Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Push du Machine Learning dans to app
Search
Sandra Dupre
July 23, 2018
Programming
0
160
Push du Machine Learning dans to app
When Tensorflow and MLKit rule the world...
Sandra Dupre
July 23, 2018
Tweet
Share
More Decks by Sandra Dupre
See All by Sandra Dupre
One Feature, Two Timelines: Flying Solo or with an AI Copilot
sandraddev
0
2
To Smartphones and Beyond: Screens Everywhere
sandraddev
0
42
Do you want an easy way to add Machine Learning into your app?
sandraddev
0
120
Push some Machine Learning into your App
sandraddev
2
40
Other Decks in Programming
See All in Programming
基礎から学ぶ大画面対応(Learning Large-Screen Support from the Ground Up)
tomoya0x00
0
4.4k
スケールする組織の実現に向けた インナーソース育成術 - ISGT2025
teamlab
PRO
2
170
FindyにおけるTakumi活用と脆弱性管理のこれから
rvirus0817
0
550
rage against annotate_predecessor
junk0612
0
170
RDoc meets YARD
okuramasafumi
4
170
アルテニア コンサル/ITエンジニア向け 採用ピッチ資料
altenir
0
110
Namespace and Its Future
tagomoris
6
710
Zendeskのチケットを Amazon Bedrockで 解析した
ryokosuge
3
320
Putting The Genie in the Bottle - A Crash Course on running LLMs on Android
iurysza
0
140
より安全で効率的な Go コードへ: Protocol Buffers Opaque API の導入
shwatanap
3
820
Introducing ReActionView: A new ActionView-compatible ERB Engine @ Rails World 2025, Amsterdam
marcoroth
0
710
1から理解するWeb Push
dora1998
7
2k
Featured
See All Featured
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.5k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3k
Docker and Python
trallard
46
3.6k
The Language of Interfaces
destraynor
161
25k
How to Think Like a Performance Engineer
csswizardry
26
1.9k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.7k
GraphQLとの向き合い方2022年版
quramy
49
14k
Designing for Performance
lara
610
69k
Speed Design
sergeychernyshev
32
1.1k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Transcript
Push du Machine Learning dans ton app … When TensorFlow
and ML Kit rule the world
None
None
Machine Learning
Machine learning ? Supervisé Arbre de décision Régression logistique Boosting
Réseau de Neurones … Non Supervisé Clustering K-moyenne ... Par renforcement Agent autonome capable d’apprendre de ses erreurs
Machine learning ? Supervisé Arbre de décision Régression logistique Boosting
Réseau de Neurones … Non Supervisé Clustering K-moyenne ... Par renforcement Agent autonome capable d’apprendre de ses erreurs
Un Neurone Opération Linéaire Fonction Filtre input 1 input n
output 1 output 1
Réseau neuronal convolutif R E S H A P E
None
TensorFlow Outils de calcul numérique haute performance Réseau de neurones
via Deep Learning Possède deux versions Mobile Open Source Made By Google Brain
None
Modèles Pré entraînés
Inception V3 MobileNet Smart Reply
Inception V3 MobileNet Smart Reply ImageNet trained with trained with
Accuracy ++ Poids - Accuracy + Poids ++
Inception V3 MobileNet Smart Reply ImageNet trained with trained with
Accuracy ++ Poids - Accuracy + Poids ++
→ Ré-entraîné MobileNet
Classer les images
python retrain.py \ --image_dir monkey \ --output_graph model/graph.pb \ --output_labels
model/label.txt \ --tfhub_module https://tfhub.dev/google/imagenet/mobilenet_v1_050_224/quantops/feature_vector/1 retrain.py https://www.tensorflow.org/tutorials/image_retraining
python retrain.py \ --image_dir monkey \ --output_graph model/graph.pb \ --output_labels
model/label.txt \ --tfhub_module https://tfhub.dev/google/imagenet/mobilenet_v1_050_224/quantops/feature_vector/1 retrain.py https://www.tensorflow.org/tutorials/image_retraining
python retrain.py \ --image_dir monkey \ --output_graph model/graph.pb \ --output_labels
model/label.txt \ --tfhub_module https://tfhub.dev/google/imagenet/mobilenet_v1_050_224/quantops/feature_vector/1 retrain.py https://www.tensorflow.org/tutorials/image_retraining
python retrain.py \ --image_dir monkey \ --output_graph model/graph.pb \ --output_labels
model/label.txt \ --tfhub_module https://tfhub.dev/google/imagenet/mobilenet_v1_050_224/quantops/feature_vector/1 retrain.py https://www.tensorflow.org/tutorials/image_retraining
Sauf que… Le modèle créé ne fonctionne pas Solution ?
