117. def  Observable<Map>  getVideos(userId)  {        return  VideoService.getVideos(userId)  

                 //  we  only  want  the  first  10  of  each  list              .take(10)              .flatMap({  Video  video  -­‐>                      //  for  each  video  we  want  to  fetch  metadata                  def  m  =  video.getMetadata()                          .map({  Map<String,  String>  md  -­‐>                                //  transform  to  the  data  and  format  we  want                              return  [title:  md.get("title"),length:  md.get("duration")]                    })                  //  and  its  rating  and  bookmark                  def  b  ...                  def  r  ...              })       } Nested asynchronous calls that return more Observables. Within the flatMap “transformation” function we perform nested asynchronous calls that return more Observables.
  118. def  Observable<Map>  getVideos(userId)  {        return  VideoService.getVideos(userId)  

                 //  we  only  want  the  first  10  of  each  list              .take(10)              .flatMap({  Video  video  -­‐>                      //  for  each  video  we  want  to  fetch  metadata                  def  m  =  video.getMetadata()                          .map({  Map<String,  String>  md  -­‐>                                //  transform  to  the  data  and  format  we  want                              return  [title:  md.get("title"),length:  md.get("duration")]                    })                  //  and  its  rating  and  bookmark                  def  b  ...                  def  r  ...              })       } Nested asynchronous calls that return more Observables. This call returns an Observable<VideoMetadata>.
  119. def  Observable<Map>  getVideos(userId)  {        return  VideoService.getVideos(userId)  

                 //  we  only  want  the  first  10  of  each  list              .take(10)              .flatMap({  Video  video  -­‐>                      //  for  each  video  we  want  to  fetch  metadata                  def  m  =  video.getMetadata()                          .map({  Map<String,  String>  md  -­‐>                                //  transform  to  the  data  and  format  we  want                              return  [title:  md.get("title"),length:  md.get("duration")]                    })                  //  and  its  rating  and  bookmark                  def  b  ...                  def  r  ...              })       } Observable<VideoMetadata> Observable<VideoBookmark> Observable<VideoRating> 3 separate types are being fetched asynchronously and each return an Observable.
  120. def  Observable<Map>  getVideos(userId)  {        return  VideoService.getVideos(userId)  

                 //  we  only  want  the  first  10  of  each  list              .take(10)              .flatMap({  Video  video  -­‐>                      //  for  each  video  we  want  to  fetch  metadata                  def  m  =  video.getMetadata()                          .map({  Map<String,  String>  md  -­‐>                                //  transform  to  the  data  and  format  we  want                              return  [title:  md.get("title"),length:  md.get("duration")]                    })                  //  and  its  rating  and  bookmark                  def  b  ...                  def  r  ...              })       } Each Observable transforms its data using ‘map’ Each of the 3 different Observables are transformed using ‘map’, in this case from the VideoMetadata type into a dictionary of key/value pairs.
  121. For each of the 10 Video objects it transforms via

    ‘mapMany’ function that does nested async calls.
  122. For each Video ‘v’ it calls getMetadata() which returns Observable<VideoMetadata>

    These nested async requests return Observables that emit 1 value.
  123. Same for Observable<VideoBookmark> and Observable<VideoRating> Each of the .map() calls

    emits the same type (represented as an orange circle) since we want to combine them later into a single dictionary (Map).
  124. def  Observable<Map>  getVideos(userId)  {        return  VideoService.getVideos(userId)  

                 //  we  only  want  the  first  10  of  each  list              .take(10)              .flatMap({  Video  video  -­‐>                      //  for  each  video  we  want  to  fetch  metadata                    def  m  =  video.getMetadata()                          .map({  Map<String,  String>  md  -­‐>                                //  transform  to  the  data  and  format  we  want                              return  [title:  md.get("title"),length:  md.get("duration")]                    })                  //  and  its  rating  and  bookmark                  def  b  ...                  def  r  ...                  //  compose  these  together              })       }
  125. def  Observable<Map>  getVideos(userId)  {        return  VideoService.getVideos(userId)  

