Kubernetes has hit a home run for stateless workloads, but can it do the same for stateful services such as distributed databases? Before we can answer that question, we need to understand the challenges of running stateful workloads on, well anything. In this talk, we will first look at which stateful workloads, specifically databases, are ideal for running inside Kubernetes. Secondly, we will explore the various concerns around running databases in Kubernetes for production environments, such as: - The production-readiness of Kubernetes for stateful workloads in general - The pros and cons of the various deployment architectures - The failure characteristics of a distributed database inside containers In this session, we will demonstrate what Kubernetes brings to the table for stateful workloads and what database servers must provide to fit the Kubernetes model. This talk will also highlight some of the modern databases that take full advantage of Kubernetes and offer a peek into what’s possible if stateful services can meet Kubernetes halfway. We will go into the details of deployment choices, how the different cloud-vendor managed container offerings differ in what they offer, as well as compare performance and failure characteristics of a Kubernetes-based deployment with an equivalent VM-based deployment.
-How different kinds of databases work on Kubernetes
- The production-readiness of Kubernetes for stateful workloads in general
- The pros and cons of the various deployment architectures
- The failure characteristics of a distributed database inside containers