Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ベイズマルチファクターモデルとbPCausal
Search
ディップ株式会社
PRO
December 08, 2025
Technology
0
29
ベイズマルチファクターモデルとbPCausal
ディップ株式会社
PRO
December 08, 2025
Tweet
Share
More Decks by ディップ株式会社
See All by ディップ株式会社
プロフェッショナルへの道:ビジネスを動かすエンジニアリング思想
dip_tech
PRO
0
88
ユーザーファーストを実現するためのチーム開発の工夫
dip_tech
PRO
0
73
1年目エンジニアが働いてみて感じたリアルな悩みと成長
dip_tech
PRO
0
38
【dip】「なりたい自分」に近づくための、「自分と向き合う」小さな振り返り
dip_tech
PRO
0
210
dip はたらこねっと におけるAI活用事例
dip_tech
PRO
0
46
_dip_ユーザーに価値を届けるための_コードレビュー___サービスレビュー_ワークショップ_.pdf
dip_tech
PRO
1
49
AI駆動開発によるDDDの実践
dip_tech
PRO
0
710
20年超レガシー「バイトル」をAI駆動で再設計!事業成長を実現するリアーキ戦略
dip_tech
PRO
1
220
後追いテストからの脱却に向けた挑戦
dip_tech
PRO
1
1k
Other Decks in Technology
See All in Technology
みんなでAI上手ピーポーになろう! / Let’s All Get AI-Savvy!
kaminashi
0
100
純粋なイミュータブルモデルを設計してからイベントソーシングと組み合わせるDeciderの実践方法の紹介 /Introducing Decider Pattern with Event Sourcing
tomohisa
1
1k
#22 CA × atmaCup 3rd 1st Place Solution
yumizu
1
200
サラリーマンソフトウェアエンジニアのキャリア
yuheinakasaka
40
19k
2025年 山梨の技術コミュニティを振り返る
yuukis
0
160
チームで安全にClaude Codeを利用するためのプラクティス / team-claude-code-practices
tomoki10
7
3.3k
Databricks Free Editionで始めるLakeflow SDP
taka_aki
0
100
迷わない!AI×MCP連携のリファレンスアーキテクチャ完全ガイド
cdataj
0
500
Oracle Database@AWS:サービス概要のご紹介
oracle4engineer
PRO
2
870
歴史から学ぶ、Goのメモリ管理基礎
logica0419
14
2.8k
20260114_データ横丁 新年LT大会:2026年の抱負
taromatsui_cccmkhd
0
160
技術選定、下から見るか?横から見るか?
masakiokuda
0
190
Featured
See All Featured
Building a A Zero-Code AI SEO Workflow
portentint
PRO
0
240
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
Typedesign – Prime Four
hannesfritz
42
2.9k
Beyond borders and beyond the search box: How to win the global "messy middle" with AI-driven SEO
davidcarrasco
1
36
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
420
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
Technical Leadership for Architectural Decision Making
baasie
0
210
Getting science done with accelerated Python computing platforms
