Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Building Adaptive Systems
Search
Chris Keathley
May 28, 2020
Programming
36
2.1k
Building Adaptive Systems
Chris Keathley
May 28, 2020
Tweet
Share
More Decks by Chris Keathley
See All by Chris Keathley
Solid code isn't flexible
keathley
4
960
Contracts for building reliable systems
keathley
5
710
Kafka, the hard parts
keathley
2
1.5k
Building Resilient Elixir Systems
keathley
6
2k
Consistent, Distributed Elixir
keathley
5
1.4k
Telling stories with data visualization
keathley
0
530
Easing into continuous deployment
keathley
1
290
Leveling up your git skills
keathley
0
660
Generative Testing in Elixir
keathley
0
430
Other Decks in Programming
See All in Programming
令和トラベルにおけるLLM活用事例:社内ツール開発から得た学びと実践
ippo012
0
120
Some more adventure of Happy Eyeballs
coe401_
2
180
dRuby 入門者によるあなたの身近にあるdRuby 入門
makicamel
4
350
サーバーレスで負荷試験!Step Functions + Lambdaを使ったk6の分散実行
shuntakahashi
6
1.5k
マイグレーションコード自作して File-Based Routing に自動移行!! ~250 ページの歴史的経緯を添えて~
cut0
1
260
XStateでReactに秩序を与えたい
gizm000
0
710
大公開!iOS開発の悩みトップ5 〜iOSDC Japan 2024〜
ryunakayama
0
190
ブラウザ互換の重要性 - あらゆるユーザーに価値を届けるために必要なこと
yamanoku
0
110
『ドメイン駆動設計をはじめよう』中核の業務領域
masuda220
PRO
5
970
LangGraphでのHuman-in-the-Loopの実装
os1ma
3
1k
Increased Performance and Developer Productivity with Jakarta EE 11
ivargrimstad
0
210
The Sequel to a Dream of Ruby Parser's Grammar
ydah
1
220
Featured
See All Featured
Embracing the Ebb and Flow
colly
83
4.4k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
29
2.6k
Mobile First: as difficult as doing things right
swwweet
221
8.8k
Building a Scalable Design System with Sketch
lauravandoore
458
32k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
225
22k
Six Lessons from altMBA
skipperchong
26
3.3k
Faster Mobile Websites
deanohume
304
30k
Raft: Consensus for Rubyists
vanstee
135
6.5k
Fontdeck: Realign not Redesign
paulrobertlloyd
80
5.1k
Fashionably flexible responsive web design (full day workshop)
malarkey
401
65k
Java REST API Framework Comparison - PWX 2021
mraible
PRO
27
7.4k
Building Better People: How to give real-time feedback that sticks.
wjessup
359
18k
Transcript
Chris Keathley / @ChrisKeathley /
[email protected]
Building Adaptive Systems
Server Server
Server Server I have a request
Server Server
Server Server
Server Server No Problem!
Server Server
Server Server Thanks!
Server Server
Server Server I have a request
Server Server
Server Server
Server Server I’m a little busy
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I don’t feel so good
Server
Server Welp
Server Welp
All services have objectives
A resilient service should be able to withstand a 10x
traffic spike and continue to meet those objectives
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
What causes overload?
What causes overload? Server Queue
What causes overload? Server Queue Processing Time Arrival Rate >
Little’s Law Elements in the queue = Arrival Rate *
Processing Time
Little’s Law Server 1 requests = 10 rps * 100
ms 100ms
Little’s Law Server 1 requests = 10 rps * 100
ms 100ms
Little’s Law Server 1 requests = 10 rps * 100
ms 100ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms BEAM Processes
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms BEAM Processes CPU Pressure
Little’s Law Server 3 requests = 10 rps * 300
ms 300ms BEAM Processes CPU Pressure
Little’s Law Server 30 requests = 10 rps * 3000
ms 3000ms BEAM Processes CPU Pressure
Little’s Law Server 30 requests = 10 rps * ∞
ms ∞ BEAM Processes CPU Pressure
Little’s Law 30 requests = 10 rps * ∞ ms
Little’s Law ∞ requests = 10 rps * ∞ ms
Little’s Law ∞ requests = 10 rps * ∞ ms
This is bad
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Overload Arrival Rate > Processing Time
Overload Arrival Rate > Processing Time We need to get
these under control
Load Shedding Server Queue Server
Load Shedding Server Queue Server Drop requests
Load Shedding Server Queue Server Drop requests Stop sending
Autoscaling
Autoscaling
Autoscaling Server DB Server
Autoscaling Server DB Server Requests start queueing
Autoscaling Server DB Server Server
Autoscaling Server DB Server Server Now its worse
Autoscaling needs to be in response to load shedding
Circuit Breakers
Circuit Breakers
Circuit Breakers Server Server
Circuit Breakers Server Server
Circuit Breakers Server Server Shut off traffic
Circuit Breakers Server Server
Circuit Breakers Server Server I’m not quite dead yet
Circuit Breakers are your last line of defense
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
We want to allow as many requests as we can
actually handle
None
Adaptive Limits Time Concurrency
Adaptive Limits Actual limit Time Concurrency
Adaptive Limits Actual limit Dynamic Discovery Time Concurrency
Load Shedding Server Server
Load Shedding Server Server Are we at the limit?
Load Shedding Server Server Am I still healthy?
Load Shedding Server Server
Load Shedding Server Server Update Limits
Adaptive Limits Time Concurrency Increased latency
Latency Successful vs. Failed requests Signals for Adjusting Limits
Additive Increase Multiplicative Decrease Success state: limit + 1 Backoff
state: limit * 0.95 Time Concurrency
Prior Art/Alternatives https://github.com/ferd/pobox/ https://github.com/fishcakez/sbroker/ https://github.com/heroku/canal_lock https://github.com/jlouis/safetyvalve https://github.com/jlouis/fuse
Regulator https://github.com/keathley/regulator
Regulator.install(:service, [ limit: {Regulator.Limit.AIMD, [timeout: 500]} ]) Regulator.ask(:service, fn ->
{:ok, Finch.request(:get, "https://keathley.io")} end) Regulator
Conclusion
Queues are everywhere
Those queues need to be bounded to avoid overload
If your system is dynamic, your solution will also need
to be dynamic
Go and build awesome stuff
Thanks Chris Keathley / @ChrisKeathley /
[email protected]