Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How to do regexp analysis
Search
Iskander (Alex) Sharipov
April 25, 2020
Programming
0
280
How to do regexp analysis
Iskander (Alex) Sharipov
April 25, 2020
Tweet
Share
More Decks by Iskander (Alex) Sharipov
See All by Iskander (Alex) Sharipov
quasigo
quasilyte
0
23
Go gamedev: XM music
quasilyte
0
80
Zero alloc pathfinding
quasilyte
0
390
Mycelium
quasilyte
0
41
Roboden game pitch
quasilyte
0
160
Ebitengine Ecosystem Overview
quasilyte
1
700
Go gamedev patterns
quasilyte
0
410
profile-guided code analysis
quasilyte
0
310
Go inlining
quasilyte
0
98
Other Decks in Programming
See All in Programming
最近のVS Codeで気になるニュース 2025/01
74th
1
100
AHC041解説
terryu16
0
400
混沌とした例外処理とエラー監視に秩序をもたらす
morihirok
13
2.3k
非ブラウザランタイムとWeb標準 / Non-Browser Runtimes and Web Standards
petamoriken
0
430
php-conference-japan-2024
tasuku43
0
430
Flatt Security XSS Challenge 解答・解説
flatt_security
0
740
PHPカンファレンス 2024|共創を加速するための若手の技術挑戦
weddingpark
0
140
Внедряем бюджетирование, или Как сделать хорошо?
lamodatech
0
940
Stackless и stackful? Корутины и асинхронность в Go
lamodatech
0
1.3k
ErdMap: Thinking about a map for Rails applications
makicamel
1
660
はてなにおけるfujiwara-wareの活用やecspressoのCI/CD構成 / Fujiwara Tech Conference 2025
cohalz
3
2.8k
良いユニットテストを書こう
mototakatsu
11
3.6k
Featured
See All Featured
Git: the NoSQL Database
bkeepers
PRO
427
64k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.2k
Fontdeck: Realign not Redesign
paulrobertlloyd
82
5.3k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.2k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
98
18k
Done Done
chrislema
182
16k
The Cult of Friendly URLs
andyhume
78
6.1k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
How to Think Like a Performance Engineer
csswizardry
22
1.3k
Making the Leap to Tech Lead
cromwellryan
133
9k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
49
2.2k
How GitHub (no longer) Works
holman
312
140k
Transcript
How to do regexp analysis @quasilyte / GolangKazan 2020
Not why, but how Implementation advice and potential issues overview.
go-critic NoVerify Open-Source analyzers
Discussion plan • Handling regexp syntax • Analyzing regexp flow
• Finding bugs in regular expressions • Regexp rewriting
Handling regexp syntax
Why making own parser? Most regexp libraries use parsers that
give up on the first error. For analysis, we need rich AST (parse tree even) and error-tolerant parser.
Writing a parser Useful resources: • Regexp syntax docs (BNF,
re2-syntax) • Pratt parsers tutorial (RU, EN) • Regexp corpus for tests (gist) • Dialect-specific documentation
Composition operators Only two: • Concatenation: xy (“x” followed by
“y”) • Alternation: x|y (“x” or “y”) Concatenation is implicit. And we want it to be explicit in AST.
Concat operation `0|xy[a-z]` ⬇ 0 | x ⋅ y ⋅
[a-z]
Parsing concatenation • Insert concat tokens • Parse regexp like
it has explicit concat xy? ⬇ “x” “⋅” “y” “?”
Char classes (are hard) • Different escaping rules • Char-ranges
can be tricky This is char range: [\n-\r] 4 chars This is not: [\d-\r] \d, “-” and “\r”
Char classes syntax `[][]` What is it?
Char classes syntax `[][]` A char class of “]” and
“[“! `[\]\[]`
Char classes syntax `[^]*|\[[^\]]` What is it?
Char classes syntax `[^]*|\[[^\]]` A single char class! `[^\]*|\[\[^\]]`
Char classes syntax `[+=-_]` What will be matched?
Char classes syntax `[+=-_]` “F” matched
Char classes syntax `[+=\-_]` “F” not matched
Chars and literals • Consecutive “chars” can be merged •
Single char should not be converted Both forms (with and without merge) are useful. Merged chars simplify literal substring analysis.
Concat operation `foox?y` ⬇ lit(foo) ⋅ ?(char(x)) ⋅ char(y)
AST types There are at least two approaches: • One
type + enum tags • Many types + shared interface/base Both have pros and cons.
