Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
由Spanner來看Google資料庫的前世今生
Search
Szu-Kai Hsu (brucehsu)
November 07, 2012
Technology
4
270
由Spanner來看Google資料庫的前世今生
2012年秋,網際網路資料庫 @ 國立中正大學資工所
Szu-Kai Hsu (brucehsu)
November 07, 2012
Tweet
Share
More Decks by Szu-Kai Hsu (brucehsu)
See All by Szu-Kai Hsu (brucehsu)
Running Life Lean
brucehsu
0
160
Core Unleashed Part II: Introduction to GobiesVM (and STM) @ RubyKaigi 2014
brucehsu
0
2k
[RubyConf.tw 2014] Cores unleashed - Exploiting Parallelism in Ruby with STM
brucehsu
0
2.1k
用 Go 打造程式語言執行環境:實例剖析 [OSDC.tw 2014]
brucehsu
3
2.3k
pickbox @ OSDC.tw 2013 Lightning Talk
brucehsu
0
53
Building Web 2.0 APIs
brucehsu
1
140
Rapid Web Development by Example
brucehsu
3
3.1k
TechWed@CCU #0
brucehsu
2
460
Chromium OS
brucehsu
2
190
Other Decks in Technology
See All in Technology
【re:Invent 2024 アプデ】 Prompt Routing の紹介
champ
0
150
Microsoft Azure全冠になってみた ~アレを使い倒した者が試験を制す!?~/Obtained all Microsoft Azure certifications Those who use "that" to the full will win the exam! ?
yuj1osm
2
110
オプトインカメラ:UWB測位を応用したオプトイン型のカメラ計測
matthewlujp
0
180
統計データで2024年の クラウド・インフラ動向を眺める
ysknsid25
2
850
20241214_WACATE2024冬_テスト設計技法をチョット俯瞰してみよう
kzsuzuki
3
600
マルチプロダクト開発の現場でAWS Security Hubを1年以上運用して得た教訓
muziyoshiz
3
2.4k
10分で学ぶKubernetesコンテナセキュリティ/10min-k8s-container-sec
mochizuki875
3
360
2024年にチャレンジしたことを振り返るぞ
mitchan
0
140
日本版とグローバル版のモバイルアプリ統合の開発の裏側と今後の展望
miichan
1
130
5分でわかるDuckDB
chanyou0311
10
3.2k
サイボウズフロントエンドエキスパートチームについて / FrontendExpert Team
cybozuinsideout
PRO
5
38k
成果を出しながら成長する、アウトプット駆動のキャッチアップ術 / Output-driven catch-up techniques to grow while producing results
aiandrox
0
360
Featured
See All Featured
ReactJS: Keep Simple. Everything can be a component!
pedronauck
665
120k
We Have a Design System, Now What?
morganepeng
51
7.3k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
17
2.3k
RailsConf 2023
tenderlove
29
940
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.2k
Faster Mobile Websites
deanohume
305
30k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
48k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
Raft: Consensus for Rubyists
vanstee
137
6.7k
StorybookのUI Testing Handbookを読んだ
zakiyama
27
5.3k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
28
900
Navigating Team Friction
lara
183
15k
Transcript
由 Spanner來看 Google資料庫 的 前世今⽣生 Szu-Kai Hsu (brucehsu)
Spanner is a scalable multi-version globally-distributed synchronously-replicated database
BigTable
Handling
Handling really
Handling really BIG DATA
key-value
key-value { “CCU”: “123”, “NCTU”: “113”, “NTU”: “112” }; key
key-value { “CCU”: “123”, “NCTU”: “113”, “NTU”: “112” }; value
distributed
Lack of transaction, think of our first project.
CAP
C A P
Consistency A P
Consistency Availability P
Consistency Availability Partition tolerance
Consistency Availability Partition tolerance Consistency
Megastore
NoSQL datastores are highly scalable, but their limited API and
loose consistency models complicate application development. “ “
In Megastore, data model is declared in a strong-typed schema
strong-typed schema CREATE TABLE User { required int64 user_id; required string name; } PRIMARY KEY(user_id), ENTITY GROUP ROOT;
Based on BigTable BigTable
PRIMARY user_id PRIMARY user_id, nyan_id
Local and Global Indexes are introduced: Local Index Find corresponding
data in entity group Global Index Find corresponding data in external groups Local Index Global Index
(user_id, born,nyan_id) For local index CREATE LOCAL INDEX NyanByBorn ON
Nyan(user_id, born); CREATE LOCAL INDEX NyanByBorn ON Nyan(user_id, born);
Consistency achieved via Paxos algorithm Paxos 2 Replicas 1 Witness
At least
Replica consists of Replication server and Coordinator Replication server Coordinator
write oversee
Witness’ Replication server only writes logs logs
Average Latency: 100-400ms Poor write throughput 100-400ms
Spanner ,finally.
We believe it is better to have application programmers deal
with performance problems due to overuse of transactions as bottlenecks arise, rather than always coding around the lack of transactions. “ “
Data model is almost identical to Megastore almost identical Basic
unit defined as Directory Directory
Data model is almost identical to Megastore almost identical Basic
unit defined as Directory Directory Same prefix key, therefore adjacent
Data model is almost identical to Megastore almost identical Basic
unit defined as Directory Directory Same prefix key, therefore adjacent Fine-grained mapping
Data model is almost identical to Megastore almost identical Basic
unit defined as Directory Directory Same prefix key, therefore adjacent Fine-grained mapping Interleaved rows gain performance
Two-phase commit for distributed transactions Two-phase commit 1Vote Coordinator Participants
Two-phase commit for distributed transactions Two-phase commit 2Commit Coordinator Participants
Locking remains a big issue Locking Especially when someone went
down, causing deadlock, literally.
Paxos is here to rescue, again Paxos will make sure
ALL logs are copied to every replicas. ALL logs
Real Innovation lies in time TrueTime API utilizes atomic clock
& GPS to determine the order of each transactions atomic clock GPS
NewSQL is the new NoSQL and Spanner is the best
example so far.