Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Amazon Bedrock Knowledge Basesチャンキング解説!
Search
野口碧生
February 01, 2026
Technology
0
120
Amazon Bedrock Knowledge Basesチャンキング解説!
野口碧生
February 01, 2026
Tweet
Share
Other Decks in Technology
See All in Technology
顧客の言葉を、そのまま信じない勇気
yamatai1212
1
340
Contract One Engineering Unit 紹介資料
sansan33
PRO
0
13k
Meshy Proプラン課金した
henjin0
0
250
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
10k
GitLab Duo Agent Platform × AGENTS.md で実現するSpec-Driven Development / GitLab Duo Agent Platform × AGENTS.md
n11sh1
0
120
配列に見る bash と zsh の違い
kazzpapa3
1
120
OCI Database Management サービス詳細
oracle4engineer
PRO
1
7.4k
予期せぬコストの急増を障害のように扱う――「コスト版ポストモーテム」の導入とその後の改善
muziyoshiz
1
1.7k
コスト削減から「セキュリティと利便性」を担うプラットフォームへ
sansantech
PRO
3
1.4k
Claude_CodeでSEOを最適化する_AI_Ops_Community_Vol.2__マーケティングx_AIはここまで進化した.pdf
riku_423
2
500
Webhook best practices for rock solid and resilient deployments
glaforge
1
270
データ民主化のための LLM 活用状況と課題紹介(IVRy の場合)
wxyzzz
2
690
Featured
See All Featured
Discover your Explorer Soul
emna__ayadi
2
1.1k
A Soul's Torment
seathinner
5
2.2k
Deep Space Network (abreviated)
tonyrice
0
47
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
120
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
How to build a perfect <img>
jonoalderson
1
4.9k
Become a Pro
speakerdeck
PRO
31
5.8k
Tell your own story through comics
letsgokoyo
1
810
Getting science done with accelerated Python computing platforms
jacobtomlinson
2
110
Bridging the Design Gap: How Collaborative Modelling removes blockers to flow between stakeholders and teams @FastFlow conf
baasie
0
450
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.3k
Transcript
Amazon Bedrock Knowledge Basesチャンキング解説! 標準戦略の使い分けとLambdaカスタムの境界線 発表者: 野口 碧生
豊洲会(1月) 自己紹介 2026/1/22 • AWS歴: 2年 • 好きなAWSサービス: Amazon Bedrock、
CDK • 最近の関心事: 野口 碧生 2025 Japan All Certifications Engineer • RAGの検索精度改善 • Advanced RAGの構築 1
豊洲会(1月) 本日のLTで伝えたいこと 2026/1/22 1. 2. 3. RAGにおける チャンキングの重要性 4. Bedrock
KBの 全5つの戦略 戦略比較マトリクス (精度 vs コスト) Lambdaを使った カスタム実装 2
豊洲会(1月) 本日のLTで伝えたいこと 2026/1/22 1. 2. 3. RAGにおける チャンキングの重要性 4. Bedrock
KBの 全5つの戦略 戦略比較マトリクス (精度 vs コスト) Lambdaを使った カスタム実装 3
豊洲会(1月) RAGの全体像とチャンキングの位置付け 2026/1/22 Documents Chunking Embedding Vector DB Retrieval LLM
(Generation) チャンキングは 「検索の質」 を決定づける最上流工程 不適切なチャンク = Garbage In, Garbage Out 4
豊洲会(1月) チャンキングが影響を与える4つの要素 2026/1/22 コスト(Cost) トークン数への影響 品質/精度(Quality) 文脈の維持 vs ノイズ レイテンシ(Latency)
検索・生成速度 UX 回答の的確さ Trade-Offs 5
豊洲会(1月) 本日のLTで伝えたいこと 2026/1/22 1. 2. 3. RAGにおける チャンキングの重要性 4. Bedrock
KBの 全5つの戦略 戦略比較マトリクス (精度 vs コスト) Lambdaを使った カスタム実装 6
豊洲会(1月) Amazon Bedrock Knowledge Bases 2026/1/22 基盤モデルと自社データソースを組み合わせた RAG(検索拡張生成)をフルマネージドに実現 https://pages.awscloud.com/rs/112-TZM-766/images/AWS-Black-Belt_2024_Amazon-Bedrock-Knowledge-Bases_0920_v1.pdf 7
豊洲会(1月) 戦略①デフォルト & ②固定サイズ(Fixed-size) 2026/1/22 ①デフォルト(約300トークン/文境界) ②固定サイズ(Fixed-size) 固定サイズの特徴:計算コスト◎ / 挙動予測◎
/ 文脈分断リスク△ 8
豊洲会(1月) 戦略③階層的チャンキング(Hierarchical) 2026/1/22 Parent Chunk(Large) Child Chunks (Small) Child Chunks
(Small) Child Chunks (Small) Child Chunks (Small) Child Chunks (Small) LLM 検索は 「子」 で行い、LLMには 「親」 を渡すことで文脈を維持 9
豊洲会(1月) 戦略④セマンティック & ⑤チャンキングなし 2026/1/22 ④セマンティック(意味の類似度で分割) ⑤チャンキングなし(1ファイル=1チャンク) 高精度だが推論コスト増 前処理済みデータ/FAQ向け 10
豊洲会(1月) 本日のLTで伝えたいこと 2026/1/22 1. 2. 3. RAGにおける チャンキングの重要性 4. Bedrock
KBの 全5つの戦略 戦略比較マトリクス (精度 vs コスト) Lambdaを使った カスタム実装 11
豊洲会(1月) Bedrock KB チャンキング戦略比較マトリクス 2026/1/22 戦略 コスト 精度 複雑さ 推奨ユースケース
デフォルト ◦ ◦ 低 汎用的なスタート地点 固定サイズ ◎ △ 低 一般文書 / PoC / 速度優先 階層的 ◦ ◎ 中 文脈が必要な文書 セマンティック △ ◎ 中 複雑な論文 / 契約書 なし ◎ - 低 加工済みデータ / FAQ 12
豊洲会(1月) 本日のLTで伝えたいこと 2026/1/22 1. 2. 3. RAGにおける チャンキングの重要性 4. Bedrock
KBの 全5つの戦略 戦略比較マトリクス (精度 vs コスト) Lambdaを使った カスタム実装 13
豊洲会(1月) カスタムチャンキング(Lambda関数) 2026/1/22 Source S3 ・標準戦略で対応できない特殊要件向け ・任意のロジック(正規表現、外部API等)を実装可能 Bedrock Knowledge Bases
Lambda (Custom Logic) Vector Database 14
豊洲会(1月) カスタムチャンキングの活用ユースケース 2026/1/22 コード ( ) 特殊フォーマット (特定 のみ )
( ルール) タデータ付与 (ファイル ) Lambda 15
豊洲会(1月) どの戦略を選ぶべきか? 2026/1/22 Start 独自の前処理済み? No chunking 特殊フォーマット (Code /
Markdown)? コスト・速度最優先? Custom (Lambda) Fixed-size 複雑な文脈理解 必要? Hierarchical / Semantic Default ★Recommended Starting Point Yes Yes Yes Yes No No No No 16
豊洲会(1月) まとめ 2026/1/22 チャンキングは RAG の 「検索精度」 と 「コスト」 を左右する
Bedrock KB は5つの戦略を提供(デフォルト、固定、階層、意味的、なし) カスタムチャンキングにより、特殊要件にも対応可能 まずは デフォルト でベースラインを作り、評価(Evaluation)しながら 最適化する 17