Upgrade to Pro — share decks privately, control downloads, hide ads and more …

SQL and Machine Learning on Hadoop using Pivota...

SQL and Machine Learning on Hadoop using Pivotal HAWQ

It is true to the extent it is almost considered rhetorical to say

“Many Enterprises have adopted HDFS as the foundational layer for their Data Lakes. HDFS provides the flexibility to store any kind of data and more importantly it’s infinitely scaleable on commodity hardware.”

But the conundrum till date is the solution for a low latency query engine for HDFS.

At Pivotal, we cracked that problem and the answer is HAWQ, which we intend to open source this year. During this event, we will present and demo HAWQ’s Architecture, it’s powerful ANSI SQL features and it’s ability to transcend traditional BI in the form of in-database analytics (or machine learning).

AMEY BANARSE

April 07, 2015
Tweet

More Decks by AMEY BANARSE

Other Decks in Technology

Transcript

  1. PIVOTAL NY – BIG DATA & ANALYTICS MEETUP SQL and

    Machine Learning on HDFS using HAWQ Prasad Radhakrishnan Amey Banarse Josh Plotkin April 7th, 2015 Pivotal Labs, New York
  2. Pivotal NY – Big Data & Analytics Meetup Quick overview

    of Hadoop-HDFS ¨  Hadoop is a Framework to store and process large volumes of data. ¨  HDFS is a fault-tolerant file system: ¤  Assumes that Hardware will fail ¤  Combines cluster’s local storage into a single namespace. ¤  All data is replicated to multiple machines and Infinitely (read highly) Scalable. ¨  A classic Master-Slave Architecture.
  3. Pivotal NY – Big Data & Analytics Meetup Hadoop &

    HDFS Architecture – Simplistic View  Zookeeper, Yarn Resource Manager Node 3 … Data Node Zookeeper, Yarn Resource Manager Node 4 Data Node Zookeeper, Yarn Resource Manager Node N Data Node NameNode Node 1 Quorum Journal Manager Zoo Keeper, YARN Secondary NameNode Node 2 Quorum Journal Manager Zoo Keeper, YARN
  4. Pivotal NY – Big Data & Analytics Meetup Hadoop –

    HDFS: 2 sides of the same coin [……. Side Bar: This is the first US Penny, 223 years old. Sold for $1.2 mil……] ¨  How is Data stored in HDFS? ¨  How is Data accessed, how does the framework support processing / computations?
  5. Pivotal NY – Big Data & Analytics Meetup ¨  Everything

    is a File. ¨  A File is broken into small blocks. ¨  Stores multiple copies of each block. ¨  If a node goes down, there are other nodes that can provide the missing blocks. ¨  Schema-less, it’s a distributed FS that will accept any kind of data (Structured, un/semi-Structured). Hadoop – HDFS: Storage side
  6. Pivotal NY – Big Data & Analytics Meetup ¨  Map-Reduce

    is the most popular processing framework for access and computational needs. ¨  MR is slow. Suited for batch work loads and to process un/semi- structured data. ¨  SQL support is minimal and not matured. Hadoop – HDFS: Processing side
  7. Pivotal NY – Big Data & Analytics Meetup Quick overview

    of MPP Databases ¨  MPPs predate Hadoop-HDFS. ¨  Most MPPs have a Master-Slave design and a shared- nothing Architecture ¨  A very few software based MPPs, most run on custom h/w. ¨  They are known for their sheer horse power to process and compute big data work loads.
  8. Pivotal NY – Big Data & Analytics Meetup Simplistic view

    of Greenplum MPP DB Architecture Master Segment 1 Segment 2 Segment N Node 1 Standby Master Node 2 Segment Host 1 Segment 1 Segment 2 Segment N Segment Host 2 Segment N Segment Host N … … … … Segment 1 Segment 2
  9. Pivotal NY – Big Data & Analytics Meetup MPP Databases:

