Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Measuring and Optimizing Findability in e-comme...

Measuring and Optimizing Findability in e-commerce Search @MICES 2019

In this talk, we shed some light into the problem of evaluating whether results served by an e-commerce search engine for a given query are good or not. Findability is a critical question in evaluating any e-commerce search engine.

Based on our large-scale user interaction logs @search|hub.io, we will show you how using simple metrics like query CTR or time-to-click in this domain can be misleading or even result in wrong judgments. We'll introduce a new Findability-model that aims to better learn the quality of the results based on the user's interaction with the results and demonstrate the feasibility, efficiency, and accuracy of such a model in predicting query performance.

Andreas Wagner

June 14, 2024
Tweet

More Decks by Andreas Wagner

Other Decks in Science

Transcript

  1. in eCommerce M e a s u r i n

    g & O p t i m i z i n g F i n d a b i l i t y + G M V
  2. AGENDA 1. Getting the Basics right 3. A new Composite

    Model for eCommerce Search Sessions 2. A large-scale Measurement of Search Quality 4. Experiments & Results
  3. 1 are the results served by an e-commerce engine for

    a given query good or not? Measuring Search Quality
  4. Is it perceived Relevance? Is it Search Bounce rate? Is

    it Search CTR? Is it Search CR? Is it GMV contribution? Is it CLV? … or a combination of all? 1.Defining Quality 2.Measuring Quality Explicit Feedback Implicit Feedback derived from various user activity signals as a proxy for Search Quality. Getting the Basics right Human Quality Judgments
  5. Be aware of bots and crawlers Getting the Basics right

    3.Measure correctly 4.Be aware of Bias Presentation-bias Promotions-bias Position-bias MRR vs. Result-size-bias sometimes up to 60% of the searches are not explicitly requested by users Correctly track search-redirects, search-campaings, etc. from our experience only 7 out of 10 do this correctly
  6. We can use implicit feedback derived from various user activity

    signals. CTR, MRR… User Engagement Metrics Let human experts label search results from an ordinal rating. From there we can calculate NDCG, expected reciprocal rank and weighted information gain Human Relevance Judgments almost impossible to scale noisy State-of-the-art Approaches Explicit Feedback Implicit Feedback
  7. Query Impressions (4-weeks time frame) Randomly selected Expert labeled Queries

    Clicks and about 45m other interactions 150m 45,000 180m Our - Are we doing it right? - study @ search|hub.io
  8. Not really what we where expecting to see? only 53%

    of the hig hly c lic ked SERPs have Rating s >= 4 Search Result Ratings vs CTR percentile buckets CTR percentiles Rating ratio
  9. Oh no – it’s getting worse only 50% of the

    hig hly c onverting SERPs have Rating s >= 3 Search Result Ratings vs CR percentile buckets CR percentiles Rating ratio
  10. Expert Rating - 5 Expert Rating - 2 Query =

    bicycle +21% Clicks +17% GMV
  11. “perceived relevance depends on topic diversity! For broad queries users

    do not necessarily expect to get one-of-a-kind SERPs”
  12. unfortunately “relevance” alone is not a reliable estimator for User

    Engagement and even less for GMV contribution
  13. What do we want to optimize? Picking a candidate (click)

    and deciding to purchase (add2cart) Discover Click Non-Click add2cart Non-add2cart Our Goal is to maximise the expected SERP interaction probability and GMV contribution. Where eCommerce search consists of two different stages.
  14. Effort Click Probability Cart Probability Optimizing the entire search shopping

    journey Interaction Price + Findability fc() Sellability fs() Interaction
  15. fc = f(clarity, effort, Impressions,…) a measure of how specific

    or broad a query is – Query Intent Entropy a measure of the effort to navigate through the search-result in order to find specific products Findability: a straight forward Model Intuitively Findability is a measure for the ease with which information can be found. However the accurate you can specify what you are searching for the easier it might be.
  16. fs = f(price, promotion, add-2-basket,…) a measure of the relative

    price- drop for a specific product Sellability: a straight forward Model Intuitively Sellability can be seen as a binary measure. The selected item is added to the basket or not.
  17. Price of item i Probability of an add-2-cart Optimization function

    We model Findability as a LTR-Problem and directly optimize NDCG While Sellability is modeled as a binary classification problem Revenue Contribution
  18. Experiments • Ranking Metric: NDCG • Revenue Metric : Revenue/query@k

    Evaluation Metrics • RankNet • RankBoost • LambdaRank • LambdaMART Baseline Models • SVM • Logistic Regression • Random Forest Click Purchase • Our tuned composite Model (CCM) Both
  19. • Number of clicks • Number of cart adds •

