Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Building Adaptive Systems
Search
Chris Keathley
May 28, 2020
Programming
41
2.6k
Building Adaptive Systems
Chris Keathley
May 28, 2020
Tweet
Share
More Decks by Chris Keathley
See All by Chris Keathley
Solid code isn't flexible
keathley
5
1k
Contracts for building reliable systems
keathley
6
880
Kafka, the hard parts
keathley
3
1.7k
Building Resilient Elixir Systems
keathley
7
2.2k
Consistent, Distributed Elixir
keathley
6
1.5k
Telling stories with data visualization
keathley
1
610
Easing into continuous deployment
keathley
2
370
Leveling up your git skills
keathley
0
750
Generative Testing in Elixir
keathley
0
510
Other Decks in Programming
See All in Programming
❄️ tmux-nixの実装を通して学ぶNixOSモジュール
momeemt
1
120
rbs-traceを使ってWEARで型生成を試してみた After RubyKaigi 2025〜ZOZO、ファインディ、ピクシブ〜 / tried rbs-trace on WEAR
oyamakei
0
980
TypeScript を活かしてデザインシステム MCP を作る / #tskaigi_after_night
izumin5210
4
470
MLOps Japan 勉強会 #52 - 特徴量を言語を越えて一貫して管理する, 『特徴量ドリブン』な MLOps の実現への試み
taniiicom
2
530
知識0からカンファレンスやってみたらこうなった!
syossan27
5
320
複雑なフォームを継続的に開発していくための技術選定・設計・実装 #tskaigi / #tskaigi2025
izumin5210
12
6.2k
💎 My RubyKaigi Effect in 2025: Top Ruby Companies 🌐
yasulab
PRO
1
120
primeNumberでのRBS導入の現在 && RBS::Traceでinline RBSを拡充してみた
mnmandahalf
0
240
技術的負債と戦略的に戦わざるを得ない場合のオブザーバビリティ活用術 / Leveraging Observability When Strategically Dealing with Technical Debt
yoshiyoshifujii
0
160
TVer iOSチームの共通認識の作り方 - Findy Job LT iOSアプリ開発の裏側 開発組織が向き合う課題とこれから
techtver
PRO
0
700
Cloudflare Workersで進めるリモートMCP活用
syumai
13
1.9k
AI時代のリアーキテクチャ戦略 / Re-architecture Strategy in the AI Era
dachi023
0
190
Featured
See All Featured
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Rebuilding a faster, lazier Slack
samanthasiow
81
9k
A Tale of Four Properties
chriscoyier
159
23k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
228
22k
Building Applications with DynamoDB
mza
95
6.4k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
32
2.3k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
32
5.8k
The Cult of Friendly URLs
andyhume
78
6.4k
How STYLIGHT went responsive
nonsquared
100
5.6k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Six Lessons from altMBA
skipperchong
28
3.8k
Optimising Largest Contentful Paint
csswizardry
37
3.3k
Transcript
Chris Keathley / @ChrisKeathley / c@keathley.io Building Adaptive Systems
Server Server
Server Server I have a request
Server Server
Server Server
Server Server No Problem!
Server Server
Server Server Thanks!
Server Server
Server Server I have a request
Server Server
Server Server
Server Server I’m a little busy
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I don’t feel so good
Server
Server Welp
Server Welp
All services have objectives
A resilient service should be able to withstand a 10x
traffic spike and continue to meet those objectives
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
What causes overload?
What causes overload? Server Queue
What causes overload? Server Queue Processing Time Arrival Rate >
Little’s Law Elements in the queue = Arrival Rate *
Processing Time
Little’s Law Server 1 requests = 10 rps * 100
ms 100ms
Little’s Law Server 1 requests = 10 rps * 100
ms 100ms
Little’s Law Server 1 requests = 10 rps * 100
ms 100ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms BEAM Processes
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms BEAM Processes CPU Pressure
Little’s Law Server 3 requests = 10 rps * 300
ms 300ms BEAM Processes CPU Pressure
Little’s Law Server 30 requests = 10 rps * 3000
ms 3000ms BEAM Processes CPU Pressure
Little’s Law Server 30 requests = 10 rps * ∞
ms ∞ BEAM Processes CPU Pressure
Little’s Law 30 requests = 10 rps * ∞ ms
Little’s Law ∞ requests = 10 rps * ∞ ms
Little’s Law ∞ requests = 10 rps * ∞ ms
This is bad
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Overload Arrival Rate > Processing Time
Overload Arrival Rate > Processing Time We need to get
these under control
Load Shedding Server Queue Server
Load Shedding Server Queue Server Drop requests
Load Shedding Server Queue Server Drop requests Stop sending
Autoscaling
Autoscaling
Autoscaling Server DB Server
Autoscaling Server DB Server Requests start queueing
Autoscaling Server DB Server Server
Autoscaling Server DB Server Server Now its worse
Autoscaling needs to be in response to load shedding
Circuit Breakers
Circuit Breakers
Circuit Breakers Server Server
Circuit Breakers Server Server
Circuit Breakers Server Server Shut off traffic
Circuit Breakers Server Server
Circuit Breakers Server Server I’m not quite dead yet
Circuit Breakers are your last line of defense
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
We want to allow as many requests as we can
actually handle
None
Adaptive Limits Time Concurrency
Adaptive Limits Actual limit Time Concurrency
Adaptive Limits Actual limit Dynamic Discovery Time Concurrency
Load Shedding Server Server
Load Shedding Server Server Are we at the limit?
Load Shedding Server Server Am I still healthy?
Load Shedding Server Server
Load Shedding Server Server Update Limits
Adaptive Limits Time Concurrency Increased latency
Latency Successful vs. Failed requests Signals for Adjusting Limits
Additive Increase Multiplicative Decrease Success state: limit + 1 Backoff
state: limit * 0.95 Time Concurrency
Prior Art/Alternatives https://github.com/ferd/pobox/ https://github.com/fishcakez/sbroker/ https://github.com/heroku/canal_lock https://github.com/jlouis/safetyvalve https://github.com/jlouis/fuse
Regulator https://github.com/keathley/regulator
Regulator.install(:service, [ limit: {Regulator.Limit.AIMD, [timeout: 500]} ]) Regulator.ask(:service, fn ->
{:ok, Finch.request(:get, "https://keathley.io")} end) Regulator
Conclusion
Queues are everywhere
Those queues need to be bounded to avoid overload
If your system is dynamic, your solution will also need
to be dynamic
Go and build awesome stuff
Thanks Chris Keathley / @ChrisKeathley / c@keathley.io