    2 sides of the same coin ¨  How is Data stored in MPPs? ¨  How is Data accessed, how does the framework support processing / computations?
  10. Pivotal NY – Big Data & Analytics Meetup ¨  MPPs

    too, have a distributed FS but only for a table’s data. Tables are database objects. ¨  A File needs to be loaded into a table, pre-knowledge of it’s schema is required. ¨  MPPs are fault-tolerant as well. They store redundant copies of data. ¨  Handling un/semi-structured data is not it’s sweet spot and could get very challenging. MPP Databases: Storage side of things
  11. Pivotal NY – Big Data & Analytics Meetup ¨  MPPs

    are SQL engines. ¨  Known for their horse power in being able to handle & process big data work loads. ¨  Extensive/Full ANSI SQL support. ¨  Rich ETL and BI tools for easy dev & consumption. ¨  Some MPPs like Greenplum support Machine Learning use cases extensively. MPP Databases: Processing side
  12. Pivotal NY – Big Data & Analytics Meetup The Winning

    Combination ¨  HDFS as the distributed FS. ¨  Schema-less, fault- tolerant. ¨  Huge Apache eco-system of tools/products. ¨  MPP SQL Engine for Data access, processing and ML work loads. ¨  Blend with and leverage BI and ETL tools ¨  Blend with Hadoop File formats and integrate with Apache HDFS tools/products.
  13. Pivotal NY – Big Data & Analytics Meetup HAWQ, the

    MPP SQL Engine for HDFS ¨  Derived from Greenplum MPP, shortening many years engineering efforts that will go into building an MPP from scratch. ¨  Stores data in HDFS using Parquet file format. ¨  Familiar SQL interface, 100% ANSI compliant. ¨  All kinds of joins, analytical functions etc. ¨  Doesn’t use MapReduce, no dependencies on Hive or Hive metastore. ¨  Way faster than MR, not even a valid comparison. ¨  Enables In-Database Machine Learning.
  14. Pivotal NY – Big Data & Analytics Meetup Pivotal HAWQ

    Architecture HAWQ Master HAWQ Segment(s) Node 1 HAWQ Secondary Master Node 2 Node 5 … NameNode Node 3 Secondary NameNode Node 4 Quorum Journal Manager Quorum Journal Manager Zoo Keeper Quorum Journal Manager Data Node HAWQ Segment(s) Node 6 Data Node HAWQ Segment(s) Node N Data Node Zoo Keeper Zoo Keeper High speed Interconnect
  15. Pivotal NY – Big Data & Analytics Meetup Pivotal HAWQ

    Architecture ¨ Master •  Master and Standby Master Host •  Master coordinates work with Segment Hosts ¨ Segment •  One or more Segment Instances •  Process queries in parallel •  Dedicated CPU, Memory and Disk ¨ Interconnect •  High Speed Interconnect for continuous pipelining of data processing
  16. Pivotal NY – Big Data & Analytics Meetup Key components

    of HAWQ Master HAWQ Master Query Parser Query Optimizer Query Executor Transaction Manager Process Manager Metadata Catalog HAWQ Standby Master Query Parser Query Optimizer Query Executor Transaction Manager Process Manager Metadata Catalog WAL replication
  17. Pivotal NY – Big Data & Analytics Meetup Key components

    of HAWQ segments HAWQ Segment HDFS Datanode Segment Data Directory Local Filesystem Spill Data Directory Query Executor libhdfs3 PXF
  18. Pivotal NY – Big Data & Analytics Meetup What differentiates

    HAWQ: Interconnect & Dynamic Pipelining q  Parallel data flow using the high speed UDP interconnect q  No materialization of intermediate data q  Map Reduce will always “write” to disk, HAWQ will “spill” to disk only when insufficient memory q  Guarantees that queries will always complete HAWQ Segment PXF Local Temp Storage Segment Host Query Executor DataNode PXF HAWQ Segment PXF Local Temp Storage Segment Host Query Executor DataNode PXF HAWQ Segment PXF Local Temp Storage Segment Host Query Executor DataNode PXF Interconnect Dynamic Pipelining
  19. Pivotal NY – Big Data & Analytics Meetup What differentiates

