Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Streaming Ingestion & Processing at Flipkart
Search
Siddhartha Reddy
May 15, 2015
Technology
0
380
Streaming Ingestion & Processing at Flipkart
Presented at the Bangalore Hadoop Meetup held on 15th May 2015.
Siddhartha Reddy
May 15, 2015
Tweet
Share
More Decks by Siddhartha Reddy
See All by Siddhartha Reddy
Future Patterns in Data Ecosystem
sids
1
180
CAP Theorem: You don’t need CP, you don’t want AP, and you can’t have CA
sids
6
11k
Other Decks in Technology
See All in Technology
食べログが挑む!飲食店ネット予約システムで自動テスト無双して手動テストゼロを実現する戦略
hagevvashi
1
160
ブラウザのレガシー・独自機能を愛でる-Firefoxの脆弱性4選- / Browser Crash Club #1
masatokinugawa
1
390
SREが実現する開発者体験の革新
sansantech
PRO
0
190
Lakeflow Connectのご紹介
databricksjapan
0
100
All You Need Is Kusa 〜Slackデータで始めるデータドリブン〜
jonnojun
0
140
Startups On Rails 2025 @ Tropical on Rails
irinanazarova
0
250
Amazon S3 Tables + Amazon Athena / Apache Iceberg
okaru
0
240
AWSLambdaMCPServerを使ってツールとMCPサーバを分離する
tkikuchi
1
2.5k
【日本Zabbixユーザー会】LLDを理解するときの勘所 〜LLDのある世界を楽しもう!〜
yoshitake945
0
120
SDカードフォレンジック
su3158
0
260
LLM as プロダクト開発のパワードスーツ
layerx
PRO
1
200
AI AgentOps LT大会(2025/04/16) Algomatic伊藤発表資料
kosukeito
0
120
Featured
See All Featured
Fontdeck: Realign not Redesign
paulrobertlloyd
83
5.5k
Music & Morning Musume
bryan
47
6.5k
Java REST API Framework Comparison - PWX 2021
mraible
30
8.5k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.7k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.5k
The Cost Of JavaScript in 2023
addyosmani
49
7.7k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
We Have a Design System, Now What?
morganepeng
52
7.5k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.5k
A Modern Web Designer's Workflow
chriscoyier
693
190k
KATA
mclloyd
29
14k
Transcript
Streaming Ingestion & Processing at Flipkart Siddhartha Reddy @sids
Flipkart Data Platform (an oversimplified view)
Streaming Ingestion
Choices • push, not pull • schemas & validations
Streaming Ingestion v1.0
None
• Push 㱺 accountability (with source teams) • good call!
• Schemas 㱺 contracts for consumers • can make assumptions that are assured to be true • Insufficient tooling 㱺 too many “ingestion frameworks” • adopt some frameworks & offer as tools! • Synchronous error handling 㱺 complexity • accept all data
Streaming Ingestion v2.0
Stream Processing
An Example
Streaming Joins: Example It works! But… how do we deal
with lookup failures?
Streaming Joins: Handling Failures
None
None
Streaming Joins: Bootstrapping With a little help from MR friends
Streaming Joins: But… The example that doesn’t really work correctly
Streaming Joins
In summary • Streaming Ingestion: push, schemas & validation, HTTP
service, local daemon, change data capture • Streaming Joins: indexing, lookup tables, map-joins, retry queue, batch re-driver sid@flipkart.com