Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ZOZOのデータ分析・活用基盤と マーケティングエンジニアリング / zozo tech ma...
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Issey Hirano
July 31, 2019
Technology
1
3.7k
ZOZOのデータ分析・活用基盤と マーケティングエンジニアリング / zozo tech marketing engineering
https://techplay.jp/event/740541
Issey Hirano
July 31, 2019
Tweet
Share
Other Decks in Technology
See All in Technology
Tebiki Engineering Team Deck
tebiki
0
23k
AI開発をスケールさせるデータ中心の仕組みづくり
kzykmyzw
0
180
Databricks Free Edition講座 データサイエンス編
taka_aki
0
230
ビジュアルプログラミングIoTLT vol.22
1ftseabass
PRO
0
140
2人で作ったAIダッシュボードが、開発組織の次の一手を照らした話― Cursor × SpecKit × 可視化の実践 ― Qiita AI Summit
noalisaai
0
180
ドキュメントからはじめる未来のソフトウェア
pkshadeck
4
1.9k
Regional_NAT_Gatewayについて_basicとの違い_試した内容スケールアウト_インについて_IPv6_dual_networkでの使い分けなど.pdf
cloudevcode
1
170
AI時代にあわせたQA組織戦略
masamiyajiri
6
2.8k
【5分でわかる】セーフィー エンジニア向け会社紹介
safie_recruit
0
41k
ファシリテーション勉強中 その場に何が求められるかを考えるようになるまで / 20260123 Naoki Takahashi
shift_evolve
PRO
3
400
Amazon Bedrock AgentCore 認証・認可入門
hironobuiga
1
380
【northernforce#54】SalesforceにおけるAgentforceの位置づけ・事例紹介
yutosatou_kit
0
130
Featured
See All Featured
4 Signs Your Business is Dying
shpigford
187
22k
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
59
42k
Heart Work Chapter 1 - Part 1
lfama
PRO
5
35k
Leadership Guide Workshop - DevTernity 2021
reverentgeek
1
190
Docker and Python
trallard
47
3.7k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.2k
Information Architects: The Missing Link in Design Systems
soysaucechin
0
750
A brief & incomplete history of UX Design for the World Wide Web: 1989–2019
jct
1
280
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
36k
Done Done
chrislema
186
16k
Transcript
ZOZOのデータ分析・活用基盤と マーケティングエンジニアリング 株式会社ZOZOテクノロジーズ 開発部データチーム 平野 一生 Copyright © ZOZO Technologies,
Inc.
© ZOZO Technologies, Inc. プロフィール • 2018年1月ZOZOテクノロジーズに入社 • データ分析や基盤の構築など担当 平野
一生 株式会社ZOZOテクノロジーズ 開発部データチーム
© ZOZO Technologies, Inc. https://zozo.jp/ ・ 日本最大級のファッションショッピングサイト / アプリ
・ 1,200以上のショップ、7,000以上のブランドの取り扱い (2019年3月末時点) ・ 常時73万点以上の商品アイテム数と毎日平均3,200点以上の新着 商品 を掲載 ・ 即日配送サービス ・ ギフトラッピングサービス ・ ツケ払い など 3
© ZOZO Technologies, Inc. https://wear.jp/ ・ 日本最大級のファッションコーディネートアプリ ・ 1,300万ダウンロード突破、コーディネート投稿総数は900万件
以上(ともに2019年5月末時点) ・ 全世界(App Store / Google Playが利用可能な全ての国)で ダウンロードが可能 ・ 10万人以上のフォロワーを持つユーザー(WEARISTA)も誕生 4
© ZOZO Technologies, Inc. https://zozo.jp/pb/ ・ 「ZOZOSUIT」で計測した体型データをもとに、一人ひとりの 体型に合った「あなたサイズ」のアイテム
・「 究極のフィット感」を実現したベーシックアイテムを提供 ・ アイテム : Tシャツ / デニムパンツ / シャツ / ビジネススーツ / ネクタイ / ボーダーTシャツ / 長袖クルーネックTシャツ など 5
© ZOZO Technologies, Inc. https://zozo.jp/zozosuit/ ・ 独自に開発した採寸用ボディースーツ ・
全体に施されたドットマーカーをスマートフォンカメラで360度 撮影することで、体型データを計測 ・ 計測した体型データは、瞬時に3Dモデル化され、ZOZOTOWN アプリに保存。3Dモデルはあらゆる角度に動かすことができ、 体型を360度チェックすることが可能 6
© ZOZO Technologies, Inc. 本日お話しすること • データチームとマーケティングエンジニアリング • データ分析・活用基盤 •
