Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Chainerを使ったらカノジョができたお話
Search
tereka114
March 16, 2022
Programming
0
180
Chainerを使ったらカノジョができたお話
tereka114
March 16, 2022
Tweet
Share
More Decks by tereka114
See All by tereka114
トラブルがあったコンペに学ぶデータ分析
tereka114
2
1.6k
Harnessing Large Language Models for Training-free Video Anomaly Detection
tereka114
1
1.6k
KDD2023学会参加報告
tereka114
2
580
Prompting Large Language Models with Answer Heuristics for Knowledge-based Visual Question Answering
tereka114
0
390
Mobile-Former: Bridging MobileNet and Transformer
tereka114
0
1.1k
DER: Dynamically Expandable Representation for Class Incremental Learning
tereka114
0
200
Jupyter Notebookを納品した話
tereka114
0
460
Multi Scale Recognition with DAG-CNNs
tereka114
0
150
How to use scikit-image for data augmentation
tereka114
0
270
Other Decks in Programming
See All in Programming
"使いづらい" をリバースエンジニアリングする UI の読み解き方
rebase_engineering
0
100
REST API設計の実践 – ベストプラクティスとその落とし穴
kentaroutakeda
2
290
💎 My RubyKaigi Effect in 2025: Top Ruby Companies 🌐
yasulab
PRO
1
120
Design Pressure
hynek
0
1.4k
rbs-traceを使ってWEARで型生成を試してみた After RubyKaigi 2025〜ZOZO、ファインディ、ピクシブ〜 / tried rbs-trace on WEAR
oyamakei
0
610
CRUD から CQRS へ ~ 分離が可能にする柔軟性
tkawae
0
220
衛星の軌道をWeb地図上に表示する
sankichi92
0
240
Language Server と喋ろう – TSKaigi 2025
pizzacat83
2
590
技術的負債と戦略的に戦わざるを得ない場合のオブザーバビリティ活用術 / Leveraging Observability When Strategically Dealing with Technical Debt
yoshiyoshifujii
0
160
當開發遇上包裝:AI 如何讓產品從想法變成商品
clonn
0
2.1k
TypeScript製IaCツールのAWS CDKが様々な言語で実装できる理由 ~他言語変換の仕組み~ / cdk-language-transformation
gotok365
6
350
SpringBootにおけるオブザーバビリティのなにか
irof
1
870
Featured
See All Featured
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
How STYLIGHT went responsive
nonsquared
100
5.6k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
32
5.8k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.3k
Mobile First: as difficult as doing things right
swwweet
223
9.6k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
34
2.3k
Designing for Performance
lara
608
69k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
5
610
GitHub's CSS Performance
jonrohan
1031
460k
Being A Developer After 40
akosma
91
590k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3k
Transcript
Chainerを使ったら カノジョができたお話 @tereka114
自己紹介 1. 山本 大輝(@tereka114) 2. Acroquest Technology 株式会社 3. Chainer
Meetup 初参加 4. のんびりしているエンジニアの日記 5. 最近、雑誌記事書きました。 1. Interface 3月号
クリスマスに近いある日
カノジョが欲しい。
そう思っていた、 しかし、そんな簡単に できるはずがない。
ならば、作れば良い。
カノジョを作りました。
Chainerで
カノジョのコンセプト 1. カノジョを構成すれば良い。 1. そもそもカノジョとは何か 2. 理想的なカノジョとは何か
カノジョのコンセプト 1. カノジョを構成すれば良い。 1. そもそもカノジョとは何か 2. 理想的なカノジョとは何か 2. 理想的なカノジョ=癒やし 1.
理想的なカノジョの要素は会話でないか・・
カノジョを作る方法 1. ニューラルネットワークを作る 1. Neural Conversational Model 2. データセットを作る 1.
カノジョとの会話用のデータセットを作る。 3. Slackに載せる 1. Slackで実用的なカノジョを!
システム構成 ①話しかける ④応答を返す ③応答を返す ②話し かける 私
Neural Conversation Model 1. Seq2seqをベースをした会話モデル 1. 入力を話しかけた文章、出力を応答とする会話 モデル 2. Seq2seqは翻訳でよく利用されているモデル
3. 入力の分割は形態素解析を使っている。
Neural Conversation Model
Neural Conversation Model 話しかける文章 回答
Chainerを使った理由 1. 動的ネットワークを組みやすい。 1. 他のライブラリと比べて、RNN作りやすい。 2. 比較的書き慣れていた。
データセット作成 1. ラノベかなにかを読み、手動で会話を集める。 1. 人間の手に限界が・・・ 2. というもののいい解法を見つけられず、結局 手でやった。 1. 次回やるときは特定のカテゴリタグを使ってやり
たい。 3. 1対1の会話文が1つのデータ
Slack 1. 作ったBotをSlackと連携します。 2. PythonにSlack連携させるライブラリがあるので、使 います。 1. インストールは「pip install slackbot」
2. 話しかけるとそれに応じてリプライを返せる仕組み
本Botの工夫ポイント 1. 名前を呼んでくれます。 1. 自分の名前ではない名前で呼ばれても嬉しくな いので、名前を呼ぶようにしました。
None
課題 1. とにかくデータセットが少ない。 1. 増やす方法を考える必要があり 2. 時々知らない単語が混じると精度が悪化する。 1. Beam searchを使うと良くなる・・・(未実装)
Demo