    HAWQ: libhdfs3 ¨  Pivotal rewrote libhdfs in C++ resulting in libhdfs3 ¤  C based library ¤  Leverages protocol buffers to achieve greater performance ¨  libhdfs3 is used to access HDFS from HAWQ ¨  Could benefit from short circuit reads ¨  Open sourced libhdfs3 https://github.com/PivotalRD/libhdfs3
  20. Pivotal NY – Big Data & Analytics Meetup What differentiates

    HAWQ: HDFS Truncate ¨  HDFS is designed as append-only, POSIX-like FS ¨  ACID compliant – ¤  HDFS guarantees the atomicity of Truncate operations i.e. either it succeeds or fails ¨  Added HDFS Truncate(HDFS-3107) to support rollbacks
  21. Pivotal NY – Big Data & Analytics Meetup What differentiates

    HAWQ: ORCA ¨  Multi-core query optimizer(codename ORCA) ¨  Cost based optimizer ¨  Window and Analytic Functions ¨  1.2 Billion options evaluated in 250ms as an ex. for TPC-DS Query #21 ¤  Partition Elimination ¤  Subquery Unnesting ¨  Presented at ACM SIGMOD 2014 Conference
  22. Pivotal NY – Big Data & Analytics Meetup Pivotal Xtensions

    Framework(PXF) ¨  External table interface in HAWQ to read data stored in Hadoop ecosystem ¨  External tables can be used to ¤  Load data into HAWQ from Hadoop ¤  Query Hadoop data without materializing it into HAWQ ¨  Enables loading and querying of data stored in ¤  HDFS Text ¤  Avro ¤  HBase ¤  Hive n Text, Sequence and RCFile formats
  23. Pivotal NY – Big Data & Analytics Meetup PXF example

    to query HBase ¨  Get data from an HBase table called‘sales’. In this example we are only interested in the rowkey, the qualifier ‘saleid’ inside column family ‘cf1’, and the qualifier ‘comments’ inside column family ‘cf8’ CREATE EXTERNAL TABLE hbase_sales ( recordkey bytea, “cf1:saleid” int, “cf8:comments” varchar ) LOCATION(‘pxf://10.76.72.26:50070/sales? Fragmenter=HBaseDataFragmenter& Accessor=HBaseAccessor& Resolver=HBaseResolver') FORMAT ‘custom’ (formatter='gpxfwritable_import');
  24. Pivotal NY – Big Data & Analytics Meetup Source Data

    to HDFS HAWQ External Table for immediate Ad-Hoc Load or Append a regular HAWQ table Load or Append directly to a regular HAWQ Table Data outside HDFS Example Data Flow in HAWQ BI Tools for Reporting & Dashboard In-Database Machine Learning using MADLib, PL/ Python, PL/R
  25. Pivotal NY – Big Data & Analytics Meetup HAWQ Demo

    ¨  HAWQ Cluster Topology ¨  HAWQ Ingest ¨  HAWQ PXF ¨  Dashboards
  26. Pivotal NY – Big Data & Analytics Meetup HAWQ Demo

    DataSet ¨  23 Million rows of fake data, Customer Credit Card spend. ¨  Time Dimension ¨  Aggregate Tables
  27. Pivotal NY – Big Data & Analytics Meetup Analytics on

    HDFS, Popular Notions ¨  Store  it  all  in  HDFS  and  Query  it  all  using  HAWQ   ¤  Scalable  Storage  and  Scalable  Compute   ¨  “Gravity”  of  Data  changes  everything   ¤  Move  code,  not  data   ¤  Parallelize  everything   ¤  Look  at  enGre  data  set  and  not  just  a  sample   ¤  More  data  could  mean  simpler  models  
  28. Pivotal NY – Big Data & Analytics Meetup MADLib for

