Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MoAコンペで気づいたこと
Search
fkubota
December 19, 2020
Programming
1
750
MoAコンペで気づいたこと
fkubota
December 19, 2020
Tweet
Share
More Decks by fkubota
See All by fkubota
相対性理論の入門の入門
fkubota
0
33
データドリブンな組織の不正検知
fkubota
0
2.1k
JupyterNotebookでのdebug入門(サンプルは説明欄にあります)
fkubota
6
13k
ルールベース画像処理のススメ
fkubota
17
15k
Kaggle日記について
fkubota
1
2.5k
鳥コンペで惨敗した話とコンペの取り組み方
fkubota
1
6.7k
クロマベクトルって何?
fkubota
1
2.2k
生産性と戦った僕の1年の記録とツールたち
fkubota
6
6.6k
Other Decks in Programming
See All in Programming
人には人それぞれのサービス層がある
shimabox
3
630
テスト分析入門/Test Analysis Tutorial
goyoki
13
2.8k
Cursor Meetup Tokyo ゲノミクスとCursor: 進化と制約のあいだ
koido
2
870
TypeScript LSP の今までとこれから
quramy
1
460
Enterprise Web App. Development (2): Version Control Tool Training Ver. 5.1
knakagawa
1
110
20250528 AWS Startupイベント登壇資料:AIコーディングの取り組み
procrustes5
0
150
Gleamという選択肢(仮)
comamoca
3
220
ワイがおすすめする新潟の食 / 20250530phpconf-niigata-eve
kasacchiful
0
290
#QiitaBash TDDでAIに設計イメージを伝える
ryosukedtomita
2
1.7k
イベントストーミングから始めるドメイン駆動設計
jgeem
3
750
Passkeys for Java Developers
ynojima
2
780
複数アプリケーションを育てていくための共通化戦略
irof
9
3.5k
Featured
See All Featured
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Building an army of robots
kneath
306
45k
Git: the NoSQL Database
bkeepers
PRO
430
65k
A Modern Web Designer's Workflow
chriscoyier
693
190k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
47
2.8k
Producing Creativity
orderedlist
PRO
346
40k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
48
5.4k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.5k
The World Runs on Bad Software
bkeepers
PRO
68
11k
Transcript
MoAコンペで気づいたこと fkubota https://www.kaggle.com/fkubota
さっそくですが モデルの性能をtarget_columnごとで評価したことありますか? 僕はあります。 今回のコンペのmetricを見てみましょう。 これを変形してみます。 https://www.kaggle.com/c/lish-moa/overview/evaluation
row方向 column方向 mのみに依存
各カラム毎にscoreを出力できた!
ターゲットカラム毎に評価はできました。 1つ1つ結果を確認するのもいいですが、 もう少しおもしろいことをしましょう。
1の数(n)を数えてみる 17 18 24 190 301 仮説: nが小さいほど(学習が困難になって)lossが大きいのでは? n =
n vs logloss でプロット nが小さいほどうまく学習ができていない? ---> nが小さいほどloglossは大きくなる? 右のグラフを見る限りそうでもない。 仮説は否定された。なんでこうなるの? あと、右上に単調増加する意味ありげな形
これはなにかあるぞ。。。
そもそも、nが1とかだったら、 モデルに予測させるのではなく、 全部0埋めすればいいのでは? こいつら学習させることで きるんですか?
0で埋めるのが最適かはわからない。 0に近い値で埋めたほうがいいのは確か。 どの程度の一定値で埋めればいい? n=1, 2, 3, 4, 5のときに、様々な一定値で埋めて score_colを計算した。 横軸は、埋めた一定値の値。
縦軸はscore_col の値。 最適な一定値はnによって変わる。
実はこの最適な一定値は解析的に計算できる。 簡単に紹介(自分で計算してみてね)。
score_colを最小とするようなCをC_0とする (記号の雑さ、数学的な厳密性の欠如は今は目を瞑ってください m(_ _)m) これを解くと... 美しい感じの解出た! 直感的!!
求めた解を使って、nごとにプロットしてみる おっ??
いっしょにプロット おおおおおおお!
つまり? 計算したloglossを赤色でプロットした。 見事に一致している部分が多くある。 赤色と重なっている青い部分はこう解釈できる。 「1は予測できないが、たまに1がtargetにある。すべて0 にpredictしてしまうとペナルティが大きくなってしまうの で、ちょうどいい感じの値を出しておこう」 モデルは、1を頑張って予測しようとしているのではな く、ペナルティが最小限になるような値を出力しているに 過ぎないと言える。
赤い線に近い値を取っているカラムは 全く学習していない!!!
シェイクの予感 - ほとんどの参加者は、この事に気づいていない - スコアに大きな影響があるのはnが大きいターゲット - おそらくほとんどのモデルはnが小さいターゲットはほとんど学習で きていない - モデルは、nが小さなターゲットではn(1が何個含まれているか?)し
か見ていない。 - testとtrainでnの数に大きな差があれば性能は極端に落ちる。 nが小さいtargetで性能を出せればシェイクアップはできる!!
コンペ後半は、n<200の部分だけの性能アップに注力 - focal loss - mixup - LabelSmoothing - etc….
mixupが一番効く!!
cool_rabbitさんによる実験 黄色: mixup なし 青色: mixupあり 良くなってる 悪くなってる アンサンブルの時、 このモデルはN<200
の部分だけを使うなどの工 夫をした
シェイクアップ!!!!
None