Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
基盤モデルのアーキテクチャを改造してみよう - 時系列基盤モデルのマルチモーダル拡張事例の紹介 -
Search
himura467
November 13, 2025
1
170
基盤モデルのアーキテクチャを改造してみよう - 時系列基盤モデルのマルチモーダル拡張事例の紹介 -
YAPC::Fukuoka 2025 における LT の資料です
himura467
November 13, 2025
Tweet
Share
More Decks by himura467
See All by himura467
Python アプリケーションの裏側とその機序 -WSGI, ASGI 編-
himura
0
70
人生における期待効用の最大化について考える
himura
0
96
CA_kube-scheduler
himura
0
10
Improving Language Understanding by Generative Pre-Training
himura
0
76
Featured
See All Featured
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1k
Context Engineering - Making Every Token Count
addyosmani
9
380
Scaling GitHub
holman
463
140k
The Language of Interfaces
destraynor
162
25k
Git: the NoSQL Database
bkeepers
PRO
432
66k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
Automating Front-end Workflow
addyosmani
1371
200k
A Tale of Four Properties
chriscoyier
161
23k
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
The Cost Of JavaScript in 2023
addyosmani
55
9.2k
Typedesign – Prime Four
hannesfritz
42
2.9k
Transcript
IJNVSB ج൫ϞσϧͷΞʔΩςΫνϟΛվͯ͠ΈΑ͏ ࣌ܥྻج൫ϞσϧͷϚϧνϞʔμϧ֦ுࣄྫͷհ 1
ࣗݾհ Self Introduction ઃָ࿕ਓ ژେֶେֶӃใֶݚڀՊम࢜ɻ ػցֶशΛ༻͍ͨ࣌ܥྻ༧ଌʹؔ͢ΔݚڀΛ͍ͯ͠·͢ɻ ҰਓΒ͠ྺ̑ɻ ཛͰͱ͡Δܥͷྉཧ͕͖ɻ ํԻஒɻ 2
Akito Shitara 5ZQF4DSJQU 1ZUIPO 1FSM Α͘ॻ͘ݴޠ Frequently used programming languages ;JH GitHub: @himura467 X: @himuhimu467
όઌͷհ Basaki Introduction ϥΠϑΠζςοΫ 3 Life is Tech! தߴੜʹ ϓϩάϥϛϯάΛ
ڭ͑ΔεΫʔϧͷ ϝϯλʔΛ͍ͯ͠·͢
Ն In the summer of 2024 5 4 ੜెͷ༧ଌΛ ߦ͍͍ͨ
Ն In the summer of 2024 5 5 ྲྀߦΓͷਂֶशʹ σʔλ͕ඞཁෆՄܽ
Ն In the summer of 2024 5 6 ͕ɺσʔλ͕ͳ͍ ྲྀߦΓͷਂֶशʹ
σʔλ͕ඞཁෆՄܽ
Ն In the summer of 2024 5 7 Ͳ͏͠Α͏ʜ
ٹੈओݱΔ The savior has arrived 5 8 ࣌ܥྻج൫Ϟσϧ a:P
ͪͳΈʹ By the way 5 9 ʮ࣌ܥྻج൫Ϟσϧʯ ฉ͍ͨ͜ͱ͋Δํʔʁ aʔ͍
5 10 ຊͰ࠷ߴ͍ࢁ ࢜ࢁ Common Crawl GitHub Wikipedia େنݴޠϞσϧͷ֓ཁ About
the concept of Large Language Models
5 11 ࣌ܥྻج൫Ϟσϧͷ֓ཁ About the concept of Time Series Foundation
Model Earthquake Data Medical Data Temperature աڈͷגՁͷਪҠ ະདྷͷגՁ
5 12 ࣌ܥྻج൫Ϟσϧͷ֓ཁ About the concept of Time Series Foundation
Model Earthquake Data Medical Data Temperature աڈͷגՁͷਪҠ ະདྷͷגՁ ৽نͷυϝΠϯʹରͯ͠΄Ͳ΄Ͳͷ༧ଌΛͯ͘͠ΕΔ
5 13 ࣌ܥྻج൫ϞσϧͳΒ σʔλ͕গͳͯ͘༧ଌՄೳ ࣌ܥྻج൫Ϟσϧͷ֓ཁ About the concept of Time
Series Foundation Model
࣌ܥྻج൫ϞσϧΛࢼͯ͠ΈΔ Try Time Series Foundation Model 5 14 όΠτઌͷσʔλͰ ϑΝΠϯνϡʔχϯάͯ͠
ަࠩݕূͯ͠ΈΔ
ަࠩݕূͷ݁Ռ Cross-Validation Results 5 15 ϥϯμϜʹճ࣮ߦͨ݁͠ՌͰ͢ "3*."Ϟσϧͷύϥϝʔλ࠷దԽ͞Ε͍ͯ·ͤΜ σʔλͳͲॻ͖͖Ε͍ͯͳ͍͕݅ଞʹͨ͘͞Μ͋Γ·͢ 'JOFUVOFE 0SJHJOBM5JNFT'.
