Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CVPR2022論文読み会スライド- IntentVisor
Search
yo_itz
August 21, 2022
Technology
0
210
CVPR2022論文読み会スライド- IntentVisor
インタラクティブなビデオ要約フレームワーク: IntentVizorの紹介
yo_itz
August 21, 2022
Tweet
Share
Other Decks in Technology
See All in Technology
2025年の挑戦 コーポレートエンジニアの技術広報/techpr5
nishiuma
0
140
AWSサービスアップデート 2024/12 Part3
nrinetcom
PRO
0
140
今から、 今だからこそ始める Terraform で Azure 管理 / Managing Azure with Terraform: The Perfect Time to Start
nnstt1
0
240
Cloudflareで実現する AIエージェント ワークフロー基盤
kmd09
0
290
【Oracle Cloud ウェビナー】2025年のセキュリティ脅威を読み解く:リスクに備えるためのレジリエンスとデータ保護
oracle4engineer
PRO
1
100
EMConf JP の楽しみ方 / How to enjoy EMConf JP
pauli
2
150
2025年のARグラスの潮流
kotauchisunsun
0
790
ゼロからわかる!!AWSの構成図を書いてみようワークショップ 問題&解答解説 #デッカイギ #羽田デッカイギおつ
_mossann_t
0
1.5k
Reactフレームワークプロダクトを モバイルアプリにして、もっと便利に。 ユーザに価値を届けよう。/React Framework with Capacitor
rdlabo
0
130
コロプラのオンボーディングを採用から語りたい
colopl
5
1.2k
駆け出しリーダーとしての第一歩〜開発チームとの新しい関わり方〜 / Beginning Journey as Team Leader
kaonavi
0
120
When Windows Meets Kubernetes…
pichuang
0
300
Featured
See All Featured
Into the Great Unknown - MozCon
thekraken
34
1.6k
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
How GitHub (no longer) Works
holman
312
140k
Being A Developer After 40
akosma
89
590k
For a Future-Friendly Web
brad_frost
176
9.5k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
29
960
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
Building Applications with DynamoDB
mza
93
6.2k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
26
1.9k
Scaling GitHub
holman
459
140k
GitHub's CSS Performance
jonrohan
1030
460k
BBQ
matthewcrist
85
9.4k
Transcript
第11回 全日本コンピュータビジョン勉強会(後編) CVPR2022読み会(後編) IntentVizor: Towards Generic Query Guided Interactive Video Summarization
2022/08/21 @yo_itz
アジェンダ 自己紹介 どんな論文か 背景・目的 手法の説明 評価 まとめ 所感
自己紹介 @yo_itz 某AIベンチャーのエンジニア 主に受託で画像認識系の DLモデルや 関連するシステム開発に従事 最近動画を撮りためる機会が増えてきて動画要約に興味が湧いてきたところ 今回の論文紹介は所属企業の業務・見解とは無関係です
どんな論文か IntentVizor: Towards Generic Query Guided Interactive Video Summarization Guande
Wu, Jianzhe Lin, Claudio T. Silva; Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, pp. 10503-10512 動画要約について、ユーザの意図の反映を目指していること UIも併せて提案されている面白そうだった Vision & XカテゴリのPoster論文、Dataset contibutions*に挙げられている *データセットへの 貢献を主張する か、データセットへの貢献があると審査過程で確認されたもの 動画自体はオリジナル UTEに依存。 https://drive.google.com/file/d/13xbo-T1MFtlWAgtGHkujiDq_5KXtw-wA/view?usp=sharing
