Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Taking ML to production - a journey
Search
Arnon Rotem-Gal-Oz
PRO
July 06, 2021
Technology
0
120
Taking ML to production - a journey
Go over some of the complexities of turning a machine learning solution to one used in production
Arnon Rotem-Gal-Oz
PRO
July 06, 2021
Tweet
Share
More Decks by Arnon Rotem-Gal-Oz
See All by Arnon Rotem-Gal-Oz
Coding with AI
arnonrgo
PRO
0
3
Brownfield Architecture transformations
arnonrgo
PRO
0
140
Software architecture 101
arnonrgo
PRO
0
1.7k
Apache Spark - Overview
arnonrgo
PRO
0
46
Topics in Distributed Systems
arnonrgo
PRO
0
33
Docker & Kubernetes
arnonrgo
PRO
0
27
Data Security @ the personal level
arnonrgo
PRO
0
28
Microservices it's deja vu all over again
arnonrgo
PRO
0
26
Big Data in the Cloud - Welcome to cost oriented design
arnonrgo
PRO
0
23
Other Decks in Technology
See All in Technology
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
6
68k
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
140
OpenShiftでllm-dを動かそう!
jpishikawa
0
100
ZOZOにおけるAI活用の現在 ~開発組織全体での取り組みと試行錯誤~
zozotech
PRO
5
5.3k
Oracle Cloud Observability and Management Platform - OCI 運用監視サービス概要 -
oracle4engineer
PRO
2
14k
セキュリティについて学ぶ会 / 2026 01 25 Takamatsu WordPress Meetup
rocketmartue
1
300
GitLab Duo Agent Platform × AGENTS.md で実現するSpec-Driven Development / GitLab Duo Agent Platform × AGENTS.md
n11sh1
0
130
インフラエンジニア必見!Kubernetesを用いたクラウドネイティブ設計ポイント大全
daitak
1
360
GitHub Issue Templates + Coding Agentで簡単みんなでIaC/Easy IaC for Everyone with GitHub Issue Templates + Coding Agent
aeonpeople
1
220
広告の効果検証を題材にした因果推論の精度検証について
zozotech
PRO
0
170
Ruby版 JSXのRuxが気になる
sansantech
PRO
0
150
Claude_CodeでSEOを最適化する_AI_Ops_Community_Vol.2__マーケティングx_AIはここまで進化した.pdf
riku_423
2
560
Featured
See All Featured
How STYLIGHT went responsive
nonsquared
100
6k
Joys of Absence: A Defence of Solitary Play
codingconduct
1
290
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
57
50k
DevOps and Value Stream Thinking: Enabling flow, efficiency and business value
helenjbeal
1
94
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
52k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
エンジニアに許された特別な時間の終わり
watany
106
230k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
WCS-LA-2024
lcolladotor
0
450
Git: the NoSQL Database
bkeepers
PRO
432
66k
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
65
Transcript
Taking ML to production - A journey Arnon Rotem-Gal-Oz
Mental model of the probelm Admission Intubation Alert >6 hours
Challlenge 1 defining the problem
A Perfect Representation of the Machine Learning Cycle from start
to end | Image Source: MLOps (Published under Creative Commons Attribution 4.0 International Public License and used with attribution (“INNOQ”))
None
Challenge 2 – how we measure
Challenge 3 Data quality
None
Challenge 5 different types of data Model(s) text time series
categorical
Challenge 6 labeling Admission Intubation
Challenge 7 dealing with imballance
Challenge 8 Model experimentation cycle
Modeling
Challenge 9 – Overfit
None
Moving to production…
Challenge 10 – model degredation in production Theory Reality
Challenge11 – Is it really generalized?
Challenge 12 model validation and verification
The road to production…