Upgrade to Pro — share decks privately, control downloads, hide ads and more …

A Parallel GP MOOP Framework, Applied to Beam D...

Avatar for Yves Ineichen Yves Ineichen
September 11, 2012

A Parallel GP MOOP Framework, Applied to Beam Dynamic Studies

Presented at ICAP 2012

Avatar for Yves Ineichen

Yves Ineichen

September 11, 2012
Tweet

More Decks by Yves Ineichen

Other Decks in Research

Transcript

  1. A Parallel General Purpose Multi-Objective Optimization Framework, Applied to Beam

    Dynamic Studies Yves Ineichen1,2,3, Andreas Adelmann2, Costas Bekas3, Alessandro Curioni3, Peter Arbenz1 1ETH Zürich Department of Computer Science CH-8092 Zürich, Switzerland 2Paul Scherrer Institut Accelerator Modelling and Advanced Simulations CH-5234 Villigen, Switzerland 3IBM Research-Zurich CH-8803 Rüschlikon, Switzerland 21st August 2012 1 / 37
  2. . . Complex Decision Problem . Trade-off . Effect .

    Design and oper- ation of particle accelerators . Multi-Objective Optimization Problem . MOO Algorithms . Simulation Codes . High performance computing . Applications . Visualization 2 / 37
  3. Multi-Objective Optimization Problem min . fm(x. ), m = 1

    . . . M s.t. gj(x) ≥ 0, j = 0 . . . J xL i ≤ x = xi ≤ xU i , i = 0 . . . n . . Objectives . Design variables . Constraints 4 / 37
  4. Mapping design to objective space . . x1 . x2

    Design space . . f1 . f2 Objective space . . min . min 5 / 37
  5. Mapping design to objective space . . x1 . x2

    Design space . . f1 . f2 Objective space . . min . min 5 / 37
  6. Optimality? . . f2 . f1 . price . performance

    . low . low . high . high . x∗ 0 . x∗ 1 . x∗ 2 . x∗ 3 . x4 • conflicting objectives: minimize price maximize performance • red points are “equally optimal”: cannot improve one point without hurting at least one other solution → Pareto optimality • blue curve is called Pareto front • x4 is dominated by x∗ 1 and x∗ 2 6 / 37
  7. Preference Specification . . f2 . f1 . price .

    performance . low . low . high . high . x∗ a-priori a-priori preference: e.g. performance ≫ price → x∗ a-priori a-posteriori preference: → Pareto front • provides deeper understanding of solution space • visualizes how choice affects design space 7 / 37
  8. . . Multiobjective Optimization . reduce to single- objective .

    . a priori ar- ticulation of preference . . weighted sum . weighted global criterion . Chankong, Haimes 83 . Zeleny 82 . Yu, Leit- mann 74 . lexico- graphic . Osyczka 84 . Waltz 67 . weighted min-max . Miettin- en 99 . exponen-tial weighted . Athan, Pa- palam- bros 96 . weighted product . Gerasimov, Repko 78 . Bridg- man 22 . goal pro- gramming . Charnes et al. 67/55 . Ijiri 65 . Charnes, Cooper 61 . bounded objective function . Hwang, Md. Masud 79 . Haimes et al. 71 . physical pro- gramming . Chen et al. 00 . Messac 96 . a posteriori articula- tion of preference . . physical pro- gramming . Messac, Mattson 02 . Martinez et al. 01 . NBI . Das 99 . Das, Dennis 98 . NC . Messac et al. 03 . no artic- ulation of preference . . global criterion . TOPSIS . Hwang et al. 93 . Yoon 80 . object- ive sum . Chankong, Haimes 83 . Zeleny 82 . Yu, Leit- mann 74 . min-max . Li 92 . Osyczka 78 . Yu 73 . Nash arbitration . Straffin 93 . Davis 83 . object- ive product . Cheng, Li 96 . Rao . Rao 87 . Rao and Freiheit 91 . multi- objective . . simulated annealing . . SMOSA . Suppap- itnarm et al 00 . UMOSA . Ulunga et al 98,99 . PSA . Czyzak et al 96-98 . WMOSA . Susman 02-04 . PDMOSA . Susman 03-05 . particle swarm . . Aggrega- tion . Parso- poulos et al . Baum- gartner et al . Lexico- graphic . Hu and Eberhart . Sub- Popula-tion . Parso- poulos et al . Chow and Tsui . Comb-ined . Mah- fouf et al. . Xiao-hua et al. . Other . Li . Zhang et al. . Pareto- based . Moore and Chap- man . Ray and Liew . Field- send and Singh . ... . evolution- ary algorithms . . ranking . Gold- berg 89 . Fonseca, Fleming 93 . Srinivas, Deb 95 . Cheng, Li 95 . VEGA . Schaf-fer 85 . Pareto-set filter . Cheng, Li 97 . tourna-ment selection . Horn et al. 94 . niche techniques . fitness sharing . additional techniques . eucli- dean distance . Osyc- zka, Kundu 96 . weigh- ted sum . Ishi- buchi, Murata 96 . zero- one- weigh- ted sum . Kurs- awe 91 . constr. preemp. goal prog. . Gen, Liu 95 . Pareto fitness func. . Schau- mann et al. 98 . • only one Pareto solution can be found in one run • preference-based (specify preference for trade-off solution) • not all can be found in non-convex MOOPS • all algorithms require a prior knowledge (weights, ε, targets) . • multiple Pareto solutions can be found in one run • a posteriori articulation of preference • “easier”: diversity in decision and objective space (non-linear mapping) 9 / 37
  9. Evolutionary Algorithms . . . Population . I1 . Ik

