Upgrade to Pro — share decks privately, control downloads, hide ads and more …

vq-cpc

Zhang Yixiao
August 07, 2020
340

 vq-cpc

Zhang Yixiao

August 07, 2020
Tweet

Transcript

  1. CONTRASTIVE LEARNING 对比学习 • 是Self-Supervised Learning的代表 • 自监督学习 • 是监督学习的一个特例,其中训练数据集不是由人手动标记的

    • 通过设计学习任务,让模型学习到更好的数据表示 • 自监督学习代表:BERT(通过Mask来学习更好的表示) • 对比学习被认为是 “CV领域的BERT” https://mp.weixin.qq.com/s/SOaA9XNnymLgGgJ5JNSdBg
  2. CONTRASTIVE LEARNING 对比学习 • 最小化这个loss,就能最大化f(x)和f(x+)的mutual information的下界, • 让两者的表示更接近。 • 对比学习的核心问题:

    • 如何定义一个合适的目标函数? • 如何构建正例和负例? • 三类经典模型:MoCo, SimCLR, Contrastive Predictive Coding(CPC)
  3. SIMCLR • MoCo重点:样本数量很重要 • SimCLR重点:构建负例的方式很重要 • 结论: • 对于样本进行变化,即构建正例和负例的 transformation

    对于 结果至关重要 • 用 entropy loss 的 Contrastive Learning,可以通过 normalize representation embedding 以及 temperature adjustment 提升 • 在计算 loss 之前,让表示再过一个 non-linear hard 能大幅提升 效果(g()) • 大 batch-size 对于 CL 的增益比 Supervised Learning 更大
  4. MAIN CONTRIBUTION OF THIS PAPER • 提出一种方法,给定template sequence,生成新颖的variation • 输出与输入有可感知的相似性,无需依赖任何label

    • 原因是:无监督地学习了高级表示 • 为此,提出了一种自监督的编码技术:VQ-CPC • 以了解codebook上unit的有meaningful assignment • 允许控制这些信息 • 使用一个额外的Transformer,从z生成到variation • 实验在J. S. Bach的四声部合唱中完成
  5. EXPERIMENTS • VQ-CPC Uniform: sampling subsequences uniformly from the dataset

    • VQ-CPC Sameseq: sampling negative subsequences from the same (complete) sequence