                 //  we  only  want  the  first  10  of  each  list              .take(10)              .flatMap({  Video  video  -­‐>                    def  m  ...                  def  b  ...                  def  r  ...                  //  compose  these  together              })       } At this point we have 3 Observables defined but they are dangling - nothing combines or references them and we aren’t yet returning anything from the ‘flatMap’ function so we want to compose m, b, and r together and return a single asynchronous Observable representing the composed work being done on those 3.
  126. def  Observable<Map>  getVideos(userId)  {        return  VideoService.getVideos(userId)  

                 //  we  only  want  the  first  10  of  each  list              .take(10)              .flatMap({  Video  video  -­‐>                    def  m  ...                  def  b  ...                  def  r  ...                  //  compose  these  together                  return  Observable.zip(m,  b,  r,  {  metadata,  bookmark,  rating  -­‐>                            //  now  transform  to  complete  dictionary                            //  of  data  we  want  for  each  Video                          return  [id:  video.videoId]  <<  metadata  <<  bookmark  <<  rating                  })                      })       }
  127. def  Observable<Map>  getVideos(userId)  {        return  VideoService.getVideos(userId)  

                 //  we  only  want  the  first  10  of  each  list              .take(10)              .flatMap({  Video  video  -­‐>                    def  m  ...                  def  b  ...                  def  r  ...                  //  compose  these  together                  return  Observable.zip(m,  b,  r,  {  metadata,  bookmark,  rating  -­‐>                            //  now  transform  to  complete  dictionary                            //  of  data  we  want  for  each  Video                          return  [id:  video.videoId]  <<  metadata  <<  bookmark  <<  rating                  })                      })       } The ‘zip’ operator combines the 3 asynchronous Observables into 1 We use ‘zip’ to combine the 3 together and apply a function to transform them into a single combined format that we want, in this case a dictionary that contains the key values pairs from the dictionaries emitted by ‘metadata’, ‘bookmark’, and ‘ratings’ along with the videoId also available within scope of the flatMap function and ‘closed over’ by the closure being executed in ‘zip’.
  128.        Observable.zip(a,  b,  {  a,  b,  -­‐>  

               ...  operate  on  values  from  both  a  &  b  ...            return  [a,  b];  //  i.e.  return  tuple        })
  129.        Observable.zip(a,  b,  {  a,  b,  -­‐>  

               ...  operate  on  values  from  both  a  &  b  ...            return  [a,  b];  //  i.e.  return  tuple        })
  130. def  Observable<Map>  getVideos(userId)  {        return  VideoService.getVideos(userId)  

                 //  we  only  want  the  first  10  of  each  list              .take(10)              .flatMap({  Video  video  -­‐>                    def  m  ...                  def  b  ...                  def  r  ...                  //  compose  these  together                  return  Observable.zip(m,  b,  r,  {  metadata,  bookmark,  rating  -­‐>                            //  now  transform  to  complete  dictionary                            //  of  data  we  want  for  each  Video                          return  [id:  video.videoId]  <<  metadata  <<  bookmark  <<  rating                  })                      })       } return a single Map (dictionary) of transformed and combined data from 4 asynchronous calls
  131. def  Observable<Map>  getVideos(userId)  {        return  VideoService.getVideos(userId)  

                 //  we  only  want  the  first  10  of  each  list              .take(10)              .flatMap({  Video  video  -­‐>                    def  m  ...                  def  b  ...                  def  r  ...                  //  compose  these  together                  return  Observable.zip(m,  b,  r,  {  metadata,  bookmark,  rating  -­‐>                            //  now  transform  to  complete  dictionary                            //  of  data  we  want  for  each  Video                          return  [id:  video.videoId]  <<  metadata  <<  bookmark  <<  rating                  })                      })       } return a single Map (dictionary) of transformed and combined data from 4 asynchronous calls The entire composed Observable emits 10 Maps (dictionaries) of key/value pairs for each of the 10 VIdeo objects it receives.
  132. The ‘mapped’ Observables are combined with a ‘zip’ function that

    emits a Map (dictionary) with all data. The entire composed Observable emits 10 Maps (dictionaries) of key/value pairs for each of the 10 VIdeo objects it receives.
  133. /ps3/home Dependency F 10 Threads Dependency G 10 Threads Dependency

