出力 入 力 学習済みAIモデル x1 x2 r1 r2 r3 r4 x3 x4 x5 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x16 r5 r6 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t10 寸法パラメータ(~数百個) 入力 固有振動数 No a1 a2 … al b1 b2 … bm L1 L2 … Ln x1 x2 … xJ r1 r2 … rK f1 1 0.386 0.062 … 0.879 0.226 0.894 … 1.465 0.531 0.695 … 0.442 0.242 0.835 … 1.636 2.069 1.328 … 0.447 3.022E+05 2 0.990 0.502 … 1.469 0.063 0.280 … 0.426 0.423 0.969 … 1.181 0.535 0.768 … 1.685 1.176 1.845 … 0.150 8.585E+05 3 0.871 0.425 … 1.374 0.844 0.399 … 0.907 0.407 0.503 … 1.510 0.839 0.478 … 0.121 1.088 1.076 … 0.259 4.357E+05 4 0.471 0.200 … 0.883 0.420 0.867 … 0.899 0.716 0.321 … 1.244 0.472 0.924 … 1.238 0.378 0.625 … 0.816 9.103E+05 5 0.157 0.468 … 1.573 0.510 0.446 … 0.981 0.197 0.115 … 0.612 0.484 0.791 … 0.340 2.036 1.319 … 0.442 1.289E+05 … … … … … … … … … … … … … … … … … … … … … … N-1 0.668 0.401 … 1.578 0.815 0.771 … 0.654 0.175 0.471 … 0.996 0.753 0.018 … 0.714 0.439 0.416 … 0.534 4.926E+05 N 0.610 0.237 … 0.359 0.306 0.414 … 0.096 0.403 0.861 … 1.080 0.169 0.455 … 1.309 1.143 0.544 … 0.332 4.143E+05 説明変数 目的変数 Bagging Voting Stacking feature1 (説明変数) feature2 (説明変数) featuren (説明変数) 特徴量設計 アンサンブル学習 各種回帰手法 サロゲートモデル 単一変量 Train! 分布を予測したい場合(PoD) 出力 入力 寸法パラメータ(~20個) 入力 Train! 学習済みAIモデル モニター点 No a b L1 L2 L3 R1 R2 P 1 0.207 0.005 1.199 1.151 1.046 0.233 0.996 6.496E+05 2 0.851 0.564 0.283 2.377 0.211 0.908 0.088 4.123E+05 … … … … … … … … … N 0.467 0.906 1.907 2.678 0.662 0.240 0.995 5.196E+05 説明変数 目的変数 PoD×ARBF 値の空間分布 サロゲートモデル 寸法パラメータを決められない場合(CNN/GNN) 固有振動数 を学習 入力 Train! 入力 Train! 固有モードを学習 AIモデル Deep Learning 応答曲面 No 断面形状 軸受け質量 リブA厚さ リブB高さ … 固有値 モード形状 1 197.1 2.859 8.831 … 3453 2 1242.2 1.648 6.654 … 3550 … … … … … … … … N 773.6 2.435 5.894 … 3207 サロゲートモデル 寸法 出力 出力 入力 入力 断面形状 画像 1次固有 振動数 固有モード形状 CADデータ 軸受け質量 リブA厚さ リブB高さ ・・・ 入力 学習済みAIモデル 目的変数 説明変数 目的変数 説明変数 多数の訓練データを用意できない場合(PINNs) 入 力 Train! 学習済みAIモデル Deep Leaning サロゲートモデル 出力 入力 ( x, y, z, t ) U (x,y,z,t) V (x,y,z,t) W (x,y,z,t) P (x,y,z,t) 方程式の 独立変数 支配方程式 方程式の 従属変数 方程式からサンプリング したデータで学習 u | x=0 = Uin P | x=1 = Pout 境界条件 実測 データ 説明変数 目的変数