Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Aprendizajes de trabajo en bibliotecas digitales
Search
Mauricio Giraldo
November 13, 2019
Technology
0
160
Aprendizajes de trabajo en bibliotecas digitales
Cinco cosas que he aprendido en ocho años de trabajo en bibliotecas digitales
Mauricio Giraldo
November 13, 2019
Tweet
Share
More Decks by Mauricio Giraldo
See All by Mauricio Giraldo
Aereo: An experimental bird’s eye view of the digital collections from the State Library of New South Wales
mgiraldo
0
350
From food to buildings and beyond: what happens when a library opens its digital collections to human-computer collaboration
mgiraldo
2
180
building inspector
mgiraldo
0
94
Talk at the NYU ITP Data Art class / Spring 2017
mgiraldo
0
160
Humanidades Digitales en los laboratorios de la Biblioteca Pública de New York
mgiraldo
0
100
FOSS4G Nara/Tokyo
mgiraldo
0
1.9k
Human-Computer Collaboration at NYPL Labs
mgiraldo
2
460
NYPL Labs @ Eyeo Festival 2015
mgiraldo
1
730
NYPL Labs Design @ MITH Digital Dialogues
mgiraldo
0
700
Other Decks in Technology
See All in Technology
Amazon Bedrock AgentCore でプロモーション用動画生成エージェントを開発する
nasuvitz
6
350
自治体職員がガバクラの AWS 閉域ネットワークを理解するのにやって良かった個人検証環境
takeda_h
2
360
OCI Bastionサービス
oracle4engineer
PRO
1
100
Telemetry APIから学ぶGoogle Cloud ObservabilityとOpenTelemetryの現在 / getting-started-telemetry-api-with-google-cloud
k6s4i53rx
0
170
[OCI Technical Deep Dive] OCIで生成AIを活用するためのソリューション解説(2025年8月5日開催)
oracle4engineer
PRO
0
130
帳票Vibe Coding
terurou
0
120
Engineering Failure-Resilient Systems
infraplumber0
0
130
開発と脆弱性と脆弱性診断についての話
su3158
1
980
AIが住民向けコンシェルジュに?Amazon Connectと生成AIで実現する自治体AIエージェント!
yuyeah
0
240
株式会社ARAV 採用案内
maqui
0
150
モノレポにおけるエラー管理 ~Runbook自動生成とチームメンションの最適化
biwashi
0
480
我々は雰囲気で仕事をしている / How can we do vibe coding as well
naospon
2
180
Featured
See All Featured
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.4k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
283
13k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
The Cost Of JavaScript in 2023
addyosmani
53
8.8k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
61k
We Have a Design System, Now What?
morganepeng
53
7.7k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
Documentation Writing (for coders)
carmenintech
73
5k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
Transcript
mauricio giraldo arteaga @mgiraldo algunas cosas que he aprendido hasta
ahora red de bibliotecas de bogotá, noviembre 2019
hola
mi nombre es mauricio
None
None
None
None
foto: wallyg en flickr
None
None
llevo en esto cerca de ocho años* *el fellowship empieza
en 2020
algunas cosas que he aprendido hasta el momento …y que
creo pueden beneficiar a la red de bibliotecas de bogotá
cinco cosas
prácticas
quizás obvias
1
tener una visión clara* *y no me refiero a visiones
grandilocuentes
…con capacidad de ejecución* *con presupuesto y prestando atención a
una diversidad de experiencias
None
None
None
foto: myleen hollero
NYPL Labs
¿qué hacer cuando todo esté digitalizado?
None
None
None
None
None
None
None
las expectativas* están establecidas por terceros *y los puntos de
referencia de interacción
None
es un reto común en colecciones digitales
None
None
dependen de metadatos de texto
None
None
None
None
None
None
es imposible hacer descripciones exhaustivas pero es un trabajo valioso
además es lenguaje técnico-bibliográfico no el lenguaje al que estamos
acostumbrados
None
tecnología digital para automatizar la creación* de metadatos *y mejorar
los existentes
None
None
2
empezar con prototipos
empezar (y continuar) con prototipos
None
None
None
None
None
“¿qué tal si…?”
None
None
un fin de semana después…
None
reducir la labor a sus componentes básicos
los prototipos ayudan a establecer viabilidad
los prototipos ayudan a comunicar la idea
–@mikeindustries “un prototipo vale mil reuniones”
None
“¡excelente! es cuestión de refinarlo y ya”
3
el refinamiento toma tiempo
el refinamiento toma (un montón de) tiempo
None
tres meses después…
None
stereo.nypl.org
None
None
en todo caso, tres meses no es tanto tiempo cuando
se está acostumbrado a proyectos que tardan años
87,000 imágenes creadas
el refinamiento genera valor* *cuando se hace de manera informada
por cierto, el refinado puede esperar
None
podría beneficiarse de un rediseño
None
None
1.1 millón platos más y eso que la biblioteca ya
no digitaliza menús con la misma prioridad
@katie_rawson y @trevormunoz
@_BadTaste_ por @bibliotechy
refinar funciona
…pero toma tiempo
“bueno… lo tendré en cuenta en planeación”
4
todo toma más tiempo que el estimado
las gente es mala para hacer estimados* *S. Grimstada, M.
Jørgensena, 2007; I. Newby-Clark, M. Ross, R. Buehler, D. Koehler, D. Griffin, 2007; V. Mahnič, T. Hovelja, 2012; y más…
(sí, aún en desarrollo “ágil”)
no puede estimar lo que no ha hecho
–@jasonfried “planear es adivinar”
rediseño de colecciones digitales nypl ca. 2005
None
None
None
“tomémonos 90 días para rediseñar esto”
(una bandera roja gigante)
siempre habrá sorpresas usualmente de las que no son bienvenidas
None
None
None
None
“tenemos que incluir esta funcionalidad”
18 meses después…
None
None
None
None
None
None
None
digitalcollections.nypl.org
empezar con un alcance o una fecha
…pero no ambos
pero no se demore demasiado en mostrar algo a sus
usuarios
–Reid Hoffman “si no te avergüenza la primera versión de
tu producto, lo has lanzado demasiado tarde”
…pero tómese cuanto sea necesario* *ver punto sobre el refinamiento
…y prepárese para las sorpresas
5
los “hackatones” son puntos de partida* *no esperar proyectos terminados
listos para producción
None
None
None
None
planta material uso calles dirección pisos nombre clase geo localización
año claraboyas jardines
None
None
“¿qué tal si…?”
None
luego de preguntar a muchos expertos y no recibir ayuda
alguna
None
¿será que podemos automatizarlo?
None
None
None
None
None
None
None
None
cinco semanas después de refinamiento del proceso
None
github.com/NYPL/map-vectorizer
None
más de 80 mil edificios en un día en lugar
de años
None
“¿qué tan bueno es el algoritmo?”
…hicimos un prototipo
None
None
buildinginspector.nypl.org
dos meses después…
None
None
84%: SI 7%: ARREGLAR o 91% suficientemente bueno
None
…así que hicimos más prototipos
None
2 millones de clasificaciones en unos 24 meses
None
None
None
None
spacetime.nypl.org
foto: knight foundation
None
None
None
None
None
None
…y todo empezó con un prototipo en un hackatón
resumen
tener una visión clara y ejecutable empezar (y continuar) con
prototipos el refinamiento toma tiempo todo toma más tiempo que el estimado los “hackatones” son puntos de partida
@mgiraldo que gracias