Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥

Gabriel Peyré (CNRS & ENS, Paris, France) Spars...

Jia-Jie Zhu
March 27, 2024
150

Gabriel Peyré (CNRS & ENS, Paris, France) Sparsistency for Inverse Optimal Transport

WORKSHOP ON OPTIMAL TRANSPORT
FROM THEORY TO APPLICATIONS
INTERFACING DYNAMICAL SYSTEMS, OPTIMIZATION, AND MACHINE LEARNING
Venue: Humboldt University of Berlin, Dorotheenstraße 24

Berlin, Germany. March 11th - 15th, 2024

Jia-Jie Zhu

March 27, 2024
Tweet

More Decks by Jia-Jie Zhu

Transcript

  1. OT for Single cell genomics Gromov Wasserstein as metric learning

    Inverse OT for metric learning Wasserstein Singular Vectors for metric learning
  2. Single Cell Multi-omics Understanding cell diversity: many types, many states

    for each type. Applications: cancer mutations, dynamic of adaptation, development, … <latexit sha1_base64="JmboHyrN9W6kgItyZjvFMpB0lgs=">AABBxXictVzbchu5EYU3t7Vz8yaPeZlE65Q35Tiy4kpStZWqlSVZ1pq2aZOSvbu0XbyMaNpDDs0h6QtXlU/Ia/I1+Y78QfKUX0hfgAGGxExjFMcoSRgQp7vRAzS6G6B702SUzbe3/3nho+9893vf/8HHFy/98Ec//slPL3/ys5MsXcz68XE/TdLZk143i5PRJD6ej+ZJ/GQ6i7vjXhI/7r3aw88fL+NZNkon7fm7afx03B1ORqejfncOTcf9OEmy55e3tq9v079os3JDV7aU/tdMP4mOVUcNVKr6aqHGKlYTNYd6oroqg/KNuqG21RTanqoVtM2gNqLPY3WmLgF2Ab1i6NGF1lfwewhP3+jWCTwjzYzQfeCSwM8MkJG6ApgU+s2gjtwi+nxBlLG1jPaKaKJs7+BvT9MaQ+tcvYBWCWd6huJwLHN1qv5EYxjBmKbUgqPrayoL0gpKHjmjmgOFKbRhfQCfz6DeJ6TRc0SYjMaOuu3S5/+intiKz33dd6H+TVJegRKplh59mlPoqiXRj+htLuAzlicBzkOgEOsxYu0N6XpMo59A/xW034dyRjWjkx6UFbWeVSL3oPiQeyLyEIoPeSgiG1B8yIaIbELxIZsaidgZ6dyPb0Hx4Vsi54dQfMiHIvIRFB/ykYg8geJDnojIr6H4kF+LyNtQfMjbIvIuFB/yrohsQ/Eh2yLyGIoPeSwiD6D4kAcaWb5SZ1BSojMSVuUu1Is80FIk0LIryneLrKMPeytgTfdLsPKq3oe/fux+gE7jEuxBwLw7LcHKM+8QbKQfK9uiO7Sb+LB3ROwRzAA/9kjEfqlelmC/DFhpr0qw8lprQD8/Vra+9+DJj70nYu9DzY+V96gH0OLHPgjYMaYl2KaIfahel2BDrP6sBCvb/RbYFT9W3qfa0N+PDbGmixKsbE9PwIPxY+Xd6jG0+rGPRewT9bYE+0TEfgXW3Y/9KmCHfV+CNXvsJdpBhuSPxLBiq6h181WJtSlQ6wr8k3xvScg37kG7hBnmmCFhxiLiMEccBiIaOaIRLFeW29GM/F2ZSytHtAIRvXxvwtpc7D/I+2MtCUDs54j9NUSVR4rv2oxlSd6FaZGQ83znwlrImNLcfmMt1vOh2vIaxIMCguf2C5r51yhawggKNVVF7UW+xzMyoucqxBuK3swoDQ8ZN8+tgot6K6J6HlRPRL3zoN6JqIUHtRBRSw9qKaLsyndxnYAZYPWP72JFTzwD2EcuLxF4Bbuw69yBNRrB/GmCF/iIWh7A3xbF3lKpkgyjedwnMcvxtGCJZ1BbqS1ot1HhPsXXCa2wGCTjng90jI9PmNtY6TXHVvgs38mjPGMSTmdE8gxzOugtRrSe6tG5Sy1n5N1xrR7+Tr7uTa0e/oA0fkZePNfq4eda+vk5ZG9rbPsc2BaspqnWvq3XpcH5F6Zh6pdo10WLi291rOcM0ntbk/6RfjNH53gve1Rj/dh6PRqZM76sML46NKyeM0fP9aig98Rer6lFtUcy0XGvrdeVIaVddKLlsE913wz2Geg3Y+r1aDTB49qjmHvl1OvO3mk+GluvR+NEcd7zjDx5U69HY0jPrA9br0cDsy1dHefbel3Ljhrg2NnW61r1CWWBMQfEc55brFc0Iz9poamNyD+ozta4Pv/mPoY5m2d5jFBNyfq25XR6+V5WLZHxF2KwavOacqB/sXB8sCKNldoR4yuWYV7Y3zfp2D0eNd8ALUaw+vkMQMqZJyChyUmg9U6A4g0x6iqOzOB2RBzOktM1VEe3zkVv0fLlrFGx7Tm1SnGZHa3VY4fsdUZzb0o+YYM0K+mhUfqGyyhKGmoUNCTTq6O793q9FrW/LeKma4hpPtP6dCLEJ2nVcapP6y1Hx1f0Kc8cCp/52PmL2eZTbW0w5knJFqEsVTzdfiaP5LbhvnpN2Rw3fxbRG0V7tSSrMaITqUyMQk22mL3xFT1b2sd0Joc8mEYf3mOkqUwVn5phFh3z6RFZVNfeSrxRXyZDx/WMrK6xx9XooYMeetD1Y5w92DHuQ60NMcMxPLUDopxLua5S0vhM/TY/HU3pDVZH9EnBQhoabG/igoWsirJfFKi8ATTOBo7Sw2ms0zH4zgYlOer3yWNj16Llv0Int+Z8u0tzvHw2l2diBsR1h7hGtGr4VJef1jmwBCvvJzvkv1aPEvnV4Yg2VOL6zOHMepnQiX9MEeyUPOOEVpu0Ooq93fzU+ieGU1OZs3M8zU7JQkZk/yLYn1KakxH9uHcHzAk6W4SEbGSI3Rnl3o3P1xmJc8z6cSPFtxrsfIvJli2Iv6Hrrq6M5iJHDLwPnK3NbaOTBvmCMXGdaetu13b17oNIe0/CnSVM0c6Vq8T/M/ptfsw82dqYEahhfAOZtnW+95FSzII66tIuX22DTF9Xyk9zGZ5pqe3+Z2X6tCDZPkVcKA/u1gPg3Kdn5oWzZEZyZxt9eB+tyuYi5emaHnG0pxTFs90f6h0Y5b5Gu+QWrbkOzZIhzIJ5HkWYvlIWeZ1vNa8i9TDa2f+FutV1UWtIMVI2g8sakvL7MUVrrpQJzGqev69oNfm1PlvrVc1nQnNx7Kzlb6H1l/DbyG2ew+j0ClbhFs0BpmCfrEa4JdroEcbrVoGXmZmGln22/OycNL3clvPE12zdbIy9rE2lSbPmrc5amPp5aLx0aLwM1GGbzhqtFk27sUTPxdiirU8rQ/nV4dauQXkhUpY9MoMaBUjpxlJhVAciVTnGN6j3Iq1tkVYXVqt7GuCu+RCkf62vr+5v8909UrfJt+mTB8bxy4BW6Yh8LtNaHakxBeR8U9tXd/V3qAW598iCImW+x4krhk+d+lTOckl/rXe2lOy8tQjm3tIb3cfY2A7Vf7+BHNOayGhdGsRN6hFr+V05ojWLdN3xOSLK/HfJp2K/ozpmdnvbdxIV/Akbb/Kqsrw4UpiQ/qXM29FG9HrkxK8RxYQL7V33gFb9N4wUGGMyCX7PMqM3hLscnySwR9sj+7lpp/gUb+JIdJ2kXqk/B9gYjnrtXHfnlhmxGdtvoCdq3b51Xw+ZXxLMUeJ3nhO9Lu1qY+2jrtaez0erq3e54nOVHhZrfK0+FtTHjSxslFfEdNTnwVxYonpcGBPCpd4o6shfT/I6MvPpVChl09tQLmYa2Ma8oHhJugeKCJ93d9XrzX0mjKO3Qa9HWJcat0iUMBuX6vyAa2kxK3VxYx/i1ouVu1Hi7ERlO4Wh7u4W1n6zhYzJ+iVKytlwb1f2TiFKkbMwTKGv+EZvWXzo0