Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Agentic Workflowという選択肢を考える

Agentic Workflowという選択肢を考える

2025-06-24 AIエージェント開発Night でのLT資料です。

Avatar for takuya kikuchi

takuya kikuchi

June 24, 2025
Tweet

More Decks by takuya kikuchi

Other Decks in Technology

Transcript

  1. © 2025 Algomatic inc. 菊池 琢弥 Kikuchi Takuya 株式会社Algomatic ネオセールスカンパニーCTO

    フィンテックスタートアップにおいて、開発リードやVPoEとし て開発組織構築を担当したほか、モバイルオーダープラット フォームを⼿がけるShowcase GigではVPoTとして技術領域全 般を管掌。2024年、AlgomaticにカンパニーCTOとして参画 し、2025年に営業AIエージェント「アポドリ」をリリース。 ソフトウェア開発、設計、ドット絵が好き X: @_pochi
  2. © 2025 Algomatic inc. ⾃律型エージェント 知覚→判断→⾏動を⾃律的に回し、⽬的を達成する メリット 課題 • ⾼い柔軟性

    • 初期実装コスト低 • 実⾏コストが⾼い • 結果の予測可能性が低 い • 利⽤においては試⾏錯 誤が前提となる
  3. © 2025 Algomatic inc. Agentic Workflow あらかじめ設計されたワークフローを順に実⾏し、⽬的を達成する メリット 課題 •

    ステップごとに精度担 保することで品質を保 ちやすい • 望ましい⼿順通りに実 ⾏することを保証でき る • 実装コスト⾼ • 柔軟性が低い
  4. © 2025 Algomatic inc. 「⾃律型エージェント」と「Agentic Workflow」 機能開発 実装コスト ⭕ サクッと動かす分には簡単に作れる

    🔺 ワークフローを設計した上での実装が必要 柔軟性、拡張容易性 ⭕ ツールやナレッジの追加、プロンプトの変更の みで機能拡張可能 🔺 実装の変更が必要になることが多い ガバナンス 出力の透明性担保 🔺 LLMの推論過程を示すくらい ⭕ 各ステップごとに評価を行い、精度を担保する ことで、ある程度担保可能 リスク制御 🔺 出力の正確性は担保できない 自律型エージェント Agentic Workflow ⾼い柔軟性とガバナンスのトレードオフ。ユースケースに合わせた選択が⼤事
  5. © 2025 Algomatic inc. Agentic Workflowを選ぶべきユースケース ❶ 失敗が許されない • リスク許容度が低いタスク

    • 「違ったらもう1回やればいい」で済まない ❷ 作業の型が決まっている • 効果的に成果を得るための⼿順が定まっているタスク
  6. © 2025 Algomatic inc. アポドリはどうか リスト 提供 企業情報収集 企業名や住所、URL情報からWeb‧独⾃DBを探索し、収集 収集したデータの加⼯や評価

    ⼈物収集 企業の役員‧従業員の情報をWeb‧独⾃DBを探索し、収集 収集したデータの加⼯や評価 1to1⽂章⽣成 企業情報、担当者情報を元に、ターゲットリストに最適なオリ ジナルの1to1メッセージを作成、評価 アプローチ実⾏ メール/問い合わせフォーム/SNS/⼿紙などのあらゆるチャネル からアプローチを実施 データ分析 どういった内容、業界、役職、部署へのアプローチが効果的で あったか分析し提⽰ アプローチ先 情報収集 連絡先、問い合わせフォームをWeb‧独⾃DBを探索し、収集 収集したデータの加⼯や評価 アプローチまでの⾏動は、営業エキスパートの⾏動をトレース → 型が決まっている
  7. © 2025 Algomatic inc. ⼤事なこと:⾃律型エージェントとAgentic Workflowは⼆者択⼀ではない アポドリにおいても、⾃律型エージェントがフィットするステップが存在する リスト 提供 企業情報収集

