Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Microsoft ML.NET
Search
Cihan Yakar
February 19, 2019
Programming
0
480
Microsoft ML.NET
ML.NET 0.10 sürümü ile bir sınıflandırma örneği anlatılmıştır.
Cihan Yakar
February 19, 2019
Tweet
Share
More Decks by Cihan Yakar
See All by Cihan Yakar
Auto ML
cihanyakar
0
710
Microsoft Azure Machine Learning Studio
cihanyakar
0
1.2k
IntelliCode
cihanyakar
0
460
Microsoft ML.net ile Segmentasyon Çalışması
cihanyakar
0
500
Xamarin ❤ ML.net
cihanyakar
1
560
.NET CORE 2.2 & .NET CORE 3.
cihanyakar
0
650
Visual Studio 2019
cihanyakar
0
580
Geldiğim Nokta: XAMARIN & OYUN
cihanyakar
0
83
Visual Studio ve Takım Çalışması
cihanyakar
0
350
Other Decks in Programming
See All in Programming
Create a website using Spatial Web
akkeylab
0
280
人には人それぞれのサービス層がある
shimabox
3
670
Benchmark
sysong
0
170
WindowInsetsだってテストしたい
ryunen344
1
140
Cline指示通りに動かない? AI小説エージェントで学ぶ指示書の書き方と自動アップデートの仕組み
kamomeashizawa
1
480
DroidKnights 2025 - 다양한 스크롤 뷰에서의 영상 재생
gaeun5744
3
160
機械学習って何? 5分で解説頑張ってみる
kuroneko2828
0
210
Effect の双対、Coeffect
yukikurage
5
1.4k
実はすごいスピードで進化しているCSS
hayato_yokoyama
0
110
複数アプリケーションを育てていくための共通化戦略
irof
10
3.8k
無関心の谷
kanayannet
0
160
「兵法」から見る質とスピード
ickx
0
270
Featured
See All Featured
Producing Creativity
orderedlist
PRO
346
40k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Docker and Python
trallard
44
3.4k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
181
53k
Code Review Best Practice
trishagee
68
18k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
107
19k
Building an army of robots
kneath
306
45k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
281
13k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
16
920
Transcript
MICROSOFT ML.NET Cihan YAKAR
[email protected]
MAKINE ÖĞRENMESI public static int PredictQuality(Wine wine) { return (int)(wine.CitricAcid
* 0.7 + wine.Alcohol * 0.2 + wine.CitricAcid * 0.5); }
MAKINE ÖĞRENMESI public static int PredictQuality(Wine wine) { return ***
ML *** }
MAKINE ÖĞRENMESI
SINIFLANDIRMA public static Hayvan HangiHayvan(Picture x) { return Hayvan.Kurbaga; }
DEMETLEME / KÜMELEME public static Hayvan[][] Demetle(Hayvan[] hayvanat, int num)
{ }
REGRESYON public static float Sicaklik(DateTime tarih) { return 45; }
İLK DEĞİL • Machine Learning Server 9.3, • Azure Machine
Learning Service, • Azure Machine Learning Studio, • Azure Databricks (Spark-based analytics platform), • SQL Server Machine Learning Services, • Azure Cognitive Service, • Azure Data Science Virtual Machine, • Windows ML.
ML.NET Load Data IDataView Transform Data ITransformer Choose Algorithm IEstimator
Train Model Evaluate Model PredictionEngine Deploy Model
DEMO – VERİYİ İNCELEYELİM
DEMO – VERİYİ İNCELEYELİM
DEMO – VERİYİ İNCELEYELİM
DEMO – VERİYİ İNCELEYELİM
DEMO – VERİYİ İNCELEYELİM 0 100 200 300 400 500
600 700 800 3 4 5 6 7 8 Kalitelerin Dağılımı
DEMO – VERİYİ İNCELEYELİM 0 100 200 300 400 500
600 700 800 3 4 5 6 7 8 Kalitelerin Dağılımı
DEMO – KODA GEÇELİM
TEŞEKKÜRLER WWW.TEKNOLOT.COM