Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
さまざまなグラフ描画(1) / Various graphical representatio...
Search
Kenji Saito
PRO
November 29, 2024
Technology
0
52
さまざまなグラフ描画(1) / Various graphical representations (1)
早稲田大学大学院経営管理研究科「企業データ分析」2024 冬のオンデマンド教材 第7回で使用したスライドです。
Kenji Saito
PRO
November 29, 2024
Tweet
Share
More Decks by Kenji Saito
See All by Kenji Saito
01 を動かす〜音声で対話できる自動化されたアシスタント / Running 01 - Automated Assistant with Voice Interaction
ks91
PRO
0
3
AGI (Artificial General Intelligence) の論点 / AGI (Artificial General Intelligence) Issues
ks91
PRO
0
2
Open Interpreter を動かす 〜 自動化されたアシスタントの誕生 / Running Open Interpreter - The Birth of an Automated Assistant
ks91
PRO
0
7
Linux 仮想マシンを動かす(Windows 編)(Mac 編) / Running a Linux Virtual Machine (Windows Edition) (Mac Edition)
ks91
PRO
0
13
(メタ・) ネイチャーポジティブと物質・エネルギーの循環経済 / Being (Meta-)Nature Positive and the Circular Economy of Materials and Energy
ks91
PRO
0
3
対話による知の拡張 / Extending Knowledge Through Dialogue
ks91
PRO
0
35
プロンプトに対する攻撃と対策 / Attacks Against Prompts and Countermeasures
ks91
PRO
0
34
傾聴の理論 〜 傾聴する相棒の創り方 / Theory of Listening and How to Create a Listening Partner
ks91
PRO
0
32
試作とデモンストレーション / Prototyping and Demonstrations
ks91
PRO
0
140
Other Decks in Technology
See All in Technology
Docker Compose で手軽に手元環境を実現する / Simplifying Local Environments with Docker Compose #CinemaDeLT
nabeo
0
200
とあるEdTechベンチャーのシステム構成こだわりN選 / edtech-system
gotok365
5
350
AIによるコードレビューで開発体験を向上させよう!
moongift
PRO
0
450
Pythonデータ分析実践試験 出題傾向や学習のポイントとテクニカルハイライト
terapyon
1
160
LangfuseではじめるAIアプリのLLMトレーシング
codenote
0
180
AI駆動で進化する開発プロセス ~クラスメソッドでの実践と成功事例~ / aidd-in-classmethod
tomoki10
1
1.2k
Google Cloud Next 2025 Recap アプリケーション開発を加速する機能アップデート / Application development-related features of Google Cloud
ryokotmng
0
250
人間性を捧げる生成AI時代の技術選定
yo4raw
1
360
20250514 1Passwordを使い倒す道場 vol.1
east_takumi
0
120
Tailwind CSS の小話「コンテナークエリーって便利」
yamaday
0
120
大規模サーバーレスプロジェクトのリアルな零れ話
maimyyym
3
230
Terraform にコントリビュートしていたら Azure のコストをやらかした話 / How I Messed Up Azure Costs While Contributing to Terraform
nnstt1
1
520
Featured
See All Featured
Done Done
chrislema
184
16k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
179
53k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
13
840
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
137
33k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
RailsConf 2023
tenderlove
30
1.1k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
21k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3k
Making Projects Easy
brettharned
116
6.2k
Transcript
Boxes and whiskers — generated by Stable Diffusion XL v1.0
2024 7 (1) (WBS) 2024 7 (1) — 2024-11 – p.1/18
https://speakerdeck.com/ks91/collections/corporate-data-analysis-2024-winter 2024 7 (1) — 2024-11 – p.2/18
