Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How to use scikit-image for data augmentation
Search
tereka114
March 16, 2022
Programming
0
280
How to use scikit-image for data augmentation
第33回コンピュータビジョン勉強会の資料です。内容は、scikit-imageを使ったData Augmentationの方法です。
tereka114
March 16, 2022
Tweet
Share
More Decks by tereka114
See All by tereka114
トラブルがあったコンペに学ぶデータ分析
tereka114
2
1.6k
Harnessing Large Language Models for Training-free Video Anomaly Detection
tereka114
1
1.6k
KDD2023学会参加報告
tereka114
2
600
Prompting Large Language Models with Answer Heuristics for Knowledge-based Visual Question Answering
tereka114
0
400
Mobile-Former: Bridging MobileNet and Transformer
tereka114
0
1.1k
DER: Dynamically Expandable Representation for Class Incremental Learning
tereka114
0
210
Jupyter Notebookを納品した話
tereka114
0
470
Multi Scale Recognition with DAG-CNNs
tereka114
0
150
面倒くさいこと考えたくないあなたへ〜Tpotと機械学習〜
tereka114
0
270
Other Decks in Programming
See All in Programming
TypeScriptでDXを上げろ! Hono編
yusukebe
3
770
AWS Summit Japan 2024と2025の比較/はじめてのKiro、今あなたは岐路に立つ
satoshi256kbyte
0
120
AIともっと楽するE2Eテスト
myohei
8
3k
Android 16KBページサイズ対応をはじめからていねいに
mine2424
0
440
Porting a visionOS App to Android XR
akkeylab
0
680
Startups on Rails in Past, Present and Future–Irina Nazarova, RailsConf 2025
irinanazarova
0
240
猫と暮らす Google Nest Cam生活🐈 / WebRTC with Google Nest Cam
yutailang0119
0
170
生成AI時代のコンポーネントライブラリの作り方
touyou
1
290
商品比較サービス「マイベスト」における パーソナライズレコメンドの第一歩
ucchiii43
0
180
レベル1の開発生産性向上に取り組む − 日々の作業の効率化・自動化を通じた改善活動
kesoji
0
300
20250708_JAWS_opscdk
takuyay0ne
2
130
Agentic Coding: The Future of Software Development with Agents
mitsuhiko
0
130
Featured
See All Featured
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
The World Runs on Bad Software
bkeepers
PRO
70
11k
Adopting Sorbet at Scale
ufuk
77
9.5k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
A Tale of Four Properties
chriscoyier
160
23k
Optimizing for Happiness
mojombo
379
70k
How to Think Like a Performance Engineer
csswizardry
25
1.7k
Raft: Consensus for Rubyists
vanstee
140
7k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
Transcript
How to use scikit-image for data augmentation @tereka114
自己紹介 1. 山本 大輝(@tereka114) 2. のんびりしているエンジニアの日記(Blog) 1. http://nonbiri-tereka.hatenablog.com/ 3. Acroquest
Technology株式会社 4. データ分析のお仕事しています。 1. 画像処理、自然言語処理
Outline 1. Scikit-imageとは何か 2. Data Augmentationとは何か 3. Data Augmentationで使える関数の紹介 1.
画像の読み込み 2. アフィン変換 3. ヒストグラム正規化 4. Numpyの便利関数紹介
Outline 1. Scikit-imageとは何か 2. Data Augmentationとは何か 3. Data Augmentationで使える関数の紹介 1.
画像の読み込み 2. アフィン変換 3. ヒストグラム正規化 4. Numpyの便利関数紹介
Scikit-imageとは何か? 1. Scikit-imageは画像処理のライブラリ。 2. 因みにscikitとは、scipy toolkitを示していて、 特にこのライブラリは広く使われている。 3. 実は気にしていないだけで、案外バックエン ドでは動いていることがある。
CaffeのData Augmentation
Scikit-imageの良い点 1. Installが簡単 1. Sudo pip install scikit-image 2. 基本的な操作はNumpyの関数で可能
1. 簡単に行列演算を実施することができる。
Scikit-imageでできること 1. 画像の入出力(当たり前) 2. 画像の変換 1. Histogram normalization、Affine Transform 3.
特徴量抽出 1. Local Binary Pattern, Histogram of Orientation
Scikit-imageでできること 1. 画像の入出力(当たり前) 2. 画像の変換 1. Histogram normalization、Affine Transform 3.
特徴量抽出 1. Local Binary Pattern, Histogram of Orientation
Outline 1. Scikit-imageとは何か 2. Data Augmentationとは何か 3. Data Augmentationで使える関数の紹介 1.
画像の読み込み 2. アフィン変換 3. ヒストグラム正規化 4. Numpyの便利関数紹介
Data Augmentation 1. データに対して情報を加えること。 2. 画像に対しては、元画像に対して回転、平 行移動、スケール変更などの情報を加える。 3. Kaggleではよく使われる方法 4.
AlexNetの元論文でも使われている。
Example of Data Augmentation 引用元:https://cesarlaurent.wordpress.com/2015/02/19/29/
Example of Data Augmentation 引用元:https://cesarlaurent.wordpress.com/2015/02/19/29/
Outline 1. Scikit-imageとは何か 2. Data Augmentationとは何か 3. Data Augmentationで使える関数の紹介 1.
画像の読み込み 2. アフィン変換 3. ヒストグラム正規化 4. Numpyの便利関数紹介
画像の読み込み 1. skimage.io.imreadでファイル名を第一引数 に使うと可能です。 2. 読みこんだ画像はnumpy.arrayなので行列 計算はそのまま可能 3. OpenCVと併用する場合は注意、行列の並び 順はRGB。(OpenCVはBGR)
画像の読み込み 1. Scikit-imageでの画像を読み込み
アフィン変換 1. 平行移動を伴う線形変換のこと 1. 「並行移動」・「回転」・「拡大・縮小」が可能 2. パラメータを与えるだけで簡単にできる。 1. Scale:スケールの変換 2.
Rotate:回転 3. Translated:平行移動
アフィン変換 Affine変換の行列を作成 rotateはradian 線形変換
ヒストグラム正規化 1. ヒストグラムを平滑化することによって、コン トラストを調整することができる。 1. このコントラスト調整によって、精度がよくな ることも・・・
ヒストグラム正規化
ヒストグラム正規化
Numpyの便利関数紹介 1. np.random.randomとnp.random.binomialを 組み合わせると、ノイズが作れる。 2. Transpose関数で転置できる。 1. 多くのDeepLearningライブラリでは、 channel,height,widthの順番を求められる。 2.
scikit-imageの画像はheight,width,channel 3. img.transpose(2,0,1)とすると期待する入力にな る。
Numpyの便利関数紹介 1. whereを使うと一定以上の値を抽出して、定 数に変換など可能 1. 値が0.5より高い箇所を1とする。 1. x[np.where(x > 0.5)]
= 1 2. 画像自体はnumpyの行列の為、以下の方法 で、画像を切り取ることが可能 1. img = img[10:10 + 224]
まとめ 1. scikit-imageでData Augmentationをやってみ ようの紹介です。 2. Data Augmentationは画像処理(特に認識) で使われ、成果をあげている。 3.
Scikit-imageで、簡単にできる。