AST types type Expr struct { Kind ExprKind // enum
tag Value string // source text Args []Expr // sub-expr list } type ExprKind int
AST types const ( ExprNone ExprKind = iota ExprChar ExprLiteral
// list of chars ExprConcat // xy ExprAlt // x|y // etc. )
Helper for the next slide func charExpr(val string) Expr {
return Expr{ Kind: ExprChar, Value: val, } }
AST of `x|yz` Expr{ Kind: ExprAlt, Value: "x|yz", Args: []Expr{
charExpr("x"), { Kind: ExprConcat, Value: "yz", Args: []Expr{ charExpr("y"), charExpr("z"), }, }, }, }
Go regexp parsing library https://github.com/quasilyte/regex contains a `regex/syntax` package that
is used in both NoVerify and go-critic. It can parse both re2 and pcre patterns.
Analyzing regexp flow
Regexp flags A regular expression can have an initial set
of flags, then it can add or remove any of them inside the expression. The effect is localized to the current (potentially capturing) group.
Concat operation `/((?i)a(?m)b(?-m)c)d/s` ^--------- flags: si Entered a group with
“i” flag
Concat operation `/((?i)a(?m)b(?-m)c)d/s` -^ flags: sim Mid-group flags: add “m”
Concat operation `/((?i)a(?m)b(?-m)c)d/s` -------------^ flags: si Mid-group flags: clear “m”
Concat operation `/((?i)a(?m)b(?-m)c)d/s` -----------------^ flags: s Left a group with
“i” flag
Flags flow • Flags are lexically scoped • Groups are
a scoping unit • Leaving a group drops a scope • Entering a group adds a scope
Back references • Rules vary among engines/dialects • Syntax may
clash with octal literals • Can also be relative/named: \g{-1}, etc We’ll use PHP rules as an example.
Back reference QUIZ! (PHP) \0 ??? \1 … \9 ???
\10 … \77 ???
Back reference QUIZ! (PHP) \0 Octal literal \1 … \9
??? \10 … \77 ???
Back reference QUIZ! (PHP) \0 Octal literal \1 … \9
Back reference \10 … \77 ???
Back reference QUIZ! (PHP) \0 Octal literal \1 … \9
Back reference \10 … \77 It depends!
Groups flow • Capturing groups are numbered from left to
right. • Non-capturing groups are ignored. • Groups can have a name.
Finding bugs in regular expressions
“^” anchor diagnostic Let’s check that “^” is used only
in the beginning position of the pattern. Because if it follows a non-empty match, it’ll never succeed.
Correct “^” usages `^foo` `^a|^b` `a|(b|^c)`
Incorrect “^” usages `foo^` `a^b` `(a|b)^c`
Algorithm • Traverse all starting branches • Mark all reached
“^” as “good” Then traverse a pattern AST normally and report any “^” that was not marked.
The starting branches? • For every “concat” met, it’s the
first element (applied recursively). • If root regexp element is not “concat”, consider it to be a concat of 1 element.
URL matching `google.com`
URL matching `google.com` http://googleocom.ru
URL matching `google.com` http://googleocom.ru http://a.github.io/google.com
URL matching `google\.com` http://googleocom.ru http://a.github.io/google.com
URL matching `^https?://google\.com/` http://googleocom.ru http://a.github.io/google.com
URL matching When “.” is used before common domain name
like “com”, it’s probably a mistake. If we have char sequences represented as a single AST node, this analysis is trivial.
Handling unescaped dot `google.com` lit(google) ⋅ . ⋅ lit(com) Warn
if “.” is followed by a lit with domain name value.
Regexp rewriting
Regexp input generation It’s quite simple to generate a string
that will be matched by a regular expression if you have that regexp AST.
Generating matching string (N=2) `\w*[0-9]?$` *(\w) ⋅ ?([0-9]) ⋅ $
Generating matching string (N=2) `\w*[0-9]?$` *(\w) ⋅ ?([0-9]) ⋅ $
aa N matches of \w
Generating matching string (N=2) `\w*[0-9]?$` *(\w) ⋅ ?([0-9]) ⋅ $
aa7 1 match of [0-9]
Generating matching string (N=2) `\w*[0-9]?$` *(\w) ⋅ ?([0-9]) ⋅ $
aa7 May do nothing for $
Regexp input generation Generating a non-matching strings can be useful
for catastrophic backtracking evaluation.
Regexp simplification Instead of writing a matching characters we can
write the pattern syntax itself. By replacing recognized AST node sequences with something simpler, we can perform a regexp simplification.
Regexp simplification `\dxx*` \d ⋅ x ⋅ *(x)
Regexp simplification `\dxx*` \d ⋅ x ⋅ *(x) \d Can’t
simplify \d, write as is
Regexp simplification `\dxx*` \d ⋅ x ⋅ *(x) \dx+ xx*
-> x+
Oh, the possibilities! x{1,} -> x+ [a-z\d][a-z\d] -> [a-z\d]{2} [^\d]
-> \D a|b|c -> [abc]
https://quasilyte.dev/regexp-lint/ Online Demo
Submit your ideas! :) If you have a particular regexp
simplification or bug pattern that is not detected by regexp-lint, let me know.
Thank you.