Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Building Adaptive Systems
Search
Chris Keathley
May 28, 2020
Programming
38
2.3k
Building Adaptive Systems
Chris Keathley
May 28, 2020
Tweet
Share
More Decks by Chris Keathley
See All by Chris Keathley
Solid code isn't flexible
keathley
4
980
Contracts for building reliable systems
keathley
5
750
Kafka, the hard parts
keathley
2
1.5k
Building Resilient Elixir Systems
keathley
6
2k
Consistent, Distributed Elixir
keathley
5
1.5k
Telling stories with data visualization
keathley
0
550
Easing into continuous deployment
keathley
1
310
Leveling up your git skills
keathley
0
680
Generative Testing in Elixir
keathley
0
450
Other Decks in Programming
See All in Programming
GitHub Actionsのキャッシュと手を挙げることの大切さとそれに必要なこと
satoshi256kbyte
5
420
ローコードSaaSのUXを向上させるためのTypeScript
taro28
1
160
【Kaigi on Rails 2024】YOUTRUST スポンサーLT
krpk1900
1
320
「今のプロジェクトいろいろ大変なんですよ、app/services とかもあって……」/After Kaigi on Rails 2024 LT Night
junk0612
4
2.1k
プロジェクト新規参入者のリードタイム短縮の観点から見る、品質の高いコードとアーキテクチャを保つメリット
d_endo
1
1.1k
讓數據說話:用 Python、Prometheus 和 Grafana 講故事
eddie
0
390
AWS Lambdaから始まった Serverlessの「熱」とキャリアパス / It started with AWS Lambda Serverless “fever” and career path
seike460
PRO
1
210
Googleのテストサイズを活用したテスト環境の構築
toms74209200
0
310
CPython 인터프리터 구조 파헤치기 - PyCon Korea 24
kennethanceyer
0
250
macOS でできる リアルタイム動画像処理
biacco42
9
2.3k
Nurturing OpenJDK distribution: Eclipse Temurin Success History and plan
ivargrimstad
0
600
型付き API リクエストを実現するいくつかの手法とその選択 / Typed API Request
euxn23
4
1.4k
Featured
See All Featured
GitHub's CSS Performance
jonrohan
1030
460k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5k
Unsuck your backbone
ammeep
668
57k
Building Flexible Design Systems
yeseniaperezcruz
327
38k
StorybookのUI Testing Handbookを読んだ
zakiyama
26
5.2k
Why Our Code Smells
bkeepers
PRO
334
57k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.3k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
38
1.8k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
48k
Imperfection Machines: The Place of Print at Facebook
scottboms
264
13k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
6
400
Optimising Largest Contentful Paint
csswizardry
33
2.9k
Transcript
Chris Keathley / @ChrisKeathley /
[email protected]
Building Adaptive Systems
Server Server
Server Server I have a request
Server Server
Server Server
Server Server No Problem!
Server Server
Server Server Thanks!
Server Server
Server Server I have a request
Server Server
Server Server
Server Server I’m a little busy
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I don’t feel so good
Server
Server Welp
Server Welp
All services have objectives
A resilient service should be able to withstand a 10x
traffic spike and continue to meet those objectives
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
What causes overload?
What causes overload? Server Queue
What causes overload? Server Queue Processing Time Arrival Rate >
Little’s Law Elements in the queue = Arrival Rate *
Processing Time
Little’s Law Server 1 requests = 10 rps * 100
ms 100ms
Little’s Law Server 1 requests = 10 rps * 100
ms 100ms
Little’s Law Server 1 requests = 10 rps * 100
ms 100ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms BEAM Processes
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms BEAM Processes CPU Pressure
Little’s Law Server 3 requests = 10 rps * 300
ms 300ms BEAM Processes CPU Pressure
Little’s Law Server 30 requests = 10 rps * 3000
ms 3000ms BEAM Processes CPU Pressure
Little’s Law Server 30 requests = 10 rps * ∞
ms ∞ BEAM Processes CPU Pressure
Little’s Law 30 requests = 10 rps * ∞ ms
Little’s Law ∞ requests = 10 rps * ∞ ms
Little’s Law ∞ requests = 10 rps * ∞ ms
This is bad
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Overload Arrival Rate > Processing Time
Overload Arrival Rate > Processing Time We need to get
these under control
Load Shedding Server Queue Server
Load Shedding Server Queue Server Drop requests
Load Shedding Server Queue Server Drop requests Stop sending
Autoscaling
Autoscaling
Autoscaling Server DB Server
Autoscaling Server DB Server Requests start queueing
Autoscaling Server DB Server Server
Autoscaling Server DB Server Server Now its worse
Autoscaling needs to be in response to load shedding
Circuit Breakers
Circuit Breakers
Circuit Breakers Server Server
Circuit Breakers Server Server
Circuit Breakers Server Server Shut off traffic
Circuit Breakers Server Server
Circuit Breakers Server Server I’m not quite dead yet
Circuit Breakers are your last line of defense
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
We want to allow as many requests as we can
actually handle
None
Adaptive Limits Time Concurrency
Adaptive Limits Actual limit Time Concurrency
Adaptive Limits Actual limit Dynamic Discovery Time Concurrency
Load Shedding Server Server
Load Shedding Server Server Are we at the limit?
Load Shedding Server Server Am I still healthy?
Load Shedding Server Server
Load Shedding Server Server Update Limits
Adaptive Limits Time Concurrency Increased latency
Latency Successful vs. Failed requests Signals for Adjusting Limits
Additive Increase Multiplicative Decrease Success state: limit + 1 Backoff
state: limit * 0.95 Time Concurrency
Prior Art/Alternatives https://github.com/ferd/pobox/ https://github.com/fishcakez/sbroker/ https://github.com/heroku/canal_lock https://github.com/jlouis/safetyvalve https://github.com/jlouis/fuse
Regulator https://github.com/keathley/regulator
Regulator.install(:service, [ limit: {Regulator.Limit.AIMD, [timeout: 500]} ]) Regulator.ask(:service, fn ->
{:ok, Finch.request(:get, "https://keathley.io")} end) Regulator
Conclusion
Queues are everywhere
Those queues need to be bounded to avoid overload
If your system is dynamic, your solution will also need
to be dynamic
Go and build awesome stuff
Thanks Chris Keathley / @ChrisKeathley /
[email protected]