Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DigdagでETL処理をする
Search
tosametal
July 19, 2019
Technology
0
4.1k
DigdagでETL処理をする
データとML周辺エンジニアリングを考える会 #2
https://data-engineering.connpass.com/event/136756/
#data_ml_engineering
tosametal
July 19, 2019
Tweet
Share
More Decks by tosametal
See All by tosametal
マイクロアドのアドテクを支える技術
tosametal
1
200
Qiita Career Meetup for Server Side Engineers
tosametal
4
4.2k
Other Decks in Technology
See All in Technology
フィッシュボウルのやり方 / How to do a fishbowl
pauli
2
390
SREが取り組むデプロイ高速化 ─ Docker Buildを最適化した話
capytan
0
150
AIBuildersDay_track_A_iidaxs
iidaxs
4
1.4k
AgentCore BrowserとClaude Codeスキルを活用した 『初手AI』を実現する業務自動化AIエージェント基盤
ruzia
7
1.6k
Introduce marp-ai-slide-generator
itarutomy
0
130
AWSに革命を起こすかもしれない新サービス・アップデートについてのお話
yama3133
0
510
ActiveJobUpdates
igaiga
1
320
AI駆動開発の実践とその未来
eltociear
2
500
Snowflake導入から1年、LayerXのデータ活用の現在 / One Year into Snowflake: How LayerX Uses Data Today
civitaspo
0
2.5k
マイクロサービスへの5年間 ぶっちゃけ何をしてどうなったか
joker1007
21
8.2k
半年で、AIゼロ知識から AI中心開発組織の変革担当に至るまで
rfdnxbro
0
140
AI時代のワークフロー設計〜Durable Functions / Step Functions / Strands Agents を添えて〜
yakumo
3
2.2k
Featured
See All Featured
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
170
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
70
Abbi's Birthday
coloredviolet
0
3.8k
Raft: Consensus for Rubyists
vanstee
141
7.3k
BBQ
matthewcrist
89
9.9k
Between Models and Reality
mayunak
0
150
Building an army of robots
kneath
306
46k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Site-Speed That Sticks
csswizardry
13
1k
Automating Front-end Workflow
addyosmani
1371
200k
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
0
960
Transcript
DigdagͰETLॲཧΛ͢Δ σʔλͱMLपลΤϯδχΞϦϯάΛߟ͑Δձ #2 2019.07.19 தᠳଠ(@tosametal) גࣜձࣾϚΠΫϩΞυ ΞϓϦέʔγϣϯΤϯδχΞ
ϚΠΫϩΞυʹ͓͚Δػցֶश ࠂ৴γεςϜʹ͓͚ΔCTR༧ଌɺCVR༧ଌɺෆਖ਼ΫϦοΫͷݕग़ͳͲ
ϩάج൫ͷߏ Imp Server Click Server RTB Server Kafka Hadoop (σʔλΣΞϋε)
Digdag Hadoop (ੳج൫)
ϩάج൫ͷߏ Imp Server Click Server RTB Server Kafka Hadoop (σʔλΣΞϋε)
Digdag Hadoop (ੳج൫) at least once ϢχʔΫͳIDʹΑΔॏෳഉআ sessionͰཧ ႈͳॲཧ Kafka secondaryͰ kafkaΛࢦఆ jsonܗࣜͷ ߏԽσʔλ
Digdagͱ digϑΝΠϧʹએݴతʹϫʔΫϑϩʔΛهड़ Workflow as code εέδϡʔϧ࣮ߦɺϦΧόϦ UI͔Βਐḿͷ֬ೝ࠶࣮ߦ͕Մೳ ΦϖϨʔλΛࣗ࡞Մೳ
PostgreSQL ࣮ߦཤྺͳͲΛอଘ Task͝ͱʹhadoopΫϥΠΞϯτ ͱͳΔίϯςφΛ্ཱͪ͛Δ εέʔϧΞτՄೳ όον࣮ߦج൫ߏ
ෳࡶͳґଘؔΛ੍ޚͭͭ͠ ϫʔΫϑϩʔͷՄಡੑΛอͭ
ϓϩδΣΫτΛػೳ୯ҐͰׂ ϓϩδΣΫτͱ In Digdag, workflows are packaged together with other
files used in the workflows. The files can be anything such as SQL scripts, Python/Ruby/Shell scripts, configuration files, etc. This set of the workflow definitions is called project. ެࣜυΩϡϝϯτ(http://docs.digdag.io/)ΑΓҾ༻ ϚΠΫϩΞυͰݱࡏ60ݸͷϓϩδΣΫτ͕ಈ͍͍ͯΔ
ϓϩδΣΫτͷґଘؔ schedule: daily>: 12:00:00 +task1: _parallel: true +subtask1: call>: subtask1.dig
+subtask2: call>: subtask2.dig +task2: echo>: task finished successfully •callΦϖϨʔλΛ͏͜ͱͰdigϑΝΠϧ ͷׂΛߦ͏͜ͱ͕Մೳ •requireΛ͏ͱ͏গ͠ෳࡶͳDAGͷ දݱՄೳ subtask1 subtask2 task2
ϓϩδΣΫτؒͷґଘؔ ϓϩδΣΫτA ϓϩδΣΫτB ଞͷϓϩδΣ Ϋτͷ݁ՌΛݟΔ ͜ͱग़དྷͳ͍
ϓϩδΣΫτؒͷґଘؔ +touch_task: s3_touch>: bucket/flag/fileX +wait_task: s3_wait>: bucket/flag/fileX ϓϩδΣΫτB ϓϩδΣΫτA fileX
ࣗ࡞ΦϖϨʔλ ࢀߟ:https://github.com/ tosametal/digdag-plugins
ͦͷଞ ϫʔΫϑϩʔશମΛႈʹ͢Δ • hiveΫΤϦinsert overwrite • distcpoverwrite deleteΦϓγϣϯΛࢦఆ ϦτϥΠΛઃఆ͢Δ •
exponential interval
·ͱΊ • ϓϩδΣΫτංେԽ͠ͳ͍Α͏ʹػೳͰׂ • ϓϩδΣΫτؒͷґଘs3_waitͰղܾ • Α͘͏ػೳϓϥάΠϯΛ࡞Ζ͏
None