( 20 ) 1 • 2 R • 3 •
4 • 5 • 6 ( ) • 7 (1) • 8 (2) 9 R ( ) (1) 10 R ( ) (2) 11 R ( ) (1) 12 R ( ) (2) 13 GPT-4 14 GPT-4 15 ( ) LaTeX Overleaf 8 (12/16 ) / (2 ) OK / 2024 7 (1) — 2024-11 – p.3/18
( ) ( ) 2024 7 (1) — 2024-11 –
p.4/18
(line chart) x y cda-demo “ -1.R” Git “ -1.R”
1 2024 7 (1) — 2024-11 – p.5/18
“ .txt” 1 1 <- read.table(" .txt", header=T) A 4
plot( 1$ , 1$A , type="o", pch=0, ylim=c(40, 80), xaxp=c(1,4,3), ylab=" ", xlab=" ", main="A ") ‘type="o"’ ‘pch=0’ ‘xaxp=c(1,4,3)’ x 1 4 3 1.5 2024 7 (1) — 2024-11 – p.6/18
1 2 3 4 40 50 60 70 80 A⤌ࡢᖹᆒⅬࡢ᥎⛣
ᶍヨᅇ ᖹᆒⅬ 2024 7 (1) — 2024-11 – p.7/18
plot ( ) type ( ) : "p" ( )
"l" ( ) "o" ( ) "h" ( ) cf. https://r-charts.com/base-r/line-types/ (Line plot types) pch (plotting character)( ) : 0 ( ) 1 (◦) 2 (△) 3 (+) 4 (×) cf. https://r-charts.com/base-r/pch-symbols/ lty (line type)( ) : 1 ( ) 2 ( ) 3 ( ) cf. https://r-charts.com/base-r/line-types/ (Line types) lwd (line width)( ) 2024 7 (1) — 2024-11 – p.8/18
(1/2) A B plot( 1$ , 1$A , type="o", lty=1,
pch=1, col=1, ylim=c(40, 80), xaxp=c(1,4,3), ylab=" ", xlab=" ", main="A,B,C,D ") par(new=T) plot( 1$ , 1$B , type="o", lty=2, pch=2, col=2, ylim=c(40, 80), xaxp=c(1,4,3), axes=F, ann=F) ‘par(new=T)’ ( ) B plot ‘axes=F’ ‘ann=F’ ‘ylim’ ‘xaxp’ ‘lty’ ‘pch’ ‘col’ 2024 7 (1) — 2024-11 – p.9/18
(2/2) C D par(new=T) plot( 1$ , 1$C , type="o",
lty=3, pch=3, col=3, ylim=c(40, 80), xaxp=c(1,4,3), axes=F, ann=F) par(new=T) plot( 1$ , 1$D , type="o", lty=4, pch=4, col=4, ylim=c(40, 80), xaxp=c(1,4,3), axes=F, ann=F) legend("topleft", legend=names( 1)[2:5], lty=1:4, pch=1:4, col=1:4) ‘legend(. . .)’ ( top-left) 2024 7 (1) — 2024-11 – p.10/18
1 2 3 4 40 50 60 70 80 A,B,C,D⤌ࡢᖹᆒⅬࡢ᥎⛣
ᶍヨᅇ ᖹᆒⅬ A⤌ B⤌ C⤌ D⤌ 2024 7 (1) — 2024-11 – p.11/18
(radar chart) n n 0 n n 2024 7 (1)
— 2024-11 – p.12/18
(1/2) AI(GPT-4) install.packages("fmsb") library("fmsb") 2 <- read.table(" .txt", header=T) maxmin
<- data.frame( =c(7,0), =c(7,0), =c(7,0), =c(7,0), =c(7,0)) fmsb ( ) maxmin 2024 7 (1) — 2024-11 – p.13/18
(2/2) data <- rbind(maxmin, 2) radarchart(data, seg=7, centerzero=T, title="GPT-4 ")
legend("topleft", legend=c(" ", " "), lty=1:2, pch=16, col=c("black", "red")) ‘rbind(. . .)’ ‘radarchart(. . .)’ 2 3 ( 1∼ ) ‘seg=7’ 7 ‘centerzero=T’ 0 2024 7 (1) — 2024-11 – p.14/18
GPT-4 ࡼࡿே㛫ࡢᛶ᱁ࡢᨃែ ༠ㄪᛶ ㄔᐇᛶ እྥᛶ ᚰ㓄ᛶ 㛤ᨺᛶ ᨃែࡢᑐ㇟ ᨃែࡢ⤖ᯝ 2024
7 (1) — 2024-11 – p.15/18
2 barplot(as.matrix( 2), beside=T, ylim=c(0, 7), yaxp=c(1,7,6), col=c("black", "red"), density=c(25,
50), legend.text=c(" ", " "), args.legend=list(x="topleft"), main="GPT-4 ") ‘as.matrix(. . .)’ ( ) ‘args.legend’ 2024 7 (1) — 2024-11 – p.16/18
༠ㄪᛶ እྥᛶ 㛤ᨺᛶ ᨃែࡢᑐ㇟ ᨃែࡢ⤖ᯝ GPT-4 ࡼࡿே㛫ࡢᛶ᱁ࡢᨃែ 1 2 3
4 5 6 7 ㄔᐇᛶ ᚰ㓄ᛶ 2024 7 (1) — 2024-11 – p.17/18
2024 7 (1) — 2024-11 – p.18/18