Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Paper-Survey: Objects as Points
Search
fam_taro
April 19, 2019
Science
0
2.4k
Paper-Survey: Objects as Points
fam_taro
April 19, 2019
Tweet
Share
More Decks by fam_taro
See All by fam_taro
NeRFの概要と 派生系についてのふんわり紹介
fam_taro
3
4.2k
実践 PyTorch Lightning (2019/11/30 分析コンペLT会 #1)
fam_taro
3
4.6k
Paper:ShapeMask
fam_taro
0
75
Summary: Objects as Points
fam_taro
0
3.2k
Tensorコアを使った PyTorch の高速化について
fam_taro
4
4k
Sequence to Sequence Learning with Neural Networks
fam_taro
1
1.1k
Other Decks in Science
See All in Science
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
2
630
DMMにおけるABテスト検証設計の工夫
xc6da
1
1.4k
Cross-Media Technologies, Information Science and Human-Information Interaction
signer
PRO
3
31k
My Little Monster
juzishuu
0
290
機械学習 - SVM
trycycle
PRO
1
940
Celebrate UTIG: Staff and Student Awards 2025
utig
0
370
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
890
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
1
250
先端因果推論特別研究チームの研究構想と 人間とAIが協働する自律因果探索の展望
sshimizu2006
3
490
次代のデータサイエンティストへ~スキルチェックリスト、タスクリスト更新~
datascientistsociety
PRO
1
17k
なぜ21は素因数分解されないのか? - Shorのアルゴリズムの現在と壁
daimurat
0
200
Distributional Regression
tackyas
0
190
Featured
See All Featured
Practical Orchestrator
shlominoach
190
11k
Facilitating Awesome Meetings
lara
57
6.7k
Bash Introduction
62gerente
615
210k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
710
Raft: Consensus for Rubyists
vanstee
141
7.2k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Building an army of robots
kneath
306
46k
How STYLIGHT went responsive
nonsquared
100
5.9k
Writing Fast Ruby
sferik
630
62k
YesSQL, Process and Tooling at Scale
rocio
174
15k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
120
20k
Transcript
จLT: Objects as Points h"ps:/ /arxiv.org/abs/1904.07850 2019/04/19 ౻ຊ༟հ 1
࣍ • ஶऀใ • ֓ཁ • ͜Ε·ͰͷϞσϧͱͷҧ͍ • ਫ਼ •
ͦͷଞײ 2
ஶऀใ • Xingyi Zhou(UT Aus1n) • Dequan Wang(UC Berkeley) •
Philipp Krähenbühl(UT Aus1n) 3
ಛ • ମݕग़Ϟσϧ • ༗໊ͳྫ: SSD, YOLOv3, Re.naNet, M2Det... •
ݕग़ͷΈͳΒͣ࢟ɾdepthɾ͖ɾ3d size ʹద༻͍ͯ͠Δ • backbone ͱͯ͠ DLA(deep layers aggrega.on) Hourglass(CornerNet Ͱ ༻) Λ༻ 4
ಛ • bounding box ΛΘͣʹݕग़Λߦ͏Ϟσϧ(keypointਪఆ) • bounding box ༻ͷ grid
ͷΘΓʹ͕ࡉ͔͍ heatmap(H, W Λ4Ͱׂͬͨఔ ͷͷ) Λग़ྗ • heatmap ͕ߴ͍ॴ() Λମͷத৺ͱਪఆ • த৺ͱͳΔॴͷ feature ͔Βମͷେ͖͞ɾࢄԽޡࠩΛਪఆ • ࢄԽޡࠩ = heatmap ʹͨ͠ࡍͷޡࠩ • େ͖͞ʹ͍ͭͯ scale ͍ͯ͠ͳ͍(ͦͷ··ͷ) 5
ಛ • ༧ଌϘοΫε = heatmap ͷ࠲ඪ + ༧ଌϘοΫεαΠζ + ༧ଌࢄԽޡࠩ
• ֶशʹ͏ heatmap ͷ 1ମʹ͖ͭ 1ͭͷΈ • SSD ͷΑ͏ʹ IoU ͷॏͳΓ۩߹Ͱ background ͔൱͔Λ͚ͳ͍ • ෳ box ग़͞ͳ͍͜ͱΛલఏͱ͍ͯ͠Δ • ಉ͡ΫϥεͰॏͳͬͯ͠·͏߹͕͋Δ͕શମͷ 0.1 % ະຬͰ RCNN(2% ະ ຬ) ΑΓখ͍͞ 6
Πϝʔδਤ 7
͜Ε·ͰͷϞσϧͱͷҧ͍ • Object detec*on with implicit anchors(SSD, YOLO, Re*naNet )ͱͷҧ͍
• CenterNetശͷॏͳΓͰͳ͘ҐஔͷΈʹج͍ͮͯʮΞϯΧʔʯΛׂ • લܠͱഎܠͷྨʹؔ͢Δखಈͷ͖͍͠ͳ͍(IoU 0.5 > ͱ͔) • ମຖʹϙδςΟϒͳΞϯΧʔ1͚ͭͩͳͷͰ NMS Λඞཁͱ͠ͳ͍ • We simply extract local peaks in the keypoint heatmap • keypoint heatmap ͔ΒϩʔΧϧϐʔΫΛநग़͢Δ͚ͩͰྑ͍ 8
͜Ε·ͰͷϞσϧͱͷҧ͍ • Object detec*on with implicit anchors(SSD, YOLO, Re*naNet )ͱͷҧ͍
• CenterNetΑΓେ͖ͳग़ྗղ૾Λ͏ • mask r-cnn ͱ͔ͱൺֱͯ͠ • output stride of 16 • ͜ΕʹΑΓෳͷΞϯΧʔ͕ෆཁͱͳΔʁʁʁʁ • [1711.08189] An Analysis of Scale Invariance in Object Detec*on - SNIP 9
͜Ε·ͰͷϞσϧͱͷҧ͍ • Object detec*on by keypoint es*ma*on(CornerNet, ExtremeNet )ͱͷҧ͍ •
্ه 2ͭ keypoint ݕग़ޙʹ Έ߹ΘͤΛ grouping ͢Δඞཁ͕͋Δ • ͘ͳͬͯ͠·͏ • CenterNet ඞཁͱ͠ͳ͍ • ͍ʂ 10
ਫ਼ 11
ਫ਼(M2Det ͷ݁ՌΛࢹͰՃͯ͠Έͨ) 12
ͦͷଞײ • Backbone ͱͯ͠ DLA Λ͑ΔͷΛॳΊͯͬͨ • Ή͠Ζ DLA ॳΊͯΓ·ͨ͠
! • NMS ͕ෆཁʹͳΔͷຯʹخ͍͠ • anchor ͕ফ͑Δͷخ͍͠ • খ͍͞ମʹରͯ͠ͲΕ͚ͩରԠͰ͖Δ͔֬ೝ͠ͳ͍ͱ 13