"3*." .4& ."&
5 16 ैདྷख๏Λ্ճΔਫ਼Λ ग़͢͜ͱ͕Ͱ͖ͨ ަࠩݕূͷ݁Ռ Cross-Validation Results
5 17 ͜͜·Ͱ͕લ࠲Ͱ͢
͔͜͜Β͕ຊͰ͢ The main discussion begins 5 18 ҰຊདྷͷతΛࢥ͍ग़͢
ຊདྷͷత The original purpose 5 19 ੜెͷ༧ଌΛ ߦ͍͍ͨ
5 20 ੜెͷ༧ଌΛ ߦ͍͍ͨ Λࢭ͍ͨ͠ ຊདྷͷత The original purpose
࣮ݧ࣌ʹσʔλ͔ΒಘΒΕͨࣔࠦ Insights gleaned from data 5 21 ग़੮͕Ұམͪ࢝ΊΔͱ Βͳ͍͕ͪ ܽ੮͍ͯ͠ΔؒʹίϛϡχςΟ͕ৢ͞Εͯ͠·͍ɺૄ֎ײΛײͯ͡͠·ͬͨΓʜʁ
ग़੮ͷมԽ Πϝʔδ Attendance Trend Graph 5 22 ग़੮
݄ ݄ ݄ ݄ ݄ ݄ ݄ ݄ ݄ ݄ ݄
5 23 ग़੮ ݄ ݄
݄ ݄ ݄ ݄ ݄ ݄ ݄ ݄ ݄ खΕ ग़੮ͷมԽ Πϝʔδ Attendance Trend Graph
5 24 ग़੮ ݄ ݄
݄ ݄ ݄ ݄ ݄ ݄ ݄ ݄ ݄ ͜͜ͰΞϥʔτΛग़ͯ͠΄͍͠ ग़੮ͷมԽ Πϝʔδ Attendance Trend Graph
࣌ܥྻ༧ଌͷݶք Limitations of Time Series Forecasting 5 25 ͍͘Βਫ਼্͕͕ͬͯ ࣌ܥྻͷΈΛઆ໌มͱͨ͠
༧ଌͰݪཧతʹ࣮ݱෆՄೳ
࣌ܥྻج൫Ϟσϧͷ֦ு Extending Time-Series Foundation Models 26
࣌ܥྻج൫Ϟσϧ 5JNFT'. ͷߏ The architecture of TimesFM 5 27 ࣌ܥྻ
݄ ݄ Residual Block Vector MSE: Loss Function ͜͜Λֶश͢Δ Stacked Transformer Ref: Abhimanyu Das, Weihao Kong, Rajat Sen, Yichen Zhou. A decoder-only foundation model for time-series forecasting. ICML 2024
ϚϧνϞʔμϧ֦ுͯ͠ΈΔ Try multi-modal extension 5 28 ʮࠓ݄ؤுͬͨʂʯ ʮਐḿඍົ͔ʜʯ ςΩετܥྻ ࣌ܥྻ
݄ ݄ Residual Block Vector Fusion Module MSE: Loss Function ͜͜Λֶश͢Δ Vector Text Encoder Stacked Transformer https://github.com/himura467/multimodal-timesfm
5 29 ϥϯμϜʹճ࣮ߦͨ݁͠ՌͰ͢ "3*."Ϟσϧͷύϥϝʔλ࠷దԽ͞Ε͍ͯ·ͤΜ σʔλͳͲॻ͖͖Ε͍ͯͳ͍͕݅ଞʹͨ͘͞Μ͋Γ·͢ .VMUJNPEBM 'JOFUVOFE 0SJHJOBM5JNFT'. "3*." .4&
."& ަࠩݕূͷ݁Ռ Cross-Validation Results
5 30 ఔʑʹΕ͍ͯͦ͏ ަࠩݕূͷ݁Ռ Cross-Validation Results .VMUJNPEBMج൫ϞσϧࣗମͷύϥϝʔλΛౚ݁ͨ͠ঢ়ଶͰਫ਼ͷ্͕ݟΒΕ͍ͯΔ
5 31 ࣌ܥྻج൫Ϟσϧͷັྗ The Appeal of Time-Series Foundation Models ͍ͭઌ݄ʹ"NB[POͷ࣌ܥྻج൫Ϟσϧ͕
ϝδϟʔΞοϓσʔτΛܴ͑ΔͳͲ ਐ݄าͰਐԽ͍ͯ͠ΔݚڀྖҬ
5 32 ʒ Conclusion l#FU࣌ܥྻج൫Ϟσϧz ͯ͠Έ·ͤΜ͔ʁ