背景・目的 動画要約はテキストの概念でクエリを表現し、動画中の各ショットと それを紐づける形で抽出していた。 既存のクエリ駆動要約はたとえば ”テーブル”というテキストのみを クエリとすると、食卓か作業台か区別できないままテーブルの映っ たシーンを拾ってしまう。 また実用上はユーザのフィードバックを反映させることが重要と考 えられるようになってきた。 この対処として異なるモダリティからのクエリに対応する汎用的なモ
デルを提案し、要約プロセスにおいてユーザが対話できるようにす るために、IntentVizorと名付けた新しいフレームワークを提案す る。
ItentVizorフレームワーク (1)ビデオ要約プロセスの インタラクティブな制御 (2)汎用的なマルチモダリティクエ リのサポート、を目標としている。 マルチモダリティクエリを統一的かつ対話的なユーザインテントとしてモデル化すること により、この2つの要求を満たすことが できることを示す マルチモダリティクエリをより適切に扱うために設計されたGSE-GCNについて説明しま す
統一的で対話的なユーザインテント ユーザインテントζ i は基底の値を仮定し、ビデオvに対するクエリqから暗黙に予測できるものとする η s はζiを条件とするベルヌーイ分布からサンプリングされるものとする あるクエリqに対してショットsが要約に選択される事象η s の確率は(2)式となる
インテントモジュールとサマリモジュールを次の様に設計する θ g , θ h はパラメータでGT y t が与えられたとき次のように最適化することができる インテントモジュール サマリモジュール
GSE-GCN: Granularity-Scalable Ego-Graph Convolutional Networks GS-Pathways:フレーム数の多い動作やイベントと少ないもので粒度を分けて処理する Ego-Graph CN:意図エッジで意味頂点と意図頂点を結ぶグラフを作り GNNを使う。時間が離れたセグメントの内容は相関が低いと考え、計算量を抑えるため ローカル
GCN モジュールを利用してショットレベルの特徴を生成し、この特徴を用いてショット選択確率を予測する
Granularity-Scalable Pathways (GS-Pathways) 時間的な長さや移動速度の異なる動作は、異なる時間粒度の特徴量で処理する必要があることがわかった。 時間粒度スケーラブルなモデルが必要となる粒度の異なる 2つの経路を持つ柔軟な構造を提案する。
評価 評価は 推論動画とGT動画の意味的な類似性をIoUでマッチングした上で、精度・再現率・ F-1スコア で評価する。F1で最高性能(表2) ビジュアルクエリで結果も示す(表 3)各アノテーションされた要約に 対して、 固有ベクトル中心度を基準として最も代表的なショットを クエリショットとして選択する。
評価- Ablation Analysis 1 Ego-GCNはいずれかのモジュールを Transformerに変え た場合よりよい性能を示す (表4) 2 Local GCN はアップアンプリングや転置畳込みより優れ
ている(表5) 3 GS-Pathway4パターン試したがFullモデルがベスト(表6) 表4 表5 表6
評価- Ablation Analysis 4 異なる経路の特徴を融合するタイミング Middle、LateはそれぞれMLPの前後。Earlyがベスト(表7) 5 Itentモジュールに動画の入力はいるか →なくても既存の手法よりはよい(表8) 6 サマリモジュールは別のデータセットに転移可能か まずテキストクエリ
データセットで要約モジュールを学習し次に、この事前に学習し た要約モジュールを再利用しビジュアルクエリタスクのために意図モジュールのみ を学習する。その結果は表9 に示すとおりである。この実験結果から、転送された モデル は正規の設定で学習したモデルを上回っており、サマリモジュ ールがマル チモダリティに対して交換可能(表9) 表7 表8 表9
評価(定性,GUI) 図4 video-3に対して "Food "と "Room "をクエリした際のプロトタイプのイメージではモデルが料理と部屋のシナリオをうまく捉えている。また、食品調理と食品貯蔵という2種類 の食品シナリオが識別されている スコアや要約箇所を確認しながらクエリを切り替えられるということがポイント
まとめ ・インタラクティブなビデオ要約フレームワーク: IntentVizorを提案 ・ユーザインテントを導入したマルチモダリティのクエリ表現 ・対話的なUI ・UTEビデ オに基づくビジュアルクエリーガイド付きビデオ要約のためのデータセッ トをつかってSOTA
所感 ・要約には作業者の主観が入ると思えば、意図を反映させる取り組みは面白い ・タスクに対してGUIもセットで解決にいくというのはCVのアプローチとして ありなのかなという印象(Vision & X枠ではありなのかも。実用上は嬉しい) ・CVPR2022でVideo Summerization を扱っている論文自体が少ない 2019にランダム抽出と大差ないという指摘があったが...
Thank you for your attention.