Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DigdagでETL処理をする
Search
tosametal
July 19, 2019
Technology
0
4.1k
DigdagでETL処理をする
データとML周辺エンジニアリングを考える会 #2
https://data-engineering.connpass.com/event/136756/
#data_ml_engineering
tosametal
July 19, 2019
Tweet
Share
More Decks by tosametal
See All by tosametal
マイクロアドのアドテクを支える技術
tosametal
1
180
Qiita Career Meetup for Server Side Engineers
tosametal
4
4.2k
Other Decks in Technology
See All in Technology
Android Studio の 新しいAI機能を試してみよう / Try out the new AI features in Android Studio
yanzm
0
110
生成AIによるデータサイエンスの変革
taka_aki
0
3.1k
PFEM Online Feature Flag @ newmo
shinyaishitobi
2
160
アカデミーキャンプ 2025 SuuuuuuMMeR「燃えろ!!ロボコン」 / Academy Camp 2025 SuuuuuuMMeR "Burn the Spirit, Robocon!!" DAY 1
ks91
PRO
0
150
ABEMAにおける 生成AI活用の現在地 / The Current Status of Generative AI at ABEMA
dekatotoro
0
430
結局QUICで通信は速くなるの?
kota_yata
9
7.5k
React Server ComponentsでAPI不要の開発体験
polidog
PRO
1
350
Observability for LLM Application lifecycle
ivry_presentationmaterials
1
160
AIは変更差分からユニットテスト_結合テスト_システムテストでテストすべきことが出せるのか?
mineo_matsuya
5
2.7k
o11yツールを乗り換えた話
tak0x00
2
1.7k
AIが住民向けコンシェルジュに?Amazon Connectと生成AIで実現する自治体AIエージェント!
yuyeah
0
220
EKS Pod Identity における推移的な session tags
z63d
1
170
Featured
See All Featured
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
Agile that works and the tools we love
rasmusluckow
329
21k
Raft: Consensus for Rubyists
vanstee
140
7.1k
Designing for humans not robots
tammielis
253
25k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
31
2.2k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
283
13k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Testing 201, or: Great Expectations
jmmastey
45
7.6k
Transcript
DigdagͰETLॲཧΛ͢Δ σʔλͱMLपลΤϯδχΞϦϯάΛߟ͑Δձ #2 2019.07.19 தᠳଠ(@tosametal) גࣜձࣾϚΠΫϩΞυ ΞϓϦέʔγϣϯΤϯδχΞ
ϚΠΫϩΞυʹ͓͚Δػցֶश ࠂ৴γεςϜʹ͓͚ΔCTR༧ଌɺCVR༧ଌɺෆਖ਼ΫϦοΫͷݕग़ͳͲ
ϩάج൫ͷߏ Imp Server Click Server RTB Server Kafka Hadoop (σʔλΣΞϋε)
Digdag Hadoop (ੳج൫)
ϩάج൫ͷߏ Imp Server Click Server RTB Server Kafka Hadoop (σʔλΣΞϋε)
Digdag Hadoop (ੳج൫) at least once ϢχʔΫͳIDʹΑΔॏෳഉআ sessionͰཧ ႈͳॲཧ Kafka secondaryͰ kafkaΛࢦఆ jsonܗࣜͷ ߏԽσʔλ
Digdagͱ digϑΝΠϧʹએݴతʹϫʔΫϑϩʔΛهड़ Workflow as code εέδϡʔϧ࣮ߦɺϦΧόϦ UI͔Βਐḿͷ֬ೝ࠶࣮ߦ͕Մೳ ΦϖϨʔλΛࣗ࡞Մೳ
PostgreSQL ࣮ߦཤྺͳͲΛอଘ Task͝ͱʹhadoopΫϥΠΞϯτ ͱͳΔίϯςφΛ্ཱͪ͛Δ εέʔϧΞτՄೳ όον࣮ߦج൫ߏ
ෳࡶͳґଘؔΛ੍ޚͭͭ͠ ϫʔΫϑϩʔͷՄಡੑΛอͭ
ϓϩδΣΫτΛػೳ୯ҐͰׂ ϓϩδΣΫτͱ In Digdag, workflows are packaged together with other
files used in the workflows. The files can be anything such as SQL scripts, Python/Ruby/Shell scripts, configuration files, etc. This set of the workflow definitions is called project. ެࣜυΩϡϝϯτ(http://docs.digdag.io/)ΑΓҾ༻ ϚΠΫϩΞυͰݱࡏ60ݸͷϓϩδΣΫτ͕ಈ͍͍ͯΔ
ϓϩδΣΫτͷґଘؔ schedule: daily>: 12:00:00 +task1: _parallel: true +subtask1: call>: subtask1.dig
+subtask2: call>: subtask2.dig +task2: echo>: task finished successfully •callΦϖϨʔλΛ͏͜ͱͰdigϑΝΠϧ ͷׂΛߦ͏͜ͱ͕Մೳ •requireΛ͏ͱ͏গ͠ෳࡶͳDAGͷ දݱՄೳ subtask1 subtask2 task2
ϓϩδΣΫτؒͷґଘؔ ϓϩδΣΫτA ϓϩδΣΫτB ଞͷϓϩδΣ Ϋτͷ݁ՌΛݟΔ ͜ͱग़དྷͳ͍
ϓϩδΣΫτؒͷґଘؔ +touch_task: s3_touch>: bucket/flag/fileX +wait_task: s3_wait>: bucket/flag/fileX ϓϩδΣΫτB ϓϩδΣΫτA fileX
ࣗ࡞ΦϖϨʔλ ࢀߟ:https://github.com/ tosametal/digdag-plugins
ͦͷଞ ϫʔΫϑϩʔશମΛႈʹ͢Δ • hiveΫΤϦinsert overwrite • distcpoverwrite deleteΦϓγϣϯΛࢦఆ ϦτϥΠΛઃఆ͢Δ •
exponential interval
·ͱΊ • ϓϩδΣΫτංେԽ͠ͳ͍Α͏ʹػೳͰׂ • ϓϩδΣΫτؒͷґଘs3_waitͰղܾ • Α͘͏ػೳϓϥάΠϯΛ࡞Ζ͏
None