Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
整数論と様々な数学
Search
Naoya Umezaki
October 06, 2018
0
780
整数論と様々な数学
MATHPOWER2018での講演。フィールズ賞受賞者Akshay Venkateshの業績紹介。
Naoya Umezaki
October 06, 2018
Tweet
Share
More Decks by Naoya Umezaki
See All by Naoya Umezaki
証明支援系LEANに入門しよう
unaoya
1
2.4k
ミケル点とべズーの定理
unaoya
0
1k
すうがく徒のつどい@オンライン「ラマヌジャンのデルタ」
unaoya
0
730
合同式と幾何学
unaoya
0
2.2k
すうがく徒のつどい@オンライン「ヴェイユ予想とl進層のフーリエ変換」
unaoya
0
910
Egisonパターンマッチによる彩色
unaoya
1
630
関数等式と双対性
unaoya
1
830
直交多項式と表現論
unaoya
0
940
導来代数幾何入門
unaoya
0
1.1k
Featured
See All Featured
Visualization
eitanlees
150
16k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Bash Introduction
62gerente
615
210k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Designing for humans not robots
tammielis
254
26k
Into the Great Unknown - MozCon
thekraken
40
2.2k
Fireside Chat
paigeccino
41
3.7k
KATA
mclloyd
PRO
32
15k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.6k
Transcript
ͱ༷ʑͳֶ Akshay Venkateshͷۀհ ക࡚@unaoya ͢͏͕͘ͿΜ͔ MATHPOWER2018 10/6
डཧ༝ ͷ༷ʑͳΛ ▶ ྗֶܥ ▶ τϙϩδʔ ▶ දݱ ΛԠ༻ͯ͠ղܾɻ
ೋ࣍ܗࣜ ϥάϥϯδϡͷ࢛ฏํఆཧ x2 + y2 + z2 + w2 ͰશͯͷΛද͢ɻ
10 = 12 + 32 15 = 32 + 22 + 12 + 12
ೋ࣍ܗࣜ ೋ࣍ܗࣜͷม P(x1 , x2 , x3 ) = x2
1 + x2 2 + x2 3 Q(y1 , y2 ) = 2y2 1 + 2y1 y2 + 2y2 2 Λߟ͑Δɻ x1 = y1 + y2 , x2 = y1 , x3 = y2 ͱ͢Δɻ
ೋ࣍ܗࣜ P(x1 , x2 , x3 ) = x2 1
+ x2 2 + x2 3 Q(y1 , y2 ) = 2y2 1 + 2y1 y2 + 2y2 2 P(x1 , x2 , x3 ) = (y1 + y2 )2 + y2 1 + y2 2 = 2y2 1 + 2y1 y2 + 2y2 2
ೋ࣍ܗࣜ ͋Δೋ࣍ܗࣜQ ͕ɺଞͷೋ࣍ܗࣜP ͔Βม มͰදݱͰ͖Δ͔ʁmมͷP ͕nมͷ Q Λදݱ͢Δ͔ʁ ہॴେҬݪཧʢϋοηݪཧʣ p
ਐQp ͷൣғͱ࣮RͷൣғͰߟ͑Δɻ શͯͷp ٴͼRͰදݱͰ͖Ε༗ཧͷൣғ ͰදݱͰ͖Δ͔ʁ
ೋ࣍ܗࣜ ΤϨϯόʔά-ϰΣϯΧςγϡ Q ͕nมͷ࣌ɺશͯͷہॴతʹදݱՄೳͳ n − 7มҎԼͷೋ࣍ܗࣜQ′ Λදݱ͢Δɻ ূ໌ʹΤϧΰʔυཧɺྗֶܥΛ͏
ϦχοΫ༧ ੪࣍ଟ߲ࣜQ ʹର͠ɺQ(x) = d ͳΔx ͷू ߹ɻd ͰׂͬͯɺQ(x) =
1Ͱͷd → ∞Ͱͷ ͷ༷ࢠɻ Q(x) = x2 1 + x2 2 + · · · + x2 n Λߟ͑Δͱɺٿ໘্ ͷ༗ཧͷɻ ܈ͷ࡞༻͕͋Δ߹Λߟ͑ΔɻௐղੳͱΤ ϧΰʔυཧΛ͏ɻ
ΠσΞϧྨ܈ͷ ΠσΞϧྨ܈ͱʁͰͷૉҼղͷҰ ҙੑ 6 = 2 × 3 10 =
2 × 5 √ −5Λ͚Ճ͑Δͱ่ΕΔ 6 = 2 × 3 = (1 + √ −5)(1 − √ −5)
ΠσΞϧྨ܈ͷ ͜Εͷ่Ε۩߹ΛଌΔͷ͕ΠσΞϧྨ܈ɻ༗ ݶΞʔϕϧ܈ʹͳΔɻ ▶ Qͷ߹ɺΠσΞϧྨ܈1 ▶ Q( √ −5)ͷ߹ɺΠσΞϧྨ܈{±1}
ΠσΞϧྨ܈ͷ ৭ʑͳମQ(a)Λಈ͔ͨ͠ͱ͖ɺΠσΞ ϧྨ܈ʹͲͷΑ͏ͳ܈͕ݱΕΔ͔ʁ ίʔΤϯɺϨϯετϥͷΠσΞϧྨ܈ͷ ʹ͍ͭͯͷ؍ͱ༧ɻ
ΠσΞϧྨ܈ͷ ΤϨϯόʔά-ϰΣϯΧςγϡ-Σε λʔϥϯυ ίʔΤϯɺϨϯετϥ༧ͷؔମྨࣅΛূ ໌ͨ͠ɻ ؔମFp (x, a)༗ݶମ্ͷۂઢͷ༗ཧ ؔશͯूΊͨͷɻ͜Εಉ༷ʹΠσΞϧ ྨ܈ΛఆٛͰ͖Δɻ
ϑϧϏοπۭؒͷϗϞϩδʔ҆ఆੑΛͬͯ
ہॴରশۭؒ ϥϯάϥϯζରԠʹؔɻ ςΠϥʔɺϫΠϧζͷΨϩΞදݱͷߏΛࢤ ଜଟ༷ମ͕͑ͳ͍έʔεʹݚڀɻ ہॴରশۭؒͷίϗϞϩδʔΛදݱɺτϙ ϩδʔʹΑΓௐΔɻ