jacobtomlinson
1
96
The Language of Interfaces
destraynor
162
26k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
200
Kristin Tynski - Automating Marketing Tasks With AI
techseoconnect
PRO
0
120
Transcript
ベイズマルチファクターモデルと bPCausal ディップ株式会社|久保知生 2025-12-06
自己紹介 • 名前:久保知生/クボトモキ • 所属:ディップ株式会社 • 仕事:マーケティング施策 × 計量経済学・機械学習
この時間で話すこと • bPCausal:: • ベイジアンファクターモデルのよいところ
パネルデータの効果検証:DiD 介入効果 平行トレンド
DiDの課題 • 平行トレンド仮定を満たさない場合の対処 • ユニット・時間に特有の係数を入れられないこと • 信頼区間の説明が実務的に難しいこと
ベイジアンファクターモデルの強み • 平行トレンド仮定を満たさない場合の対処 – 処置ユニットのポテンシャルアウトカムを予測 • ユニット・時間に特有の係数を入れられないこと – OK •
信頼区間の説明が実務的に難しいこと – ベイズ信用区間
ドイツ再統合が西ドイツのGDPに与えた効果
「対照群」と「介入前の介入群」から 介入群のポテンシャルアウトカムをつくる https://yiqingxu.org/public/panel/lec3_handout.pdf 介入群 対照群 介入前 介入後
ベイジアンLasso + MCMC
統合された西ドイツ(実線)と 反実仮想西ドイツ(点線)
ドイツ統合が西ドイツのGDP与えた 平均処置効果
まとめ • 処置ユニットのポテンシャルアウトカムを予測 • ユニット・時間に特有の係数OK • ベイズ信用区間の構築
APPENDIX
準備 • 𝑖 = 1,2, ⋯ , 𝑁:ユニット • 𝑡
= 1,2, ⋯ , 𝑇:時間 • 𝑎𝑖 :各ユニットの介入タイミング(確率変数) – 𝑎𝑖 ∈ 𝐴 = {1,2, ⋯ , 𝑇, 𝑐})。 – 𝑎𝑖 = 𝑐 > 𝑇 のとき、ユニット𝑖は観測されるデータの中で介入 されない。
Estimand • 介入効果を以下で定義する。 • 𝛿𝑖𝑡 = 𝑦𝑖𝑡 𝑎𝑖 − 𝑦𝑖𝑡
𝑐 𝑎𝑖 ≤ 𝑡 ≤ 𝑇 – つまり、介入効果は介入群のユニット𝑖に対して、介入後のア ウトカムと反実仮想のアウトカムの差とされる。
識別過程:Latent ignorability • 𝑋𝑖 :共変量ベクトル • 𝑈𝑖 :ユニットレベルの異質性とユニット特有の時間トレンド • 𝑃𝑟
𝑎𝑖 |𝑋𝑖 , 𝑌𝑖 0 , 𝑈𝑖 = 𝑃𝑟 𝑎𝑖 |𝑋𝑖 , 𝑌𝑖 0 𝑚𝑖𝑠, 𝑌𝑖 0 𝑜𝑏𝑠, 𝑈𝑖 = 𝑃𝑟 𝑎𝑖 |𝑋𝑖 , 𝑈𝑖 • 𝑋𝑖 と𝑈𝑖 で条件付ければ、𝑌𝑖 0 なる時系列は割り当てメカニズムと独立。 • Strict Exogeneityの拡張 – 𝑈𝑖 で条件付ければ過去のアウトカムが現在・未来の処置に影響しない。
Functional form • ユニット𝑖の時間𝑡におけるポテンシャルアウトカムは以下で定義さ れる。 • 𝑦𝑖𝑡 𝑐 = 𝑋𝑖𝑡
′𝛽𝑖𝑡 + 𝛾𝑖 ′𝑓𝑡 + 𝜖𝑖𝑡 – 𝛽𝑖𝑡 = 𝛽 + 𝛼𝑖 + 𝜉𝑡 – 𝜉𝑡 = 𝜙𝜉 𝜉𝑡−1 + 𝑒𝑡 – 𝑓𝑡 = 𝜙𝑓 𝑓𝑡−1 + 𝜈𝑡 • 𝑋𝑖𝑡 :観測される共変量(時間不変、ユニット不変を許す) • 𝛾𝑖 ′𝑓𝑡 :潜在的なマルチファクター項
スパースモデリング • 𝛽の事前分布は以下のような階層構造にすることで、ベイズ 縮小を可能にしている。 – 𝛽𝑘 |𝜏𝑘 2 ∼ 𝑁
0, 𝜏𝑘 2 ∀1 ≤ 𝑘 ≤ 𝑝1 – 𝜏𝑘 2|𝜆𝛽 ∼ 𝐸𝑥𝑝 𝜆𝛽 2 2 – 𝜆𝛽 2 ∼ 𝒢 𝑎1 , 𝑎2 • ただし𝑝1 は共変量の個数。 • 𝜆𝛽 はLassoにおける正則化パラメータに相当。
スパースモデリング • 他のパラメータ𝛼𝑖 ,𝜉𝑖 ,𝛾𝑖 についてもre-parametarizetionによ る縮小アプローチがとられている。 – 𝛼𝑖 =
𝑤𝛼 ⋅ 𝛼𝑖 – 𝜉𝑖 = 𝑤𝜉 ⋅ ሚ 𝜉𝑖 – 𝛾𝑖 = 𝑤𝛾 ⋅ 𝛾𝑖 • それぞれの重み𝑤が0に近似されるのであればモデルに 含まれないようにする。