Kubernetes has become the defacto standard as a platform for container orchestration. Its ease of extending and many integrations has paved the way for a wide variety of data science and research tooling to be built on top of it.
From all encompassing tools like Kubeflow that make it easy for researchers to build end-to-end Machine Learning pipelines to specific orchestration of analytics engines such as Spark; Kubernetes has made the deployment and management of these things easy. This presentation will showcase some of the larger research tools in the ecosystem and go into how Kubernetes has enabled this easy form of application management.