$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Building Adaptive Systems
Search
Chris Keathley
May 28, 2020
Programming
38
2.3k
Building Adaptive Systems
Chris Keathley
May 28, 2020
Tweet
Share
More Decks by Chris Keathley
See All by Chris Keathley
Solid code isn't flexible
keathley
4
990
Contracts for building reliable systems
keathley
5
760
Kafka, the hard parts
keathley
2
1.5k
Building Resilient Elixir Systems
keathley
6
2.1k
Consistent, Distributed Elixir
keathley
5
1.5k
Telling stories with data visualization
keathley
0
560
Easing into continuous deployment
keathley
1
320
Leveling up your git skills
keathley
0
690
Generative Testing in Elixir
keathley
0
450
Other Decks in Programming
See All in Programming
CSC305 Lecture 25
javiergs
PRO
0
110
よくできたテンプレート言語として TypeScript + JSX を利用する試み / Using TypeScript + JSX outside of Web Frontend #TSKaigiKansai
izumin5210
9
3.7k
cmp.Or に感動した
otakakot
3
330
5分ぐらいで分かる、トリミング機能の作り方
tsutsuitakumi
0
180
macOS なしで iOS アプリを開発する(※ただし xxx に限る)
mitsuharu
1
160
CSC509 Lecture 13
javiergs
PRO
0
150
The rollercoaster of releasing an Android, iOS, and macOS app with Kotlin Multiplatform | droidcon Italy
prof18
0
120
[Do iOS '24] Ship your app on a Friday...and enjoy your weekend!
polpielladev
0
230
[KR] Open-Source Ecosystems
skydoves
0
110
Jakarta EE meets AI
ivargrimstad
0
1k
Figma Dev Modeで変わる!Flutterの開発体験
watanave
0
3.7k
新規学習のハードルを下げる方法とは?/ How to Make Learning Something New Easier?
nobuoooo
1
130
Featured
See All Featured
What's in a price? How to price your products and services
michaelherold
243
12k
Why Our Code Smells
bkeepers
PRO
334
57k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.3k
Git: the NoSQL Database
bkeepers
PRO
427
64k
The Power of CSS Pseudo Elements
geoffreycrofte
73
5.3k
Building an army of robots
kneath
302
43k
Mobile First: as difficult as doing things right
swwweet
222
8.9k
GitHub's CSS Performance
jonrohan
1030
460k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
2
230
Product Roadmaps are Hard
iamctodd
PRO
49
11k
Building Applications with DynamoDB
mza
91
6.1k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Transcript
Chris Keathley / @ChrisKeathley /
[email protected]
Building Adaptive Systems
Server Server
Server Server I have a request
Server Server
Server Server
Server Server No Problem!
Server Server
Server Server Thanks!
Server Server
Server Server I have a request
Server Server
Server Server
Server Server I’m a little busy
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I’m a little busy I have more requests!
Server Server I don’t feel so good
Server
Server Welp
Server Welp
All services have objectives
A resilient service should be able to withstand a 10x
traffic spike and continue to meet those objectives
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
What causes overload?
What causes overload? Server Queue
What causes overload? Server Queue Processing Time Arrival Rate >
Little’s Law Elements in the queue = Arrival Rate *
Processing Time
Little’s Law Server 1 requests = 10 rps * 100
ms 100ms
Little’s Law Server 1 requests = 10 rps * 100
ms 100ms
Little’s Law Server 1 requests = 10 rps * 100
ms 100ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms BEAM Processes
Little’s Law Server 2 requests = 10 rps * 200
ms 200ms BEAM Processes CPU Pressure
Little’s Law Server 3 requests = 10 rps * 300
ms 300ms BEAM Processes CPU Pressure
Little’s Law Server 30 requests = 10 rps * 3000
ms 3000ms BEAM Processes CPU Pressure
Little’s Law Server 30 requests = 10 rps * ∞
ms ∞ BEAM Processes CPU Pressure
Little’s Law 30 requests = 10 rps * ∞ ms
Little’s Law ∞ requests = 10 rps * ∞ ms
Little’s Law ∞ requests = 10 rps * ∞ ms
This is bad
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Overload Arrival Rate > Processing Time
Overload Arrival Rate > Processing Time We need to get
these under control
Load Shedding Server Queue Server
Load Shedding Server Queue Server Drop requests
Load Shedding Server Queue Server Drop requests Stop sending
Autoscaling
Autoscaling
Autoscaling Server DB Server
Autoscaling Server DB Server Requests start queueing
Autoscaling Server DB Server Server
Autoscaling Server DB Server Server Now its worse
Autoscaling needs to be in response to load shedding
Circuit Breakers
Circuit Breakers
Circuit Breakers Server Server
Circuit Breakers Server Server
Circuit Breakers Server Server Shut off traffic
Circuit Breakers Server Server
Circuit Breakers Server Server I’m not quite dead yet
Circuit Breakers are your last line of defense
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
Lets Talk About… Queues Overload Mitigation Adaptive Concurrency
We want to allow as many requests as we can
actually handle
None
Adaptive Limits Time Concurrency
Adaptive Limits Actual limit Time Concurrency
Adaptive Limits Actual limit Dynamic Discovery Time Concurrency
Load Shedding Server Server
Load Shedding Server Server Are we at the limit?
Load Shedding Server Server Am I still healthy?
Load Shedding Server Server
Load Shedding Server Server Update Limits
Adaptive Limits Time Concurrency Increased latency
Latency Successful vs. Failed requests Signals for Adjusting Limits
Additive Increase Multiplicative Decrease Success state: limit + 1 Backoff
state: limit * 0.95 Time Concurrency
Prior Art/Alternatives https://github.com/ferd/pobox/ https://github.com/fishcakez/sbroker/ https://github.com/heroku/canal_lock https://github.com/jlouis/safetyvalve https://github.com/jlouis/fuse
Regulator https://github.com/keathley/regulator
Regulator.install(:service, [ limit: {Regulator.Limit.AIMD, [timeout: 500]} ]) Regulator.ask(:service, fn ->
{:ok, Finch.request(:get, "https://keathley.io")} end) Regulator
Conclusion
Queues are everywhere
Those queues need to be bounded to avoid overload
If your system is dynamic, your solution will also need
to be dynamic
Go and build awesome stuff
Thanks Chris Keathley / @ChrisKeathley /
[email protected]