Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Tree Methods
Search
Sunmi Yoon
November 04, 2019
Technology
0
130
Tree Methods
Decision Tree, Random Forest를 dataitgirls3 학생들에게 가르치기 위해 만든 수업자료입니다.
Sunmi Yoon
November 04, 2019
Tweet
Share
More Decks by Sunmi Yoon
See All by Sunmi Yoon
데이터 분석가 채용 공고 읽는 방법
ysunmi0427
1
350
Deep down in classification 0.5 magic number
ysunmi0427
0
100
Confusion matrix
ysunmi0427
0
160
심슨의 역설
ysunmi0427
0
2.3k
회사는 어떤 사람을 데이터 분석가로 채용하고 싶어하는 것일까?
ysunmi0427
0
2.4k
Other Decks in Technology
See All in Technology
モバイルゲーム開発におけるエージェント技術活用への試行錯誤 ~開発効率化へのアプローチの紹介と未来に向けた展望~
qualiarts
0
530
AI駆動開発によるDDDの実践
dip_tech
PRO
0
370
コミューンのデータ分析AIエージェント「Community Sage」の紹介
fufufukakaka
0
300
ブロックテーマとこれからの WordPress サイト制作 / Toyama WordPress Meetup Vol.81
torounit
0
370
Bakuraku Engineering Team Deck
layerx
PRO
12
6.6k
Design System Documentation Tooling 2025
takanorip
2
980
私のRails開発環境
yahonda
0
190
生成AI時代の自動E2Eテスト運用とPlaywright実践知_引持力哉
legalontechnologies
PRO
0
180
Oracle Technology Night #95 GoldenGate 26ai の実装に迫る1
oracle4engineer
PRO
0
110
Kiro Autonomous AgentとKiro Powers の紹介 / kiro-autonomous-agent-and-powers
tomoki10
0
160
生成AIでテスト設計はどこまでできる? 「テスト粒度」を操るテーラリング術
shota_kusaba
0
290
Karate+Database RiderによるAPI自動テスト導入工数をCline+GitLab MCPを使って2割削減を目指す! / 20251206 Kazuki Takahashi
shift_evolve
PRO
1
320
Featured
See All Featured
Making the Leap to Tech Lead
cromwellryan
135
9.7k
Music & Morning Musume
bryan
46
7k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
KATA
mclloyd
PRO
32
15k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.3k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
A better future with KSS
kneath
240
18k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Why You Should Never Use an ORM
jnunemaker
PRO
60
9.6k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Transcript
Tree methods dataitgirls3 Instructor Sunmi Yoon
Decision Tree
Sex <= 0.5 gini = 0.473 samples = 891 value
= [549, 342] class = Survived Fare <= 26.269 gini = 0.306 samples = 577 value = [468, 109] class = Survived True Fare <= 48.2 gini = 0.383 samples = 314 value = [81, 233] class = Dead False gini = 0.226 samples = 415 value = [361, 54] class = Survived gini = 0.448 samples = 162 value = [107, 55] class = Survived gini = 0.447 samples = 225 value = [76, 149] class = Dead gini = 0.106 samples = 89 value = [5, 84] class = Dead
Sex <= 0.5 gini = 0.473 samples = 891 value
= [549, 342] class = Survived Fare <= 26.269 gini = 0.306 samples = 577 value = [468, 109] class = Survived True Fare <= 48.2 gini = 0.383 samples = 314 value = [81, 233] class = Dead False gini = 0.226 samples = 415 value = [361, 54] class = Survived gini = 0.448 samples = 162 value = [107, 55] class = Survived gini = 0.447 samples = 225 value = [76, 149] class = Dead gini = 0.106 samples = 89 value = [5, 84] class = Dead Root Node (ࡸܻ) Intermediate Node (о) Terminal Node, Leaf ()
