Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Taking ML to production - a journey
Search
Arnon Rotem-Gal-Oz
July 06, 2021
Technology
0
120
Taking ML to production - a journey
Go over some of the complexities of turning a machine learning solution to one used in production
Arnon Rotem-Gal-Oz
July 06, 2021
Tweet
Share
More Decks by Arnon Rotem-Gal-Oz
See All by Arnon Rotem-Gal-Oz
Coding with AI
arnonrgo
0
23
Brownfield Architecture transformations
arnonrgo
0
120
Software architecture 101
arnonrgo
0
1.5k
Apache Spark - Overview
arnonrgo
0
44
Topics in Distributed Systems
arnonrgo
0
31
Docker & Kubernetes
arnonrgo
0
24
Data Security @ the personal level
arnonrgo
0
27
Microservices it's deja vu all over again
arnonrgo
0
25
Big Data in the Cloud - Welcome to cost oriented design
arnonrgo
0
20
Other Decks in Technology
See All in Technology
MySQL5.6から8.4へ 戦いの記録
kyoshidaxx
1
270
【TiDB GAME DAY 2025】Shadowverse: Worlds Beyond にみる TiDB 活用術
cygames
0
1.1k
Witchcraft for Memory
pocke
1
500
解析の定理証明実践@Lean 4
dec9ue
0
180
ひとり情シスなCTOがLLMと始めるオペレーション最適化 / CTO's LLM-Powered Ops
yamitzky
0
450
Yamla: Rustでつくるリアルタイム性を追求した機械学習基盤 / Yamla: A Rust-Based Machine Learning Platform Pursuing Real-Time Capabilities
lycorptech_jp
PRO
4
150
PHPでWebブラウザのレンダリングエンジンを実装する
dip_tech
PRO
0
210
Amazon ECS & AWS Fargate 運用アーキテクチャ2025 / Amazon ECS and AWS Fargate Ops Architecture 2025
iselegant
17
5.8k
Fabric + Databricks 2025.6 の最新情報ピックアップ
ryomaru0825
1
150
AIの最新技術&テーマをつまんで紹介&フリートークするシリーズ #1 量子機械学習の入門
tkhresk
0
140
AWS テクニカルサポートとエンドカスタマーの中間地点から見えるより良いサポートの活用方法
kazzpapa3
2
570
生成AI活用の組織格差を解消する 〜ビジネス職のCursor導入が開発効率に与えた好循環〜 / Closing the Organizational Gap in AI Adoption
upamune
5
4.1k
Featured
See All Featured
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.8k
Raft: Consensus for Rubyists
vanstee
140
7k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Statistics for Hackers
jakevdp
799
220k
Rebuilding a faster, lazier Slack
samanthasiow
82
9.1k
Building an army of robots
kneath
306
45k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.5k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Transcript
Taking ML to production - A journey Arnon Rotem-Gal-Oz
Mental model of the probelm Admission Intubation Alert >6 hours
Challlenge 1 defining the problem
A Perfect Representation of the Machine Learning Cycle from start
to end | Image Source: MLOps (Published under Creative Commons Attribution 4.0 International Public License and used with attribution (“INNOQ”))
None
Challenge 2 – how we measure
Challenge 3 Data quality
None
Challenge 5 different types of data Model(s) text time series
categorical
Challenge 6 labeling Admission Intubation
Challenge 7 dealing with imballance
Challenge 8 Model experimentation cycle
Modeling
Challenge 9 – Overfit
None
Moving to production…
Challenge 10 – model degredation in production Theory Reality
Challenge11 – Is it really generalized?
Challenge 12 model validation and verification
The road to production…