    H 10 Threads Dependency I 5 Threads Dependency J 8 Threads Dependency A 10 Threads Dependency B 8 Threads Dependency C 10 Threads Dependency D 15 Threads Dependency E 5 Threads Dependency K 15 Threads Dependency L 4 Threads Dependency M 5 Threads Dependency N 10 Threads Dependency O 10 Threads Dependency P 10 Threads Dependency Q 8 Threads Dependency R 10 Threads Dependency S 8 Threads Dependency T 10 Threads /android/home /tv/home Functional Reactive Dynamic Endpoints Asynchronous Java API We have found Rx to be a good fit for creating Observable APIs and composing asynchronous data together while building web services using this approach.
  134. /ps3/home Dependency F 10 Threads Dependency G 10 Threads Dependency

    H 10 Threads Dependency I 5 Threads Dependency J 8 Threads Dependency A 10 Threads Dependency B 8 Threads Dependency C 10 Threads Dependency D 15 Threads Dependency E 5 Threads Dependency K 15 Threads Dependency L 4 Threads Dependency M 5 Threads Dependency N 10 Threads Dependency O 10 Threads Dependency P 10 Threads Dependency Q 8 Threads Dependency R 10 Threads Dependency S 8 Threads Dependency T 10 Threads /android/home /tv/home Functional Reactive Dynamic Endpoints Asynchronous Java API Hystrix fault-isolation layer With the success of Rx at the top layer of our stack we’re now finding other areas where we want this programming model applied.
  135. + Observable<User>  u  =  new  GetUserCommand(id).observe(); Observable<Geo>  g  =  new

     GetGeoCommand(request).observe(); Observable.zip(u,  g,  {user,  geo  -­‐>                  return  [username:  user.getUsername(),                                  currentLocation:  geo.getCounty()]       }) RxJava in Hystrix 1.3+ https://github.com/Netflix/Hystrix One example of us pushing Rx deeper into our stack is the addition of support for RxJava to Hystrix version 1.3. More information on the release can be found at https://github.com/Netflix/Hystrix/releases/tag/1.3.0
  136. observable apis Looking back, Rx has enabled us to achieve

    our goals that started us down this path.
  137. lessons learned Developer Training & Documentation As we implemented and

    adopted Rx and enabled dozens of developers (most of them of either Javascript or imperative Java backgrounds) we found that workshops, training sessions and well-written documentation was very helpful in “onboarding” them to the new approach. We have found it generally takes a few weeks to get adjusted to the style.
  138. Developer Training & Documentation Debugging and Tracing lessons learned Asynchronous

    code is challenging to debug. Improving our ability to debug, trace and visualize Rx “call graphs” is an area we are exploring.
  139. Developer Training & Documentation Debugging and Tracing Only “rule” has

    been “don’t mutate state outside of function” lessons learned Generally the model has been self-governing (get the code working and all is fine) but there has been one principle to teach since we are using this approach in mutable, imperative languages - don’t mutate state outside the lambda/ closure/function.
  140. functional lambdas closures (mostly) pure composable asynchronous push events values

    reactive The Rx “functional reactive” approach is a powerful and straight-forward abstraction for asynchronously composing values and events and has worked well for the Netflix API.
  141. Functional Reactive in the Netflix API with RxJava http://techblog.netflix.com/2013/02/rxjava-netflix-api.html Optimizing

    the Netflix API http://techblog.netflix.com/2013/01/optimizing-netflix-api.html Ben Christensen @benjchristensen http://www.linkedin.com/in/benjchristensen RxJava https://github.com/Netflix/RxJava @RxJava RxJS http://reactive-extensions.github.io/RxJS/ @ReactiveX jobs.netflix.com