Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ファインディLT_ポケモン対戦の定量的分析
Search
Yusuke Fukasawa
February 16, 2025
Programming
0
1.1k
ファインディLT_ポケモン対戦の定量的分析
https://findy.connpass.com/event/343746/
で発表した資料です。
Yusuke Fukasawa
February 16, 2025
Tweet
Share
More Decks by Yusuke Fukasawa
See All by Yusuke Fukasawa
対戦におけるポケモンの “意味変化”を追う_リモートポケモン学会
fufufukakaka
0
160
機械学習を用いたポケモン対戦選出予測
fufufukakaka
1
1.1k
Poke_Battle_Logger の紹介: リモポケ学会20230714
fufufukakaka
1
970
Poke_Battle_Loggerの紹介
fufufukakaka
0
350
Cookpad TechConf2022 / Machine-Learning-At-Cookpad-Mart
fufufukakaka
1
3.2k
20221116_MLOps勉強会_クックパッドマートにおける推薦タスクとMLOps
fufufukakaka
2
1.8k
RedshiftML in Cookpad
fufufukakaka
2
7.6k
Other Decks in Programming
See All in Programming
「理解」を重視したAI活用開発
fast_doctor
0
310
SwiftDataのカスタムデータストアを試してみた
1mash0
0
150
監視 やばい
syossan27
12
10k
ウォンテッドリーの「ココロオドル」モバイル開発 / Wantedly's "kokoro odoru" mobile development
kubode
2
630
生成AI時代のフルスタック開発
kenn
7
790
AIコーディングの理想と現実
tomohisa
38
40k
Lambda(Python)の リファクタリングが好きなんです
komakichi
5
270
Beyond_the_Prompt__Evaluating__Testing__and_Securing_LLM_Applications.pdf
meteatamel
0
110
データと事例で振り返るDevin導入の"リアル" / The Realities of Devin Reflected in Data and Case Studies
rkaga
3
2.3k
The New Developer Workflow: How AI Transforms Ideas into Code
danielsogl
0
140
プロフェッショナルとしての成長「問題の深掘り」が導く真のスキルアップ / issue-analysis-and-skill-up
minodriven
8
2k
OpenTelemetry + LLM = OpenLLMetry!?
yunosukey
1
160
Featured
See All Featured
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.3k
[RailsConf 2023] Rails as a piece of cake
palkan
54
5.5k
Rails Girls Zürich Keynote
gr2m
94
13k
Statistics for Hackers
jakevdp
799
220k
We Have a Design System, Now What?
morganepeng
52
7.6k
Music & Morning Musume
bryan
47
6.5k
The Power of CSS Pseudo Elements
geoffreycrofte
75
5.8k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.7k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
179
53k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
160
15k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2k
Speed Design
sergeychernyshev
29
940
Transcript
趣味の紹介 ポケモン対戦の定量的分析 Yusuke Fukasawa ファインディ様 個人開発自慢LTNight 2025/02
• fufufukakaka • 機械学習エンジニア at コミューン株式会社 ◦ リクルート→クックパッド→ • 得意な領域は自然言語処理と推薦技術
• 朝7時からテニスをするのが趣味(平日2回) 自己紹介
趣味: ポケモン対戦 (シングル・ランクバトル)
趣味: ポケモン対戦 (シングル・ランクバトル) (エンジョイ)
6体同士を見せあって、3体を選んで戦う
ポケモン対戦は 分析しやすいし分析したくなる
- 2人同時手番ゲーム: じゃんけんと構造は同じ - ただ、取りうる手やステータスの配分はかなり無限 - 統計情報が公開されている - 技構成などの遭遇率はわかる -
6体見せあってから3体を出す構造が面白い - マクロとミクロ両方で読み合いが起きる - 長い歴史が続いているゲーム - 分析対象として意義が深い - あわよくば強くなりたい (小声) ポケモン対戦の分析しやすさと魅力
これまでの取り組み
これまでの取り組み
- HDMIキャプチャで対戦動画を YouTube にアップ - YouTube URL を入力すると自動でその対戦から得 られる Stats
を収集するアプリを開発 - 自作のポケモン画像判別機などを作成 - 今も手元で使っています - 本当は何かしらの方法で配布したかった んですが、その手間をかけられなかった 機械学習でポケモン対戦動画 を解析する
None
None
None
None
None
(時間があれば )画面を触ってみるデモ
構成図
- 前述した方法で集めた対戦履歴を用いて選出予測モ デルを作ってみた - 自分と相手の6体を入力として、相手の6体に対して 初手選出・それ以外での選出・選出されない、という Token Classification - ポケモンを単語とみなした
BERT で学習 - 初手はまあまあ当てられるのが良かった - ランダムよりは良い程度ですが... 機械学習を用いたポケモン 対戦選出予測
- 前述した方法で集めた対戦履歴を用いてポケモンを単 語とみなしたベクトルを計算 - その時系列変化を追うことで”意味”変化の大きい・小さ いポケモンを見つけようとした - よく上位構築に採用されるポケモンでも意味変化の大 きい・そうでないの差があって面白かった 対戦におけるポケモンの意味
変化を追う
まとめ • ポケモンの対戦動画を解析するアプリを作って遊んで います • 得たデータを活かして機械学習応用にチャレンジして います • 次の目標は対戦中にアドバイスしてくれる LLM
エー ジェント・自動でポケモン対戦をする強化学習エージェ ントの作成