マーケティングエンジニアリング事例
© ZOZO Technologies, Inc. データチームとマーケティングエンジニアリング ZOZOが持つデータ
© ZOZO Technologies, Inc. データチームとマーケティングエンジニアリング データ活用に関わるチーム • 分析本部 • 研究所
• アクセス解析チーム • MA • データチーム
© ZOZO Technologies, Inc. データチームとマーケティングエンジニアリング データチームのミッション • 売上を上げる • データ分析基盤、データ活用基盤の提供
→ データ×テクノロジーで売上を作る
© ZOZO Technologies, Inc. データチームとマーケティングエンジニアリング マーケティングエンジニアリングって? • "科学的な知識に基づき, 企業のマーケティン グの意思決定を支援するための,
効果的, 効 率的に実施するための管理体系" • 技術理解のあるチームがマーケティングの意 思決定に積極的に関わっていく • ex) UX改善・購買行動分析・需要予測 データの収集 分析 意思決定 実装 モニタリング 分析 Plan Do See
© ZOZO Technologies, Inc. データチームとマーケティングエンジニアリング データチームの歓迎スキル(採用ページから抜粋) • KPI設計の経験 • 購買行動分析の経験
• システム開発におけるプロジェクト推進の経験 • デジタルマーケティングの経験 • オンラインシステムの開発経験 • 大規模サービスの集計定義の管理経験 • データモデリングに関する基礎知識 • 並列分散処理に関する基礎知識 • ストレージ技術に関する基礎知識
© ZOZO Technologies, Inc. 本日お話しすること • データチームとマーケティングエンジニアリング • データ分析・活用基盤 •
マーケティングエンジニアリング事例
© ZOZO Technologies, Inc. データ分析・活用基盤 全体像 BigQuery Cloud Machine Learning
Engine PowerBI Analyst 機械学習基盤 広告配信基盤 レポート アドホック分析 その他 ログ マスタ 定義
© ZOZO Technologies, Inc. データ分析・活用基盤 データ分析:定義 • LookerのLookMLを利用して集計定義の管理 • データマートの作成に利用
◦ 集計定義を再利用できる ◦ リレーションシップの再構築
© ZOZO Technologies, Inc. データ分析・活用基盤 データ分析:定義
© ZOZO Technologies, Inc. データ分析・活用基盤 データ活用:広告配信基盤
© ZOZO Technologies, Inc. データ分析・活用基盤 データ活用:機械学習基盤 BigQuery Cloud Machine Learning
Engine Cloud Storage Cloud Storage Cloud Datastore API 精度モニタリング Cloud Composer
© ZOZO Technologies, Inc. データ分析・活用基盤 システム設計でのこだわり • 現状基盤はエンジニア3名で回している • 各々アナリストも兼務しているため、運用は楽にしたい
• マネージドなサービスを組み合わせることで、短期間・高可用性なシステムを構築
© ZOZO Technologies, Inc. 本日お話しすること • データチームとマーケティングエンジニアリング • データ分析・活用基盤 •
マーケティングエンジニアリング事例
© ZOZO Technologies, Inc. 古着の値付け価格最適化 • 出品価格予測モデル • 販売日数予測モデルから値上げ・値下げ対象を決定 マーケティングエンジニアリング事例
出品価格予測 すぐ売れそうなら 値上げ 売れなさそうなら 値下げ 何日で売れるかを 予測
© ZOZO Technologies, Inc. マーケティングエンジニアリング事例 古着の値付け価格最適化 工夫ポイント 商品をなるべく高値で売りたいが、既存のデータのみでは予測困難。 売れる日数を予測し、すぐに売れそうなものを一律値上げすることで、最大で売れる価 格を市場でテストし正解データを集める。
効果 (口頭)
© ZOZO Technologies, Inc. マーケティングエンジニアリング事例 ショップ売上要因分析 • ZOZOTOWN出店ショップの売上を上げるべく、売上の要因を分析 • 在庫の傾向からショップをクラスタリング
• 在庫の入出庫状況と割引率等からショップをスコアリング
© ZOZO Technologies, Inc. マーケティングエンジニアリング事例 ショップ売上要因分析 工夫ポイント 何を持って良いショップといえるかの定義がキモ。売上が高いだけではショップ規模の大 きいショップが正となってしまう。 今回は、「良い=log(在庫回転率)
* (1-機会損失率) * (1-返品率) * プロパー消化率」とし た。 効果 分析内容を展開、サイト改善 ex) 上手くやっているショップは火曜にクーポン打つ
© ZOZO Technologies, Inc. マーケティングエンジニアリング事例 売上予測とリアルタイムモニタリング • fbprophetという時系列予測ライブラリを利用した売上予測(予実管理) • 売上目標に対するリアルタイムモニタリング環境を構築
(イメージです) Cloud Pub/Sub Cloud Functions Cloud Datastore
© ZOZO Technologies, Inc. マーケティングエンジニアリング事例 売上予測とリアルタイムモニタリング 工夫ポイント fbprophetのイベント設定。セールも規模の違いによって売上が大きく異なるので、数年 間の売上データと向き合ってイベント設定することで、高精度な予測が可能となった。 効果
予測の自動化による工数減 予測精度の向上
© ZOZO Technologies, Inc. マーケティングエンジニアリング事例 レコメンデーション • BigQuery MLのMatrix Factorizationを利用
◦ UserToItem ◦ UserToShop • クーポン訴求のメルマガで活用(予定)
None