    Machine Learning ¨  MADlib  is  an  open-­‐source  library  for  scalable  in-­‐database   analyGcs.  It  provides  data-­‐parallel  implementaGons  of   mathemaGcal,  staGsGcal  and  machine  learning  methods  for   structured  and  unstructured  data.  
  29. Pivotal NY – Big Data & Analytics Meetup UDF -

    PL/X : X in {pgsql, R, Python, Java, Perl, C etc.} ¨  Allows users to write functions in the R/Python/Java, Perl, pgsql or C languages ¨  The interpreter/VM of the language ‘X’ is installed on each node of the Greenplum Database Cluster ¨  Can install Python extensions like Numpy, NLTK, Scikit-learn, Scipy. ¨  Data Parallelism: PL/X piggybacks on MPP architecture
  30. Pivotal NY – Big Data & Analytics Meetup UDF -

    PL/X : X in {pgsql, R, Python, Java, Perl, C etc.} HAWQ Master HAWQ Segment(s) Node 1 HAWQ Secondary Master Node 2 Node 5 … NameNode Node 3 Secondary NameNode Node 4 Quorum Journal Manager Quorum Journal Manager Zoo Keeper Quorum Journal Manager Data Node HAWQ Segment(s) Node 6 Data Node HAWQ Segment(s) Node N Data Node Zoo Keeper Zoo Keeper High speed Interconnect
  31. Pivotal NY – Big Data & Analytics Meetup Data Analytics

    in SQL w/ HAWQ ¨  A Data Science workflow in SQL ¨  Re-training is often necessary to take the step from traditional BI to DS ¨  Many parts in parallel ¤  Data manipulation ¤  Training (e.g. Linear regression, elastic net, SVM) ¤  Model evaluation ¨  MADLib for native SQL interface ¤  Simple syntax ¨  Extensible with PL/Python and PL/R ¤  All your favorite packages
  32. Pivotal NY – Big Data & Analytics Meetup Workflow Score

    Models against test data Split Datasets Train/Tune Model EDA/V Ask Questions Manipulate Data Model is good Make Decisions
  33. Pivotal NY – Big Data & Analytics Meetup Exploratory Data

    Analysis/Viz Score Models against test data Split Datasets Train/Tune Model EDA/V Ask Questions Manipulate Data Model is good Make Decisions -  SQL -  MADLib -  BI Tools
  34. Pivotal NY – Big Data & Analytics Meetup Explore Data

    with MADLib ¨  Select a row ¨  Group by customer (+ age and gender) to see total spend ¤  Call it ‘summary_stats’ ¤  Select a row ¨  Use MADLib Summary Stats function ¤  select madlib.summary('summary_stats', 'summary_stats_out’, ‘total_spent'); ¤  Creates a table ‘summary_stats_out’ we can query ¤  Can group by: select madlib.summary('summary_stats', 'summary_stats_out_grouped', ‘total_spent’, ‘gender, age’);
  35. Pivotal NY – Big Data & Analytics Meetup Ask Questions

    ¤  Start with simple questions and simple (linear) models. ¤  Imagine we get new data with masked demographic data… ¤  What is the simplest possible question we can ask of this dataset? n  Can we predict age by total amount spent? ¤  What needs to be done first?
  36. Pivotal NY – Big Data & Analytics Meetup Feature Engineering

    Score Models against test data Split Datasets Train/Tune Model EDA/V Ask Questions Manipulate Data Model is good Make Decisions -  SQL -  PL/R -  PL/Python
  37. Pivotal NY – Big Data & Analytics Meetup Shaping the

    Dataset ¤  We want the data to look something like: ssn | sum | age -------------+----------------------- 621-95-5488 | 19435.72 | 30
  38. Pivotal NY – Big Data & Analytics Meetup Shaping the