    . I2 . I3 . I4 . . Selector . 1. I4 , 2. Ik , 3. I2 , 4. I3 . 5. I1 , . . ., n. In . . Variator . I4 · Ik : . = 10 / 37
  10. Ranking individuals Non-dominated sorting genetic algorithm (Nsga-II) initialization: • count

    how many solutions np dominate solution p • store all solutions p dominates in set Sp • set k ← 0 Repeat while there exists solutions with np > 0: • for all solutions p with np = 0: • store solution in k-th non-dominated front • visit all members i of Sp and reduce ni by one • k ← k + 1 Order relation corresponds to index in set of non-dominated fronts A fast and elitist multiobjective genetic algorithm: NSGA-II, K. Deb et. al., IEEE Transactions on Evolutionary Computation, 6(2):182–197, Apr. 2002. 11 / 37
  11. Evolutionary Algorithms . . NSGA-II Selector . dispatch individuals .

    Variator . 2 individuals ready • PISA • Finite state machine • Nsga-II selector • access to many other selectors • “Continuous generations” • Independent bit mutations • Various crossover polices A Platform and Programming Language Independent Interface for Search Algorithms: http://www.tik.ee.ethz.ch/pisa/ 12 / 37
  12. First Population . . dE [MeV] . 0.20 . 0.22

    . 0.24 . 0.26 . 0.28 . 0.30 . emitx [mm mrad] . 0 . 5 . 10 . 15 . 20 13 / 37
  13. 649th Population . . dE [MeV] . 0.20 . 0.22

    . 0.24 . 0.26 . 0.28 . 0.30 . emitx [mm mrad] . 0 . 5 . 10 . 15 . 20 Now scientist/operator can specify preference 14 / 37
  14. Multi-Objective Optimization Framework . . Optimizer . Pilot . -

    - input . - - obj . - - constr . - - sims . OPAL . Convex Optimization Algorithms . Heuristic Algorithms 16 / 37
  15. Master/Worker Model . . . Optimizers . O1 . Oi

    . . Pilot . job . queue . j2 . j1 . j3 . j4 . r1 . . Workers . W1 . Wj 17 / 37
  16. Master/Worker Model Comp. Domain Optimizeri [coarse] multiple starting points, multiple

    opt. problems Corei Forward Solverj [fine] parallel E-T Workers [coarse] eval forward problem Optimizer [coarse] parallel optimizer 18 / 37
  17. Ingredients 1× optimization algorithm, 1× forward solver and 1× specification

    of optimization problem, e.g., annotating the simulation input file: //d1: DVAR, VARIABLE="D_LAG_RGUN", LOWERBOUND="-0.1", UPPERBOUND="0.1"; //d2: DVAR, VARIABLE="D_LAG_B01", LOWERBOUND="-0.1", UPPERBOUND="0.1"; //obj1: OBJECTIVE, EXPR="energy*-1"; //obj2: OBJECTIVE, EXPR="dE * meas_error("file", "rms_x")"; //objs: OBJECTIVES = (obj1, obj2); //dvars: DVARS = (d1, d2); //constrs: CONSTRAINTS = (); //opt: OPTIMIZE, OBJECTIVES=objs, DVARS=dvars, CONSTRAINTS=constrs; 20 / 37
  18. Maxwell’s Equation in the Electrostatic approximation . . Electro Magneto

    Optics . N-Body Dynamics . 1,2 or 3D Field Maps & Analytic Models (E, B)ext . Poisson Problem s.t. BC’s ∆ϕ′ sc = − ρ′ ϵ0 → (E, B)SC . H = Hext + Hsc . If E(x, t) and B(x) are known, the equation of motion can be integrated: • Boris-pusher (adaptive version soon!) • Leap-Frog • RK-4 22 / 37
  19. Object Oriented Parallel Accelerator Library (OPAL) OPAL is a tool

    for precise charged-particle optics in large accelerator structures and beam lines including 3D space charge. • built from the ground up as a parallel application • runs on your laptop as well as on the largest HPC clusters • uses the mad language with extensions • written in C++ using OO-techniques, hence OPAL is easy to extend • nightly regression tests track the code quality OPAL: https://amas.psi.ch/OPAL 24 / 37
  20. 3D Tracker . . e− . e− repulsive force of

    charged particles • Huge # of macro particles (100’000 – 100’000’000) • Computing space-charge is expensive • Load balancing difficult • Lots of synchronization points . . Slow but “high resolution” forward solver The Object Oriented Parallel Accelerator Library (OPAL), Design, Implementation and Application, A. Adelmann et. al. 25 / 37
  21. Envelope Tracker . . z . x . y •

