Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ベイズマルチファクターモデルとbPCausal
Search
ディップ株式会社
PRO
December 08, 2025
Technology
0
25
ベイズマルチファクターモデルとbPCausal
ディップ株式会社
PRO
December 08, 2025
Tweet
Share
More Decks by ディップ株式会社
See All by ディップ株式会社
プロフェッショナルへの道:ビジネスを動かすエンジニアリング思想
dip_tech
PRO
0
60
ユーザーファーストを実現するためのチーム開発の工夫
dip_tech
PRO
0
48
1年目エンジニアが働いてみて感じたリアルな悩みと成長
dip_tech
PRO
0
34
【dip】「なりたい自分」に近づくための、「自分と向き合う」小さな振り返り
dip_tech
PRO
0
200
dip はたらこねっと におけるAI活用事例
dip_tech
PRO
0
42
_dip_ユーザーに価値を届けるための_コードレビュー___サービスレビュー_ワークショップ_.pdf
dip_tech
PRO
1
45
AI駆動開発によるDDDの実践
dip_tech
PRO
0
590
20年超レガシー「バイトル」をAI駆動で再設計!事業成長を実現するリアーキ戦略
dip_tech
PRO
1
210
後追いテストからの脱却に向けた挑戦
dip_tech
PRO
1
970
Other Decks in Technology
See All in Technology
AWSに革命を起こすかもしれない新サービス・アップデートについてのお話
yama3133
0
500
AWS運用を効率化する!AWS Organizationsを軸にした一元管理の実践/nikkei-tech-talk-202512
nikkei_engineer_recruiting
0
170
株式会社ビザスク_AI__Engineering_Summit_Tokyo_2025_登壇資料.pdf
eikohashiba
1
110
通勤手当申請チェックエージェント開発のリアル
whisaiyo
3
450
2025年のデザインシステムとAI 活用を振り返る
leveragestech
0
200
Strands AgentsとNova 2 SonicでS2Sを実践してみた
yama3133
1
1.8k
Bedrock AgentCore Evaluationsで学ぶLLM as a judge入門
shichijoyuhi
2
240
Snowflake導入から1年、LayerXのデータ活用の現在 / One Year into Snowflake: How LayerX Uses Data Today
civitaspo
0
2.4k
Introduce marp-ai-slide-generator
itarutomy
0
110
Entity Framework Core におけるIN句クエリ最適化について
htkym
0
120
子育てで想像してなかった「見えないダメージ」 / Unforeseen "hidden burdens" of raising children.
pauli
2
320
AgentCore BrowserとClaude Codeスキルを活用した 『初手AI』を実現する業務自動化AIエージェント基盤
ruzia
7
1.4k
Featured
See All Featured
Documentation Writing (for coders)
carmenintech
77
5.2k
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
400
The State of eCommerce SEO: How to Win in Today's Products SERPs - #SEOweek
aleyda
2
9.1k
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
115
91k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
Winning Ecommerce Organic Search in an AI Era - #searchnstuff2025
aleyda
0
1.8k
Typedesign – Prime Four
hannesfritz
42
2.9k
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
47k
How to Talk to Developers About Accessibility
jct
1
85
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
510
Are puppies a ranking factor?