Utiliser le retrain.py du codelab
python codeLab/tensorflow-for-poets-2/scripts/retrain.py \ --how_many_training_steps=500 \ --model_dir=model/ \ --summaries_dir=tf_files/training_summaries/mobilenet_0.50_224 \ --output_graph=model/graph.pb
\ --output_labels=model/label.txt \ --architecture=mobilenet_0.50_224 \ --image_dir=monkey retrain.py https://codelabs.developers.google.com/codelabs/tensorflow-for-poets/
TF model person label.txt
TensorFlow Mobile
TensorFlow Lite
Solution allégée Utilise des modèles en FlatBuffers Optimisé pour le
mobile Supporte une partie des opérations de TensorFlow Considéré encore comme une contribution à TensorFlow TensorFlow Lite ?
Optimisations : Quantization : FLOAT32 → BYTE8 Freeze : Couper
les branches inutiles pour la prédiction
T O C O TENSORFLOW LITE OPTIMIZING CONVERTER Saved Model
ou Frozen Graph → FlatBuffer
TOCO bazel run tensorflow/contrib/lite/toco:toco -- \ --input_file=model/graph.pb \ --input_format=TENSORFLOW_GRAPHDEF \
--output_format=TFLITE \ --output_file=model/graph.tflite \ --inference_type=FLOAT \ --input_shape=1,224,224,3 \ --input_array=input \ --output_array=final_result \ --input_data_type=FLOAT
TOCO bazel run tensorflow/contrib/lite/toco:toco -- \ --input_file=model/graph.pb \ --input_format=TENSORFLOW_GRAPHDEF \
--output_format=TFLITE \ --output_file=model/graph.tflite \ --inference_type=FLOAT \ --input_shape=1,224,224,3 \ --input_array=input \ --output_array=final_result \ --input_data_type=FLOAT
TOCO bazel run tensorflow/contrib/lite/toco:toco -- \ --input_file=model/graph.pb \ --input_format=TENSORFLOW_GRAPHDEF \
--output_format=TFLITE \ --output_file=model/graph.tflite \ --inference_type=FLOAT \ --input_shape=1,224,224,3 \ --input_array=input \ --output_array=final_result \ --input_data_type=FLOAT
TOCO bazel run tensorflow/contrib/lite/toco:toco -- \ --input_file=model/graph.pb \ --input_format=TENSORFLOW_GRAPHDEF \
--output_format=TFLITE \ --output_file=model/graph.tflite \ --inference_type=FLOAT \ --input_shape=1,224,224,3 \ --input_array=input \ --output_array=final_result \ --input_data_type=FLOAT
TOCO (Quantized Model) bazel run tensorflow/contrib/lite/toco:toco -- \ --input_file=model/graph.pb \
--input_format=TENSORFLOW_GRAPHDEF \ --output_format=TFLITE \ --output_file=model/graph.tflite \ --inference_type=QUANTIZED_UINT8 \ --input_shape=1,224,224,3 \ --input_array=Placeholder \ --output_array=final_result \ --default_ranges_min=0 \ --default_ranges_max=6
Intégration sur Android : FlatBuffer Model + labels.txt Android Assets
Image → ByteBuffer private fun fromBitmapToByteBuffer(bitmap: Bitmap): ByteBuffer { val
imgData = ByteBuffer.allocateDirect(4 * IMG_SIZE * IMG_SIZE * 3).apply { order(ByteOrder.nativeOrder()) rewind() } val pixels = IntArray(IMG_SIZE * IMG_SIZE) Bitmap.createScaledBitmap(bitmap, IMG_SIZE, IMG_SIZE, false).apply { getPixels(pixels, 0, width, 0, 0, width, height) } pixels.forEach { imgData.putFloat(((it shr 16 and 0xFF) - MEAN) / STD) imgData.putFloat(((it shr 8 and 0xFF) - MEAN) / STD) imgData.putFloat(((it and 0xFF) - MEAN) / STD) } return imgData }
Interpreter val fileInputStream = context.assets.openFd(MODEL_NAME).let { FileInputStream(it.fileDescriptor).channel.map( FileChannel.MapMode.READ_ONLY, it.startOffset, it.declaredLength
) } val interpreter = Interpreter(fileInputStream) val labels = context.assets.open("labels.txt").bufferedReader().readLines()
Run ! fun recognizeMonkey(bitmap: Bitmap) { val imgData = fromBitmapToByteBuffer(bitmap)
val outputs = Array(1, { FloatArray(labels.size) }) interpreter.run(imgData, outputs) val monkey = labels .mapIndexed { index, label -> Pair(label, outputs[0][index]) } .sortedByDescending { it.second } .first() view?.displayMonkey(monkey.first, monkey.second * 100) }
ML KIT
ML Kit: la boîte à outils Mobile Vision + Google
Cloud API + TensorFlow Lite
OCR Détection de Visages Lecture de code-barres Labelliser des images
Reconnaissance de points de repères Smart Reply
Exemple : Détection de Visages init { val options =
FirebaseVisionFaceDetectorOptions .Builder() .setClassificationType( FirebaseVisionFaceDetectorOptions .ALL_CLASSIFICATIONS ) .build() detector = FirebaseVision.getInstance().getVisionFaceDetector(options) }
fun recognizePicture(bitmap: Bitmap) { } Exemple : Détection de Visages
val firebaseVisionImage = FirebaseVisionImage.fromBitmap(bitmap) detector.detectInImage(firebaseVisionImage) .addOnSuccessListener { faces -> } .addOnFailureListener { view.displayFail() } try { if (faces.first().smilingProbability > 0.70) { view.displaySmile() } else { view.displaySad() } } catch (e: NoSuchElementException) { view.displayFail() }
CUSTOM MODEL with TensorFlow Lite
ML Kit Custom Android + iOS
ML Kit Custom Android + iOS
ML Kit Custom Android + iOS
ML Kit Custom Android + iOS
Modèle : - En local - A distance - Les
deux !
