Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
由Spanner來看Google資料庫的前世今生
Search
Szu-Kai Hsu (brucehsu)
November 07, 2012
Technology
4
270
由Spanner來看Google資料庫的前世今生
2012年秋,網際網路資料庫 @ 國立中正大學資工所
Szu-Kai Hsu (brucehsu)
November 07, 2012
Tweet
Share
More Decks by Szu-Kai Hsu (brucehsu)
See All by Szu-Kai Hsu (brucehsu)
Running Life Lean
brucehsu
0
160
Core Unleashed Part II: Introduction to GobiesVM (and STM) @ RubyKaigi 2014
brucehsu
0
1.9k
[RubyConf.tw 2014] Cores unleashed - Exploiting Parallelism in Ruby with STM
brucehsu
0
2.1k
用 Go 打造程式語言執行環境:實例剖析 [OSDC.tw 2014]
brucehsu
3
2.3k
pickbox @ OSDC.tw 2013 Lightning Talk
brucehsu
0
53
Building Web 2.0 APIs
brucehsu
1
140
Rapid Web Development by Example
brucehsu
3
3.1k
TechWed@CCU #0
brucehsu
2
450
Chromium OS
brucehsu
2
190
Other Decks in Technology
See All in Technology
話題のGraphRAG、その可能性と課題を理解する
hide212131
4
1.4k
君は隠しイベントを見つけれるか?
mujyun
0
280
Amazon FSx for NetApp ONTAPを利用するにあたっての要件整理と設計のポイント
non97
1
160
グローバル展開を見据えたサービスにおける機械翻訳プラクティス / dp-ai-translating
cyberagentdevelopers
PRO
1
150
とあるユーザー企業におけるリスクベースで考えるセキュリティ業務のお話し
4su_para
3
320
大規模データ基盤チームのオンプレTiDB運用への挑戦 / dpu-tidb
cyberagentdevelopers
PRO
1
110
Oracle Cloud Infrastructureデータベース・クラウド:各バージョンのサポート期間
oracle4engineer
PRO
27
12k
カメラを用いた店内計測におけるオプトインの仕組みの実現 / ai-optin-camera
cyberagentdevelopers
PRO
1
120
ネット広告に未来はあるか?「3rd Party Cookie廃止とPrivacy Sandboxの効果検証の裏側」 / third-party-cookie-privacy
cyberagentdevelopers
PRO
1
130
日経電子版におけるリアルタイムレコメンドシステム開発の事例紹介/nikkei-realtime-recommender-system
yng87
1
490
わたしとトラックポイント / TrackPoint tips
masahirokawahara
1
240
pandasはPolarsに性能面で追いつき追い越せるのか
vaaaaanquish
4
4.4k
Featured
See All Featured
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
27
1.9k
A Modern Web Designer's Workflow
chriscoyier
692
190k
Reflections from 52 weeks, 52 projects
jeffersonlam
346
20k
4 Signs Your Business is Dying
shpigford
180
21k
Automating Front-end Workflow
addyosmani
1365
200k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
43
6.6k
Code Reviewing Like a Champion
maltzj
519
39k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
7
150
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
42
9.2k
A better future with KSS
kneath
238
17k
Learning to Love Humans: Emotional Interface Design
aarron
272
40k
Transcript
由 Spanner來看 Google資料庫 的 前世今⽣生 Szu-Kai Hsu (brucehsu)
Spanner is a scalable multi-version globally-distributed synchronously-replicated database
BigTable
Handling
Handling really
Handling really BIG DATA
key-value
key-value { “CCU”: “123”, “NCTU”: “113”, “NTU”: “112” }; key
key-value { “CCU”: “123”, “NCTU”: “113”, “NTU”: “112” }; value
distributed
Lack of transaction, think of our first project.
CAP
C A P
Consistency A P
Consistency Availability P
Consistency Availability Partition tolerance
Consistency Availability Partition tolerance Consistency
Megastore
NoSQL datastores are highly scalable, but their limited API and
loose consistency models complicate application development. “ “
In Megastore, data model is declared in a strong-typed schema
strong-typed schema CREATE TABLE User { required int64 user_id; required string name; } PRIMARY KEY(user_id), ENTITY GROUP ROOT;
Based on BigTable BigTable
PRIMARY user_id PRIMARY user_id, nyan_id
Local and Global Indexes are introduced: Local Index Find corresponding
data in entity group Global Index Find corresponding data in external groups Local Index Global Index
(user_id, born,nyan_id) For local index CREATE LOCAL INDEX NyanByBorn ON
Nyan(user_id, born); CREATE LOCAL INDEX NyanByBorn ON Nyan(user_id, born);
Consistency achieved via Paxos algorithm Paxos 2 Replicas 1 Witness
At least
Replica consists of Replication server and Coordinator Replication server Coordinator
write oversee
Witness’ Replication server only writes logs logs
Average Latency: 100-400ms Poor write throughput 100-400ms
Spanner ,finally.
We believe it is better to have application programmers deal
with performance problems due to overuse of transactions as bottlenecks arise, rather than always coding around the lack of transactions. “ “
Data model is almost identical to Megastore almost identical Basic
unit defined as Directory Directory
Data model is almost identical to Megastore almost identical Basic
unit defined as Directory Directory Same prefix key, therefore adjacent
Data model is almost identical to Megastore almost identical Basic
unit defined as Directory Directory Same prefix key, therefore adjacent Fine-grained mapping
Data model is almost identical to Megastore almost identical Basic
unit defined as Directory Directory Same prefix key, therefore adjacent Fine-grained mapping Interleaved rows gain performance
Two-phase commit for distributed transactions Two-phase commit 1Vote Coordinator Participants
Two-phase commit for distributed transactions Two-phase commit 2Commit Coordinator Participants
Locking remains a big issue Locking Especially when someone went
down, causing deadlock, literally.
Paxos is here to rescue, again Paxos will make sure
ALL logs are copied to every replicas. ALL logs
Real Innovation lies in time TrueTime API utilizes atomic clock
& GPS to determine the order of each transactions atomic clock GPS
NewSQL is the new NoSQL and Spanner is the best
example so far.