    Dataset ¤  We want the data to look something like: ssn | sum | age -------------+----------------------- 621-95-5488 | 19435.72 | 30 CREATE OR REPLACE VIEW cust_age_totalspend AS SELECT ssn, sum(amt), extract(years from age(NOW(),dob)) as age FROM mart.trans_fact GROUP BY ssn, extract(years from age(NOW(),dob));
  39. Pivotal NY – Big Data & Analytics Meetup Skipping for

    now… Score Models against test data Split Datasets Train/Tune Model EDA/V Ask Questions Manipulate Data Model is good Make Decisions -  SQL -  PL/R -  PL/Python -  MADLib
  40. Pivotal NY – Big Data & Analytics Meetup Building Models

    Score Models against test data Split Datasets Train/Tune Model EDA/V Ask Questions Manipulate Data Model is good Make Decisions -  PL/R -  PL/Python -  MADLib
  41. Pivotal NY – Big Data & Analytics Meetup MADLib’s Interface

    ¤  Inputs: tables n  VIEW: cust_age_totalspend ¤  Outputs: tables that can be queried n  MADLib generates this automatically n  This can be piped into PyMADLib, pulled via Tableau connector, or queriable from an API ¤  Labels ¤  Features ¤  Parameters ¤  Parallel when possible
  42. Pivotal NY – Big Data & Analytics Meetup MADLib’s Interface

    ¤  Inputs: tables n  VIEW: cust_age_totalspend ¤  Outputs: tables that can be queried n  MADLib generates this automatically n  This can be piped into PyMADLib, pulled via Tableau connector, or queriable from an API ¤  Labels ¤  Features ¤  Parameters ¤  Parallel when possible SELECT madlib.linregr_train( 'cust_age_totalspend', 'linear_model', 'age', 'ARRAY[1, sum]’);
  43. Pivotal NY – Big Data & Analytics Meetup MADLib’s Interface

    ¤  Inputs: tables n  VIEW: cust_age_totalspend ¤  Outputs: tables that can be queried n  MADLib generates this automatically n  This can be piped into PyMADLib, pulled via Tableau connector, or queriable from an API ¤  Labels ¤  Features ¤  Parameters ¤  Parallel when possible SELECT madlib.linregr_train( 'cust_age_totalspend', 'linear_model', 'age', 'ARRAY[1, sum]’);
  44. Pivotal NY – Big Data & Analytics Meetup MADLib’s Interface

    ¤  Inputs: tables n  VIEW: cust_age_totalspend ¤  Outputs: tables that can be queried n  MADLib generates this automatically n  This can be piped into PyMADLib, pulled via Tableau connector, or queriable from an API ¤  Labels ¤  Features ¤  Parameters ¤  Parallel when possible SELECT madlib.linregr_train( 'cust_age_totalspend', 'linear_model', 'age', 'ARRAY[1, sum]’);
  45. Pivotal NY – Big Data & Analytics Meetup MADLib’s Interface

    ¤  Inputs: tables n  VIEW: cust_age_totalspend ¤  Outputs: tables that can be queried n  MADLib generates this automatically n  This can be piped into PyMADLib, pulled via Tableau connector, or queriable from an API ¤  Labels ¤  Features ¤  Parameters ¤  Parallel when possible SELECT madlib.linregr_train( 'cust_age_totalspend', 'linear_model', 'age', 'ARRAY[1, sum]’);
  46. Pivotal NY – Big Data & Analytics Meetup Scoring Chosen

    Model Score Models against test data Split Datasets Train/Tune Model EDA/V Ask Questions Manipulate Data Model is good Make Decisions -  PL/R -  PL/Python -  MADLib
  47. Pivotal NY – Big Data & Analytics Meetup Viewing Coefficients

    ¤  As simple as querying a table: SELECT * FROM linear_model; ¤  Unnest arrays: SELECT unnest(ARRAY['intercept', 'sum']) as attribute, unnest(coef) as coefficient, unnest(std_err) as standard_error, unnest(t_stats) as t_stat, unnest(p_values) as pvalue FROM linear_model;
  48. Pivotal NY – Big Data & Analytics Meetup Making Predictions

