Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ZOZOのデータ分析・活用基盤と マーケティングエンジニアリング / zozo tech ma...
Search
Issey Hirano
July 31, 2019
Technology
1
3.5k
ZOZOのデータ分析・活用基盤と マーケティングエンジニアリング / zozo tech marketing engineering
https://techplay.jp/event/740541
Issey Hirano
July 31, 2019
Tweet
Share
Other Decks in Technology
See All in Technology
レビューを増やしつつ 高評価維持するテクニック
tsuzuki817
1
720
PHPで印刷所に入稿できる名札データを作る / Generating Print-Ready Name Tag Data with PHP
tomzoh
0
110
AndroidデバイスにFTPサーバを建立する
e10dokup
0
250
ユーザーストーリーマッピングから始めるアジャイルチームと並走するQA / Starting QA with User Story Mapping
katawara
0
210
個人開発から公式機能へ: PlaywrightとRailsをつなげた3年の軌跡
yusukeiwaki
11
3k
Moved to https://speakerdeck.com/toshihue/presales-engineer-career-bridging-tech-biz-ja
toshihue
2
740
アジャイル開発とスクラム
araihara
0
170
データマネジメントのトレードオフに立ち向かう
ikkimiyazaki
6
980
オブザーバビリティの観点でみるAWS / AWS from observability perspective
ymotongpoo
8
1.5k
Helm , Kustomize に代わる !? 次世代 k8s パッケージマネージャー Glasskube 入門 / glasskube-entry
parupappa2929
0
250
2.5Dモデルのすべて
yu4u
2
860
「海外登壇」という 選択肢を与えるために 〜Gophers EX
logica0419
0
710
Featured
See All Featured
Understanding Cognitive Biases in Performance Measurement
bluesmoon
27
1.6k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.1k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
100
18k
Building Adaptive Systems
keathley
40
2.4k
Bootstrapping a Software Product
garrettdimon
PRO
306
110k
RailsConf 2023
tenderlove
29
1k
Speed Design
sergeychernyshev
27
790
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
193
16k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Code Review Best Practice
trishagee
67
18k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
114
50k
Product Roadmaps are Hard
iamctodd
PRO
50
11k
Transcript
ZOZOのデータ分析・活用基盤と マーケティングエンジニアリング 株式会社ZOZOテクノロジーズ 開発部データチーム 平野 一生 Copyright © ZOZO Technologies,
Inc.
© ZOZO Technologies, Inc. プロフィール • 2018年1月ZOZOテクノロジーズに入社 • データ分析や基盤の構築など担当 平野
一生 株式会社ZOZOテクノロジーズ 開発部データチーム
© ZOZO Technologies, Inc. https://zozo.jp/ ・ 日本最大級のファッションショッピングサイト / アプリ
・ 1,200以上のショップ、7,000以上のブランドの取り扱い (2019年3月末時点) ・ 常時73万点以上の商品アイテム数と毎日平均3,200点以上の新着 商品 を掲載 ・ 即日配送サービス ・ ギフトラッピングサービス ・ ツケ払い など 3
© ZOZO Technologies, Inc. https://wear.jp/ ・ 日本最大級のファッションコーディネートアプリ ・ 1,300万ダウンロード突破、コーディネート投稿総数は900万件
以上(ともに2019年5月末時点) ・ 全世界(App Store / Google Playが利用可能な全ての国)で ダウンロードが可能 ・ 10万人以上のフォロワーを持つユーザー(WEARISTA)も誕生 4
© ZOZO Technologies, Inc. https://zozo.jp/pb/ ・ 「ZOZOSUIT」で計測した体型データをもとに、一人ひとりの 体型に合った「あなたサイズ」のアイテム
・「 究極のフィット感」を実現したベーシックアイテムを提供 ・ アイテム : Tシャツ / デニムパンツ / シャツ / ビジネススーツ / ネクタイ / ボーダーTシャツ / 長袖クルーネックTシャツ など 5
© ZOZO Technologies, Inc. https://zozo.jp/zozosuit/ ・ 独自に開発した採寸用ボディースーツ ・
全体に施されたドットマーカーをスマートフォンカメラで360度 撮影することで、体型データを計測 ・ 計測した体型データは、瞬時に3Dモデル化され、ZOZOTOWN アプリに保存。3Dモデルはあらゆる角度に動かすことができ、 体型を360度チェックすることが可能 6
