Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ベイズマルチファクターモデルとbPCausal
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
ディップ株式会社
PRO
December 08, 2025
Technology
0
34
ベイズマルチファクターモデルとbPCausal
ディップ株式会社
PRO
December 08, 2025
Tweet
Share
More Decks by ディップ株式会社
See All by ディップ株式会社
【dip】価値が「伝わる体験」を設計する ディップのDevRelが実践する、Findyサービス活用戦略
dip_tech
PRO
0
41
プロフェッショナルへの道:ビジネスを動かすエンジニアリング思想
dip_tech
PRO
0
120
ユーザーファーストを実現するためのチーム開発の工夫
dip_tech
PRO
0
89
1年目エンジニアが働いてみて感じたリアルな悩みと成長
dip_tech
PRO
0
41
【dip】「なりたい自分」に近づくための、「自分と向き合う」小さな振り返り
dip_tech
PRO
0
230
dip はたらこねっと におけるAI活用事例
dip_tech
PRO
0
56
_dip_ユーザーに価値を届けるための_コードレビュー___サービスレビュー_ワークショップ_.pdf
dip_tech
PRO
1
53
AI駆動開発によるDDDの実践
dip_tech
PRO
0
870
20年超レガシー「バイトル」をAI駆動で再設計!事業成長を実現するリアーキ戦略
dip_tech
PRO
1
240
Other Decks in Technology
See All in Technology
広告の効果検証を題材にした因果推論の精度検証について
zozotech
PRO
0
120
ファインディの横断SREがTakumi byGMOと取り組む、セキュリティと開発スピードの両立
rvirus0817
1
1.1k
Amazon S3 Vectorsを使って資格勉強用AIエージェントを構築してみた
usanchuu
3
430
M&A 後の統合をどう進めるか ─ ナレッジワーク × Poetics が実践した組織とシステムの融合
kworkdev
PRO
1
400
マーケットプレイス版Oracle WebCenter Content For OCI
oracle4engineer
PRO
5
1.5k
茨城の思い出を振り返る ~CDKのセキュリティを添えて~ / 20260201 Mitsutoshi Matsuo
shift_evolve
PRO
1
190
データの整合性を保ちたいだけなんだ
shoheimitani
8
2.9k
生成AI時代にこそ求められるSRE / SRE for Gen AI era
ymotongpoo
5
2.7k
GitHub Issue Templates + Coding Agentで簡単みんなでIaC/Easy IaC for Everyone with GitHub Issue Templates + Coding Agent
aeonpeople
1
180
変化するコーディングエージェントとの現実的な付き合い方 〜Cursor安定択説と、ツールに依存しない「資産」〜
empitsu
4
1.3k
セキュリティ はじめの一歩
nikinusu
0
1.5k
What happened to RubyGems and what can we learn?
mikemcquaid
0
240
Featured
See All Featured
Rebuilding a faster, lazier Slack
samanthasiow
85
9.4k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
DevOps and Value Stream Thinking: Enabling flow, efficiency and business value
helenjbeal
1
89
SEOcharity - Dark patterns in SEO and UX: How to avoid them and build a more ethical web
sarafernandez
0
110
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
1k
Rails Girls Zürich Keynote