    Number of filters applied • Number of sorting changes • Number of impressions • Click Success • Cart Success Activity aggregates Findability - Features • Time to first Click • Time to first Refinement • Time to first add to Cart • Dwell time of the query Activity Time • Position of first product clicked • Positions seen but not clicked • Top-k Click rate Positional
  20. • Query Length by chars • Query Length by words

    • Contains specifiers • Contains modifiers • Contains range specifiers • Contains units Query specifics • Query Intent Category** • Query type (Intent diversity)** • Query Intent-Score** • Query Intent refinement Similarity** • Query / Result Intent Similarity** • Query Intent Frequency** • Query Frequency • Suggested Query / Recommended Query • Number of results Query Meta Data **search|hub specific Signals Findability - Features
  21. Experimental Results: NDCG Type Method Click NDCG@12 Purchase NDCG@12 Revenue

    NDCG@12 Train Validation Test Train Validation Test Train Validation Test Click RankNet 0,1691 0,1675 0,1336 0,1622 0,1669 0,1626 0,1641 0,1649 0,1315 RankBoost 0,1858 0,1715 0,1285 0,1856 0,1715 0,1667 0,1858 0,1715 0,1273 LambdaRank 0,1643 0,1637 0,1319 0,1628 0,1660 0,1624 0,1663 0,1667 0,1325 LambdaMART 0,2867 0,1724 0,1370 0,2867 0,1724 0,1666 0,2867 0,1724 0,1329 Purchase SVM 0,1731 0,1719 0,1296 0,1776 0,1701 0,1705 0,1762 0,1699 0,1280 Logistic Regression 0,1919 0,1687 0,1272 0,1919 0,1687 0,1729 0,1919 0,1687 0,1292 Random Forrest 0,3064 0,1632 0,1323 0,3035 0,2236 0,1744 0,3033 0,1634 0,1335 Both LambdaMART + RF 0,2661 0,2325 0,1313 0,2800 0,2260 0,1637 0,2661 0,2322 0,1292 CCM 0,1741 0,1533 0,1340 0,2678 0,1815 0,1776 0,2007 0,1676 0,1478 +10.7% better than the best sing le mod el
  22. Experimental Results: Revenue/query@k Type Method Rev@1 Rev@2 Rev@3 Rev@4 Rev@5

    Rev@6 Rev@7 Rev@8 Rev@9 Rev@10 Rev@11 Rev@12 Click RankNet 4,16 € 4,36 € 4,55 € 4,57 € 4,71 € 4,86 € 4,85 € 4,96 € 5,08 € 5,16 € 5,17 € 5,20 € RankBoost 4,25 € 4,36 € 4,36 € 4,43 € 4,62 € 4,81 € 4,86 € 4,98 € 5,11 € 5,18 € 5,25 € 5,28 € LambdaRank 4,07 € 4,29 € 4,41 € 4,52 € 4,72 € 4,88 € 5,04 € 5,05 € 5,27 € 5,38 € 5,40 € 5,44 € LambdaMART 4,15 € 4,22 € 4,40 € 4,74 € 4,94 € 5,17 € 5,35 € 5,49 € 5,25 € 5,37 € 5,41 € 5,46 € Purchase SVM 4,10 € 4,22 € 4,43 € 4,44 € 4,60 € 4,80 € 4,97 € 5,12 € 5,25 € 5,37 € 5,40 € 5,43 € Logistic Regression 3,99 € 4,32 € 4,32 € 4,36 € 4,41 € 4,47 € 4,59 € 4,62 € 4,75 € 4,75 € 4,78 € 4,81 € Random Forrest 4,20 € 4,48 € 4,52 € 4,67 € 4,82 € 4,96 € 5,12 € 5,26 € 5,38 € 5,51 € 5,57 € 5,62 € Both LambdaMART + RF 4,11 € 4,19 € 4,39 € 4,72 € 4,86 € 5,03 € 5,18 € 5,21 € 5,33 € 5,44 € 5,48 € 5,51 € CCM 4,19 € 4,57 € 4,73 € 5,10 € 5,25 € 5,45 € 5,61 € 5,77 € 5,96 € 6,09 € 6,17 € 6,24 € +11.0% better than the best sing le mod el
  23. Summary Keep your Tracking clean and handle bias Query types

    really matter Do not oversimplify the problem by using Explicit Feedback for SERP relevance only • generic vs. precise • informational vs. inspirational The Discovery & Buying Process is a complex Journey
  24. Results – Findability & Sellability as a add2Basket Predictor avg

    Revenue / search Add2basket-rate & Findability