    企業名や住所、URL情報からWeb‧独⾃DBを探索し、収集 収集したデータの加⼯や評価 ⼈物収集 企業の役員‧従業員の情報をWeb‧独⾃DBを探索し、収集 収集したデータの加⼯や評価 1to1⽂章⽣成 企業情報、担当者情報を元に、ターゲットリストに最適なオリ ジナルの1to1メッセージを作成、評価 アプローチ実⾏ メール/問い合わせフォーム/SNS/⼿紙などのあらゆるチャネル からアプローチを実施 データ分析 どういった内容、業界、役職、部署へのアプローチが効果的で あったか分析し提⽰ アプローチ先 情報収集 連絡先、問い合わせフォームをWeb‧独⾃DBを探索し、収集 収集したデータの加⼯や評価
  8. © 2025 Algomatic inc. 1. まずは⼿動で業務を遂⾏する。 ワークフローの解像度を上げる &簡易的なツールを実装してAI化の検証 2. ⼈⼿でやっていたステップを徐々にAI化。

    100%の精度を⽬指さないことが⼤事 Agentic Workflowの構築プロセス 企業情報収集 ⼈物収集 アプローチ先 情報収集 1to1⽂章⽣成 アプローチ実⾏ データ分析 AI化 AI化 AI化 AI化
  9. © 2025 Algomatic inc. 1. まずは⼿動で業務を遂⾏する。 ワークフローの解像度を上げる &簡易的なツールを実装してAI化の検証 2. ⼈⼿でやっていたステップを徐々にAI化。

    100%の精度を⽬指さないことが⼤事 3. ⾃動ワークフロー化し、⼈の介在を最⼩限に ステップごとの精度担保とガードレールが重要 Agentic Workflowの構築プロセス 企業情報収集 ⼈物収集 アプローチ先 情報収集 1to1⽂章⽣成 アプローチ実⾏ データ分析 AI化 AI化 AI化 AI化 AI化 AI化
  10. © 2025 Algomatic inc. 1. まずは⼿動で業務を遂⾏する。 ワークフローの解像度を上げる &簡易的なツールを実装してAI化の検証 2. ⼈⼿でやっていたステップを徐々にAI化。

    100%の精度を⽬指さないことが⼤事 3. ⾃動ワークフロー化し、⼈の介在を最⼩限に ステップごとの精度担保とガードレールが重要 Agentic Workflowの構築プロセス 企業情報収集 ⼈物収集 アプローチ先 情報収集 1to1⽂章⽣成 アプローチ実⾏ データ分析 AI化 AI化 AI化 AI化 AI化 AI化
  11. © 2025 Algomatic inc. 1. まずは⼿動で業務を遂⾏する。 ワークフローの解像度を上げる &簡易的なツールを実装してAI化の検証 2. ⼈⼿でやっていたステップを徐々にAI化。

    100%の精度を⽬指さないことが⼤事 3. ⾃動ワークフロー化し、⼈の介在を最⼩限に ステップごとの精度担保とガードレールが重要 Agentic Workflowの構築プロセス 企業情報収集 ⼈物収集 アプローチ先 情報収集 1to1⽂章⽣成 アプローチ実⾏ データ分析 AI化 AI化 AI化 AI化 AI化 AI化
  12. © 2025 Algomatic inc. 1. まずは⼿動で業務を遂⾏する。 ワークフローの解像度を上げる &簡易的なツールを実装してAI化の検証 2. ⼈⼿でやっていたステップを徐々にAI化。

    100%の精度を⽬指さないことが⼤事 3. ⾃動ワークフロー化し、⼈の介在を最⼩限に ステップごとの精度担保とガードレールが重要 Agentic Workflowの構築プロセス 企業情報収集 ⼈物収集 アプローチ先 情報収集 1to1⽂章⽣成 アプローチ実⾏ データ分析 AI化 AI化 AI化 AI化 AI化 AI化
  13. © 2025 Algomatic inc. 「100%の精度を⽬指さない」とは? インプットや世の中の情報は多様である。開発時点で全てのエラーパターンを網羅し、 「100%うまく動く」ステップは実装できない 企業情報収集 ⼈物収集 アプローチ先

