Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
To Stream or Not To Stream? The Landscape of On...
Search
Gianmarco De Francisci Morales
May 28, 2015
Research
1
340
To Stream or Not To Stream? The Landscape of Online Analytics
EVAM Solution Day 2015, Istanbul.
Gianmarco De Francisci Morales
May 28, 2015
Tweet
Share
More Decks by Gianmarco De Francisci Morales
See All by Gianmarco De Francisci Morales
Echo Chambers on Social Media
gdfm
0
19
Learning Agent-Based Models from Data
gdfm
0
11
Repurpose, Reuse, Recycle the building blocks of Machine Learning
gdfm
0
67
How I Learned to Stop Worrying and Love the Risk
gdfm
0
120
Controversy on Social Media: Collective Attention, Echo Chambers, and Price of Bipartisanship
gdfm
0
130
Controversy on Social Media: Collective Attention, Echo Chambers, and Price of Bipartisanship
gdfm
0
250
Quantifying and Reducing Controversy in Social Media
gdfm
0
150
Big Data Streams: The Next Frontier
gdfm
2
300
Mining Big Data Streams: Better Algorithms or Faster Systems?
gdfm
0
460
Other Decks in Research
See All in Research
Weekly AI Agents News! 11月号 論文のアーカイブ
masatoto
0
260
尺度開発における質的研究アプローチ(自主企画シンポジウム7:認知行動療法における尺度開発のこれから)
litalicolab
0
390
Optimal and Diffusion Transports in Machine Learning
gpeyre
0
810
渋谷Well-beingアンケート調査結果
shibuyasmartcityassociation
0
380
Bluesky Game Dev
trezy
0
100
第 2 部 11 章「大規模言語モデルの研究開発から実運用に向けて」に向けて / MLOps Book Chapter 11
upura
0
460
Weekly AI Agents News! 10月号 プロダクト/ニュースのアーカイブ
masatoto
1
180
文化が形作る音楽推薦の消費と、その逆
kuri8ive
0
220
20240918 交通くまもとーく 未来の鉄道網編(こねくま)
trafficbrain
0
400
20241226_くまもと公共交通新時代シンポジウム
trafficbrain
0
310
研究の進め方 ランダムネスとの付き合い方について
joisino
PRO
58
23k
PostgreSQLにおける分散トレーシングの現在 - 第50回PostgreSQLアンカンファレンス
seinoyu
0
190
Featured
See All Featured
YesSQL, Process and Tooling at Scale
rocio
170
14k
Into the Great Unknown - MozCon
thekraken
34
1.6k
Visualization
eitanlees
146
15k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
870
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
Statistics for Hackers
jakevdp
797
220k
Side Projects
sachag
452
42k
Become a Pro
speakerdeck
PRO
26
5.1k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
Testing 201, or: Great Expectations
jmmastey
41
7.2k
A designer walks into a library…
pauljervisheath
205
24k
Measuring & Analyzing Core Web Vitals
bluesmoon
5
210
Transcript
To Stream or Not To Stream? The Landscape of Online
Analytics Gianmarco De Francisci Morales
[email protected]
@gdfm7
None
5 Questions What? Why? How? Where? When?
What? Data Stream
Text Big Data Too big to handle
Text Big Data Streams Drinking from a firehose
Stream Analytics Batch data = snapshot of streaming data Descriptive
Predictive Prescriptive
Value of Data
Online vs Real-Time
Why? Motivation and Goal
–Jay Kreps, Confluent founder (ex-LinkedIn) “Most of what happens inside
a company is some new information comes in and the company reacts to that asynchronously.” Asynchronous Processing
Nervous System vs Silos
Perishable Insights Great instantaneous value Ephemeral Opportunity cost
Hype Cycle
Hype Cycle
How? Stream Processing Architecture
Architecture Overview
Ingestion Plethora of solutions Still ad-hoc (read: messy) Schema evolution:
Avro Column-store: Parquet Log collection: Flume
Brokerage
Processing PE PE Input Stream PEI PEI PEI PEI PEI
Output Stream Event routing
Output Stream: Kafka Further processing View: Key-Value Store Applications Reactive
callbacks
Example: Reactive Web App
Lambda vs Kappa
Where? Applications
Application Domains Industrial applications Telecommunications and networks Web applications Internet
of Things
Predictive Maintenance
Text Search
Machine Learning SA SAMOA%
Anomaly Detection
When? Adoption Risks
– Gartner, 2015 “Despite considerable hype and reported successes for
early adopters, 54% of survey respondents report no plans to invest at this time, while only 18% have plans to invest in Hadoop over the next 2 years.” 5 Years Early
Cost Not an issue Cheap hardware Cloud-based solutions Amazon Kinesis,
MSFT Azure Stream Analytics Open source
Ease Inherently harder Ops best practices not ironed out (yet)
Lack of skills, training, and support Rethink applications from scratch
Actionable Insights? Define what you want Moving target Garbage in,
garbage out
Conclusions Who?
5 Answers What? Why? How? Where? When? Stream analytics Perishable
insights Asynchronous processing Everywhere In 5 years
Text Slow Fish or Fast Fish Which fish will you
be?
Thanks! 37 https://samoa.incubator.apache.org @ApacheSAMOA @gdfm7
[email protected]