Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SPCSでエンドツーエンドな深層学習に挑戦してみた
Search
Toru Hiyama
March 01, 2024
1
99
SPCSでエンドツーエンドな深層学習に挑戦してみた
「Snowpark Container Servicesで解き放つ!データアプリケーションの魔法」における登壇資料
Toru Hiyama
March 01, 2024
Tweet
Share
More Decks by Toru Hiyama
See All by Toru Hiyama
Snowpark for Python を効率的に使いこなすスタートライン(UDF)
toru_data
0
28
Streamlit Meetup Workshop:Streamlitのコントリビューションに挑戦してみよう
toru_data
0
110
Featured
See All Featured
Six Lessons from altMBA
skipperchong
27
3.6k
Navigating Team Friction
lara
183
15k
Speed Design
sergeychernyshev
25
740
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
192
16k
Thoughts on Productivity
jonyablonski
68
4.4k
No one is an island. Learnings from fostering a developers community.
thoeni
19
3.1k
A Tale of Four Properties
chriscoyier
157
23k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
7
570
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.4k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
132
33k
The Power of CSS Pseudo Elements
geoffreycrofte
74
5.4k
Transcript
© 2024 NTT DATA Japan Corporation SPCSでエンドツーエンドな深層学習に挑戦してみた Snowpark Container Servicesで解き放つ!データアプリケーションの魔法
2024年3月1日 株式会社NTTデータ Snowflakeビジネス推進室 檜山 徹(Hiyama Toru)
© 2024 NTT DATA Japan Corporation 自己紹介 檜山 徹(Hiyama Toru)
株式会社NTTデータ Snowflakeビジネス推進室員! SnowVillage Team Streamlit メンバー SNS X(Twitter): @toru_data Qiita:@toru_hiyama SnowVillage #certifications にて、 毎日30分~1時間もくもくしてゲット!
© 2024 NTT DATA Japan Corporation 目次 エンドツーエンドの深層学習アーキテクチャ ① コンテナ
② 深層学習 ③ ジョブ・コンピュートプール ④ ジョブの確認 ⑤⑥ Streamlitアプリ まとめ
© 2024 NTT DATA Japan Corporation エンドツーエンドの深層学習アーキテクチャ ➢ 本LTでは、このアーキテクチャをかいつまんで解説していきます。 開発環境
Snowflake拡張機能 イメージレジストリ ①コンテナイメージPush docker build ~ doker push ~ Compute Pool モデルレジストリ ボリューム(ステージ) execute service in compute pool ~ from @stage spec=spec.yml コンテナ train.py ④マウント ②深層学習資材準備 PUT file:// ~ ④訓練済みモデル保存 ④コンテナロード ③ジョブ定義・実行 ⑤ジョブ実行 ③ジョブ起動 ⑥訓練済み モデル呼び出し イベントテーブル ④イベントログ保存 CI/CDもできるようになってきていますが、 今回は試せていません。
© 2024 NTT DATA Japan Corporation ① コンテナイメージと構成ファイル(準備1/3) • Dockerfileからコンテナイメージを作成
• コンテナイメージをSnowflakeリポジトリにアップロード • コンテナ構成ファイル(spec.yml)をアップロード > docker build -t spcs-pytorch . > docker push <repository url>/spcs-pytorch (snowsql) > put file://<path>/spec.yml @spec_stg 構成ファイルでは下記を指定 • コンテナイメージ • GPUの制限 • マウントするボリューム
© 2024 NTT DATA Japan Corporation ② 深層学習 訓練用スクリプト・画像(準備2/3) •
PyTorchによる訓練スクリプトを記述 • 超簡易なニューラルネットワークモデルと訓練スクリプト • イベントテーブルへのログ保存 • 訓練済みモデルをSnowflakeのモデルレジストリに登録 • 訓練用資材をボリューム用ステージに配置 (snowsql) > put file://<path>/train.py @volume (snowsql) > put file://<path>/MNIST/* @volume ちなみに、セッションの作成は、 OAuthトークンにより行います。
© 2024 NTT DATA Japan Corporation ③ ジョブ定義(準備3/3) • コンピュートプールの作成
• ジョブ定義・実行 execute service in compute pool gpu_job_pool from @spec_stg spec=spec.yml ; create compute pool gpu_job_pool min_nodes=1 max_nodes=1 instance_family=GPU_NV_S ;
© 2024 NTT DATA Japan Corporation ④ モデル訓練ジョブの呼び出し結果の確認 ➢ いい感じ!
GPUも認識してる ログもちゃんとイベントテーブルに吐き出されてる モデルもモデルレジストリに保存されてる! 学習もできてる (ボリューム(ステージ)に保存)
© 2024 NTT DATA Japan Corporation ⑤⑥ Streamlitアプリの作成 ➢ Team
Streamlit たるもの、、、作るよ! < きみたち自信満々に間違えててかわいいね。
© 2024 NTT DATA Japan Corporation おわりに ◼ 深層学習をするための足回りさえ揃えてしまえば、 開発環境で記述した訓練用コードをPutするだけで、
GPUによるモデル訓練からSnowflakeへのデプロイまで行えることがわかりました。 ✓ SnowflakeのDev・ML機能、だいぶそろってきた! ◼ 今回の検証を通じて、なんでSPCSじゃないといけないの?に対して、 すでにSnowflakeを導入しているが、クラウドをそこまで利用していない方々が、 低い学習コスト・運用コストでコンテナ環境を構築できることにあると感じました。 ✓ やっぱり、マネージドは、プライスレス! 開発環境 Snowflake拡張機能 イメージレジストリ ①コンテナイメージPush docker build ~ doker push ~ Compute Pool モデルレジストリ ボリューム(ステージ) execute service in compute pool ~ from @stage spec=spec.yml コンテナ train.py ④マウント ②深層学習資材準備 PUT file:// ~ ④訓練済みモデル保存 ④コンテナロード ③ジョブ定義・実行 ⑤ジョブ実行 ③ジョブ起動 ⑥訓練済み モデル呼び出し イベントテーブル ④イベントログ保存 CI/CDもできるようになってきていますが、 今回は試せていません。