    SELECT ssn, sum, age, -- calculate predictions: array and m.coef are vectors madlib.linregr_predict( ARRAY[1, sum], m.coef ) as predict, -- calculate residuals: array and m.coef are vectors age - madlib.linregr_predict( ARRAY[1, sum], m.coef ) as residual FROM cust_age_totalspend, linear_model m;
  49. Pivotal NY – Big Data & Analytics Meetup Making Predictions

    SELECT ssn, sum, age, -- calculate predictions: array and m.coef are vectors madlib.linregr_predict( ARRAY[1, sum], m.coef ) as predict, -- calculate residuals: array and m.coef are vectors age - madlib.linregr_predict( ARRAY[1, sum], m.coef ) as residual FROM cust_age_totalspend, linear_model m;
  50. Pivotal NY – Big Data & Analytics Meetup Making/Evaluating Predictions

    SELECT ssn, sum, age, -- calculate predictions: array and m.coef are vectors madlib.linregr_predict( ARRAY[1, sum], m.coef ) as predict, -- calculate residuals: array and m.coef are vectors age - madlib.linregr_predict( ARRAY[1, sum], m.coef ) as residual FROM cust_age_totalspend, linear_model m;
  51. Pivotal NY – Big Data & Analytics Meetup Scoring (Mean

    Squared Error) SELECT avg(residual^2) AS mse FROM (SELECT age - madlib.linregr_predict( ARRAY[1, sum], m.coef ) as residual FROM cust_age_totalspend, linear_model m) PREDICTIONS;
  52. Pivotal NY – Big Data & Analytics Meetup Training, Testing,

    Cross-Validation Sets Score Models against test data Split Datasets Train/Tune Model EDA/V Ask Questions Manipulate Data Model is good Make Decisions -  SQL -  PL/R -  PL/Python -  MADLib
  53. Pivotal NY – Big Data & Analytics Meetup SQL To

    Create 80/20 Test/Train ¤  MADLib has a built-in cross validation function ¤  Stratified Sampling with pure SQL n  Random seed (-1, 1): n  SELECT setseed(0.444); n  Partition the data by group n  Sort by the random # n  Assign a row count n  Use a correlated subquery to select the lowest 80% of row counts by partition into the training set n  The code…
  54. Pivotal NY – Big Data & Analytics Meetup SQL To

    Create 80/20 Test/Train -- 1. perform the same aggregation step as before in creating the view WITH assign_random AS ( SELECT ssn, extract(years from age(NOW(),dob)) as age, sum(amt) as total_spent, random() as random FROM mart.trans_fact GROUP BY ssn, extract(years from age(NOW(),dob)) ), -- 2. add a different row count for group type (in this case, just age) training_rownums AS ( SELECT *, ROW_NUMBER() OVER (PARTITION BY age ORDER BY random) AS rownum FROM assign_random ) -- 3. sample the lowest 80% of rownums as the training set by group using ----- a correlated subquery (iterate over groups) because HAWQ is ANSI complient SELECT ssn, age, total_spent FROM training_rownums tr1 WHERE rownum <= ( (SELECT MAX(rownum) * 0.8 FROM training_rownums tr2 WHERE tr1.age = tr2.age )));
  55. Pivotal NY – Big Data & Analytics Meetup Another question

    Score Models against test data Split Datasets Train/Tune Model EDA/V Ask Questions Manipulate Data Model is good Make Decisions
  56. Pivotal NY – Big Data & Analytics Meetup Back Here

    Again… Score Models against test data Split Datasets Train/Tune Model EDA/V Ask Questions Manipulate Data Model is good Make Decisions -  SQL -  PL/R -  PL/Python
  57. Pivotal NY – Big Data & Analytics Meetup Shaping the

