Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Building Adaptive Systems
Search
Chris Keathley
May 28, 2020
Programming
40
2.4k
Building Adaptive Systems
Chris Keathley
May 28, 2020
Tweet
Share
More Decks by Chris Keathley
See All by Chris Keathley
Solid code isn't flexible
keathley
4
1k
Contracts for building reliable systems
keathley
5
830
Kafka, the hard parts
keathley
2
1.6k
Building Resilient Elixir Systems
keathley
6
2.2k
Consistent, Distributed Elixir
keathley
5
1.5k
Telling stories with data visualization
keathley
0
590
Easing into continuous deployment
keathley
2
350
Leveling up your git skills
keathley
0
720
Generative Testing in Elixir
keathley
0
490
Other Decks in Programming
See All in Programming
フロントエンドオブザーバビリティ on Google Cloud
yunosukey
0
120
PromptyによるAI開発入門
ymd65536
1
240
Expoによるアプリ開発の現在地とReact Server Componentsが切り開く未来
yukukotani
2
330
Accelerate your key learnings of scaling modern Android apps
aldefy
0
100
技術好きなエンジニアが "リーダーへの進化" によって得たものと失ったもの
pospome
4
830
⚪⚪の⚪⚪をSwiftUIで再現す る
u503
0
150
機能が複雑化しても 頼りになる FactoryBotの話
tamikof
1
270
Jasprが凄い話
hyshu
0
210
15分で学ぶDuckDBの可愛い使い方 DuckDBの最近の更新
notrogue
3
910
Rubyと自由とAIと
yotii23
6
2k
Webフレームワークとともに利用するWeb components / JSConf.jp おかわり
spring_raining
1
170
Jakarta EE meets AI
ivargrimstad
0
1.1k
Featured
See All Featured
GraphQLとの向き合い方2022年版
quramy
44
14k
StorybookのUI Testing Handbookを読んだ
zakiyama
28
5.6k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
27
1.6k
How to Ace a Technical Interview
jacobian
276
23k
Into the Great Unknown - MozCon
thekraken
35
1.7k
Why Our Code Smells
bkeepers
PRO
336
57k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
4
460
Building an army of robots
kneath
303
45k
Building Applications with DynamoDB
mza
93
6.3k
How STYLIGHT went responsive
nonsquared
99
5.4k
Side Projects
sachag
452
42k
GitHub's CSS Performance
jonrohan
1030
460k
Transcript
Chris Keathley / @ChrisKeathley /
[email protected]
Building Adaptive Systems
Server Server
Server Server I have a request
Server Server
Server Server
Server Server No Problem!
Server Server
Server Server Thanks!
Server Server
Server Server I have a request
Server Server
Server Server
Server Server I’m a little busy
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I don’t feel so good
Server
Server Welp
Server Welp
All services have objectives
A resilient service should be able to withstand a 10x
traffic spike and continue to meet those objectives
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
What causes overload?
What causes overload? Server Queue
What causes overload? Server Queue Processing Time Arrival Rate >
Little’s Law Elements in the queue = Arrival Rate *
Processing Time
Little’s Law Server 1 requests = 10 rps * 100
ms 100ms
Little’s Law Server 1 requests = 10 rps * 100
ms 100ms
Little’s Law Server 1 requests = 10 rps * 100
ms 100ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms BEAM Processes
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms BEAM Processes CPU Pressure
Little’s Law Server 3 requests = 10 rps * 300
ms 300ms BEAM Processes CPU Pressure
Little’s Law Server 30 requests = 10 rps * 3000
ms 3000ms BEAM Processes CPU Pressure
Little’s Law Server 30 requests = 10 rps * ∞
ms ∞ BEAM Processes CPU Pressure
Little’s Law 30 requests = 10 rps * ∞ ms
Little’s Law ∞ requests = 10 rps * ∞ ms
Little’s Law ∞ requests = 10 rps * ∞ ms
This is bad
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Overload Arrival Rate > Processing Time
Overload Arrival Rate > Processing Time We need to get
these under control
Load Shedding Server Queue Server
Load Shedding Server Queue Server Drop requests
Load Shedding Server Queue Server Drop requests Stop sending
Autoscaling
Autoscaling
Autoscaling Server DB Server
Autoscaling Server DB Server Requests start queueing
Autoscaling Server DB Server Server
Autoscaling Server DB Server Server Now its worse
Autoscaling needs to be in response to load shedding
Circuit Breakers
Circuit Breakers
Circuit Breakers Server Server
Circuit Breakers Server Server
Circuit Breakers Server Server Shut off traffic
Circuit Breakers Server Server
Circuit Breakers Server Server I’m not quite dead yet
Circuit Breakers are your last line of defense
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
We want to allow as many requests as we can
actually handle
None
Adaptive Limits Time Concurrency
Adaptive Limits Actual limit Time Concurrency
Adaptive Limits Actual limit Dynamic Discovery Time Concurrency
Load Shedding Server Server
Load Shedding Server Server Are we at the limit?
Load Shedding Server Server Am I still healthy?
Load Shedding Server Server
Load Shedding Server Server Update Limits
Adaptive Limits Time Concurrency Increased latency
Latency Successful vs. Failed requests Signals for Adjusting Limits
Additive Increase Multiplicative Decrease Success state: limit + 1 Backoff
state: limit * 0.95 Time Concurrency
Prior Art/Alternatives https://github.com/ferd/pobox/ https://github.com/fishcakez/sbroker/ https://github.com/heroku/canal_lock https://github.com/jlouis/safetyvalve https://github.com/jlouis/fuse
Regulator https://github.com/keathley/regulator
Regulator.install(:service, [ limit: {Regulator.Limit.AIMD, [timeout: 500]} ]) Regulator.ask(:service, fn ->
{:ok, Finch.request(:get, "https://keathley.io")} end) Regulator
Conclusion
Queues are everywhere
Those queues need to be bounded to avoid overload
If your system is dynamic, your solution will also need
to be dynamic
Go and build awesome stuff
Thanks Chris Keathley / @ChrisKeathley /
[email protected]