    # slices ≪ # macro particles • Analytical space-charge • Slices distributed in contiguous blocks • Load imbalance of at most 1 slice • Low number of synchronization points Fast but “low resolution” forward solver A fast and scalable low dimensional solver for charged particle dynamics in large particle accelerators, Y. Ineichen et. al. 26 / 37
  22. Optimization Problem min [εx, ∆rmsx,peak, ∆εx,peak] //min_ex: OBJECTIVE, EXPR="emit_x"; //peak_rms_x:

    FROMFILE, FILE="rms_x-err.dat"; //peak_e_x: FROMFILE, FILE="emit_x-err.dat"; //sig_x: DVAR, VARIABLE="SIGX", LOWERBOUND="0.000250", UPPERBOUND="0.000250"; //sol_ks: DVAR, VARIABLE="MSOL10_i", LOWERBOUND="110", UPPERBOUND="120"; //lag_gun: DVAR, VARIABLE="D_LAG_GUN", LOWERBOUND="0.0", UPPERBOUND="0.05"; //volt_gun: DVAR, VARIABLE="RACC_v", LOWERBOUND="25", UPPERBOUND="40"; 28 / 37
  23. . . ∆εx, peak [m] . 0.05 . 0.10 .

    0.15 . 0.20 . 0.25 . 0.30 . 0.35 . ∆rmsx, peak [m] . 0.2 . 0.4 . 0.6 . 0.8 . 1.0 . 1.2 . 1.4 Pareto front after 1’000 generations (approx. 20 minutes on 16 cores) 29 / 37
  24. . . ∆εx, peak [m] . 0.05 . 0.10 .

    0.15 . 0.20 . 0.25 . 0.30 . 0.35 . ∆rmsx, peak [m] . 0.2 . 0.4 . 0.6 . 0.8 . 1.0 . 1.2 . 1.4 Pareto front after 1’000 generations (approx. 20 minutes on 16 cores) 29 / 37
  25. Conclusions Multi-Objective Optimization Problems • omnipresent in many fields in

    research and design • important in understanding problem and trade-off solutions • expensive to solve Framework • closes the gap between theory and user • combining OPAL and EA results in a viable MOOP solver for beam dynamics • HPC necessary to compute Pareto front in meaningful timeframe 31 / 37
  26. This project is funded by: IBM Research – Zurich Paul

    Scherrer Institut Acknowledgements • OPAL developer team • SwissFel team • Sumin Wei 33 / 37
  27. Optimization Problem min [energy spread, emittance] s.t. ∂t f(x, v,

    t) + v · ∇x f(x, v, t) + q m0 (Etot + v × Btot) · ∇v f(x, v, t) = 0 ∇ × B = µ0 J + µ0 ε0 ∂E ∂t , ∇ × E = − ∂B ∂t ∇ · E = ρ ε0 , ∇ · B = 0 ρ = −e ∫ f(x, v, t) d3p, J = −e ∫ f(x, v, t)v d3p E = Eext + Eself, B = Bext + Bself . . . 35 / 37
  28. Envelope Equations d2 d2t Ri + βiγ2 i d dt

    (βi Ri) + Ri ∑ j Kj i = 2c2kp Riβi × ( G(∆i, Ar) γ3 i − (1 − β2 i ) G(δi, Ar) γi ) + 4εth n c γi 1 R3 i d dt βi = e0 m0 cγ3 i ( Eext z (zi, t) + Esc z (zi, t) ) d dt zi = cβi 36 / 37
  29. SwissFel 1: Switzerland’s X-ray free-electron laser Project at PSI •

    big project: > 100 people, expensive, 700 m long • 1 Ångström • to reach target it is of crucial importance to attain “good” beam properties (e.g. narrow beam/small phase space volume) . 1http://www.psi.ch/swissfel/ 37 / 37
  30. SwissFel 1: Switzerland’s X-ray free-electron laser Project at PSI •

    big project: > 100 people, expensive, 700 m long • 1 Ångström • to reach target it is of crucial importance to attain “good” beam properties (e.g. narrow beam/small phase space volume) . . Calls for optimization of Injector • Several conflicting objectives • Key technology: multi-objective optimization 1http://www.psi.ch/swissfel/ 37 / 37