    Dataset ¤  Remember the initial dataset: n  select ssn, gender, trans_date, category, round(amt, 2) as amount from mart.trans_fact limit 5; ¨  ssn | gender | trans_date | category | amount ¨  -------------+--------+------------+----------------+------- ¨  587-27-8957 | M | 2013-12-21 | health_fitness | 10.59 ¨  587-27-8957 | M | 2014-10-19 | shopping_pos | 0.80 ¨  587-27-8957 | M | 2013-05-04 | entertainment | 5.17 ¨  587-27-8957 | M | 2014-03-27 | utilities | 9.59 ¨  587-27-8957 | M | 2013-03-30 | home | 10.64 ¤  How can we shape the data? n  Transpose using case statements n  Aggregate and sum n  The query…
  58. Pivotal NY – Big Data & Analytics Meetup Shaping the

    Dataset ¤  Remember the initial dataset: n  select ssn, gender, trans_date, category, round(amt, 2) as amount from mart.trans_fact limit 5; ¨  ssn | gender | trans_date | category | amount ¨  -------------+--------+------------+----------------+------- ¨  587-27-8957 | M | 2013-12-21 | health_fitness | 10.59 ¨  587-27-8957 | M | 2014-10-19 | shopping_pos | 0.80 ¨  587-27-8957 | M | 2013-05-04 | entertainment | 5.17 ¨  587-27-8957 | M | 2014-03-27 | utilities | 9.59 ¨  587-27-8957 | M | 2013-03-30 | home | 10.64 ¤  How can we shape the data? n  Transpose using case statements n  Aggregate and sum n  The query…
  59. Pivotal NY – Big Data & Analytics Meetup Shaping the

    Dataset ¤  Remember the initial dataset: n  select ssn, gender, trans_date, category, round(amt, 2) as amount from mart.trans_fact limit 5; ¨  ssn | gender | trans_date | category | amount ¨  -------------+--------+------------+----------------+------- ¨  587-27-8957 | M | 2013-12-21 | health_fitness | 10.59 ¨  587-27-8957 | M | 2014-10-19 | shopping_pos | 0.80 ¨  587-27-8957 | M | 2013-05-04 | entertainment | 5.17 ¨  587-27-8957 | M | 2014-03-27 | utilities | 9.59 ¨  587-27-8957 | M | 2013-03-30 | home | 10.64 ¤  How can we shape the data? n  Transpose using case statements n  Aggregate and sum n  The query…
  60. Pivotal NY – Big Data & Analytics Meetup Building Models

    Score Models against test data Split Datasets Train/Tune Model EDA/V Ask Questions Manipulate Data Model is good Make Decisions -  PL/R -  PL/Python -  MADLib
  61. Pivotal NY – Big Data & Analytics Meetup Learn Age

    Using Category Spending DROP TABLE IF EXISTS elastic_output; SELECT madlib.elastic_net_train( 'training_set', 'elastic_output', 'age', 'array[food_dining, utilities, grocery_net, home, pharmacy, shopping_pos, kids_pets, personal_care, misc_pos, gas_transport, misc_net, health_fitness, shopping_net, travel]', <other parameters>);
  62. Pivotal NY – Big Data & Analytics Meetup Scoring Chosen

    Model Score Models against test data Split Datasets Train/Tune Model EDA/V Ask Questions Manipulate Data Model is good Make Decisions -  PL/R -  PL/Python -  MADLib
  63. Pivotal NY – Big Data & Analytics Meetup Predictions on

    Test Set SELECT ssn, predict, age - predict AS residual FROM ( SELECT test_set.*, madlib.elastic_net_gaussian_predict( m.coef_all, m.intercept, ARRAY[food_dining, utilities, grocery_net, home, pharmacy, shopping_pos, kids_pets, personal_care, misc_pos, gas_transport, misc_net, health_fitness, shopping_net, travel] ) AS predict FROM test_set, elastic_output m) s ORDER BY ssn;
  64. Pivotal NY – Big Data & Analytics Meetup Predictions on