vwcCv6OlC86NBxDcoct8G931Z46+AC3IV7rOmc0I2pBWzBYi727epzFHtU6eu1Qd+mHcAjnMQJdS9KPaCetKztTliV3qYfTf0NWYKZiUXrbs/4YXC7ySDY51RnPiCybPJqRMt/FqTsWwyFkJEUu4Xz4XEMaxaky32mqNwZDXR5BkUMdHuYeQ9g7t73r83I5Vetrk0soD94FzImLweHJX3msYvuFWKiZ80Y+PAe0DqcV1M1u8b+Ow/CxnOrzCuWW0XfNXga8de4X64ws+sP114zlFjKbyzmG80zz0Vlvyc+P/b6o1ptKndF8eProj9o5YHitFOdBZekY784iK28oFTwX8MmQqv+of1yQv43wOqdRJkcdSuacopya6SFTM9+49I3OfBYik6VTJlORmo0jWnQjdk8dqdvws5d7gHVvh/J3KfkvYv3fnx1A6ylZD5NF58xBh9piyn7YU7QBPdv7s2US411evtvbhhY8C29QK97zvU/98a5vuzC28m+Q8Fq/p1I1KEQk66d7dl31YATFkzfOAZnv+UZ0l56zWHzzbBxwtmjuT61LtKJP5JsFvVJ8z5GyT3N1qs/q8eQAb9h38/xQpH5HbV1t53HPlTg3Szk31zhnpJ0ih7fOZ9V3s8q47DlcBnnubKn7pRRn2/O86tzofikXvoNejR9W4IeOlC3S/iuKhGeqOpu3qKC50DK5J6wTZTKRrAeMM7v5+66ObJcVvJYB479bir7rSHoIsvQo/x3RCduM6CVaNwckPd90rM6k3qmQVn+P8vnlrRvr/5fBZuVk5/qNP1y/+XBn64tb+v85+Fj9Qv1KXYU1/kf1BVBrqmM6d/+r+pv6++7h7nh3vrvkrh9d0Jifq8K/3b/8F2JKomY=</latexit> cells <latexit sha1_base64="6LS8OfUSD/ef5J7/bEX8BJJLTug=">AABDBXictVxLkxPJES7WrwW/WPvoS9uzOFgHiwdM2I7YcMQyD4ZZBAwjzQC7AkKPlhC01EItDQ/tnP0DfLV/gm8OX/d3+B/YJx/8B5yPqq5qqbqzeozpmJnqUn2ZWVlVWZlZJbrTZJTNNzf/ce6Db337O9/93ofnL3z/Bz/80Y8vfvST4yxdzHrxUS9N0tmjbieLk9EkPpqP5kn8aDqLO+NuEj/svtzGzx+exLNslE5a87fT+Mm4M5yMBqNeZw5Vj9ujSdQ+PHzaf3ZxY/PqJv2L1gvXdGFD6X8H6UfRf1Rb9VWqemqhxipWEzWHcqI6KoPnK3VNbaop1D1RS6ibQWlEn8fqVF0A7AJaxdCiA7Uv4fcQ3r7StRN4R5oZoXvAJYGfGSAjdQkwKbSbQRm5RfT5gihjbRntJdFE2d7C366mNYbauXoOtRLOtAzFYV/maqB+T30YQZ+mVIO962kqC9IKSh45vZoDhSnUYbkPn8+g3COk0XNEmIz6jrrt0Of/pJZYi+893Xah/kVSXoInUk3d+zSn0FEnRD+i0VzAZyxPApyHQCHWfcTSa9L1mHo/gfZLqL8HzymVjE668Cyp9rQSuQ2PD7ktIvfg8SH3RGQDHh+yISIP4PEhDzQSsTPSuR/fhMeHb4qcH8DjQz4QkYfw+JCHIvIYHh/yWER+CY8P+aWIvAWPD3lLRN6Bx4e8IyJb8PiQLRF5BI8PeSQid+HxIXc1snylzuBJic5IWJU3oVzkgZYigZqbonxbZB192K2ANd0rwcqregf++rE7ATqNS7C7AfNuUIKVZ94e2Eg/VrZFt2k38WFvi9h9mAF+7L6I/UK9KMF+EbDSXpZg5bXWgHZ+rGx978KbH3tXxN6Dkh8r71H3ocaPvR+wY0xLsAci9oF6VYINsfqzEqxs95tgV/xYeZ9qQXs/NsSaLkqwsj09Bg/Gj5V3q4dQ68c+FLGP1JsS7CMR+xisux/7OGCHfVeCNXvsBdpBhuSPxLBiq6h18lWJpSlQ6wj8k3xvScg37kK9hBnmmCFhxiJiL0fsBSIaOaIRLFeW29GM/F2ZSzNHNAMR3XxvwtJcbN/P22MpCUDs5IidFUSVR4pjbfpyQt6FqZGQ83znwlJIn9LcfmMp1vOh2vIaxP0Cguf2c5r5VyhawggKNVVF7Xm+xzMyovcqxGuK3kwvDQ8ZN8+tgot6I6K6HlRXRL31oN6KqIUHtRBRJx7UiYiyK9/FtQNmgNU/jsWS3ngGsI9c/kTgFdyEXec2rNEI5s8BeIGHVHMf/jYp9paeKskwmsd9ErMcTwqWeAalpdqAehsV7lB8ndAKi0Eybnlfx/j4hrmNpV5zbIVP8508yjMm4XRGJM8wp4PeYkTrqR6dO1RzSt4dl+rhb+fr3pTq4XdJ46fkxXOpHn6upZ+fQfaWxrbOgG3Cappq7dtyXRqcf2EapnyBdl20uDiqYz1nkN6bmvT39cjsn2FctqnE+rHlejQyp39ZoX91aFg9Z46e61FB74m9XlOKavdkouNeW64rQ0q76ETLYd/qjgy26euRMeV6NA7A49qmmHvplOvO3mneG1uuR+NYcd7zlDx5U65HY0jvrA9brkcDsy0dHefbcl3Ljhrg2NmW61r1CWWBMQfEc55rrFc0Iz9poamNyD+ozta4Pv/6PoY5m6d5jFBNyfq25XS6+V5WLZHxF2KwavOacqB/sXB8sCKNpbouxlcsw7ywv6/TsXs8ar4BWoxg9fMZgJQzT0BCk5NA650AxWti1FXsmcFdF3E4SwYrqLaunYveouXLWaNi3TOqleIy21urxzbZ64zm3pR8wgZpVtJDo3SEyyhKGmoUNCTTq6O7d3q9FrW/KeKmK4hpPtN6dCLEJ2nVcapP601Hx5f0Kc8cHj7zsfMXs80DbW0w5knJFqEsVTzddiaP5NbhvnpF2Rw3fxbRiKK9OiGrMaITqUyMQk22mL3xJb1b2kd0Joc8mEYPxjHSVKaKT80wi4759IgsqmtvJd6oL5Oh43JGVtfY42r00EEPPej6Mc427Bj3oNSCmOEI3loBUc6FXFcpaXymPs1PR1MaweqIPilYSEOD7U1csJBVUfbzApXXgMbZwFF6OI1VOgbfXqMkR/0+eWzsWrT8l+jk1pxvd2iOl8/m8kxMn7heJ64RrRo+1eW3VQ4swdL7yXXyX6t7ifzqcEQbKnF96nBmvUzoxD+mCHZKnnFCq01aHcXWbn5q9RPD6UCZs3M8zU7JQkZk/yLYn1KakxH9uHcHzAk6W4SEbGSI3Rnl3o3P1xmJc8z6cSPFtxrsfIvJli2Iv6Hrrq6M5iJHDLwPnK7MbaOTBvmCMXGdaetu13b17oNIe0/CnSVM0c6Vy8T/E/ptfsw82VibEahhHIFM2zrfeKQUs6COOrTLV9sg09aV8uNchqdaarv/WZk+Lki2QxEXyoO7dR849+ideeEsmZHc2Vob3kersrlIebqiR+ztgKJ4tvtDvQOj3Fdol9ygNdemWTKEWTDPowjTVsoir/Kt5lWkHkY7+79Qt7ouag0pRspmcFlDUn4/pmjNlTKBWc3z9yWtJr/WZyutqvlMaC6OnbX8NdT+HH4buc17GJ1uwSps0RxgCvbNaoRrorUWYby2CrzMzDS07LvlZ+ekaeXWnCW+ZutmY+yT2lQOaNa80VkLUz4LjRcOjReBOmzRWaPVoqk3luiZGFu09GllKL863Fo1KC9EyrJHZlCjACndWCqMal+kKsf4BvVOpLUp0urAanVPA9w1H4L0r/XV1f11vrtH6hb5Nj3ywDh+6dMqHZHPZWqrIzWmgJxvaPvqrv421SD3LllQpMz3OHHF8KlTj57TXNJf6p0tJTtvLYK5t/RatzE2tk3l36whx7QmMlqXBnGDWsRafleOaMUiXXV8jogy/x3yqdjvqI6Z3dZ2TKKCP2HjTV5VlhdHChPSv5R521+LXved+DWimHChvesu0Ko/wkiBMSaT4PcsMxoh3OX4JIE92i7Zz3U7xad4E0eiqyT1Uv0hwMZw1Gvnuju3TI9N334FLVHrdtR9LWR+STBHid9ZTvQ6tKuNtY+6XHk/G62O3uWK71V6WKzwtfpYUBs3srBRXhHTVp8Fc2GJ6nFhTAiXer2oI389yevIzKdToZRNa0O5mGlgG/Oc4iXpHigifN7dZa8394nQj+4avS5hXWpcI1HCbFyq8wOupcWs1Pm1fYhrz1fuRomzE5XtFIa6u1tY+80WMibrlygpZ8OtXdnbhShFzsIwhZ7iG71l8aFL8zN48HekfNGh4RiSO2yCf3tTbavd93Ab4pUuc0Yzohq0Bf2V2Luj+1lsUa2jVw51l34Ih3AeI9C1JP2IdtK6sjNlWXKXejj912QFZioWpbct6/fB5SL3ZJ1Tnf6MyLLJvRkp812cun0xHEJ6UuQSzofPNaReDJT5TlO9Phjqcg+KHOrwMPcYwsbctq7Py+VUra91LqE8eBcwJy4Ghyd/5bGKbRdioWbOiLx/DmgdBhXUzW7xv/bD8LGc6vMK5ZbRd81eBIw6t4t1Rhb94fprxnILmc3lHMN5pnnvrLfk58d+X1RrpFKnN++fPvqjdg4YXkvFeVBZOsa7s8jKG0oFzwV8MqTq3+qbc/K3EV7lNMrkqEPJnFOUUzMtZGrmG5e+3pnPQmSydMpkKlKzcUSTbsRuq311C362cw+w7u1Q/i4l/0Ws//uzfagdkPUwWXTOHLSpLqbshz1F69O7vT9bJjHe5eW7vS2owbPwBtXiPd971B7v+rYKfSv/Bgmv9bsqVf1CRLJ6umfXVRd6UDx54xyQ+Z5vRHfpOYvFN8/GAWeL5v7UqkRL+kS+WdAtxXcdKXs0V6f6rB5PDvCGfSfPD0Xq11TX0XYe91yJ80Ep54MVzhlpp8jhjfNZ9d2sMi7bDpd+njs70e1SirPteV51bnSnlAvfQa/GDyvwQ0fKJmn/JUXCM1WdzVtU0FxomdwT1okymUjWA8aZnXy8qyPbkwpeJwH9v1OKvuNIugeydCn/HdEJ24zoJVo3uyQ933SszqTerpDWfI+Sadq7jnYemFuL1Vn6RM87zlyY/41gSesBd1NzM1HKnsQldLp0IzAmSnxHsprSQJBnIFIYipLomfrs4sa11f8HYr1wfP3qtd9evfHgxsbnW/r/iPhQ/Uz9Ql0G+/g79TmMxIE6Ak5j9Sf1Z/WXrT9u/XXrb1t/56YfnNOYn6rCv61v/guvM+Qz</latexit> 2 Rd Tissue Dissociation isolation RNA amplification sequencing … <latexit sha1_base64="6L8H4Gt+fXCCPCipj/akDBzsUqw=">AABDDXictVzbchu5EYU3t7VzWW/ymJdJZKe8KUeRFFeSqq1UrXWxrLVsyyYle3dpu3gZ0rSHHJpDyheuviEfkNfkE/KWSh7zDfmD5CkP+YH0BRhgSMw0RnE8ZQkD4nQ3GkCjuwGqM0mG2Wxj4x8XPvjGN7/17e98ePHSd7/3/R98dPnjH55k6XzajY+7aZJOH3faWZwMx/HxbDhL4seTadwedZL4UeflDn7+6DSeZsN03Jy9ncRPRu3BeNgfdtszqHp2+aMrvaiVDUfR5sbTxdbZlWeX1zbWN+hftFrY1IU1pf8dpR9H/1Et1VOp6qq5GqlYjdUMyolqqwyer9Sm2lATqHuiFlA3hdKQPo/VmboE2Dm0iqFFG2pfws8BvH2la8fwjjQzQneBSwL/p4CM1FXApNBuCmXkFtHnc6KMtWW0F0QTZXsLvzua1ghqZ+o51Eo40zIUh32Zqb76LfVhCH2aUA32rqupzEkrKHnk9GoGFCZQh+UefD6FcpeQRs8RYTLqO+q2TZ//k1piLb53ddu5+hdJeRWeSDV079OcQludEv2IRnMOn7E8CXAeAIVY9xFLr0nXI+r9GNovoP4ePGdUMjrpwLOg2rNK5A48PuSOiNyHx4fcF5GH8PiQhyLyCB4f8kgjETslnfvxDXh8+IbI+QE8PuQDEfkQHh/yoYg8gceHPBGRX8LjQ34pIm/B40PeEpF34PEh74jIJjw+ZFNEHsPjQx6LyD14fMg9jSxfqVN4UqIzFFblTSgXeaClSKDmpijfNllHH3Y7YE13S7Dyqt6F337sboBO4xLsXsC865dg5Zm3DzbSj5Vt0W3aTXzY2yL2AGaAH3sgYj9XL0qwnwestJclWHmtHUI7P1a2vnfhzY+9K2LvQcmPlfeo+1Djx94P2DEmJdgjEftAvSrBhlj9aQlWtvsNsCt+rLxPNaG9HxtiTeclWNmenoAH48fKu9UjqPVjH4nYx+pNCfaxiP0CrLsf+0XADvuuBGv22Eu0gwzIH4lhxVZRa+erEksToNYW+Cf53pKQb9yBegkzyDEDwoxExH6O2A9EHOaIw2C5styOZuTvylwaOaIRiOjkexOWZmL7Xt4eS0kAYjdH7C4hqjxSHGvTl1PyLkyNhJzlOxeWQvqU5vYbS7GeD9WW1yDuFxA8t5/TzL9O0RJGUKipKmrP8z2ekRG9VyFeU/Rmeml4yLhZbhVc1BsR1fGgOiLqrQf1VkTNPai5iDr1oE5FlF35Lq4VMAOs/nEsFvTGM4B95PInAq/gJuw6t2GNRjB/jsALfEg19+F3g2Jv6amSDKN53Ccxy/GkYImnUFqoNai3UeEuxdcJrbAYJOOW93WMj2+Y21joNcdW+CzfyaM8YxJOZ0jyDHI66C1GtJ7q0blDNWfk3XGpHv52vu5NqR5+jzR+Rl48l+rhZ1r62Tlkb2ps8xzYBqymida+LdelwfkXpmHKl2jXRYuLozrScwbpvalJ/0CPzME5xmWHSqwfW65HI3P6lxX6V4eG1XPm6LkeFfSe2Os1pah2T8Y67rXlujKktIuOtRz2re7IYJueHhlTrkfjCDyuHYq5F0657uyd5L2x5Xo0ThTnPc/IkzflejQG9M76sOV6NDDb0tZxvi3XteyoAY6dbbmuVR9TFhhzQDznucZ6RVPyk+aa2pD8g+psjevzr+5jmLN5mscI1ZSsb1tOp5PvZdUSGX8hBqs2qykH+hdzxwcr0lioLTG+Yhlmhf19lY7d41Hzh6DFCFY/nwFIOfMEJDQ5CbTeCVDcFKOuYs8MbkvE4SzpL6FaunYmeouWL2eNinXPqFaKy2xvrR5bZK8zmnsT8gkPSbOSHg5LR7iMoqShw4KGZHp1dPdOr9ei9jdE3GQJMclnWpdOhPgkrTpO9Wm94ej4qj7lmcHDZz52/mK2ua+tDcY8KdkilKWKp9vO5JHcOtxXryub4+bPIhpRtFenZDWGdCKViVGoyRazN76gd0v7mM7kkAfT6MI4RprKRPGpGWbRMZ8ekUV17a3EG/VlMnRczsjqGntcjR446IEHXT/G2YEd4x6UmhAzHMNbMyDKuZTrKiWNT9Uv8tPRlEawOqJPChbS0GB7ExcsZFWU/bxA5TWgcTZwlB5OY5mOwbdWKMlRv08eG7sWLf9VOrk159ttmuPls7k8E9MjrlvENaJVw6e6/LbMgSVYeD/ZIv+1upfIrw5HtKES16cOZ9bLmE78Y4pgJ+QZJ7TapNVRbO3mp5Y/MZyOlDk7x9PslCxkRPYvgv0ppTkZ0X/37oA5QWeLkJCNDLE7w9y78fk6Q3GOWT9uqPhWg51vMdmyOfE3dN3VldFc5IiB94GzpbltdHJIvmBMXKfautu1Xb37INLek3BnCVO0c+Ua8f+Efpr/Zp6srcwI1DCOQKZtnW88UopZUEdt2uWrbZBp60p5JZfhqZba7n9WpisFyXYp4kJ5cLfuAecuvTMvnCVTkjtbacP7aFU2FylPlvSIve1TFM92f6B3YJT7Ou2Sa7TmWjRLBjALZnkUYdpKWeRlvtW8itTDaGf/F+pW10WtIcVI2Qwua0jK78cUrblSJjCref6+pNXk1/p0qVU1nzHNxZGzlr+G2p/ATyO3eQ+j0ylYhW2aA0zBvlmNcE200iKM13aBl5mZhpZ9t/zsnDSt3JrzxNds3WyMfVqbyhHNmjc6a2HK56HxwqHxIlCHTTprtFo09cYSPRNji6Y+rQzlV4dbswbluUhZ9sgMahggpRtLhVHtiVTlGN+g3om0NkRabVit7mmAu+ZDkP61vry6v85390jdIt+mSx4Yxy89WqVD8rlMbXWkxhSQ8w1tX93V36Ia5N4hC4qU+R4nrhg+derSc5ZL+jO9s6Vk561FMPeWXus2xsa2qPyrFeSI1kRG69IgblCLWMvvyhEtWaR1x+eIKPPfJp+K/Y7qmNltbcckKvgTNt7kVWV5caQwJv1LmbeDlej1wIlfI4oJ59q77gCt+iOMFBhjMgl+zzKjEcJdjk8S2KPtkP1ctVN8ijd2JFonqRfqdwE2hqNeO9fduWV6bPr2c2iJWrej7msh80uCOUr8znOi16ZdbaR91MXS+/lotfUuV3yv0sN8ia/Vx5zauJGFjfKKmJb6NJgLS1SPC2NCuNTrRR3560leR2Y+nQqlbFobysVMA9uY5xQvSfdAEeHz7q55vblPhH50Vuh1COtS4xqJEmbjUp0fcC0tZqUuruxDXHuxcjdKnJ2obKcw1N3dwtpvtpAxWb9ESTkbbu3K3ipEKXIWhil0Fd/oLYsPXZqfwoM/I+WLDg3HkNxhA/zbm2pH7b2H2xCvdJkzmhHVoC3oLcXebd3PYotqHb1yqLv0QziE8xiCriXph7ST1pWdKcuSu9TD6b8mKzBVsSi9bVm/Dy4XuSernOr0Z0iWTe7NUJnv4tTti+EQ0pMil3A+fK4h9aKvzHea6vXBUJd7UORQh4e5xxA25rZ1fV4up2p9rXIJ5cG7gDlxMTg8+SuPVWy7EAs1dUbk/XNA69CvoG52i/+1H4aP5VSfVyi3jL5r9iJg1LldrDOy6A/XXzOWW8hsLucYzjPNe2e9JT8/9vuiWiOVOr15//TRH7VzwPBaKM6DytIx3p1FVt5QKngu4JMhVf9Wf7sgfxvhVU6jTI46lMw5RTk100KmZr5x6eud+SxEJkunTKYiNRtHNOhG7I46ULfg/07uAda9HcrfpeTfiPV/f7YHtX2yHiaLzpmDFtXFlP2wp2g9erf3Z8skxru8fLe3CTV4Fn5ItXjP9x61x7u+zULfyr9Bwmv9rkpVrxCRLJ/u2XXVgR4UT944B2S+5xvRXXrOYvHNs1HA2aK5P7Us0YI+kW8WdErxHUfKLs3ViT6rx5MDvGHfzvNDkfol1bW1ncc9V+J8VMr5aIlzRtopcnjjfFZ9N6uMy47DpZfnzk51u5TibHueV50b3S3lwnfQq/GDCvzAkbJB2n9JkfBUVWfz5hU051om94R1rEwmkvWAcWY7H+/qyPa0gtdpQP/vlKLvOJLugywdyn9HdMI2JXqJ1s0eSc83HaszqbcrpDXfo2Sa9q6jnQfm1mJ1lj7R844zF+avESxoPeBuam4mStmTuIROh24ExkSJ70hWU+oL8vRFCgNREj1Tn11e21z+OxCrhZOt9c1fr994sLX22bb+GxEfqh+rn6prYB9/oz6DkThSxwr/VsQf1B/Vn7Z/v/3n7b9s/5WbfnBBY36kCv+2//5fZBjmAw==</latexit> d ⇠ 102
  3. Single Cell Multi-omics Understanding cell diversity: many types, many states

    for each type. Applications: cancer mutations, dynamic of adaptation, development, … <latexit sha1_base64="JmboHyrN9W6kgItyZjvFMpB0lgs=">AABBxXictVzbchu5EYU3t7Vz8yaPeZlE65Q35Tiy4kpStZWqlSVZ1pq2aZOSvbu0XbyMaNpDDs0h6QtXlU/Ia/I1+Y78QfKUX0hfgAGGxExjFMcoSRgQp7vRAzS6G6B702SUzbe3/3nho+9893vf/8HHFy/98Ec//slPL3/ys5MsXcz68XE/TdLZk143i5PRJD6ej+ZJ/GQ6i7vjXhI/7r3aw88fL+NZNkon7fm7afx03B1ORqejfncOTcf9OEmy55e3tq9v079os3JDV7aU/tdMP4mOVUcNVKr6aqHGKlYTNYd6oroqg/KNuqG21RTanqoVtM2gNqLPY3WmLgF2Ab1i6NGF1lfwewhP3+jWCTwjzYzQfeCSwM8MkJG6ApgU+s2gjtwi+nxBlLG1jPaKaKJs7+BvT9MaQ+tcvYBWCWd6huJwLHN1qv5EYxjBmKbUgqPrayoL0gpKHjmjmgOFKbRhfQCfz6DeJ6TRc0SYjMaOuu3S5/+intiKz33dd6H+TVJegRKplh59mlPoqiXRj+htLuAzlicBzkOgEOsxYu0N6XpMo59A/xW034dyRjWjkx6UFbWeVSL3oPiQeyLyEIoPeSgiG1B8yIaIbELxIZsaidgZ6dyPb0Hx4Vsi54dQfMiHIvIRFB/ykYg8geJDnojIr6H4kF+LyNtQfMjbIvIuFB/yrohsQ/Eh2yLyGIoPeSwiD6D4kAcaWb5SZ1BSojMSVuUu1Is80FIk0LIryneLrKMPeytgTfdLsPKq3oe/fux+gE7jEuxBwLw7LcHKM+8QbKQfK9uiO7Sb+LB3ROwRzAA/9kjEfqlelmC/DFhpr0qw8lprQD8/Vra+9+DJj70nYu9DzY+V96gH0OLHPgjYMaYl2KaIfahel2BDrP6sBCvb/RbYFT9W3qfa0N+PDbGmixKsbE9PwIPxY+Xd6jG0+rGPRewT9bYE+0TEfgXW3Y/9KmCHfV+CNXvsJdpBhuSPxLBiq6h181WJtSlQ6wr8k3xvScg37kG7hBnmmCFhxiLiMEccBiIaOaIRLFeW29GM/F2ZSytHtAIRvXxvwtpc7D/I+2MtCUDs54j9NUSVR4rv2oxlSd6FaZGQ83znwlrImNLcfmMt1vOh2vIaxIMCguf2C5r51yhawggKNVVF7UW+xzMyoucqxBuK3swoDQ8ZN8+tgot6K6J6HlRPRL3zoN6JqIUHtRBRSw9qKaLsyndxnYAZYPWP72JFTzwD2EcuLxF4Bbuw69yBNRrB/GmCF/iIWh7A3xbF3lKpkgyjedwnMcvxtGCJZ1BbqS1ot1HhPsXXCa2wGCTjng90jI9PmNtY6TXHVvgs38mjPGMSTmdE8gxzOugtRrSe6tG5Sy1n5N1xrR7+Tr7uTa0e/oA0fkZePNfq4eda+vk5ZG9rbPsc2BaspqnWvq3XpcH5F6Zh6pdo10WLi291rOcM0ntbk/6RfjNH53gve1Rj/dh6PRqZM76sML46NKyeM0fP9aig98Rer6lFtUcy0XGvrdeVIaVddKLlsE913wz2Geg3Y+r1aDTB49qjmHvl1OvO3mk+GluvR+NEcd7zjDx5U69HY0jPrA9br0cDsy1dHefbel3Ljhrg2NnW61r1CWWBMQfEc55brFc0Iz9poamNyD+ozta4Pv/mPoY5m2d5jFBNyfq25XR6+V5WLZHxF2KwavOacqB/sXB8sCKNldoR4yuWYV7Y3zfp2D0eNd8ALUaw+vkMQMqZJyChyUmg9U6A4g0x6iqOzOB2RBzOktM1VEe3zkVv0fLlrFGx7Tm1SnGZHa3VY4fsdUZzb0o+YYM0K+mhUfqGyyhKGmoUNCTTq6O793q9FrW/LeKma4hpPtP6dCLEJ2nVcapP6y1Hx1f0Kc8cCp/52PmL2eZTbW0w5knJFqEsVTzdfiaP5LbhvnpN2Rw3fxbRG0V7tSSrMaITqUyMQk22mL3xFT1b2sd0Joc8mEYf3mOkqUwVn5phFh3z6RFZVNfeSrxRXyZDx/WMrK6xx9XooYMeetD1Y5w92DHuQ60NMcMxPLUDopxLua5S0vhM/TY/HU3pDVZH9EnBQhoabG/igoWsirJfFKi8ATTOBo7Sw2ms0zH4zgYlOer3yWNj16Llv0Int+Z8u0tzvHw2l2diBsR1h7hGtGr4VJef1jmwBCvvJzvkv1aPEvnV4Yg2VOL6zOHMepnQiX9MEeyUPOOEVpu0Ooq93fzU+ieGU1OZs3M8zU7JQkZk/yLYn1KakxH9uHcHzAk6W4SEbGSI3Rnl3o3P1xmJc8z6cSPFtxrsfIvJli2Iv6Hrrq6M5iJHDLwPnK3NbaOTBvmCMXGdaetu13b17oNIe0/CnSVM0c6Vq8T/M/ptfsw82dqYEahhfAOZtnW+95FSzII66tIuX22DTF9Xyk9zGZ5pqe3+Z2X6tCDZPkVcKA/u1gPg3Kdn5oWzZEZyZxt9eB+tyuYi5emaHnG0pxTFs90f6h0Y5b5Gu+QWrbkOzZIhzIJ5HkWYvlIWeZ1vNa8i9TDa2f+FutV1UWtIMVI2g8sakvL7MUVrrpQJzGqev69oNfm1PlvrVc1nQnNx7Kzlb6H1l/DbyG2ew+j0ClbhFs0BpmCfrEa4JdroEcbrVoGXmZmGln22/OycNL3clvPE12zdbIy9rE2lSbPmrc5amPp5aLx0aLwM1GGbzhqtFk27sUTPxdiirU8rQ/nV4dauQXkhUpY9MoMaBUjpxlJhVAciVTnGN6j3Iq1tkVYXVqt7GuCu+RCkf62vr+5v8909UrfJt+mTB8bxy4BW6Yh8LtNaHakxBeR8U9tXd/V3qAW598iCImW+x4krhk+d+lTOckl/rXe2lOy8tQjm3tIb3cfY2A7Vf7+BHNOayGhdGsRN6hFr+V05ojWLdN3xOSLK/HfJp2K/ozpmdnvbdxIV/Akbb/Kqsrw4UpiQ/qXM29FG9HrkxK8RxYQL7V33gFb9N4wUGGMyCX7PMqM3hLscnySwR9sj+7lpp/gUb+JIdJ2kXqk/B9gYjnrtXHfnlhmxGdtvoCdq3b51Xw+ZXxLMUeJ3nhO9Lu1qY+2jrtaez0erq3e54nOVHhZrfK0+FtTHjSxslFfEdNTnwVxYonpcGBPCpd4o6shfT/I6MvPpVChl09tQLmYa2Ma8oHhJugeKCJ93d9XrzX0mjKO3Qa9HWJcat0iUMBuX6vyAa2kxK3VxYx/i1ouVu1Hi7ERlO4Wh7u4W1n6zhYzJ+iVKytlwb1f2TiFKkbMwTKGv+EZvWXzo0vwcCv6OlC86NBxDcoct8G931Z46+AC3IV7rOmc0I2pBWzBYi727epzFHtU6eu1Qd+mHcAjnMQJdS9KPaCetKztTliV3qYfTf0NWYKZiUXrbs/4YXC7ySDY51RnPiCybPJqRMt/FqTsWwyFkJEUu4Xz4XEMaxaky32mqNwZDXR5BkUMdHuYeQ9g7t73r83I5Vetrk0soD94FzImLweHJX3msYvuFWKiZ80Y+PAe0DqcV1M1u8b+Ow/CxnOrzCuWW0XfNXga8de4X64ws+sP114zlFjKbyzmG80zz0Vlvyc+P/b6o1ptKndF8eProj9o5YHitFOdBZekY784iK28oFTwX8MmQqv+of1yQv43wOqdRJkcdSuacopya6SFTM9+49I3OfBYik6VTJlORmo0jWnQjdk8dqdvws5d7gHVvh/J3KfkvYv3fnx1A6ylZD5NF58xBh9piyn7YU7QBPdv7s2US411evtvbhhY8C29QK97zvU/98a5vuzC28m+Q8Fq/p1I1KEQk66d7dl31YATFkzfOAZnv+UZ0l56zWHzzbBxwtmjuT61LtKJP5JsFvVJ8z5GyT3N1qs/q8eQAb9h38/xQpH5HbV1t53HPlTg3Szk31zhnpJ0ih7fOZ9V3s8q47DlcBnnubKn7pRRn2/O86tzofikXvoNejR9W4IeOlC3S/iuKhGeqOpu3qKC50DK5J6wTZTKRrAeMM7v5+66ObJcVvJYB479bir7rSHoIsvQo/x3RCduM6CVaNwckPd90rM6k3qmQVn+P8vnlrRvr/5fBZuVk5/qNP1y/+XBn64tb+v85+Fj9Qv1KXYU1/kf1BVBrqmM6d/+r+pv6++7h7nh3vrvkrh9d0Jifq8K/3b/8F2JKomY=</latexit> cells <latexit sha1_base64="6LS8OfUSD/ef5J7/bEX8BJJLTug=">AABDBXictVxLkxPJES7WrwW/WPvoS9uzOFgHiwdM2I7YcMQyD4ZZBAwjzQC7AkKPlhC01EItDQ/tnP0DfLV/gm8OX/d3+B/YJx/8B5yPqq5qqbqzeozpmJnqUn2ZWVlVWZlZJbrTZJTNNzf/ce6Db337O9/93ofnL3z/Bz/80Y8vfvST4yxdzHrxUS9N0tmjbieLk9EkPpqP5kn8aDqLO+NuEj/svtzGzx+exLNslE5a87fT+Mm4M5yMBqNeZw5Vj9ujSdQ+PHzaf3ZxY/PqJv2L1gvXdGFD6X8H6UfRf1Rb9VWqemqhxipWEzWHcqI6KoPnK3VNbaop1D1RS6ibQWlEn8fqVF0A7AJaxdCiA7Uv4fcQ3r7StRN4R5oZoXvAJYGfGSAjdQkwKbSbQRm5RfT5gihjbRntJdFE2d7C366mNYbauXoOtRLOtAzFYV/maqB+T30YQZ+mVIO962kqC9IKSh45vZoDhSnUYbkPn8+g3COk0XNEmIz6jrrt0Of/pJZYi+893Xah/kVSXoInUk3d+zSn0FEnRD+i0VzAZyxPApyHQCHWfcTSa9L1mHo/gfZLqL8HzymVjE668Cyp9rQSuQ2PD7ktIvfg8SH3RGQDHh+yISIP4PEhDzQSsTPSuR/fhMeHb4qcH8DjQz4QkYfw+JCHIvIYHh/yWER+CY8P+aWIvAWPD3lLRN6Bx4e8IyJb8PiQLRF5BI8PeSQid+HxIXc1snylzuBJic5IWJU3oVzkgZYigZqbonxbZB192K2ANd0rwcqregf++rE7ATqNS7C7AfNuUIKVZ94e2Eg/VrZFt2k38WFvi9h9mAF+7L6I/UK9KMF+EbDSXpZg5bXWgHZ+rGx978KbH3tXxN6Dkh8r71H3ocaPvR+wY0xLsAci9oF6VYINsfqzEqxs95tgV/xYeZ9qQXs/NsSaLkqwsj09Bg/Gj5V3q4dQ68c+FLGP1JsS7CMR+xisux/7OGCHfVeCNXvsBdpBhuSPxLBiq6h18lWJpSlQ6wj8k3xvScg37kK9hBnmmCFhxiJiL0fsBSIaOaIRLFeW29GM/F2ZSzNHNAMR3XxvwtJcbN/P22MpCUDs5IidFUSVR4pjbfpyQt6FqZGQ83znwlJIn9LcfmMp1vOh2vIaxP0Cguf2c5r5VyhawggKNVVF7Xm+xzMyovcqxGuK3kwvDQ8ZN8+tgot6I6K6HlRXRL31oN6KqIUHtRBRJx7UiYiyK9/FtQNmgNU/jsWS3ngGsI9c/kTgFdyEXec2rNEI5s8BeIGHVHMf/jYp9paeKskwmsd9ErMcTwqWeAalpdqAehsV7lB8ndAKi0Eybnlfx/j4hrmNpV5zbIVP8508yjMm4XRGJM8wp4PeYkTrqR6dO1RzSt4dl+rhb+fr3pTq4XdJ46fkxXOpHn6upZ+fQfaWxrbOgG3Cappq7dtyXRqcf2EapnyBdl20uDiqYz1nkN6bmvT39cjsn2FctqnE+rHlejQyp39ZoX91aFg9Z46e61FB74m9XlOKavdkouNeW64rQ0q76ETLYd/qjgy26euRMeV6NA7A49qmmHvplOvO3mneG1uuR+NYcd7zlDx5U65HY0jvrA9brkcDsy0dHefbcl3Ljhrg2NmW61r1CWWBMQfEc55rrFc0Iz9poamNyD+ozta4Pv/6PoY5m6d5jFBNyfq25XS6+V5WLZHxF2KwavOacqB/sXB8sCKNpbouxlcsw7ywv6/TsXs8ar4BWoxg9fMZgJQzT0BCk5NA650AxWti1FXsmcFdF3E4SwYrqLaunYveouXLWaNi3TOqleIy21urxzbZ64zm3pR8wgZpVtJDo3SEyyhKGmoUNCTTq6O7d3q9FrW/KeKmK4hpPtN6dCLEJ2nVcapP601Hx5f0Kc8cHj7zsfMXs80DbW0w5knJFqEsVTzddiaP5NbhvnpF2Rw3fxbRiKK9OiGrMaITqUyMQk22mL3xJb1b2kd0Joc8mEYPxjHSVKaKT80wi4759IgsqmtvJd6oL5Oh43JGVtfY42r00EEPPej6Mc427Bj3oNSCmOEI3loBUc6FXFcpaXymPs1PR1MaweqIPilYSEOD7U1csJBVUfbzApXXgMbZwFF6OI1VOgbfXqMkR/0+eWzsWrT8l+jk1pxvd2iOl8/m8kxMn7heJ64RrRo+1eW3VQ4swdL7yXXyX6t7ifzqcEQbKnF96nBmvUzoxD+mCHZKnnFCq01aHcXWbn5q9RPD6UCZs3M8zU7JQkZk/yLYn1KakxH9uHcHzAk6W4SEbGSI3Rnl3o3P1xmJc8z6cSPFtxrsfIvJli2Iv6Hrrq6M5iJHDLwPnK7MbaOTBvmCMXGdaetu13b17oNIe0/CnSVM0c6Vy8T/E/ptfsw82VibEahhHIFM2zrfeKQUs6COOrTLV9sg09aV8uNchqdaarv/WZk+Lki2QxEXyoO7dR849+ideeEsmZHc2Vob3kersrlIebqiR+ztgKJ4tvtDvQOj3Fdol9ygNdemWTKEWTDPowjTVsoir/Kt5lWkHkY7+79Qt7ouag0pRspmcFlDUn4/pmjNlTKBWc3z9yWtJr/WZyutqvlMaC6OnbX8NdT+HH4buc17GJ1uwSps0RxgCvbNaoRrorUWYby2CrzMzDS07