Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Probablistic Data Structures
Search
Sergey Arkhipov
November 11, 2017
Programming
0
260
Probablistic Data Structures
My talk on rannts #18 (11.11.2017)
Sergey Arkhipov
November 11, 2017
Tweet
Share
More Decks by Sergey Arkhipov
See All by Sergey Arkhipov
Fingerprinting
9seconds
0
160
Concurrency Models
9seconds
0
240
Own Mustache
9seconds
0
340
Daemonize
9seconds
0
340
Stuff That Works
9seconds
0
370
Evidence
9seconds
0
99
Redneck Monads
9seconds
1
120
Latency
9seconds
0
140
Oh Blindfold Russia!
9seconds
0
310
Other Decks in Programming
See All in Programming
CSC307 Lecture 03
javiergs
PRO
1
490
AI時代の認知負荷との向き合い方
optfit
0
160
副作用をどこに置くか問題:オブジェクト指向で整理する設計判断ツリー
koxya
1
610
HTTPプロトコル正しく理解していますか? 〜かわいい猫と共に学ぼう。ฅ^•ω•^ฅ ニャ〜
hekuchan
2
690
Apache Iceberg V3 and migration to V3
tomtanaka
0
160
AgentCoreとHuman in the Loop
har1101
5
230
組織で育むオブザーバビリティ
ryota_hnk
0
170
今こそ知るべき耐量子計算機暗号(PQC)入門 / PQC: What You Need to Know Now
mackey0225
3
370
生成AIを使ったコードレビューで定性的に品質カバー
chiilog
1
270
Data-Centric Kaggle
isax1015
2
770
そのAIレビュー、レビューしてますか? / Are you reviewing those AI reviews?
rkaga
6
4.6k
Smart Handoff/Pickup ガイド - Claude Code セッション管理
yukiigarashi
0
130
Featured
See All Featured
Optimizing for Happiness
mojombo
379
71k
The Pragmatic Product Professional
lauravandoore
37
7.1k
Learning to Love Humans: Emotional Interface Design
aarron
275
41k
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
170
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.4k
[SF Ruby Conf 2025] Rails X
palkan
1
750
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.9k
Prompt Engineering for Job Search
mfonobong
0
160
Leo the Paperboy
mayatellez
4
1.4k
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Ruling the World: When Life Gets Gamed
codingconduct
0
140
Transcript
Вероятностные структуры данных Сергей Архипов, 2017
None
None
curl http://site.com
curl -x myproxy.ru:3128 http://site.com
curl -x proxy.crawlera.com:8010 http://site.com
None
evt evt evt evt evt
{ "user": "sarkhipov", "hostname": "rannts.ru", "status": "ok", "status_description": "" }
{ "user": "sarkhipov", "hostname": "rannts.ru", "status": "ok", "status_description": "" }
None
collector collector collector
{ "user": "sarkhipov", "hostname": "rannts.ru", "status": "ok", "status_description": "" }
{ "user": "sarkhipov", "hostname": "rannts.ru", "status": "ok", "status_description": "" } { "user": "sarkhipov", "hostname": "rannts.ru", "status": "ok", "status_description": "" } { "user": "sarkhipov", "hostname": "rannts.ru", "ok": 234, "banned": 12, "errors": 3, }
Consumer 1 { "user": "sarkhipov", "hostname": "rannts.ru", "ok": 234, "banned":
12, "errors": 3, } Consumer 2 { "user": "sarkhipov", "hostname": "rannts.ru", "ok": 250, "banned": 3, "errors": 0, } Consumer 3 { "user": "sarkhipov", "hostname": "rannts.ru", "ok": 0, "banned": 124, "errors": 84, }
INSERT INTO stats ( date, user, hostname, ok, ban, error
) VALUES ( :date, :user, :hostname, :ok, :ban, :error ) ON DUPLICATE KEY UPDATE ok = ok + VALUES(ok), ban = ban + VALUES(ban), error = error + VALUES(error);
{ "user": "sarkhipov", "hostname": "rannts.ru", "status": "ok", "status_description": "", "response_time":
2861, }
(20 + 10) + 11 = (20 + 11) +
10
F(x)=P{σ<x} { P(x⩽x α )⩾α P(x⩾x α )⩾1−α
Ω(N 1 p )
collector collector collector pworker pworker pworker
None
None
var memCount = 75604275; var memPerSec = 1.38176367782; function updateCount()
{ next = -(1000 / memPerSec) * Math.log(Math.random()); memCountString = ''+memCount; len = memCountString.length; memCountString = memCountString.substr(0, len - 6) + ’ < span style = ”font - size: 8 px” > < /span>’+memCountString.substr(len-6,3)+‘ < span style = ”font - size: 8 px” > < /span>’+memCountString.substr(len-3,3); ge(‘memCount’).innerHTML = memCountString; memCount = memCount + 1; setTimeout(updateCount, next); } addEvent(window, ‘load’, updateCount);
3500 3671 3400 3502 3463 3371 3607 6012 6168 6211
6017
3500 3507 3671 3667 3400 3410 3502 3502 3463 3466
3371 3330 3607 3599 6012 6009 6168 6152 6211 6215 6017 6016
Count-Min Sketch 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Count-Min Sketch 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Count-Min Sketch 0 0 1 0 0 0 0 0
1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1
Count-Min Sketch 32 11 1 18 200 126 184 78
1 0 91 59 30 24 8 82 76 34 48 72 11 200 129 136 14
Count-Min Sketch 32 11 1 18 200 126 184 78
1 0 91 59 30 24 8 82 76 34 48 72 11 200 129 136 14
MinHash J (A , B)= |A∩B| |A∪B| k=[ 1 ε2
]
HyperLogLog 010010000110010101101100011011000110111100100001 b 26 = 64 1001 b = 9
100001 b = 33 σ= 1.04 √2k E= α(k)4k ∑ j 2−M j
t-digest
t-digest
t-digest
t-digest X=x 1 , x 2 ,…, x n X={s
1 ,s 2 ,…,s m } s i ={x l e f t(i) ,…, x r i ght(i) }
t-digest k(q,δ)≝δ (sin−1 (2q−1) π + 1 2 ) K(i)≝k(
r i ght(i) n ,δ)−k( le f t(i)−1 n ,δ) K (i)⩽1 K(i)+K (i+1)>1
t-digest
t-digest
collector collector collector pworker pworker pworker
None
Q/A