    Test Set SELECT ssn, predict, age - predict AS residual FROM ( SELECT test_set.*, madlib.elastic_net_gaussian_predict( m.coef_all, m.intercept, ARRAY[food_dining, utilities, grocery_net, home, pharmacy, shopping_pos, kids_pets, personal_care, misc_pos, gas_transport, misc_net, health_fitness, shopping_net, travel] ) AS predict FROM test_set, elastic_output m) s ORDER BY ssn;
  65. Pivotal NY – Big Data & Analytics Meetup Score Results

    SELECT avg(residual^2) FROM (<previous slide>) RESIDUALS;
  66. Pivotal NY – Big Data & Analytics Meetup PL/Python ¤ 

    PL/Python (or PL/R) for data manipulation and training models ¤  Less intuitive than MADLib
  67. Pivotal NY – Big Data & Analytics Meetup Shaping the

    Dataset - UDFs DROP TYPE IF EXISTS cust_address CASCADE; CREATE TYPE cust_address AS ( ssn text, address text ); CREATE OR REPLACE FUNCTION mart.test(ssn text, street text, city text, state text, zip numeric) RETURNS cust_address AS $$ return [ssn, street + ', ' + city + ', ' + state + ' ' + str(zip)] $$ LANGUAGE plpythonu; ---------------------------- SELECT mart.test(ssn, street, city, state, zip) from mart.trans_fact limit 5;
  68. Pivotal NY – Big Data & Analytics Meetup Shaping the

    Dataset - UDFs CREATE TYPE cust_address AS ( ssn text, address text ); CREATE OR REPLACE FUNCTION mart.test(ssn text, street text, city text, state text, zip numeric) RETURNS cust_address AS $$ return [ssn, street + ', ' + city + ', ' + state + ' ' + str(zip)] $$ LANGUAGE plpythonu; ---------------------------- SELECT mart.test(ssn, street, city, state, zip) from mart.trans_fact limit 5;
  69. Pivotal NY – Big Data & Analytics Meetup Shaping the

    Dataset - UDFs DROP TYPE IF EXISTS cust_address CASCADE; CREATE TYPE cust_address AS ( ssn text, address text ); CREATE OR REPLACE FUNCTION mart.test(ssn text, street text, city text, state text, zip numeric) RETURNS cust_address AS $$ return [ssn, street + ', ' + city + ', ' + state + ' ' + str(zip)] $$ LANGUAGE plpythonu; ---------------------------- SELECT mart.test(ssn, street, city, state, zip) from mart.trans_fact limit 5;
  70. Pivotal NY – Big Data & Analytics Meetup Shaping the

    Dataset - UDFs DROP TYPE IF EXISTS cust_address CASCADE; CREATE TYPE cust_address AS ( ssn text, address text ); CREATE OR REPLACE FUNCTION mart.test(ssn text, street text, city text, state text, zip numeric) RETURNS cust_address AS $$ return [ssn, street + ', ' + city + ', ' + state + ' ' + str(zip)] $$ LANGUAGE plpythonu; ---------------------------- SELECT mart.test(ssn, street, city, state, zip) from mart.trans_fact limit 5;
  71. Pivotal NY – Big Data & Analytics Meetup Shaping the

    Dataset - UDFs DROP TYPE IF EXISTS cust_address CASCADE; CREATE TYPE cust_address AS ( ssn text, address text ); CREATE OR REPLACE FUNCTION mart.test(ssn text, street text, city text, state text, zip numeric) RETURNS cust_address AS $$ return [ssn, street + ', ' + city + ', ' + state + ' ' + str(zip)] $$ LANGUAGE plpythonu; ---------------------------- SELECT mart.test(ssn, street, city, state, zip) from mart.trans_fact limit 5;
  72. Pivotal NY – Big Data & Analytics Meetup Shaping the

    Dataset - UDFs INSERT INTO addresses SELECT distinct (mart.test(ssn, street, city, state, zip)).ssn, (mart.test(ssn, street, city, state, zip)).address FROM mart.trans_fact LIMIT 5; SELECT * FROM addresses;