LvlZ+ekaeXWnCW+ZutmY+yT2lQOaNa80VkLUz4LjRcOjReBOmzRWaPVoqk3luiZGFu09GllKL863Fo1KC9EyrJHZlCjACndWCqMal+kKsf4BvVOpLUp0urAanVPA9w1H4L0r/XV1f11vrtH6hb5Nj3ywDh+6dMqHZHPZWqrIzWmgJxvaPvqrv421SD3LllQpMz3OHHF8KlTj57TXNJf6p0tJTtvLYK5t/RatzE2tk3l36whx7QmMlqXBnGDWsRafleOaMUiXXV8jogy/x3yqdjvqI6Z3dZ2TKKCP2HjTV5VlhdHChPSv5R521+LXved+DWimHChvesu0Ko/wkiBMSaT4PcsMxoh3OX4JIE92i7Zz3U7xad4E0eiqyT1Uv0hwMZw1Gvnuju3TI9N334FLVHrdtR9LWR+STBHid9ZTvQ6tKuNtY+6XHk/G62O3uWK71V6WKzwtfpYUBs3srBRXhHTVp8Fc2GJ6nFhTAiXer2oI389yevIzKdToZRNa0O5mGlgG/Oc4iXpHigifN7dZa8394nQj+4avS5hXWpcI1HCbFyq8wOupcWs1Pm1fYhrz1fuRomzE5XtFIa6u1tY+80WMibrlygpZ8OtXdnbhShFzsIwhZ7iG71l8aFL8zN48HekfNGh4RiSO2yCf3tTbavd93Ab4pUuc0Yzohq0Bf2V2Luj+1lsUa2jVw51l34Ih3AeI9C1JP2IdtK6sjNlWXKXejj912QFZioWpbct6/fB5SL3ZJ1Tnf6MyLLJvRkp812cun0xHEJ6UuQSzofPNaReDJT5TlO9Phjqcg+KHOrwMPcYwsbctq7Py+VUra91LqE8eBcwJy4Ghyd/5bGKbRdioWbOiLx/DmgdBhXUzW7xv/bD8LGc6vMK5ZbRd81eBIw6t4t1Rhb94fprxnILmc3lHMN5pnnvrLfk58d+X1RrpFKnN++fPvqjdg4YXkvFeVBZOsa7s8jKG0oFzwV8MqTq3+qbc/K3EV7lNMrkqEPJnFOUUzMtZGrmG5e+3pnPQmSydMpkKlKzcUSTbsRuq311C362cw+w7u1Q/i4l/0Ws//uzfagdkPUwWXTOHLSpLqbshz1F69O7vT9bJjHe5eW7vS2owbPwBtXiPd971B7v+rYKfSv/Bgmv9bsqVf1CRLJ6umfXVRd6UDx54xyQ+Z5vRHfpOYvFN8/GAWeL5v7UqkRL+kS+WdAtxXcdKXs0V6f6rB5PDvCGfSfPD0Xq11TX0XYe91yJ80Ep54MVzhlpp8jhjfNZ9d2sMi7bDpd+njs70e1SirPteV51bnSnlAvfQa/GDyvwQ0fKJmn/JUXCM1WdzVtU0FxomdwT1okymUjWA8aZnXy8qyPbkwpeJwH9v1OKvuNIugeydCn/HdEJ24zoJVo3uyQ933SszqTerpDWfI+Sadq7jnYemFuL1Vn6RM87zlyY/41gSesBd1NzM1HKnsQldLp0IzAmSnxHsprSQJBnIFIYipLomfrs4sa11f8HYr1wfP3qtd9evfHgxsbnW/r/iPhQ/Uz9Ql0G+/g79TmMxIE6Ak5j9Sf1Z/WXrT9u/XXrb1t/56YfnNOYn6rCv61v/guvM+Qz</latexit> 2 Rd Tissue Dissociation isolation RNA amplification sequencing … <latexit sha1_base64="6L8H4Gt+fXCCPCipj/akDBzsUqw=">AABDDXictVzbchu5EYU3t7VzWW/ymJdJZKe8KUeRFFeSqq1UrXWxrLVsyyYle3dpu3gZ0rSHHJpDyheuviEfkNfkE/KWSh7zDfmD5CkP+YH0BRhgSMw0RnE8ZQkD4nQ3GkCjuwGqM0mG2Wxj4x8XPvjGN7/17e98ePHSd7/3/R98dPnjH55k6XzajY+7aZJOH3faWZwMx/HxbDhL4seTadwedZL4UeflDn7+6DSeZsN03Jy9ncRPRu3BeNgfdtszqHp2+aMrvaiVDUfR5sbTxdbZlWeX1zbWN+hftFrY1IU1pf8dpR9H/1Et1VOp6qq5GqlYjdUMyolqqwyer9Sm2lATqHuiFlA3hdKQPo/VmboE2Dm0iqFFG2pfws8BvH2la8fwjjQzQneBSwL/p4CM1FXApNBuCmXkFtHnc6KMtWW0F0QTZXsLvzua1ghqZ+o51Eo40zIUh32Zqb76LfVhCH2aUA32rqupzEkrKHnk9GoGFCZQh+UefD6FcpeQRs8RYTLqO+q2TZ//k1piLb53ddu5+hdJeRWeSDV079OcQludEv2IRnMOn7E8CXAeAIVY9xFLr0nXI+r9GNovoP4ePGdUMjrpwLOg2rNK5A48PuSOiNyHx4fcF5GH8PiQhyLyCB4f8kgjETslnfvxDXh8+IbI+QE8PuQDEfkQHh/yoYg8gceHPBGRX8LjQ34pIm/B40PeEpF34PEh74jIJjw+ZFNEHsPjQx6LyD14fMg9jSxfqVN4UqIzFFblTSgXeaClSKDmpijfNllHH3Y7YE13S7Dyqt6F337sboBO4xLsXsC865dg5Zm3DzbSj5Vt0W3aTXzY2yL2AGaAH3sgYj9XL0qwnwestJclWHmtHUI7P1a2vnfhzY+9K2LvQcmPlfeo+1Djx94P2DEmJdgjEftAvSrBhlj9aQlWtvsNsCt+rLxPNaG9HxtiTeclWNmenoAH48fKu9UjqPVjH4nYx+pNCfaxiP0CrLsf+0XADvuuBGv22Eu0gwzIH4lhxVZRa+erEksToNYW+Cf53pKQb9yBegkzyDEDwoxExH6O2A9EHOaIw2C5styOZuTvylwaOaIRiOjkexOWZmL7Xt4eS0kAYjdH7C4hqjxSHGvTl1PyLkyNhJzlOxeWQvqU5vYbS7GeD9WW1yDuFxA8t5/TzL9O0RJGUKipKmrP8z2ekRG9VyFeU/Rmeml4yLhZbhVc1BsR1fGgOiLqrQf1VkTNPai5iDr1oE5FlF35Lq4VMAOs/nEsFvTGM4B95PInAq/gJuw6t2GNRjB/jsALfEg19+F3g2Jv6amSDKN53Ccxy/GkYImnUFqoNai3UeEuxdcJrbAYJOOW93WMj2+Y21joNcdW+CzfyaM8YxJOZ0jyDHI66C1GtJ7q0blDNWfk3XGpHv52vu5NqR5+jzR+Rl48l+rhZ1r62Tlkb2ps8xzYBqymida+LdelwfkXpmHKl2jXRYuLozrScwbpvalJ/0CPzME5xmWHSqwfW65HI3P6lxX6V4eG1XPm6LkeFfSe2Os1pah2T8Y67rXlujKktIuOtRz2re7IYJueHhlTrkfjCDyuHYq5F0657uyd5L2x5Xo0ThTnPc/IkzflejQG9M76sOV6NDDb0tZxvi3XteyoAY6dbbmuVR9TFhhzQDznucZ6RVPyk+aa2pD8g+psjevzr+5jmLN5mscI1ZSsb1tOp5PvZdUSGX8hBqs2qykH+hdzxwcr0lioLTG+Yhlmhf19lY7d41Hzh6DFCFY/nwFIOfMEJDQ5CbTeCVDcFKOuYs8MbkvE4SzpL6FaunYmeouWL2eNinXPqFaKy2xvrR5bZK8zmnsT8gkPSbOSHg5LR7iMoqShw4KGZHp1dPdOr9ei9jdE3GQJMclnWpdOhPgkrTpO9Wm94ej4qj7lmcHDZz52/mK2ua+tDcY8KdkilKWKp9vO5JHcOtxXryub4+bPIhpRtFenZDWGdCKViVGoyRazN76gd0v7mM7kkAfT6MI4RprKRPGpGWbRMZ8ekUV17a3EG/VlMnRczsjqGntcjR446IEHXT/G2YEd4x6UmhAzHMNbMyDKuZTrKiWNT9Uv8tPRlEawOqJPChbS0GB7ExcsZFWU/bxA5TWgcTZwlB5OY5mOwbdWKMlRv08eG7sWLf9VOrk159ttmuPls7k8E9MjrlvENaJVw6e6/LbMgSVYeD/ZIv+1upfIrw5HtKES16cOZ9bLmE78Y4pgJ+QZJ7TapNVRbO3mp5Y/MZyOlDk7x9PslCxkRPYvgv0ppTkZ0X/37oA5QWeLkJCNDLE7w9y78fk6Q3GOWT9uqPhWg51vMdmyOfE3dN3VldFc5IiB94GzpbltdHJIvmBMXKfautu1Xb37INLek3BnCVO0c+Ua8f+Efpr/Zp6srcwI1DCOQKZtnW88UopZUEdt2uWrbZBp60p5JZfhqZba7n