    情報収集 1to1⽂章⽣成 アプローチ実⾏ データ分析 AI化 AI化 AI化 AI化 AI化 AI化 企業HPが⾒つからない 所属が複数あるが、 この⼈でいいだろうか ⽂章⽣成のために必要な 事業情報が⾒つからない …
  14. © 2025 Algomatic inc. 1. まずは⼿動で業務を遂⾏する。 ワークフローの解像度を上げる &簡易的なツールを実装してAI化の検証 2. ⼈⼿でやっていたステップを徐々にAI化。

    100%の精度を⽬指さないことが⼤事 3. ⾃動ワークフロー化し、⼈の介在を最⼩限に ステップごとの精度担保とガードレールが重要 Agentic Workflowの構築プロセス 企業情報収集 ⼈物収集 アプローチ先 情報収集 1to1⽂章⽣成 アプローチ実⾏ データ分析 AI化 AI化 AI化 AI化 AI化 AI化
  15. © 2025 Algomatic inc. ステップごとの精度担保とガードレール • ワークフローにおける⼿前のステップの精度を最優先で担保する ◦ 後続ステップ全てに波及するため ◦

    「⼈間チェック」も厭わず、気合いで精度を保つ ◦ アポドリにおいては「企業情報収集」がそれ • 「ここでミスったら取り返しつかない」 という処理の直前にガードレールを配置する ◦ ここが信頼度⾼く構築できれば、各ステップは カジュアルに変更‧改善できる ◦ ガードレールによるリジェクト数を精度指標にできる ◦ アポドリにおいては「メール送信」など 企業情報収集 ⼈物収集 アプローチ先 情報収集 1to1⽂章⽣成 アプローチ実⾏ まずここの精度を最優先で 担保する ガードレールはここで 実施
  16. © 2025 Algomatic inc. ステップごとの精度担保とガードレール • ワークフローにおける⼿前のステップの精度を最優先で担保する ◦ 後続ステップ全てに波及するため ◦

    「⼈間チェック」も厭わず、気合いで精度を保つ ◦ アポドリにおいては「企業情報収集」がそれ • 「ここでミスったら取り返しつかない」 という処理の直前にガードレールを配置する ◦ ここが信頼度⾼く構築できれば、各ステップは カジュアルに変更‧改善できる ◦ ガードレールによるリジェクト数を精度指標にできる ◦ アポドリにおいては「メール送信」など 企業情報収集 ⼈物収集 アプローチ先 情報収集 1to1⽂章⽣成 アプローチ実⾏ まずここの精度を最優先で 担保する ガードレールはここで 実施
  17. © 2025 Algomatic inc. 精度をどう測る?信頼性を担保する? • LLMの出⼒において「絶対正しい」ものはない → 全てチェックすべき •

    ただし「⼈間が」全てチェックすべきとは限らない ◦ ⼈は間違える⽣き物 ◦ 数千件規模の出⼒チェックにおいて、 ⼈間の精度はむしろ低い • では⼈間の得意領域は? ◦ 数が限られた「微妙なライン」の判定 1. LLMで⼀次判定 2. アヤシイ部分を⼈間が最終判定 ここの判定体験設計も重要
  18. © 2025 Algomatic inc. まとめ • ⾃律型エージェントとAgentic Workflow ◦ アポドリはAgentic

    Workflowだよ ▪ 失敗が許されない ▪ 作業⼿順のベストプラクティスが存在している • Agentic Workflow構築ステップ ◦ チームでワークフローの解像度を⾼める ◦ LLMで100%を⽬指さない ◦ ⼈間も100%ではない • ワークフローに基づき、LLMと⼈間それぞれの得意領域で分業する ことで、信頼性の⾼いAIエージェントを構築できる