Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How to do regexp analysis
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Iskander (Alex) Sharipov
April 25, 2020
Programming
0
300
How to do regexp analysis
Iskander (Alex) Sharipov
April 25, 2020
Tweet
Share
More Decks by Iskander (Alex) Sharipov
See All by Iskander (Alex) Sharipov
quasigo
quasilyte
0
83
Go gamedev: XM music
quasilyte
0
130
Zero alloc pathfinding
quasilyte
0
590
Mycelium
quasilyte
0
88
Roboden game pitch
quasilyte
0
250
Ebitengine Ecosystem Overview
quasilyte
1
930
Go gamedev patterns
quasilyte
0
500
profile-guided code analysis
quasilyte
0
370
Go inlining
quasilyte
0
130
Other Decks in Programming
See All in Programming
Claude Codeの「Compacting Conversation」を体感50%減! CLAUDE.md + 8 Skills で挑むコンテキスト管理術
kmurahama
1
810
例外処理とどう使い分ける?Result型を使ったエラー設計 #burikaigi
kajitack
16
5.8k
rack-attack gemによるリクエスト制限の失敗と学び
pndcat
0
260
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
240
KIKI_MBSD Cybersecurity Challenges 2025
ikema
0
1.2k
それ、本当に安全? ファイルアップロードで見落としがちなセキュリティリスクと対策
penpeen
7
2.4k
Spinner 軸ズレ現象を調べたらレンダリング深淵に飲まれた #レバテックMeetup
bengo4com
1
220
AI によるインシデント初動調査の自動化を行う AI インシデントコマンダーを作った話
azukiazusa1
1
580
Vibe codingでおすすめの言語と開発手法
uyuki234
0
200
TerraformとStrands AgentsでAmazon Bedrock AgentCoreのSSO認証付きエージェントを量産しよう!
neruneruo
4
2.6k
AI Agent Dojo #4: watsonx Orchestrate ADK体験
oniak3ibm
PRO
0
130
Honoを使ったリモートMCPサーバでAIツールとの連携を加速させる!
tosuri13
1
170
Featured
See All Featured
Public Speaking Without Barfing On Your Shoes - THAT 2023
reverentgeek
1
300
Amusing Abliteration
ianozsvald
0
90
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.4k
Navigating Team Friction
lara
192
16k
Documentation Writing (for coders)
carmenintech
77
5.2k
What Being in a Rock Band Can Teach Us About Real World SEO
427marketing
0
170
How GitHub (no longer) Works
holman
316
140k
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
120
Paper Plane
katiecoart
PRO
0
46k
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
270
How to Align SEO within the Product Triangle To Get Buy-In & Support - #RIMC
aleyda
1
1.4k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
Transcript
How to do regexp analysis @quasilyte / GolangKazan 2020
Not why, but how Implementation advice and potential issues overview.
go-critic NoVerify Open-Source analyzers
Discussion plan • Handling regexp syntax • Analyzing regexp flow
• Finding bugs in regular expressions • Regexp rewriting
Handling regexp syntax
Why making own parser? Most regexp libraries use parsers that
give up on the first error. For analysis, we need rich AST (parse tree even) and error-tolerant parser.
Writing a parser Useful resources: • Regexp syntax docs (BNF,
re2-syntax) • Pratt parsers tutorial (RU, EN) • Regexp corpus for tests (gist) • Dialect-specific documentation
Composition operators Only two: • Concatenation: xy (“x” followed by
“y”) • Alternation: x|y (“x” or “y”) Concatenation is implicit. And we want it to be explicit in AST.
Concat operation `0|xy[a-z]` ⬇ 0 | x ⋅ y ⋅
[a-z]
Parsing concatenation • Insert concat tokens • Parse regexp like
it has explicit concat xy? ⬇ “x” “⋅” “y” “?”
Char classes (are hard) • Different escaping rules • Char-ranges
can be tricky This is char range: [\n-\r] 4 chars This is not: [\d-\r] \d, “-” and “\r”
Char classes syntax `[][]` What is it?
Char classes syntax `[][]` A char class of “]” and
“[“! `[\]\[]`
Char classes syntax `[^]*|\[[^\]]` What is it?
Char classes syntax `[^]*|\[[^\]]` A single char class! `[^\]*|\[\[^\]]`
Char classes syntax `[+=-_]` What will be matched?
Char classes syntax `[+=-_]` “F” matched
Char classes syntax `[+=\-_]` “F” not matched
Chars and literals • Consecutive “chars” can be merged •
Single char should not be converted Both forms (with and without merge) are useful. Merged chars simplify literal substring analysis.
Concat operation `foox?y` ⬇ lit(foo) ⋅ ?(char(x)) ⋅ char(y)
AST types There are at least two approaches: • One
type + enum tags • Many types + shared interface/base Both have pros and cons.