9WpisFyXYp4kJ5cLfuAecuvTMvnCVTkjtbacP7aFU2FylPlvSIve1TFM92f6B3YJT7Ou2Sa7TmWjRLBjALZnkUYdpKWeRlvtW8itTDaGf/F+pW10WtIcVI2Qwua0jK78cUrblSJjCref6+pNXk1/p0qVU1nzHNxZGzlr+G2p/ATyO3eQ+j0ylYhW2aA0zBvlmNcE200iKM13aBl5mZhpZ9t/zsnDSt3JrzxNds3WyMfVqbyhHNmjc6a2HK56HxwqHxIlCHTTprtFo09cYSPRNji6Y+rQzlV4dbswbluUhZ9sgMahggpRtLhVHtiVTlGN+g3om0NkRabVit7mmAu+ZDkP61vry6v85390jdIt+mSx4Yxy89WqVD8rlMbXWkxhSQ8w1tX93V36Ia5N4hC4qU+R4nrhg+derSc5ZL+jO9s6Vk561FMPeWXus2xsa2qPyrFeSI1kRG69IgblCLWMvvyhEtWaR1x+eIKPPfJp+K/Y7qmNltbcckKvgTNt7kVWV5caQwJv1LmbeDlej1wIlfI4oJ59q77gCt+iOMFBhjMgl+zzKjEcJdjk8S2KPtkP1ctVN8ijd2JFonqRfqdwE2hqNeO9fduWV6bPr2c2iJWrej7msh80uCOUr8znOi16ZdbaR91MXS+/lotfUuV3yv0sN8ia/Vx5zauJGFjfKKmJb6NJgLS1SPC2NCuNTrRR3560leR2Y+nQqlbFobysVMA9uY5xQvSfdAEeHz7q55vblPhH50Vuh1COtS4xqJEmbjUp0fcC0tZqUuruxDXHuxcjdKnJ2obKcw1N3dwtpvtpAxWb9ESTkbbu3K3ipEKXIWhil0Fd/oLYsPXZqfwoM/I+WLDg3HkNxhA/zbm2pH7b2H2xCvdJkzmhHVoC3oLcXebd3PYotqHb1yqLv0QziE8xiCriXph7ST1pWdKcuSu9TD6b8mKzBVsSi9bVm/Dy4XuSernOr0Z0iWTe7NUJnv4tTti+EQ0pMil3A+fK4h9aKvzHea6vXBUJd7UORQh4e5xxA25rZ1fV4up2p9rXIJ5cG7gDlxMTg8+SuPVWy7EAs1dUbk/XNA69CvoG52i/+1H4aP5VSfVyi3jL5r9iJg1LldrDOy6A/XXzOWW8hsLucYzjPNe2e9JT8/9vuiWiOVOr15//TRH7VzwPBaKM6DytIx3p1FVt5QKngu4JMhVf9Wf7sgfxvhVU6jTI46lMw5RTk100KmZr5x6eud+SxEJkunTKYiNRtHNOhG7I46ULfg/07uAda9HcrfpeTfiPV/f7YHtX2yHiaLzpmDFtXFlP2wp2g9erf3Z8skxru8fLe3CTV4Fn5ItXjP9x61x7u+zULfyr9Bwmv9rkpVrxCRLJ/u2XXVgR4UT944B2S+5xvRXXrOYvHNs1HA2aK5P7Us0YI+kW8WdErxHUfKLs3ViT6rx5MDvGHfzvNDkfol1bW1ncc9V+J8VMr5aIlzRtopcnjjfFZ9N6uMy47DpZfnzk51u5TibHueV50b3S3lwnfQq/GDCvzAkbJB2n9JkfBUVWfz5hU051om94R1rEwmkvWAcWY7H+/qyPa0gtdpQP/vlKLvOJLugywdyn9HdMI2JXqJ1s0eSc83HaszqbcrpDXfo2Sa9q6jnQfm1mJ1lj7R844zF+avESxoPeBuam4mStmTuIROh24ExkSJ70hWU+oL8vRFCgNREj1Tn11e21z+OxCrhZOt9c1fr994sLX22bb+GxEfqh+rn6prYB9/oz6DkThSxwr/VsQf1B/Vn7Z/v/3n7b9s/5WbfnBBY36kCv+2//5fZBjmAw==</latexit> d ⇠ 102 Multi-omics integration: next frontier … Accessability Gene Expression A B C A B C A (n) A (n) A (n) A (n) A (n) Protein A (n) RNA Chromatin Protein Abundance A D E Gene Expression A B C D E F G RNA DNA Protein Transcription Translation A (n) A (n) A (n) A (n) A (n) Protein A (n) RNA Chromatin Protein Abundance A D E Gene Expression A B C D E F G ATAC-seq Different omics spaces: RNA-seq CITE-seq <latexit sha1_base64="v4HVUJlrkr1NIl1MUAlx55L31yI=">AABDDXictVzbchu5EYU3t7VzWW/ymJdJZKe8KUeRFFeSqq1UrXWxrLVsyyYle3dpu3gZ0rSHHJpDyheuviEfkNfkE/KWSh7zDfmD5CkP+YH0BRhgSMw0RnE8ZQkD4nQ3GkCjuwGqM0mG2Wxj4x8XPvjGN7/17e98ePHSd7/3/R98dPnjH55k6XzajY+7aZJOH3faWZwMx/HxbDhL4seTadwedZL4UeflDn7+6DSeZsN03Jy9ncRPRu3BeNgfdtszqHp2+aMrvaiVDUfR5sbTxY2zK88ur22sb9C/aLWwqQtrSv87Sj+O/qNaqqdS1VVzNVKxGqsZlBPVVhk8X6lNtaEmUPdELaBuCqUhfR6rM3UJsHNoFUOLNtS+hJ8DePtK147hHWlmhO4ClwT+TwEZqauASaHdFMrILaLP50QZa8toL4gmyvYWfnc0rRHUztRzqJVwpmUoDvsyU331W+rDEPo0oRrsXVdTmZNWUPLI6dUMKEygDss9+HwK5S4hjZ4jwmTUd9Rtmz7/J7XEWnzv6rZz9S+S8io8kWro3qc5hbY6JfoRjeYcPmN5EuA8AAqx7iOWXpOuR9T7MbRfQP09eM6oZHTSgWdBtWeVyB14fMgdEbkPjw+5LyIP4fEhD0XkETw+5JFGInZKOvfjG/D48A2R8wN4fMgHIvIhPD7kQxF5Ao8PeSIiv4THh/xSRN6Cx4e8JSLvwOND3hGRTXh8yKaIPIbHhzwWkXvw+JB7Glm+UqfwpERnKKzKm1Au8kBLkUDNTVG+bbKOPux2wJrulmDlVb0Lv/3Y3QCdxiXYvYB51y/ByjNvH2ykHyvbotu0m/iwt0XsAcwAP/ZAxH6uXpRgPw9YaS9LsPJaO4R2fqxsfe/Cmx97V8Teg5IfK+9R96HGj70fsGNMSrBHIvaBelWCDbH60xKsbPcbYFf8WHmfakJ7PzbEms5LsLI9PQEPxo+Vd6tHUOvHPhKxj9WbEuxjEfsFWHc/9ouAHfZdCdbssZdoBxmQPxLDiq2i1s5XJZYmQK0t8E/yvSUh37gD9RJmkGMGhBmJiP0csR+IOMwRh8FyZbkdzcjflbk0ckQjENHJ9yYszcT2vbw9lpIAxG6O2F1CVHmkONamL6fkXZgaCTnLdy4shfQpze03lmI9H6otr0HcLyB4bj+nmX+doiWMoFBTVdSe53s8IyN6r0K8pujN9NLwkHGz3Cq4qDciquNBdUTUWw/qrYiae1BzEXXqQZ2KKLvyXVwrYAZY/eNYLOiNZwD7yOVPBF7BTdh1bsMajWD+HIEX+JBq7sPvBsXe0lMlGUbzuE9iluNJwRJPobRQa1Bvo8Jdiq8TWmExSMYt7+sYH98wt7HQa46t8Fm+k0d5xiSczpDkGeR00FuMaD3Vo3OHas7Iu+NSPfztfN2bUj38Hmn8jLx4LtXDz7T0s3PI3tTY5jmwDVhNE619W65Lg/MvTMOUL9GuixYXR3Wk5wzSe1OT/oEemYNzjMsOlVg/tlyPRub0Lyv0rw4Nq+fM0XM9Kug9sddrSlHtnox13GvLdWVIaRcdaznsW92RwTY9PTKmXI/GEXhcOxRzL5xy3dk7yXtjy/VonCjOe56RJ2/K9WgM6J31Ycv1aGC2pa3jfFuua9lRAxw723Jdqz6mLDDmgHjOc431iqbkJ801tSH5B9XZGtfnX93HMGfzNI8RqilZ37acTiffy6olMv5CDFZtVlMO9C/mjg9WpLFQW2J8xTLMCvv7Kh27x6PmD0GLEax+PgOQcuYJSGhyEmi9E6C4KUZdxZ4Z3JaIw1nSX0K1dO1M9BYtX84aFeueUa0Ul9neWj22yF5nNPcm5BMekmYlPRyWjnAZRUlDhwUNyfTq6O6dXq9F7W+IuMkSYpLPtC6