Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Confusion matrix
Search
Sunmi Yoon
November 03, 2019
Technology
0
160
Confusion matrix
Confusion matrix 기초부터 머신러닝 응용까지 for dataitgirls3
Sunmi Yoon
November 03, 2019
Tweet
Share
More Decks by Sunmi Yoon
See All by Sunmi Yoon
데이터 분석가 채용 공고 읽는 방법
ysunmi0427
1
360
Deep down in classification 0.5 magic number
ysunmi0427
0
100
Tree Methods
ysunmi0427
0
130
심슨의 역설
ysunmi0427
0
2.3k
회사는 어떤 사람을 데이터 분석가로 채용하고 싶어하는 것일까?
ysunmi0427
0
2.4k
Other Decks in Technology
See All in Technology
投資戦略を量産せよ 2 - マケデコセミナー(2025/12/26)
gamella
0
450
事業の財務責任に向き合うリクルートデータプラットフォームのFinOps
recruitengineers
PRO
2
230
100以上の新規コネクタ提供を可能にしたアーキテクチャ
ooyukioo
0
260
Amazon Connect アップデート! AIエージェントにMCPツールを設定してみた!
ysuzuki
0
140
『君の名は』と聞く君の名は。 / Your name, you who asks for mine.
nttcom
1
120
20251222_サンフランシスコサバイバル術
ponponmikankan
2
140
意外と知らない状態遷移テストの世界
nihonbuson
PRO
1
270
AWSに革命を起こすかもしれない新サービス・アップデートについてのお話
yama3133
0
510
アラフォーおじさん、はじめてre:Inventに行く / A 40-Something Guy’s First re:Invent Adventure
kaminashi
0
160
Knowledge Work の AI Backend
kworkdev
PRO
0
270
モダンデータスタックの理想と現実の間で~1.3億人Vポイントデータ基盤の現在地とこれから~
taromatsui_cccmkhd
2
270
_第4回__AIxIoTビジネス共創ラボ紹介資料_20251203.pdf
iotcomjpadmin
0
140
Featured
See All Featured
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
4
2.1k
Effective software design: The role of men in debugging patriarchy in IT @ Voxxed Days AMS
baasie
0
170
Test your architecture with Archunit
thirion
1
2.1k
Google's AI Overviews - The New Search
badams
0
870
Code Review Best Practice
trishagee
74
19k
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
82
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
28
The Curse of the Amulet
leimatthew05
0
4.8k
Why Your Marketing Sucks and What You Can Do About It - Sophie Logan
marketingsoph
0
45
The Impact of AI in SEO - AI Overviews June 2024 Edition
aleyda
5
680
Transcript
Evaluation for classification dataitgirls3 Instructor Sunmi Yoon
Confusion Matrix
https://sumniya.tistory.com/26
Evaluation Metrics from Confusion Matrix
https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62
Precision(ب), PPV(Positive Predictive Value) ݽ؛ TrueۄҊ ࠙ܨೠ Ѫ ী, पઁ
Trueੋ Ѫ ࠺ਯ Recall(അਯ), Sensitivity, hit rate पઁ True ী ݽ؛ True۽ ࠙ܨೠ ࠺ਯ “Precision݅ न҃ਸ ॳݶ ݽ؛ ੋ࢝೧Ҋ, Recall݅ न҃ॳݶ ݽ؛ ಌ” ܳ ࢤп೧ࠁࣁਃ.
Accuracy TP, TNਸ ݽف Ҋ۰ೞח . Label ࠛӐഋ बೡ ٸী
ࢎਊਸ ೧ঠ פ. F1 Score Precisionҗ Recall ઑചಣӐ Label ࠛӐഋ बೡ ٸী ݽ؛ ࢿמਸ ഛೞѱ ಣоೡ ࣻ णפ. Label ࠛӐഋ बೡ ٸী, Accuracyח ۽ࢲ न܉ࢿਸ णפ. ਬܳ ࢤп ೧ ࠁࣁਃ.
https://sumniya.tistory.com/26 ৵ ࣿಣӐ ইפҊ ઑചಣӐੋо?
ઑӘ݅ ؊ о ࠇद
https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62 द Ӓܿਵ۽ جই৬ࢲ, ଘ ফܳ बਵ۽ ࢤп೮
https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62 द Ӓܿਵ۽ جই৬ࢲ, ߣূ ফب э ࢤпೞݶࢲ ࠇद
(Әࠗఠ ഁтܾ ࣻ )
TRUE FALSE ࠙ܨѾҗ TRUE TP FP FALSE FN TN
TRUE FALSE ࠙ܨѾҗ TRUE TP FP FALSE FN TN
Precision Positive Predictive Value ࠙ܨ Ѿҗ(ݽ؛)ਸ बਵ۽
TRUE FALSE ࠙ܨѾҗ TRUE TP FP FALSE FN TN
Negative Predictive Value ࠙ܨ Ѿҗ(ݽ؛)ਸ बਵ۽
TRUE FALSE ࠙ܨѾҗ TRUE TP FP FALSE FN TN
Recall Sensitivity True Positive Rate ਸ बਵ۽
TRUE FALSE ࠙ܨѾҗ TRUE TP FP FALSE FN TN
ਸ बਵ۽ False Positive Rate
TRUE FALSE ࠙ܨѾҗ TRUE TP FP FALSE FN TN
ਸ बਵ۽ Specificity True Negative Rate
TRUE FALSE ࠙ܨѾҗ TRUE TP FP FALSE FN TN
ਸ बਵ۽ Fall-out rate False Positive Rate
https://towardsdatascience.com/understanding-confusion-matrix-a9ad42dcfd62 Ѧ ೞҊ ೮ભ. ߣূ ফب э ࢤпೞݶࢲ ࠇद (Әࠗఠ
ഁтܾ ࣻ )
TRUE FALSE ࠙ܨѾҗ TRUE TP FP FALSE FN TN
? TP ब ٜ ܻೞݶ, ?
