Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MoAコンペで気づいたこと
Search
fkubota
December 19, 2020
Programming
1
710
MoAコンペで気づいたこと
fkubota
December 19, 2020
Tweet
Share
More Decks by fkubota
See All by fkubota
データドリブンな組織の不正検知
fkubota
0
1.9k
JupyterNotebookでのdebug入門(サンプルは説明欄にあります)
fkubota
6
12k
ルールベース画像処理のススメ
fkubota
17
15k
Kaggle日記について
fkubota
1
2.4k
鳥コンペで惨敗した話とコンペの取り組み方
fkubota
1
6.4k
クロマベクトルって何?
fkubota
1
1.9k
生産性と戦った僕の1年の記録とツールたち
fkubota
6
6.5k
Other Decks in Programming
See All in Programming
Outline View in SwiftUI
1024jp
1
330
Click-free releases & the making of a CLI app
oheyadam
2
120
Figma Dev Modeで変わる!Flutterの開発体験
watanave
0
140
型付き API リクエストを実現するいくつかの手法とその選択 / Typed API Request
euxn23
8
2.2k
GitHub Actionsのキャッシュと手を挙げることの大切さとそれに必要なこと
satoshi256kbyte
5
430
レガシーシステムにどう立ち向かうか 複雑さと理想と現実/vs-legacy
suzukihoge
14
2.2k
Arm移行タイムアタック
qnighy
0
330
色々なIaCツールを実際に触って比較してみる
iriikeita
0
330
CSC509 Lecture 09
javiergs
PRO
0
140
3 Effective Rules for Using Signals in Angular
manfredsteyer
PRO
0
120
Remix on Hono on Cloudflare Workers
yusukebe
1
300
イベント駆動で成長して委員会
happymana
1
330
Featured
See All Featured
BBQ
matthewcrist
85
9.3k
Building a Scalable Design System with Sketch
lauravandoore
459
33k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
38
1.8k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.1k
Happy Clients
brianwarren
98
6.7k
Six Lessons from altMBA
skipperchong
27
3.5k
Git: the NoSQL Database
bkeepers
PRO
427
64k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
48k
Practical Orchestrator
shlominoach
186
10k
Docker and Python
trallard
40
3.1k
Designing on Purpose - Digital PM Summit 2013
jponch
115
7k
The Invisible Side of Design
smashingmag
298
50k
Transcript
MoAコンペで気づいたこと fkubota https://www.kaggle.com/fkubota
さっそくですが モデルの性能をtarget_columnごとで評価したことありますか? 僕はあります。 今回のコンペのmetricを見てみましょう。 これを変形してみます。 https://www.kaggle.com/c/lish-moa/overview/evaluation
row方向 column方向 mのみに依存
各カラム毎にscoreを出力できた!
ターゲットカラム毎に評価はできました。 1つ1つ結果を確認するのもいいですが、 もう少しおもしろいことをしましょう。
1の数(n)を数えてみる 17 18 24 190 301 仮説: nが小さいほど(学習が困難になって)lossが大きいのでは? n =
n vs logloss でプロット nが小さいほどうまく学習ができていない? ---> nが小さいほどloglossは大きくなる? 右のグラフを見る限りそうでもない。 仮説は否定された。なんでこうなるの? あと、右上に単調増加する意味ありげな形
これはなにかあるぞ。。。
そもそも、nが1とかだったら、 モデルに予測させるのではなく、 全部0埋めすればいいのでは? こいつら学習させることで きるんですか?
0で埋めるのが最適かはわからない。 0に近い値で埋めたほうがいいのは確か。 どの程度の一定値で埋めればいい? n=1, 2, 3, 4, 5のときに、様々な一定値で埋めて score_colを計算した。 横軸は、埋めた一定値の値。
縦軸はscore_col の値。 最適な一定値はnによって変わる。
実はこの最適な一定値は解析的に計算できる。 簡単に紹介(自分で計算してみてね)。
score_colを最小とするようなCをC_0とする (記号の雑さ、数学的な厳密性の欠如は今は目を瞑ってください m(_ _)m) これを解くと... 美しい感じの解出た! 直感的!!
求めた解を使って、nごとにプロットしてみる おっ??
いっしょにプロット おおおおおおお!
つまり? 計算したloglossを赤色でプロットした。 見事に一致している部分が多くある。 赤色と重なっている青い部分はこう解釈できる。 「1は予測できないが、たまに1がtargetにある。すべて0 にpredictしてしまうとペナルティが大きくなってしまうの で、ちょうどいい感じの値を出しておこう」 モデルは、1を頑張って予測しようとしているのではな く、ペナルティが最小限になるような値を出力しているに 過ぎないと言える。
赤い線に近い値を取っているカラムは 全く学習していない!!!
シェイクの予感 - ほとんどの参加者は、この事に気づいていない - スコアに大きな影響があるのはnが大きいターゲット - おそらくほとんどのモデルはnが小さいターゲットはほとんど学習で きていない - モデルは、nが小さなターゲットではn(1が何個含まれているか?)し
か見ていない。 - testとtrainでnの数に大きな差があれば性能は極端に落ちる。 nが小さいtargetで性能を出せればシェイクアップはできる!!
コンペ後半は、n<200の部分だけの性能アップに注力 - focal loss - mixup - LabelSmoothing - etc….
mixupが一番効く!!
cool_rabbitさんによる実験 黄色: mixup なし 青色: mixupあり 良くなってる 悪くなってる アンサンブルの時、 このモデルはN<200
の部分だけを使うなどの工 夫をした
シェイクアップ!!!!
None