Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MixPoet
Search
Zhang Yixiao
April 30, 2020
Research
4
370
MixPoet
Zhang Yixiao
April 30, 2020
Tweet
Share
More Decks by Zhang Yixiao
See All by Zhang Yixiao
CoCon
ldzhangyx
0
340
vq-cpc
ldzhangyx
0
340
diora
ldzhangyx
0
240
drummernet
ldzhangyx
0
200
ON-LSTM
ldzhangyx
0
150
Other Decks in Research
See All in Research
Zipf 白色化:タイプとトークンの区別がもたらす良質な埋め込み空間と損失関数
eumesy
PRO
8
1k
Weekly AI Agents News! 11月号 論文のアーカイブ
masatoto
0
180
Weekly AI Agents News!
masatoto
26
35k
PetiteSRE_GenAIEraにおけるインフラのあり方観察
ichichi
0
200
PostgreSQLにおける分散トレーシングの現在 - 第50回PostgreSQLアンカンファレンス
seinoyu
0
120
渋谷Well-beingアンケート調査結果
shibuyasmartcityassociation
0
300
Large Vision Language Model (LVLM) に関する最新知見まとめ (Part 1)
onely7
22
4.8k
機械学習による言語パフォーマンスの評価
langstat
6
810
秘伝:脆弱性診断をうまく活用してセキュリティを確保するには
okdt
PRO
4
770
機械学習でヒトの行動を変える
hiromu1996
1
380
情報処理学会関西支部2024年度定期講演会「自然言語処理と大規模言語モデルの基礎」
ksudoh
10
2.1k
新規のC言語処理系を実装することによる 組込みシステム研究にもたらす価値 についての考察
zacky1972
1
270
Featured
See All Featured
The Cost Of JavaScript in 2023
addyosmani
45
7k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
48k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
32
2.7k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
26
1.9k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
26
1.5k
Imperfection Machines: The Place of Print at Facebook
scottboms
266
13k
It's Worth the Effort
3n
183
28k
Music & Morning Musume
bryan
46
6.2k
The World Runs on Bad Software
bkeepers
PRO
65
11k
Designing for humans not robots
tammielis
250
25k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
28
900
Transcript
MixPoet: Diverse Poetry Generation via Learning Controllable Mixed Latent Space
ArXiv: 2003.06094v1 Presenter: Yixiao Zhang
Overview • Idea: 诗人经历、历史背景等 => 诗歌风格多样化 • Methods: • semi-supervised
VAE • disentangling latent space to sub-spaces • each sub-space corresponds to one factor conditioning • adversarial training
Introduction • 近年的研究,主要考虑语义连贯、主题相关 • 存在diversity的困扰 • diversity: • 主题间多样性:给定两个topic words,生成不同的诗歌
• 主题内多样性:给定一个topic word,生成不同的诗歌 • * 现有的模型倾向于记住常见pattern
Introduction • 生活经历、历史背景、文学流派 => 影响风格
Introduction • MixPoet: semi-supervised VAE • 将latent space分解为sub-spaces,与影响因子一一对应 • 训练阶段:模型预测无label诗歌的factors
• 测试阶段:指定factor的值,生成风格化的诗歌
Related Work • 诗歌生成模型 (RNNs, Memory Models, etc. ) •
多样性的先前研究: • MRL system: 强化学习,鼓励选用高TF-IDF的词汇 • USPG: 无监督最大化style vector和诗歌的mutual information
Related Work • VAE文本生成/诗歌生成 • Yang et. al, 2018b: 学习context-conditioned
latent variable • Hu et al. 2017: 对生成的诗歌进行对抗训练,增强topic相关性 • CVAE 对话多样性: Learning Discourse-level Diversity for Neural Dialog Models using Conditional Variational Autoencoders, ACL 2017 • 本文的对抗:在latent space上做对抗训练
Method • topic keyword: mixture empirical distributions: labeled/ unlabeled
Method: Generator • GRU based model • 是length embedding
Method: Semi-supervised C-VAE • 目的是学习 • 引入z • 由于style与semantics耦合 •
不假设y与z的独立性,而是: • 顺序: w => y => z => x (无y label时)
Method: Semi-supervised C-VAE • then for labeled data: • 估计先验
• 和后验 分别使用一个network计算, recon时最小化KL散度。
Method: Semi-supervised C-VAE • labeled data is too limited •
将y看作另一个latent variable • 估计先验 • 和后验 分别使用一个MLP network计算, recon y时最小化KL散度。
Method: Semi-supervised C-VAE • Total Loss:
Method: Latent Space Mixture • 多个factor时的情形: • 独立性假设:
Method: Latent Space Mixture • How to learn mixed latent
space? • For Isotropic Gaussian Space:
Method: Latent Space Mixture • How to learn mixed latent
space? • For Universal Space: 对于condition: ita是噪声,delta是脉冲函数,c是w, y => 从分布中sample出一个值
Method: Latent Space Mixture • 之后使得discriminator区分这两个z • 估计KL散度: • 其中
就是discriminator
Experiments • factors: • 军旅生涯, 乡村生活, 其他 • 时代繁荣, 时代衰落
• => 6种style
Experiments • Baseline: • Ground Truth • C-VAE • USPG
• MRL: SOTA • fBasic, 监督学习模型
Experiments • 多样性,使用Jaccard Similarity指数评价,越低越好 • 诗歌质量:使用Language Model Score(LMS)评价 • 观察:
• 大多数模型倾向生成重复的短语 • MRL与Basic在intra部分只能生成极其相似的诗歌 • C-VAE情况类似
Experiments • Factor Control Results: • 测试生成的诗歌是否与给定因子类别一致
Experiments • 主观实验
Analysis: Style Mixture
Analysis