TRUE FALSE ࠙ܨѾҗ TRUE TP FP FALSE FN TN
TN ब ٜ ? ܻೞݶ, ?
ഁтܻભ? ਗې Ӓ۠Ѣਃ
ӝୡח ೮ਵפө ઑӘ݅ ؊ ೧ ࠇद.
Confusion Matrix with Histogram
https://www.medcalc.org/manual/roc-curves.php Criterion, Threshold য়ܲଃ Distribution Actual True, ৽ଃ Actual False.
Threshold ਤ۽ח ݽف True۽ ஏೞח ݽ؛ Ҋ о೮ਸ ٸ,
https://www.medcalc.org/manual/roc-curves.php Thresholdܳ ӓױਵ۽ ஏ ز दெࠇद. যڃ ੌ ੌযաաਃ? Precision:
Recall: Specificity: Fall-out:
https://www.medcalc.org/manual/roc-curves.php Thresholdܳ ӓױਵ۽ ஏ ز दெࠇद. যڃ ੌ ੌযաաਃ? True
positive rate: True negative rate:
https://www.medcalc.org/manual/roc-curves.php ߣূ ߈۽ ز दெࠇद. যڃ ੌ ੌযաաਃ? True positive
rate: True negative rate:
Specificity৬ Sensitivity ҙ҅ https://www.medcalc.org/manual/roc-curves.php
ROC(Receiver Operating Characteristic) curve
рױೞѱח, Sensitivity৬ 1-Specificityܳ п ୷ਵ۽ ೞח 2ରਗ Ӓې https://www.medcalc.org/manual/roc-curves.php AUC
(Area Under Curve)
рױೞѱח, Sensitivity৬ 1-Specificityܳ п ୷ਵ۽ ೞח 2ରਗ Ӓې https://www.medcalc.org/manual/roc-curves.php Actual
True৬ Actual False distribution ৮߷ೞѱ эਸ ٸ (feature class ߸߹מ۱ হ) ROC curveח 45ب пب ࢶ
рױೞѱח, Sensitivity৬ 1-Specificityܳ п ୷ਵ۽ ೞח 2ରਗ Ӓې https://www.medcalc.org/manual/roc-curves.php Actual
True৬ Actual False distribution Ҁח হ ৮߷ೞѱ ܻ࠙ ؼ ٸ ROC ழ࠳ (feature class ߸߹ מ۱ ৮߷) ROC ழ࠳о ઝ࢚ױী оөࣻ۾ feature class ߸߹ מ۱ જҊ ೡ ࣻ .
ROC(Receiver Operating Characteristic) curve with Machine Learning
Classifierܳ ݅ٚח Ѥ, ف ѐ histogramਸ ӒܻҊ Thresholdܳ ೞח Ѫ
https://www.medcalc.org/manual/roc-curves.php
https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html#sphx-glr-auto-examples-model-selection-plot-roc-py Histogramਸ Ӓ۷ח Ѥ ROC ழ࠳ܳ Ӓܾ ࣻ ח Ѫ!
https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html#sphx-glr-auto-examples-model-selection-plot-roc-py ROC ழ࠳ܳ Ӓܾ ࣻ ח Ѥ ৈ۞ ROC ழ࠳
р ࠺Үܳ ా೧ જ ࢿמ ݽ؛ਸ ইյ ࣻ ח Ѫ!
AUCо = ݽ؛ ҅ೠ probabilityܳ ߄ఔਵ۽ Ӓܽ histogramٜ ੜ
ܻ࠙غয . = ݽ؛ Threshold(Decision BoundaryۄҊب ೠ)ী ؏ хೞ. = উੋ ஏਸ ೠ.
ݽ؛ ࢶఖী ROC ழ࠳ܳ ഝਊೠ = Decision Boundaryী ࢚ҙহ ؊
જ ݽ؛ਸ ח. = ganziо դ.
Ӓ۰ࠇद. ؘఠ: titanic ݽ؛ - sklearn.linear_model.LinearRegression - sklearn.linear_model.LogisticRegression -
sklearn.tree.DecisionTreeClassifier - sklearn.ensemble.RandomForestClassifier ١ whatever you want - Tree ҅ৌ ݽ؛ ҃ model predict_proba() ݫࣗ٘ܳ ࢎਊೞݶ ഛܫ ҅ ؾ פ. - ীח Thresholdܳ a ݅ఀ ز೧оݴ Sensitivity, Specificityܳ ҅೧ ઝܳ ҳೞ ࣁਃ. - যڌѱ ೞݶ Thresholdܳ ੜ زदఃݶࢲ ROC ઝܳ ନਸ ࣻ ਸөਃ? - ઝٜਸ ಣݶ࢚ী ନযࠁࣁਃ.
sklearn.metrics.roc_curve ܳ ഝਊ ೧ ࠇद. ؘఠ: titanic ݽ؛ - sklearn.linear_model.LinearRegression
- sklearn.linear_model.LogisticRegression - sklearn.tree.DecisionTreeClassifier - sklearn.ensemble.RandomForestClassifier ١ whatever you want ؊ աইоࢲ, - sklearnਸ ਊ೧ AUCب ҅ ೧ࠇद. - ৈ۞ ݽ؛ٜ ࢿמਸ ࠺Ү ೧ ࠇद. - DecisionTreeClassifierܳ ࢎਊ೮؊ۄب, ࢎਊೠ featureо ܰݶ ӒѤ ܲ ݽ؛ੑפ . - ఋఋץ ݈Ҋ, ܲ classification ޙઁীب ഝਊ೧ ࠁࣁਃ.