Initialisation val dataOptions = FirebaseModelInputOutputOptions .Builder() .setInputFormat(0, FirebaseModelDataType.FLOAT32, intArrayOf(1, IMG_SIZE,
IMG_SIZE, 3)) .setOutputFormat(0, FirebaseModelDataType.FLOAT32, intArrayOf(1, labels.size)) .build() val labels = context.assets.open("labels.txt").bufferedReader().readLines()
Initialisation val dataOptions = FirebaseModelInputOutputOptions .Builder() .setInputFormat(0, FirebaseModelDataType.FLOAT32, intArrayOf(1, IMG_SIZE,
IMG_SIZE, 3)) .setOutputFormat(0, FirebaseModelDataType.FLOAT32, intArrayOf(1, labels.size)) .build() val labels = context.assets.open("labels.txt").bufferedReader().readLines()
Initialisation Interpreter: Local Source val localSource = FirebaseLocalModelSource .Builder(ASSET) .setAssetFilePath("$MODEL_NAME.tflite")
.build()
Initialisation Interpreter: Cloud Source val conditions = FirebaseModelDownloadConditions .Builder() .requireWifi()
.build() val cloudSource = FirebaseCloudModelSource.Builder(MODEL_NAME) .enableModelUpdates(true) .setInitialDownloadConditions(conditions) .setUpdatesDownloadConditions(conditions) .build()
Initialisation Interpreter: Cloud Source val conditions = FirebaseModelDownloadConditions .Builder() .requireWifi()
.build() val cloudSource = FirebaseCloudModelSource.Builder(MODEL_NAME) .enableModelUpdates(true) .setInitialDownloadConditions(conditions) .setUpdatesDownloadConditions(conditions) .build()
Initialisation Interpreter: Cloud Source val conditions = FirebaseModelDownloadConditions .Builder() .requireWifi()
.build() val cloudSource = FirebaseCloudModelSource.Builder(MODEL_NAME) .enableModelUpdates(true) .setInitialDownloadConditions(conditions) .setUpdatesDownloadConditions(conditions) .build()
Initialisation Interpreter FirebaseModelManager.getInstance().apply { registerLocalModelSource(localSource) registerCloudModelSource(cloudSource) } val interpreter =
FirebaseModelInterpreter.getInstance( FirebaseModelOptions.Builder() .setCloudModelName(MODEL_NAME) .setLocalModelName(ASSET) .build() )
Run ! val inputs = FirebaseModelInputs.Builder() .add(fromBitmapToByteBuffer(bitmap)) .build() interpreter?.run(inputs, dataOptions)
?.addOnSuccessListener { val output = it.getOutput<Array<FloatArray>>(0) val label = labels.mapIndexed { index, label -> Pair(label, output[0][index]) }.sortedByDescending { it.second }.first() view?.displayMonkey(label.first, label.second*100) } ?.addOnFailureListener { view?.displayError() }
None
Mais : Téléchargement du modèle long et aléatoire Aucune indication
sur le % de téléchargement du modèle Quid des bugs de TensorFlow Lite ? TOCO, quantized model et autres incompréhensions Documentation légère Exemples peu compréhensibles (dont le code est assez sale) Côté API cher
Merci ! Références : https://firebase.google.com/docs/ml-kit/ https://codelabs.developers.google.com/codelabs/tensorflow-for-poets-2-tflite/ https://codelabs.developers.google.com/codelabs/mlkit-android/ Dataset : https://www.kaggle.com/slothkong/10-monkey-species/version/1
@SandraDdev @sandra.dupre