gr2m
96
14k
Mobile First: as difficult as doing things right
swwweet
225
10k
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
0
100
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
160
Become a Pro
speakerdeck
PRO
31
5.8k
Building Flexible Design Systems
yeseniaperezcruz
330
40k
Transcript
ベイズマルチファクターモデルと bPCausal ディップ株式会社|久保知生 2025-12-06
自己紹介 • 名前:久保知生/クボトモキ • 所属:ディップ株式会社 • 仕事:マーケティング施策 × 計量経済学・機械学習
この時間で話すこと • bPCausal:: • ベイジアンファクターモデルのよいところ
パネルデータの効果検証:DiD 介入効果 平行トレンド
DiDの課題 • 平行トレンド仮定を満たさない場合の対処 • ユニット・時間に特有の係数を入れられないこと • 信頼区間の説明が実務的に難しいこと
ベイジアンファクターモデルの強み • 平行トレンド仮定を満たさない場合の対処 – 処置ユニットのポテンシャルアウトカムを予測 • ユニット・時間に特有の係数を入れられないこと – OK •
信頼区間の説明が実務的に難しいこと – ベイズ信用区間
ドイツ再統合が西ドイツのGDPに与えた効果
「対照群」と「介入前の介入群」から 介入群のポテンシャルアウトカムをつくる https://yiqingxu.org/public/panel/lec3_handout.pdf 介入群 対照群 介入前 介入後
ベイジアンLasso + MCMC
統合された西ドイツ(実線)と 反実仮想西ドイツ(点線)
ドイツ統合が西ドイツのGDP与えた 平均処置効果
まとめ • 処置ユニットのポテンシャルアウトカムを予測 • ユニット・時間に特有の係数OK • ベイズ信用区間の構築
APPENDIX
準備 • 𝑖 = 1,2, ⋯ , 𝑁:ユニット • 𝑡
= 1,2, ⋯ , 𝑇:時間 • 𝑎𝑖 :各ユニットの介入タイミング(確率変数) – 𝑎𝑖 ∈ 𝐴 = {1,2, ⋯ , 𝑇, 𝑐})。 – 𝑎𝑖 = 𝑐 > 𝑇 のとき、ユニット𝑖は観測されるデータの中で介入 されない。
Estimand • 介入効果を以下で定義する。 • 𝛿𝑖𝑡 = 𝑦𝑖𝑡 𝑎𝑖 − 𝑦𝑖𝑡
𝑐 𝑎𝑖 ≤ 𝑡 ≤ 𝑇 – つまり、介入効果は介入群のユニット𝑖に対して、介入後のア ウトカムと反実仮想のアウトカムの差とされる。
識別過程:Latent ignorability • 𝑋𝑖 :共変量ベクトル • 𝑈𝑖 :ユニットレベルの異質性とユニット特有の時間トレンド • 𝑃𝑟
𝑎𝑖 |𝑋𝑖 , 𝑌𝑖 0 , 𝑈𝑖 = 𝑃𝑟 𝑎𝑖 |𝑋𝑖 , 𝑌𝑖 0 𝑚𝑖𝑠, 𝑌𝑖 0 𝑜𝑏𝑠, 𝑈𝑖 = 𝑃𝑟 𝑎𝑖 |𝑋𝑖 , 𝑈𝑖 • 𝑋𝑖 と𝑈𝑖 で条件付ければ、𝑌𝑖 0 なる時系列は割り当てメカニズムと独立。 • Strict Exogeneityの拡張 – 𝑈𝑖 で条件付ければ過去のアウトカムが現在・未来の処置に影響しない。
Functional form • ユニット𝑖の時間𝑡におけるポテンシャルアウトカムは以下で定義さ れる。 • 𝑦𝑖𝑡 𝑐 = 𝑋𝑖𝑡
′𝛽𝑖𝑡 + 𝛾𝑖 ′𝑓𝑡 + 𝜖𝑖𝑡 – 𝛽𝑖𝑡 = 𝛽 + 𝛼𝑖 + 𝜉𝑡 – 𝜉𝑡 = 𝜙𝜉 𝜉𝑡−1 + 𝑒𝑡 – 𝑓𝑡 = 𝜙𝑓 𝑓𝑡−1 + 𝜈𝑡 • 𝑋𝑖𝑡 :観測される共変量(時間不変、ユニット不変を許す) • 𝛾𝑖 ′𝑓𝑡 :潜在的なマルチファクター項
スパースモデリング • 𝛽の事前分布は以下のような階層構造にすることで、ベイズ 縮小を可能にしている。 – 𝛽𝑘 |𝜏𝑘 2 ∼ 𝑁
0, 𝜏𝑘 2 ∀1 ≤ 𝑘 ≤ 𝑝1 – 𝜏𝑘 2|𝜆𝛽 ∼ 𝐸𝑥𝑝 𝜆𝛽 2 2 – 𝜆𝛽 2 ∼ 𝒢 𝑎1 , 𝑎2 • ただし𝑝1 は共変量の個数。 • 𝜆𝛽 はLassoにおける正則化パラメータに相当。
スパースモデリング • 他のパラメータ𝛼𝑖 ,𝜉𝑖 ,𝛾𝑖 についてもre-parametarizetionによ る縮小アプローチがとられている。 – 𝛼𝑖 =
𝑤𝛼 ⋅ 𝛼𝑖 – 𝜉𝑖 = 𝑤𝜉 ⋅ ሚ 𝜉𝑖 – 𝛾𝑖 = 𝑤𝛾 ⋅ 𝛾𝑖 • それぞれの重み𝑤が0に近似されるのであればモデルに 含まれないようにする。