jonoalderson
0
2.4k
Ethics towards AI in product and experience design
skipperchong
1
140
Transcript
ベイズマルチファクターモデルと bPCausal ディップ株式会社|久保知生 2025-12-06
自己紹介 • 名前:久保知生/クボトモキ • 所属:ディップ株式会社 • 仕事:マーケティング施策 × 計量経済学・機械学習
この時間で話すこと • bPCausal:: • ベイジアンファクターモデルのよいところ
パネルデータの効果検証:DiD 介入効果 平行トレンド
DiDの課題 • 平行トレンド仮定を満たさない場合の対処 • ユニット・時間に特有の係数を入れられないこと • 信頼区間の説明が実務的に難しいこと
ベイジアンファクターモデルの強み • 平行トレンド仮定を満たさない場合の対処 – 処置ユニットのポテンシャルアウトカムを予測 • ユニット・時間に特有の係数を入れられないこと – OK •
信頼区間の説明が実務的に難しいこと – ベイズ信用区間
ドイツ再統合が西ドイツのGDPに与えた効果
「対照群」と「介入前の介入群」から 介入群のポテンシャルアウトカムをつくる https://yiqingxu.org/public/panel/lec3_handout.pdf 介入群 対照群 介入前 介入後
ベイジアンLasso + MCMC
統合された西ドイツ(実線)と 反実仮想西ドイツ(点線)
ドイツ統合が西ドイツのGDP与えた 平均処置効果
まとめ • 処置ユニットのポテンシャルアウトカムを予測 • ユニット・時間に特有の係数OK • ベイズ信用区間の構築
APPENDIX
準備 • 𝑖 = 1,2, ⋯ , 𝑁:ユニット • 𝑡
= 1,2, ⋯ , 𝑇:時間 • 𝑎𝑖 :各ユニットの介入タイミング(確率変数) – 𝑎𝑖 ∈ 𝐴 = {1,2, ⋯ , 𝑇, 𝑐})。 – 𝑎𝑖 = 𝑐 > 𝑇 のとき、ユニット𝑖は観測されるデータの中で介入 されない。
Estimand • 介入効果を以下で定義する。 • 𝛿𝑖𝑡 = 𝑦𝑖𝑡 𝑎𝑖 − 𝑦𝑖𝑡
𝑐 𝑎𝑖 ≤ 𝑡 ≤ 𝑇 – つまり、介入効果は介入群のユニット𝑖に対して、介入後のア ウトカムと反実仮想のアウトカムの差とされる。
識別過程:Latent ignorability • 𝑋𝑖 :共変量ベクトル • 𝑈𝑖 :ユニットレベルの異質性とユニット特有の時間トレンド • 𝑃𝑟
𝑎𝑖 |𝑋𝑖 , 𝑌𝑖 0 , 𝑈𝑖 = 𝑃𝑟 𝑎𝑖 |𝑋𝑖 , 𝑌𝑖 0 𝑚𝑖𝑠, 𝑌𝑖 0 𝑜𝑏𝑠, 𝑈𝑖 = 𝑃𝑟 𝑎𝑖 |𝑋𝑖 , 𝑈𝑖 • 𝑋𝑖 と𝑈𝑖 で条件付ければ、𝑌𝑖 0 なる時系列は割り当てメカニズムと独立。 • Strict Exogeneityの拡張 – 𝑈𝑖 で条件付ければ過去のアウトカムが現在・未来の処置に影響しない。
Functional form • ユニット𝑖の時間𝑡におけるポテンシャルアウトカムは以下で定義さ れる。 • 𝑦𝑖𝑡 𝑐 = 𝑋𝑖𝑡
′𝛽𝑖𝑡 + 𝛾𝑖 ′𝑓𝑡 + 𝜖𝑖𝑡 – 𝛽𝑖𝑡 = 𝛽 + 𝛼𝑖 + 𝜉𝑡 – 𝜉𝑡 = 𝜙𝜉 𝜉𝑡−1 + 𝑒𝑡 – 𝑓𝑡 = 𝜙𝑓 𝑓𝑡−1 + 𝜈𝑡 • 𝑋𝑖𝑡 :観測される共変量(時間不変、ユニット不変を許す) • 𝛾𝑖 ′𝑓𝑡 :潜在的なマルチファクター項
スパースモデリング • 𝛽の事前分布は以下のような階層構造にすることで、ベイズ 縮小を可能にしている。 – 𝛽𝑘 |𝜏𝑘 2 ∼ 𝑁
0, 𝜏𝑘 2 ∀1 ≤ 𝑘 ≤ 𝑝1 – 𝜏𝑘 2|𝜆𝛽 ∼ 𝐸𝑥𝑝 𝜆𝛽 2 2 – 𝜆𝛽 2 ∼ 𝒢 𝑎1 , 𝑎2 • ただし𝑝1 は共変量の個数。 • 𝜆𝛽 はLassoにおける正則化パラメータに相当。
スパースモデリング • 他のパラメータ𝛼𝑖 ,𝜉𝑖 ,𝛾𝑖 についてもre-parametarizetionによ る縮小アプローチがとられている。 – 𝛼𝑖 =
𝑤𝛼 ⋅ 𝛼𝑖 – 𝜉𝑖 = 𝑤𝜉 ⋅ ሚ 𝜉𝑖 – 𝛾𝑖 = 𝑤𝛾 ⋅ 𝛾𝑖 • それぞれの重み𝑤が0に近似されるのであればモデルに 含まれないようにする。