Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Paper-Survey: Objects as Points
Search
fam_taro
April 19, 2019
Science
0
2.3k
Paper-Survey: Objects as Points
fam_taro
April 19, 2019
Tweet
Share
More Decks by fam_taro
See All by fam_taro
NeRFの概要と 派生系についてのふんわり紹介
fam_taro
3
4.2k
実践 PyTorch Lightning (2019/11/30 分析コンペLT会 #1)
fam_taro
3
4.5k
Paper:ShapeMask
fam_taro
0
70
Summary: Objects as Points
fam_taro
0
3.2k
Tensorコアを使った PyTorch の高速化について
fam_taro
4
4k
Sequence to Sequence Learning with Neural Networks
fam_taro
1
1.1k
Other Decks in Science
See All in Science
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
330
傾向スコアによる効果検証 / Propensity Score Analysis and Causal Effect Estimation
ikuma_w
0
130
コンピュータビジョンによるロボットの視覚と判断:宇宙空間での適応と課題
hf149
1
320
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
980
データベース01: データベースを使わない世界
trycycle
PRO
1
770
01_篠原弘道_SIPガバニングボード座長_ポスコロSIPへの期待.pdf
sip3ristex
0
660
MCMCのR-hatは分散分析である
moricup
0
440
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
2
1.5k
システム数理と応用分野の未来を切り拓くロードマップ・エンターテインメント(スポーツ)への応用 / Applied mathematics for sports entertainment
konakalab
1
390
データベース15: ビッグデータ時代のデータベース
trycycle
PRO
0
340
Ignite の1年間の軌跡
ktombow
0
150
「美は世界を救う」を心理学で実証したい~クラファンを通じた新しい研究方法
jimpe_hitsuwari
1
160
Featured
See All Featured
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
910
The Cult of Friendly URLs
andyhume
79
6.6k
The Straight Up "How To Draw Better" Workshop
denniskardys
236
140k
Making the Leap to Tech Lead
cromwellryan
135
9.5k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
187
55k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.5k
RailsConf 2023
tenderlove
30
1.2k
Site-Speed That Sticks
csswizardry
10
810
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Statistics for Hackers
jakevdp
799
220k
Transcript
จLT: Objects as Points h"ps:/ /arxiv.org/abs/1904.07850 2019/04/19 ౻ຊ༟հ 1
࣍ • ஶऀใ • ֓ཁ • ͜Ε·ͰͷϞσϧͱͷҧ͍ • ਫ਼ •
ͦͷଞײ 2
ஶऀใ • Xingyi Zhou(UT Aus1n) • Dequan Wang(UC Berkeley) •
Philipp Krähenbühl(UT Aus1n) 3
ಛ • ମݕग़Ϟσϧ • ༗໊ͳྫ: SSD, YOLOv3, Re.naNet, M2Det... •
ݕग़ͷΈͳΒͣ࢟ɾdepthɾ͖ɾ3d size ʹద༻͍ͯ͠Δ • backbone ͱͯ͠ DLA(deep layers aggrega.on) Hourglass(CornerNet Ͱ ༻) Λ༻ 4
ಛ • bounding box ΛΘͣʹݕग़Λߦ͏Ϟσϧ(keypointਪఆ) • bounding box ༻ͷ grid
ͷΘΓʹ͕ࡉ͔͍ heatmap(H, W Λ4Ͱׂͬͨఔ ͷͷ) Λग़ྗ • heatmap ͕ߴ͍ॴ() Λମͷத৺ͱਪఆ • த৺ͱͳΔॴͷ feature ͔Βମͷେ͖͞ɾࢄԽޡࠩΛਪఆ • ࢄԽޡࠩ = heatmap ʹͨ͠ࡍͷޡࠩ • େ͖͞ʹ͍ͭͯ scale ͍ͯ͠ͳ͍(ͦͷ··ͷ) 5
ಛ • ༧ଌϘοΫε = heatmap ͷ࠲ඪ + ༧ଌϘοΫεαΠζ + ༧ଌࢄԽޡࠩ
• ֶशʹ͏ heatmap ͷ 1ମʹ͖ͭ 1ͭͷΈ • SSD ͷΑ͏ʹ IoU ͷॏͳΓ۩߹Ͱ background ͔൱͔Λ͚ͳ͍ • ෳ box ग़͞ͳ͍͜ͱΛલఏͱ͍ͯ͠Δ • ಉ͡ΫϥεͰॏͳͬͯ͠·͏߹͕͋Δ͕શମͷ 0.1 % ະຬͰ RCNN(2% ະ ຬ) ΑΓখ͍͞ 6
Πϝʔδਤ 7
͜Ε·ͰͷϞσϧͱͷҧ͍ • Object detec*on with implicit anchors(SSD, YOLO, Re*naNet )ͱͷҧ͍
• CenterNetശͷॏͳΓͰͳ͘ҐஔͷΈʹج͍ͮͯʮΞϯΧʔʯΛׂ • લܠͱഎܠͷྨʹؔ͢Δखಈͷ͖͍͠ͳ͍(IoU 0.5 > ͱ͔) • ମຖʹϙδςΟϒͳΞϯΧʔ1͚ͭͩͳͷͰ NMS Λඞཁͱ͠ͳ͍ • We simply extract local peaks in the keypoint heatmap • keypoint heatmap ͔ΒϩʔΧϧϐʔΫΛநग़͢Δ͚ͩͰྑ͍ 8
͜Ε·ͰͷϞσϧͱͷҧ͍ • Object detec*on with implicit anchors(SSD, YOLO, Re*naNet )ͱͷҧ͍
• CenterNetΑΓେ͖ͳग़ྗղ૾Λ͏ • mask r-cnn ͱ͔ͱൺֱͯ͠ • output stride of 16 • ͜ΕʹΑΓෳͷΞϯΧʔ͕ෆཁͱͳΔʁʁʁʁ • [1711.08189] An Analysis of Scale Invariance in Object Detec*on - SNIP 9
͜Ε·ͰͷϞσϧͱͷҧ͍ • Object detec*on by keypoint es*ma*on(CornerNet, ExtremeNet )ͱͷҧ͍ •
্ه 2ͭ keypoint ݕग़ޙʹ Έ߹ΘͤΛ grouping ͢Δඞཁ͕͋Δ • ͘ͳͬͯ͠·͏ • CenterNet ඞཁͱ͠ͳ͍ • ͍ʂ 10
ਫ਼ 11
ਫ਼(M2Det ͷ݁ՌΛࢹͰՃͯ͠Έͨ) 12
ͦͷଞײ • Backbone ͱͯ͠ DLA Λ͑ΔͷΛॳΊͯͬͨ • Ή͠Ζ DLA ॳΊͯΓ·ͨ͠
! • NMS ͕ෆཁʹͳΔͷຯʹخ͍͠ • anchor ͕ফ͑Δͷخ͍͠ • খ͍͞ମʹରͯ͠ͲΕ͚ͩରԠͰ͖Δ͔֬ೝ͠ͳ͍ͱ 13