Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
由Spanner來看Google資料庫的前世今生
Search
Szu-Kai Hsu (brucehsu)
November 07, 2012
Technology
4
280
由Spanner來看Google資料庫的前世今生
2012年秋,網際網路資料庫 @ 國立中正大學資工所
Szu-Kai Hsu (brucehsu)
November 07, 2012
Tweet
Share
More Decks by Szu-Kai Hsu (brucehsu)
See All by Szu-Kai Hsu (brucehsu)
Running Life Lean
brucehsu
0
170
Core Unleashed Part II: Introduction to GobiesVM (and STM) @ RubyKaigi 2014
brucehsu
0
2k
[RubyConf.tw 2014] Cores unleashed - Exploiting Parallelism in Ruby with STM
brucehsu
0
2.2k
用 Go 打造程式語言執行環境:實例剖析 [OSDC.tw 2014]
brucehsu
3
2.3k
pickbox @ OSDC.tw 2013 Lightning Talk
brucehsu
0
56
Building Web 2.0 APIs
brucehsu
1
150
Rapid Web Development by Example
brucehsu
3
3.1k
TechWed@CCU #0
brucehsu
2
500
Chromium OS
brucehsu
2
200
Other Decks in Technology
See All in Technology
AIエージェント完全に理解した
segavvy
4
260
数百台のオンプレミスのサーバーをEKSに移行した話
yukiteraoka
0
680
アプリケーション固有の「ロジックの脆弱性」を防ぐ開発者のためのセキュリティ観点
flatt_security
22
8.8k
AWS CDK コントリビュート はじめの一歩
yendoooo
1
120
問題解決に役立つ数理工学
recruitengineers
PRO
7
2k
空が堕ち、大地が割れ、海が涸れた日~もしも愛用しているフレームワークが開発停止したら?~ #phperkaigi 2025
77web
2
1k
BCMathを高速化した一部始終をC言語でガチ目に解説する / BCMath performance improvement explanation
sakitakamachi
2
1.2k
Security response for open source ecosystems
frasertweedale
0
100
React Server Componentは 何を解決し何を解決しないのか / What do React Server Components solve, and what do they not solve?
kaminashi
6
1.2k
OPENLOGI Company Profile
hr01
0
61k
LINE Notify互換のボットを作った話
kenichirokimura
0
170
Why Go?
xpmatteo
0
130
Featured
See All Featured
A better future with KSS
kneath
238
17k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2.1k
Building Your Own Lightsaber
phodgson
104
6.3k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
4
490
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
22
2.6k
Raft: Consensus for Rubyists
vanstee
137
6.8k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
102
18k
The Language of Interfaces
destraynor
157
24k
Code Review Best Practice
trishagee
67
18k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
Site-Speed That Sticks
csswizardry
4
450
Transcript
由 Spanner來看 Google資料庫 的 前世今⽣生 Szu-Kai Hsu (brucehsu)
Spanner is a scalable multi-version globally-distributed synchronously-replicated database
BigTable
Handling
Handling really
Handling really BIG DATA
key-value
key-value { “CCU”: “123”, “NCTU”: “113”, “NTU”: “112” }; key
key-value { “CCU”: “123”, “NCTU”: “113”, “NTU”: “112” }; value
distributed
Lack of transaction, think of our first project.
CAP
C A P
Consistency A P
Consistency Availability P
Consistency Availability Partition tolerance
Consistency Availability Partition tolerance Consistency
Megastore
NoSQL datastores are highly scalable, but their limited API and
loose consistency models complicate application development. “ “
In Megastore, data model is declared in a strong-typed schema
strong-typed schema CREATE TABLE User { required int64 user_id; required string name; } PRIMARY KEY(user_id), ENTITY GROUP ROOT;
Based on BigTable BigTable
PRIMARY user_id PRIMARY user_id, nyan_id
Local and Global Indexes are introduced: Local Index Find corresponding
data in entity group Global Index Find corresponding data in external groups Local Index Global Index
(user_id, born,nyan_id) For local index CREATE LOCAL INDEX NyanByBorn ON
Nyan(user_id, born); CREATE LOCAL INDEX NyanByBorn ON Nyan(user_id, born);
Consistency achieved via Paxos algorithm Paxos 2 Replicas 1 Witness
At least
Replica consists of Replication server and Coordinator Replication server Coordinator
write oversee
Witness’ Replication server only writes logs logs
Average Latency: 100-400ms Poor write throughput 100-400ms
Spanner ,finally.
We believe it is better to have application programmers deal
with performance problems due to overuse of transactions as bottlenecks arise, rather than always coding around the lack of transactions. “ “
Data model is almost identical to Megastore almost identical Basic
unit defined as Directory Directory
Data model is almost identical to Megastore almost identical Basic
unit defined as Directory Directory Same prefix key, therefore adjacent
Data model is almost identical to Megastore almost identical Basic
unit defined as Directory Directory Same prefix key, therefore adjacent Fine-grained mapping
Data model is almost identical to Megastore almost identical Basic
unit defined as Directory Directory Same prefix key, therefore adjacent Fine-grained mapping Interleaved rows gain performance
Two-phase commit for distributed transactions Two-phase commit 1Vote Coordinator Participants
Two-phase commit for distributed transactions Two-phase commit 2Commit Coordinator Participants
Locking remains a big issue Locking Especially when someone went
down, causing deadlock, literally.
Paxos is here to rescue, again Paxos will make sure
ALL logs are copied to every replicas. ALL logs
Real Innovation lies in time TrueTime API utilizes atomic clock
& GPS to determine the order of each transactions atomic clock GPS
NewSQL is the new NoSQL and Spanner is the best
example so far.