Sex <= 0.5 gini = 0.473 samples = 891 value
= [549, 342] class = Survived Fare <= 26.269 gini = 0.306 samples = 577 value = [468, 109] class = Survived True Fare <= 48.2 gini = 0.383 samples = 314 value = [81, 233] class = Dead False gini = 0.226 samples = 415 value = [361, 54] class = Survived gini = 0.448 samples = 162 value = [107, 55] class = Survived gini = 0.447 samples = 225 value = [76, 149] class = Dead gini = 0.106 samples = 89 value = [5, 84] class = Dead അ ਤী ؘఠо ݻ ѐ ਤ೧ ח Ӓ ؘఠٜ যڃ ۄ߰ਸ оҊ ח
Sex <= 0.5 gini = 0.473 samples = 891 value
= [549, 342] class = Survived Fare <= 26.269 gini = 0.306 samples = 577 value = [468, 109] class = Survived True Fare <= 48.2 gini = 0.383 samples = 314 value = [81, 233] class = Dead False gini = 0.226 samples = 415 value = [361, 54] class = Survived gini = 0.448 samples = 162 value = [107, 55] class = Survived gini = 0.447 samples = 225 value = [76, 149] class = Dead gini = 0.106 samples = 89 value = [5, 84] class = Dead যڃ ӝળਵ۽ оӝܳ ೮ח (gini ژח entropy)
Sex <= 0.5 gini = 0.473 samples = 891 value
= [549, 342] class = Survived Fare <= 26.269 gini = 0.306 samples = 577 value = [468, 109] class = Survived True Fare <= 48.2 gini = 0.383 samples = 314 value = [81, 233] class = Dead False gini = 0.226 samples = 415 value = [361, 54] class = Survived gini = 0.448 samples = 162 value = [107, 55] class = Survived gini = 0.447 samples = 225 value = [76, 149] class = Dead gini = 0.106 samples = 89 value = [5, 84] class = Dead Terminal Nodeী بೠ ؘఠٜਸ যڌѱ ࠙ܨೡ Ѫੋ
sklearn Code
Impurity
Impurity ࢎѾաޖח Impurity (ࠛࣽب, ࠛഛपࢿ) ծইח ߑߨਵ۽ णפ. ࣽبо ૐоೞח
Ѫਸ فҊ Information gainۄҊ ೞӝب פ. য়ט ࢎѾաޖ ࠛࣽب ஏ ߑߨ , Gini Indexܳ ҕࠗפ.
Sex <= 0.5 gini = 0.473 samples = 891 value
= [549, 342] class = Survived Fare <= 26.269 gini = 0.306 samples = 577 value = [468, 109] class = Survived True Fare <= 48.2 gini = 0.383 samples = 314 value = [81, 233] class = Dead False gini = 0.226 samples = 415 value = [361, 54] class = Survived gini = 0.448 samples = 162 value = [107, 55] class = Survived gini = 0.447 samples = 225 value = [76, 149] class = Dead gini = 0.106 samples = 89 value = [5, 84] class = Dead G = d ∑ i=1 Ri ( 1 − m ∑ k=1 p2 ik) Step 1. gini = 0.473 ਸ ҅೧ যࠁࣁਃ Step 2. gini = 0.226 ਸ ҅೧ যࠁࣁਃ
https://imgur.com/n3MVwHW
Random Forest
ৈ۞ ܻٜਸ ‘ܰѱ’ ݅ٚ. https://www.researchgate.net/figure/Architecture-of-the-random-forest-model_fig1_301638643
https://community.alteryx.com/t5/Alteryx-Designer-Knowledge-Base/Seeing-the-Forest-for-the-Trees-An-Introduction-to-Random-Forest/ta-p/158062 bagging = bootstrap aggregating
Bagging ߓӦ(bagging) bootstrap aggregating ড۽, ࠗझە(bootstrap)ਸ ా೧ ઑӘঀ ܲ ള۲
ؘఠী ೧ ള۲ػ ӝୡ ࠙ܨӝ(base learner)ٜਸ Ѿ(aggregating)दఃח ߑߨ. ࠗझەۆ, য ള۲ ؘఠীࢲ ࠂਸ ೲਊೞৈ ਗ ؘఠࣇҗ э ӝ ؘఠࣇਸ ݅٘ח җਸ ݈ೠ. ߓӦਸ ా೧ ےؒ ನۨझܳ ള۲दఃח җ җ э ࣁ ױ҅۽ ೯ػ. 1. ࠗझە ߑߨਸ ా೧ Nѐ ള۲ ؘఠࣇਸ ࢤࢿೠ. 2. Nѐ ӝୡ ࠙ܨӝ(ܻ)ٜਸ ള۲दఅ. 3. ӝୡ ࠙ܨӝ(ܻ)ٜਸ ೞա ࠙ܨӝ(ےؒ ನۨझ)۽ Ѿೠ(ಣӐ ژח җ߈ࣻై ߑध ਊ). Wikipedia ےؒನۨझ > ߓӦਸ ਊೠ ನۨझ ҳࢿ
sklearn Code