Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Chainerを使ったらカノジョができたお話
Search
tereka114
March 16, 2022
Programming
0
180
Chainerを使ったらカノジョができたお話
tereka114
March 16, 2022
Tweet
Share
More Decks by tereka114
See All by tereka114
トラブルがあったコンペに学ぶデータ分析
tereka114
2
1.7k
Harnessing Large Language Models for Training-free Video Anomaly Detection
tereka114
1
1.7k
KDD2023学会参加報告
tereka114
2
630
Prompting Large Language Models with Answer Heuristics for Knowledge-based Visual Question Answering
tereka114
0
420
Mobile-Former: Bridging MobileNet and Transformer
tereka114
0
1.1k
DER: Dynamically Expandable Representation for Class Incremental Learning
tereka114
0
220
Jupyter Notebookを納品した話
tereka114
0
500
Multi Scale Recognition with DAG-CNNs
tereka114
0
160
How to use scikit-image for data augmentation
tereka114
0
290
Other Decks in Programming
See All in Programming
オンデバイスAIとXcode
ryodeveloper
0
370
マイベストのシンプルなデータ基盤の話 - Googleスイートとのつき合い方 / mybest-simple-data-architecture-google-nized
snhryt
0
120
3年ぶりにコードを書いた元CTOが Claude Codeと30分でMVPを作った話
maikokojima
0
730
CSC509 Lecture 11
javiergs
PRO
0
280
ドメイン駆動設計のエッセンス
masuda220
PRO
15
7.2k
ALL CODE BASE ARE BELONG TO STUDY
uzulla
29
6.9k
Vueのバリデーション、結局どれを選べばいい? ― 自作バリデーションの限界と、脱却までの道のり ― / Which Vue Validation Library Should We Really Use? The Limits of Self-Made Validation and How I Finally Moved On
neginasu
3
1.8k
実践Claude Code:20の失敗から学ぶAIペアプログラミング
takedatakashi
18
9.4k
AI駆動開発カンファレンスAutumn2025 _AI駆動開発にはAI駆動品質保証
autifyhq
0
110
SODA - FACT BOOK(JP)
sodainc
1
9.1k
Designing Repeatable Edits: The Architecture of . in Vim
satorunooshie
0
220
テーブル定義書の構造化抽出して、生成AIでDWH分析を試してみた / devio2025tokyo
kasacchiful
0
360
Featured
See All Featured
Thoughts on Productivity
jonyablonski
72
4.9k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Code Review Best Practice
trishagee
72
19k
How to train your dragon (web standard)
notwaldorf
97
6.3k
Building a Scalable Design System with Sketch
lauravandoore
463
33k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Docker and Python
trallard
46
3.6k
Optimizing for Happiness
mojombo
379
70k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
Documentation Writing (for coders)
carmenintech
76
5.1k
Six Lessons from altMBA
skipperchong
29
4k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
Transcript
Chainerを使ったら カノジョができたお話 @tereka114
自己紹介 1. 山本 大輝(@tereka114) 2. Acroquest Technology 株式会社 3. Chainer
Meetup 初参加 4. のんびりしているエンジニアの日記 5. 最近、雑誌記事書きました。 1. Interface 3月号
クリスマスに近いある日
カノジョが欲しい。
そう思っていた、 しかし、そんな簡単に できるはずがない。
ならば、作れば良い。
カノジョを作りました。
Chainerで
カノジョのコンセプト 1. カノジョを構成すれば良い。 1. そもそもカノジョとは何か 2. 理想的なカノジョとは何か
カノジョのコンセプト 1. カノジョを構成すれば良い。 1. そもそもカノジョとは何か 2. 理想的なカノジョとは何か 2. 理想的なカノジョ=癒やし 1.
理想的なカノジョの要素は会話でないか・・
カノジョを作る方法 1. ニューラルネットワークを作る 1. Neural Conversational Model 2. データセットを作る 1.
カノジョとの会話用のデータセットを作る。 3. Slackに載せる 1. Slackで実用的なカノジョを!
システム構成 ①話しかける ④応答を返す ③応答を返す ②話し かける 私
Neural Conversation Model 1. Seq2seqをベースをした会話モデル 1. 入力を話しかけた文章、出力を応答とする会話 モデル 2. Seq2seqは翻訳でよく利用されているモデル
3. 入力の分割は形態素解析を使っている。
Neural Conversation Model
Neural Conversation Model 話しかける文章 回答
Chainerを使った理由 1. 動的ネットワークを組みやすい。 1. 他のライブラリと比べて、RNN作りやすい。 2. 比較的書き慣れていた。
データセット作成 1. ラノベかなにかを読み、手動で会話を集める。 1. 人間の手に限界が・・・ 2. というもののいい解法を見つけられず、結局 手でやった。 1. 次回やるときは特定のカテゴリタグを使ってやり
たい。 3. 1対1の会話文が1つのデータ
Slack 1. 作ったBotをSlackと連携します。 2. PythonにSlack連携させるライブラリがあるので、使 います。 1. インストールは「pip install slackbot」
2. 話しかけるとそれに応じてリプライを返せる仕組み
本Botの工夫ポイント 1. 名前を呼んでくれます。 1. 自分の名前ではない名前で呼ばれても嬉しくな いので、名前を呼ぶようにしました。
None
課題 1. とにかくデータセットが少ない。 1. 増やす方法を考える必要があり 2. 時々知らない単語が混じると精度が悪化する。 1. Beam searchを使うと良くなる・・・(未実装)
Demo