Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Building Adaptive Systems
Search
Chris Keathley
May 28, 2020
Programming
44
2.9k
Building Adaptive Systems
Chris Keathley
May 28, 2020
Tweet
Share
More Decks by Chris Keathley
See All by Chris Keathley
Solid code isn't flexible
keathley
5
1.1k
Contracts for building reliable systems
keathley
6
980
Kafka, the hard parts
keathley
3
1.9k
Building Resilient Elixir Systems
keathley
7
2.4k
Consistent, Distributed Elixir
keathley
6
1.6k
Telling stories with data visualization
keathley
1
670
Easing into continuous deployment
keathley
2
410
Leveling up your git skills
keathley
0
810
Generative Testing in Elixir
keathley
0
560
Other Decks in Programming
See All in Programming
DevFest Android in Korea 2025 - 개발자 커뮤니티를 통해 얻는 가치
wisemuji
0
160
從冷知識到漏洞,你不懂的 Web,駭客懂 - Huli @ WebConf Taiwan 2025
aszx87410
2
2.8k
20251212 AI 時代的 Legacy Code 營救術 2025 WebConf
mouson
0
200
公共交通オープンデータ × モバイルUX 複雑な運行情報を 『直感』に変換する技術
tinykitten
PRO
0
150
Tinkerbellから学ぶ、Podで DHCPをリッスンする手法
tomokon
0
140
Cell-Based Architecture
larchanjo
0
140
ゆくKotlin くるRust
exoego
1
110
複数人でのCLI/Infrastructure as Codeの暮らしを良くする
shmokmt
5
2.3k
tsgolintはいかにしてtypescript-goの非公開APIを呼び出しているのか
syumai
7
2.3k
AIエージェントの設計で注意するべきポイント6選
har1101
5
1.3k
ZJIT: The Ruby 4 JIT Compiler / Ruby Release 30th Anniversary Party
k0kubun
0
120
JETLS.jl ─ A New Language Server for Julia
abap34
2
420
Featured
See All Featured
The browser strikes back
jonoalderson
0
63
Thoughts on Productivity
jonyablonski
73
5k
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
320
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
110
Technical Leadership for Architectural Decision Making
baasie
0
180
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Visualization
eitanlees
150
16k
Typedesign – Prime Four
hannesfritz
42
2.9k
Game over? The fight for quality and originality in the time of robots
wayneb77
1
61
Visual Storytelling: How to be a Superhuman Communicator
reverentgeek
2
390
Information Architects: The Missing Link in Design Systems
soysaucechin
0
710
Transcript
Chris Keathley / @ChrisKeathley /
[email protected]
Building Adaptive Systems
Server Server
Server Server I have a request
Server Server
Server Server
Server Server No Problem!
Server Server
Server Server Thanks!
Server Server
Server Server I have a request
Server Server
Server Server
Server Server I’m a little busy
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I don’t feel so good
Server
Server Welp
Server Welp
All services have objectives
A resilient service should be able to withstand a 10x
traffic spike and continue to meet those objectives
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
What causes overload?
What causes overload? Server Queue
What causes overload? Server Queue Processing Time Arrival Rate >
Little’s Law Elements in the queue = Arrival Rate *
Processing Time
Little’s Law Server 1 requests = 10 rps * 100
ms 100ms
Little’s Law Server 1 requests = 10 rps * 100
ms 100ms
Little’s Law Server 1 requests = 10 rps * 100
ms 100ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms BEAM Processes
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms BEAM Processes CPU Pressure
Little’s Law Server 3 requests = 10 rps * 300
ms 300ms BEAM Processes CPU Pressure
Little’s Law Server 30 requests = 10 rps * 3000
ms 3000ms BEAM Processes CPU Pressure
Little’s Law Server 30 requests = 10 rps * ∞
ms ∞ BEAM Processes CPU Pressure
Little’s Law 30 requests = 10 rps * ∞ ms
Little’s Law ∞ requests = 10 rps * ∞ ms
Little’s Law ∞ requests = 10 rps * ∞ ms
This is bad
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Overload Arrival Rate > Processing Time
Overload Arrival Rate > Processing Time We need to get
these under control
Load Shedding Server Queue Server
Load Shedding Server Queue Server Drop requests
Load Shedding Server Queue Server Drop requests Stop sending
Autoscaling
Autoscaling
Autoscaling Server DB Server
Autoscaling Server DB Server Requests start queueing
Autoscaling Server DB Server Server
Autoscaling Server DB Server Server Now its worse
Autoscaling needs to be in response to load shedding
Circuit Breakers
Circuit Breakers
Circuit Breakers Server Server
Circuit Breakers Server Server
Circuit Breakers Server Server Shut off traffic
Circuit Breakers Server Server
Circuit Breakers Server Server I’m not quite dead yet
Circuit Breakers are your last line of defense
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
We want to allow as many requests as we can
actually handle
None
Adaptive Limits Time Concurrency
Adaptive Limits Actual limit Time Concurrency
Adaptive Limits Actual limit Dynamic Discovery Time Concurrency
Load Shedding Server Server
Load Shedding Server Server Are we at the limit?
Load Shedding Server Server Am I still healthy?
Load Shedding Server Server
Load Shedding Server Server Update Limits
Adaptive Limits Time Concurrency Increased latency
Latency Successful vs. Failed requests Signals for Adjusting Limits
Additive Increase Multiplicative Decrease Success state: limit + 1 Backoff
state: limit * 0.95 Time Concurrency
Prior Art/Alternatives https://github.com/ferd/pobox/ https://github.com/fishcakez/sbroker/ https://github.com/heroku/canal_lock https://github.com/jlouis/safetyvalve https://github.com/jlouis/fuse
Regulator https://github.com/keathley/regulator
Regulator.install(:service, [ limit: {Regulator.Limit.AIMD, [timeout: 500]} ]) Regulator.ask(:service, fn ->
{:ok, Finch.request(:get, "https://keathley.io")} end) Regulator
Conclusion
Queues are everywhere
Those queues need to be bounded to avoid overload
If your system is dynamic, your solution will also need
to be dynamic
Go and build awesome stuff
Thanks Chris Keathley / @ChrisKeathley /
[email protected]