Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
IMU-06 Complex
Search
kanaya
June 04, 2024
0
86
IMU-06 Complex
kanaya
June 04, 2024
Tweet
Share
More Decks by kanaya
See All by kanaya
PLT-A3 Maybe Monad
kanaya
0
8
PLT-A2 Closure
kanaya
0
10
PLT-A1 Programming Principles
kanaya
0
17
PLT-X1 Division by Zero and Maybe
kanaya
1
32
IUM-03-Short Series of Functions
kanaya
0
98
PLT-02 How to Count Words
kanaya
0
69
IMU-00 Pi
kanaya
0
370
The Art of Note Taking
kanaya
1
140
IMU-05 Calculus
kanaya
0
130
Featured
See All Featured
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.6k
KATA
mclloyd
30
14k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
Into the Great Unknown - MozCon
thekraken
40
1.9k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
Git: the NoSQL Database
bkeepers
PRO
431
65k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
The Language of Interfaces
destraynor
158
25k
How STYLIGHT went responsive
nonsquared
100
5.6k
Transcript
pineapple.cc ࡚େֶใσʔλՊֶ෦ େֶֶೖ Introduction to University Mathematics
pineapple.cc ߨٛͷਐΊํʢୈճʙୈճʣ Agenda (Day 2 to Day 8) w େֶֶͷೖIntroduction
to University Mathematics ⭐⭐ w ֶΛ͖ʹͳΔStories about math that makes you fun ⭐ w ܭࢉػՊֶʢใՊֶʣͷڮ͠A bridge to computer science ⭐⭐⭐
pineapple.cc ධՁ Credits w ग़੮Attendance w ΫΠζͱϛχϨϙʔτQuiz and mini report
w ϨϙʔτʢҙʣReport (optional)
pineapple.cc ෳૉcomplex
pineapple.cc x − 1 = 0
pineapple.cc x = 1
pineapple.cc x + 1 = 0
pineapple.cc x = − 1
None
pineapple.cc x2 − 1 = 0
pineapple.cc x = ± 1
pineapple.cc x2 + 1 = 0
pineapple.cc x = ± −1
pineapple.cc i2 ≡ − 1
pineapple.cc (x1 + iy1) + (x2 + iyr) = (x1
+ x2) + i (y1 + y2) (x1 + iy1) (x2 + iy2) = (x1 x2 − y1 y2) + i (x1 y2 + x2 y1)
pineapple.cc z1 + z2 = z3 , (z1 , z2
, z3 ∈ ℤ) z1 z2 = z3 , (z1 , z2 , z3 ∈ ℤ) (z1 + z2) + z3 = z1 + (z2 + z3) (z1 z2) z3 = z1 (z2 z3) 0 + z = z + 0 = z 1z = z1 = z
pineapple.cc z*z = x2 + y2 where z = x
+ iy, z* = x − iy
pineapple.cc −z + z = 0 ( z* z*z) z
= 1
None
None
None
None
None
None
None
None
None
pineapple.cc
pineapple.cc ෳૉhyper complex
pineapple.cc z = x + iy, where i2 = −
1 q = s + iu + jv + kw where i2 = j2 = k2 = − 1, ijk = − 1, ij = k, jk = i, ki = j, ji = − k, kj = − i, ik = − j
pineapple.cc q = ( s + ti u + vi
−u + vi s − ti ) = s ( 1 0 0 1) + t ( i 0 0 −i) + u ( 0 1 −1 0) + v ( 0 i i 0)
None
None
pineapple.cc @kanaya