Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Microsoft ML.NET
Search
Cihan Yakar
February 19, 2019
Programming
0
450
Microsoft ML.NET
ML.NET 0.10 sürümü ile bir sınıflandırma örneği anlatılmıştır.
Cihan Yakar
February 19, 2019
Tweet
Share
More Decks by Cihan Yakar
See All by Cihan Yakar
Auto ML
cihanyakar
0
670
Microsoft Azure Machine Learning Studio
cihanyakar
0
1.1k
IntelliCode
cihanyakar
0
440
Microsoft ML.net ile Segmentasyon Çalışması
cihanyakar
0
470
Xamarin ❤ ML.net
cihanyakar
1
530
.NET CORE 2.2 & .NET CORE 3.
cihanyakar
0
620
Visual Studio 2019
cihanyakar
0
550
Geldiğim Nokta: XAMARIN & OYUN
cihanyakar
0
73
Visual Studio ve Takım Çalışması
cihanyakar
0
330
Other Decks in Programming
See All in Programming
命名をリントする
chiroruxx
1
420
これが俺の”自分戦略” プロセスを楽しんでいこう! - Developers CAREER Boost 2024
niftycorp
PRO
0
190
htmxって知っていますか?次世代のHTML
hiro_ghap1
0
340
Monixと常駐プログラムの勘どころ / Scalaわいわい勉強会 #4
stoneream
0
280
From Translations to Multi Dimension Entities
alexanderschranz
2
140
モバイルアプリにおける自動テストの導入戦略
ostk0069
0
110
Androidアプリのモジュール分割における:x:commonを考える
okuzawats
1
140
毎日13時間もかかるバッチ処理をたった3日で60%短縮するためにやったこと
sho_ssk_
1
180
create_tableをしただけなのに〜囚われのuuid編〜
daisukeshinoku
0
270
良いユニットテストを書こう
mototakatsu
8
2.8k
tidymodelsによるtidyな生存時間解析 / Japan.R2024
dropout009
1
790
Scalaから始めるOpenFeature入門 / Scalaわいわい勉強会 #4
arthur1
1
340
Featured
See All Featured
ReactJS: Keep Simple. Everything can be a component!
pedronauck
665
120k
Building a Scalable Design System with Sketch
lauravandoore
460
33k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.1k
Facilitating Awesome Meetings
lara
50
6.1k
Practical Orchestrator
shlominoach
186
10k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
28
900
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
111
49k
Documentation Writing (for coders)
carmenintech
66
4.5k
How To Stay Up To Date on Web Technology
chriscoyier
789
250k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
5
450
How to Think Like a Performance Engineer
csswizardry
22
1.2k
Into the Great Unknown - MozCon
thekraken
33
1.5k
Transcript
MICROSOFT ML.NET Cihan YAKAR
[email protected]
MAKINE ÖĞRENMESI public static int PredictQuality(Wine wine) { return (int)(wine.CitricAcid
* 0.7 + wine.Alcohol * 0.2 + wine.CitricAcid * 0.5); }
MAKINE ÖĞRENMESI public static int PredictQuality(Wine wine) { return ***
ML *** }
MAKINE ÖĞRENMESI
SINIFLANDIRMA public static Hayvan HangiHayvan(Picture x) { return Hayvan.Kurbaga; }
DEMETLEME / KÜMELEME public static Hayvan[][] Demetle(Hayvan[] hayvanat, int num)
{ }
REGRESYON public static float Sicaklik(DateTime tarih) { return 45; }
İLK DEĞİL • Machine Learning Server 9.3, • Azure Machine
Learning Service, • Azure Machine Learning Studio, • Azure Databricks (Spark-based analytics platform), • SQL Server Machine Learning Services, • Azure Cognitive Service, • Azure Data Science Virtual Machine, • Windows ML.
ML.NET Load Data IDataView Transform Data ITransformer Choose Algorithm IEstimator
Train Model Evaluate Model PredictionEngine Deploy Model
DEMO – VERİYİ İNCELEYELİM
DEMO – VERİYİ İNCELEYELİM
DEMO – VERİYİ İNCELEYELİM
DEMO – VERİYİ İNCELEYELİM
DEMO – VERİYİ İNCELEYELİM 0 100 200 300 400 500
600 700 800 3 4 5 6 7 8 Kalitelerin Dağılımı
DEMO – VERİYİ İNCELEYELİM 0 100 200 300 400 500
600 700 800 3 4 5 6 7 8 Kalitelerin Dağılımı
DEMO – KODA GEÇELİM
TEŞEKKÜRLER WWW.TEKNOLOT.COM