© ZOZO Technologies, Inc. 本日お話しすること • データチームとマーケティングエンジニアリング • データ分析・活用基盤 •
マーケティングエンジニアリング事例
© ZOZO Technologies, Inc. データチームとマーケティングエンジニアリング ZOZOが持つデータ
© ZOZO Technologies, Inc. データチームとマーケティングエンジニアリング データ活用に関わるチーム • 分析本部 • 研究所
• アクセス解析チーム • MA • データチーム
© ZOZO Technologies, Inc. データチームとマーケティングエンジニアリング データチームのミッション • 売上を上げる • データ分析基盤、データ活用基盤の提供
→ データ×テクノロジーで売上を作る
© ZOZO Technologies, Inc. データチームとマーケティングエンジニアリング マーケティングエンジニアリングって? • "科学的な知識に基づき, 企業のマーケティン グの意思決定を支援するための,
効果的, 効 率的に実施するための管理体系" • 技術理解のあるチームがマーケティングの意 思決定に積極的に関わっていく • ex) UX改善・購買行動分析・需要予測 データの収集 分析 意思決定 実装 モニタリング 分析 Plan Do See
© ZOZO Technologies, Inc. データチームとマーケティングエンジニアリング データチームの歓迎スキル(採用ページから抜粋) • KPI設計の経験 • 購買行動分析の経験
• システム開発におけるプロジェクト推進の経験 • デジタルマーケティングの経験 • オンラインシステムの開発経験 • 大規模サービスの集計定義の管理経験 • データモデリングに関する基礎知識 • 並列分散処理に関する基礎知識 • ストレージ技術に関する基礎知識
© ZOZO Technologies, Inc. 本日お話しすること • データチームとマーケティングエンジニアリング • データ分析・活用基盤 •
マーケティングエンジニアリング事例
© ZOZO Technologies, Inc. データ分析・活用基盤 全体像 BigQuery Cloud Machine Learning
Engine PowerBI Analyst 機械学習基盤 広告配信基盤 レポート アドホック分析 その他 ログ マスタ 定義
© ZOZO Technologies, Inc. データ分析・活用基盤 データ分析:定義 • LookerのLookMLを利用して集計定義の管理 • データマートの作成に利用
◦ 集計定義を再利用できる ◦ リレーションシップの再構築
© ZOZO Technologies, Inc. データ分析・活用基盤 データ分析:定義
© ZOZO Technologies, Inc. データ分析・活用基盤 データ活用:広告配信基盤
© ZOZO Technologies, Inc. データ分析・活用基盤 データ活用:機械学習基盤 BigQuery Cloud Machine Learning
Engine Cloud Storage Cloud Storage Cloud Datastore API 精度モニタリング Cloud Composer
© ZOZO Technologies, Inc. データ分析・活用基盤 システム設計でのこだわり • 現状基盤はエンジニア3名で回している • 各々アナリストも兼務しているため、運用は楽にしたい
• マネージドなサービスを組み合わせることで、短期間・高可用性なシステムを構築
© ZOZO Technologies, Inc. 本日お話しすること • データチームとマーケティングエンジニアリング • データ分析・活用基盤 •
マーケティングエンジニアリング事例
© ZOZO Technologies, Inc. 古着の値付け価格最適化 • 出品価格予測モデル • 販売日数予測モデルから値上げ・値下げ対象を決定 マーケティングエンジニアリング事例
出品価格予測 すぐ売れそうなら 値上げ 売れなさそうなら 値下げ 何日で売れるかを 予測
© ZOZO Technologies, Inc. マーケティングエンジニアリング事例 古着の値付け価格最適化 工夫ポイント 商品をなるべく高値で売りたいが、既存のデータのみでは予測困難。 売れる日数を予測し、すぐに売れそうなものを一律値上げすることで、最大で売れる価 格を市場でテストし正解データを集める。
効果 (口頭)
© ZOZO Technologies, Inc. マーケティングエンジニアリング事例 ショップ売上要因分析 • ZOZOTOWN出店ショップの売上を上げるべく、売上の要因を分析 • 在庫の傾向からショップをクラスタリング
• 在庫の入出庫状況と割引率等からショップをスコアリング
© ZOZO Technologies, Inc. マーケティングエンジニアリング事例 ショップ売上要因分析 工夫ポイント 何を持って良いショップといえるかの定義がキモ。売上が高いだけではショップ規模の大 きいショップが正となってしまう。 今回は、「良い=log(在庫回転率)
* (1-機会損失率) * (1-返品率) * プロパー消化率」とし た。 効果 分析内容を展開、サイト改善 ex) 上手くやっているショップは火曜にクーポン打つ
© ZOZO Technologies, Inc. マーケティングエンジニアリング事例 売上予測とリアルタイムモニタリング • fbprophetという時系列予測ライブラリを利用した売上予測(予実管理) • 売上目標に対するリアルタイムモニタリング環境を構築
(イメージです) Cloud Pub/Sub Cloud Functions Cloud Datastore
© ZOZO Technologies, Inc. マーケティングエンジニアリング事例 売上予測とリアルタイムモニタリング 工夫ポイント fbprophetのイベント設定。セールも規模の違いによって売上が大きく異なるので、数年 間の売上データと向き合ってイベント設定することで、高精度な予測が可能となった。 効果
予測の自動化による工数減 予測精度の向上
© ZOZO Technologies, Inc. マーケティングエンジニアリング事例 レコメンデーション • BigQuery MLのMatrix Factorizationを利用
◦ UserToItem ◦ UserToShop • クーポン訴求のメルマガで活用(予定)
None