AST types type Expr struct { Kind ExprKind // enum
tag Value string // source text Args []Expr // sub-expr list } type ExprKind int
AST types const ( ExprNone ExprKind = iota ExprChar ExprLiteral
// list of chars ExprConcat // xy ExprAlt // x|y // etc. )
Helper for the next slide func charExpr(val string) Expr {
return Expr{ Kind: ExprChar, Value: val, } }
AST of `x|yz` Expr{ Kind: ExprAlt, Value: "x|yz", Args: []Expr{
charExpr("x"), { Kind: ExprConcat, Value: "yz", Args: []Expr{ charExpr("y"), charExpr("z"), }, }, }, }
Go regexp parsing library https://github.com/quasilyte/regex contains a `regex/syntax` package that
is used in both NoVerify and go-critic. It can parse both re2 and pcre patterns.
Analyzing regexp flow
Regexp flags A regular expression can have an initial set
of flags, then it can add or remove any of them inside the expression. The effect is localized to the current (potentially capturing) group.
Concat operation `/((?i)a(?m)b(?-m)c)d/s` ^--------- flags: si Entered a group with
“i” flag
Concat operation `/((?i)a(?m)b(?-m)c)d/s` -^ flags: sim Mid-group flags: add “m”
Concat operation `/((?i)a(?m)b(?-m)c)d/s` -------------^ flags: si Mid-group flags: clear “m”
Concat operation `/((?i)a(?m)b(?-m)c)d/s` -----------------^ flags: s Left a group with
“i” flag
Flags flow • Flags are lexically scoped • Groups are
a scoping unit • Leaving a group drops a scope • Entering a group adds a scope
Back references • Rules vary among engines/dialects • Syntax may
clash with octal literals • Can also be relative/named: \g{-1}, etc We’ll use PHP rules as an example.
Back reference QUIZ! (PHP) \0 ??? \1 … \9 ???
\10 … \77 ???
Back reference QUIZ! (PHP) \0 Octal literal \1 … \9
??? \10 … \77 ???
Back reference QUIZ! (PHP) \0 Octal literal \1 … \9
Back reference \10 … \77 ???
Back reference QUIZ! (PHP) \0 Octal literal \1 … \9
Back reference \10 … \77 It depends!
Groups flow • Capturing groups are numbered from left to
right. • Non-capturing groups are ignored. • Groups can have a name.
Finding bugs in regular expressions
“^” anchor diagnostic Let’s check that “^” is used only
in the beginning position of the pattern. Because if it follows a non-empty match, it’ll never succeed.
Correct “^” usages `^foo` `^a|^b` `a|(b|^c)`
Incorrect “^” usages `foo^` `a^b` `(a|b)^c`
Algorithm • Traverse all starting branches • Mark all reached
“^” as “good” Then traverse a pattern AST normally and report any “^” that was not marked.
The starting branches? • For every “concat” met, it’s the
first element (applied recursively). • If root regexp element is not “concat”, consider it to be a concat of 1 element.
URL matching `google.com`
URL matching `google.com` http://googleocom.ru
URL matching `google.com` http://googleocom.ru http://a.github.io/google.com
URL matching `google\.com` http://googleocom.ru http://a.github.io/google.com
URL matching `^https?://google\.com/` http://googleocom.ru http://a.github.io/google.com
URL matching When “.” is used before common domain name
like “com”, it’s probably a mistake. If we have char sequences represented as a single AST node, this analysis is trivial.
Handling unescaped dot `google.com` lit(google) ⋅ . ⋅ lit(com) Warn
if “.” is followed by a lit with domain name value.
Regexp rewriting
Regexp input generation It’s quite simple to generate a string
that will be matched by a regular expression if you have that regexp AST.
Generating matching string (N=2) `\w*[0-9]?$` *(\w) ⋅ ?([0-9]) ⋅ $
Generating matching string (N=2) `\w*[0-9]?$` *(\w) ⋅ ?([0-9]) ⋅ $
aa N matches of \w
Generating matching string (N=2) `\w*[0-9]?$` *(\w) ⋅ ?([0-9]) ⋅ $
aa7 1 match of [0-9]
Generating matching string (N=2) `\w*[0-9]?$` *(\w) ⋅ ?([0-9]) ⋅ $
aa7 May do nothing for $
Regexp input generation Generating a non-matching strings can be useful
for catastrophic backtracking evaluation.
Regexp simplification Instead of writing a matching characters we can
write the pattern syntax itself. By replacing recognized AST node sequences with something simpler, we can perform a regexp simplification.
Regexp simplification `\dxx*` \d ⋅ x ⋅ *(x)
Regexp simplification `\dxx*` \d ⋅ x ⋅ *(x) \d Can’t
simplify \d, write as is
Regexp simplification `\dxx*` \d ⋅ x ⋅ *(x) \dx+ xx*
-> x+
Oh, the possibilities! x{1,} -> x+ [a-z\d][a-z\d] -> [a-z\d]{2} [^\d]
-> \D a|b|c -> [abc]
https://quasilyte.dev/regexp-lint/ Online Demo
Submit your ideas! :) If you have a particular regexp
simplification or bug pattern that is not detected by regexp-lint, let me know.
Thank you.