dCPFJWnWc6tN6w9HxVX3KM4OHz3zs/MVsc19bG4x5UrJFKEsVT7edySO5dbivXlc2x82fRTSiaK9OyWoM6UQqE6NQky1mb3xB75b2MZ3JIQ+m0YVxjDSVieJTM8yiYz49Iovq2luJN+rLZOi4nJHVNfa4Gj1w0AMPun6MswM7xj0oNSFmOIa3ZkCUcynXVUoan6pf5KejKY1gdUSfFCykocH2Ji5YyKoo+3mBymtA42zgKD2cxjIdg2+tUJKjfp88NnYtWv6rdHJrzrfbNMfLZ3N5JqZHXLeIa0Srhk91+W2ZA0uw8H6yRf5rdS+RXx2OaEMlrk8dzqyXMZ34xxTBTsgzTmi1Sauj2NrNTy1/YjgdKXN2jqfZKVnIiOxfBPtTSnMyov/u3QFzgs4WISEbGWJ3hrl34/N1huIcs37cUPGtBjvfYrJlc+Jv6LqrK6O5yBED7wNnS3Pb6OSQfMGYuE61dbdru3r3QaS9J+HOEqZo58o14v8J/TT/zTxZW5kRqGEcgUzbOt94pBSzoI7atMtX2yDT1pXySi7DUy213f+sTFcKku1SxIXy4G7dA85demdeOEumJHe20ob30apsLlKeLOkRe9unKJ7t/kDvwCj3ddol12jNtWiWDGAWzPIowrSVssjLfKt5FamH0c7+L9StrotaQ4qRshlc1pCU348pWnOlTGBW8/x9SavJr/XpUqtqPmOaiyNnLX8NtT+Bn0Zu8x5Gp1OwCts0B5iCfbMa4ZpopUUYr+0CLzMzDS37bvnZOWlauTXnia/ZutkY+7Q2lSOaNW901sKUz0PjhUPjRaAOm3TWaLVo6o0leibGFk19WhnKrw63Zg3Kc5Gy7JEZ1DBASjeWCqPaE6nKMb5BvRNpbYi02rBa3dMAd82HIP1rfXl1f53v7pG6Rb5Nlzwwjl96tEqH5HOZ2upIjSkg5xvavrqrv0U1yL1DFhQp8z1OXDF86tSl5yyX9Gd6Z0vJzluLYO4tvdZtjI1tUflXK8gRrYmM1qVB3KAWsZbflSNaskjrjs8RUea/TT4V+x3VMbPb2o5JVPAnbLzJq8ry4khhTPqXMm8HK9HrgRO/RhQTzrV33QFa9UcYKTDGZBL8nmVGI4S7HJ8ksEfbIfu5aqf4FG/sSLROUi/U7wJsDEe9dq67c8v02PTt59AStW5H3ddC5pcEc5T4nedEr0272kj7qIul9/PRautdrvhepYf5El+rjzm1cSMLG+UVMS31aTAXlqgeF8aEcKnXizry15O8jsx8OhVK2bQ2lIuZBrYxzyleku6BIsLn3V3zenOfCP3orNDrENalxjUSJczGpTo/4FpazEpdXNmHuPZi5W6UODtR2U5hqLu7hbXfbCFjsn6JknI23NqVvVWIUuQsDFPoKr7RWxYfujQ/hQd/RsoXHRqOIbnDBvi3N9WO2nsPtyFe6TJnNCOqQVvQW4q927qfxRbVOnrlUHfph3AI5zEEXUvSD2knrSs7U5Yld6mH039NVmCqYlF627J+H1wuck9WOdXpz5Asm9yboTLfxanbF8MhpCdFLuF8+FxD6kVfme801euDoS73oMihDg9zjyFszG3r+rxcTtX6WuUSyoN3AXPiYnB48lceq9h2IRZq6ozI++eA1qFfQd3sFv9rPwwfy6k+r1BuGX3X7EXAqHO7WGdk0R+uv2Yst5DZXM4xnGea9856S35+7PdFtUYqdXrz/umjP2rngOG1UJwHlaVjvDuLrLyhVPBcwCdDqv6t/nZB/jbCq5xGmRx1KJlzinJqpoVMzXzj0tc781mITJZOmUxFajaOaNCN2B11oG7B/53cA6x7O5S/S8m/Eev//mwPavtkPUwWnTMHLaqLKfthT9F69G7vz5ZJjHd5+W5vE2rwLPyQavGe7z1qj3d9m4W+lX+DhNf6XZWqXiEiWT7ds+uqAz0onrxxDsh8zzeiu/ScxeKbZ6OAs0Vzf2pZogV9It8s6JTiO46UXZqrE31WjycHeMO+neeHIvVLqmtrO497rsT5qJTz0RLnjLRT5PDG+az6blYZlx2HSy/PnZ3qdinF2fY8rzo3ulvKhe+gV+MHFfiBI2WDtP+SIuGpqs7mzStozrVM7gnrWJlMJOsB48x2Pt7Vke1pBa/TgP7fKUXfcSTdB1k6lP+O6IRtSvQSrZs9kp5vOlZnUm9XSGu+R8k07V1HOw/MrcXqLH2i5x1nLsxfI1jQesDd1NxMlLIncQmdDt0IjIkS35GsptQX5OmLFAaiJHqmPru8trn8dyBWCydb65u/Xr/xYGvts239NyI+VD9WP1XXwD7+Rn0GI3GkjhX+rYg/qD+qP23/fvvP23/Z/is3/eCCxvxIFf5t//2/6U7mBQ==</latexit> d ⇠ 104 <latexit sha1_base64="HcQbgOHgcxyfyhjs9lnWFC1z8NU=">AABDDXictVzbchu5EYU3l107l/Umj3mZRHbKm/I6kuJcqrZStdbFsta0LZuU7N2l7eJlRNMecmgOKV+4+oZ8QF6TT8hbKnnMN+QPkqc85AfSF2CAITHTGMXrKUsYEKe70QAa3Q1Q3UkyzGbr6/889963vv2d777/wfkL3/v+D3744cWPfnSUpfNpLz7spUk6fdTtZHEyHMeHs+EsiR9NpnFn1E3ih90X2/j5w5N4mg3TcWv2ZhI/HnUG4+HxsNeZQdXTix9e6kftbDiKNtafLH59eunpxbX1a+v0L1otbOjCmtL/DtKPov+qtuqrVPXUXI1UrMZqBuVEdVQGz1dqQ62rCdQ9Vguom0JpSJ/H6lRdAOwcWsXQogO1L+DnAN6+0rVjeEeaGaF7wCWB/1NARuoyYFJoN4Uycovo8zlRxtoy2guiibK9gd9dTWsEtTP1DGolnGkZisO+zNSx+h31YQh9mlAN9q6nqcxJKyh55PRqBhQmUIflPnw+hXKPkEbPEWEy6jvqtkOf/4taYi2+93Tbufo3SXkZnkg1de/TnEJHnRD9iEZzDp+xPAlwHgCFWPcRS69I1yPq/RjaL6D+LjynVDI66cKzoNrTSuQ2PD7ktojcg8eH3BORDXh8yIaIPIDHhzzQSMROSed+fBMeH74pcr4Pjw95X0Q+gMeHfCAij+DxIY9E5Jfw+JBfisib8PiQN0XkbXh8yNsisgWPD9kSkYfw+JCHInIXHh9yVyPLV+oUnpToDIVVeQPKRR5oKRKouSHKt0XW0YfdCljTvRKsvKp34LcfuxOg07gEuxsw745LsPLM2wMb6cfKtugW7SY+7C0Ruw8zwI/dF7Gfq+cl2M8DVtqLEqy81hrQzo+Vre8dePNj74jYu1DyY+U96h7U+LH3AnaMSQn2QMTeVy9LsCFWf1qCle1+E+yKHyvvUy1o78eGWNN5CVa2p0fgwfix8m71EGr92Ici9pF6XYJ9JGK/AOvux34RsMO+LcGaPfYC7SAD8kdiWLFV1Dr5qsTSBKh1BP5Jvrck5Bt3oV7CDHLMgDAjEbGXI/YCEY0c0QiWK8vtaEb+rsylmSOagYhuvjdhaSa27+ftsZQEIHZyxM4SosojxbE2fTkh78LUSMhZvnNhKaRPaW6/sRTr+VBteQ3iXgHBc/sZzfyrFC1hBIWaqqL2LN/jGRnRexXiFUVvppeGh4yb5VbBRb0WUV0Pqiui3nhQb0TU3IOai6gTD+pERNmV7+LaATPA6h/HYkFvPAPYRy5/IvAKbsCucwvWaATz5wC8wAdUcw9+Nyn2lp4qyTCax30SsxyPC5Z4CqWFWoN6GxXuUHyd0AqLQTJueU/H+PiGuY2FXnNshU/znTzKMybhdIYkzyCng95iROupHp3bVHNK3h2X6uFv5evelOrhd0njp+TFc6kefqaln51B9pbGts6AbcJqmmjt23JdGpx/YRqmfIF2XbS4OKojPWeQ3uua9Pf1yOyfYVy2qcT6seV6NDKnf1mhf3VoWD1njp7rUUHvib1eU4pq92Ss415britDSrvoWMth3+qODLbp65Ex5Xo0DsDj2qaYe+GU687eSd4bW65H40hx3vOUPHlTrkdjQO+sD1uuRwOzLR0d59tyXcuOGuDY2ZbrWvUxZYExB8RznmusVzQlP2muqQ3JP6jO1rg+/+o+hjmbJ3mMUE3J+rbldLr5XlYtkfEXYrBqs5pyoH8xd3ywIo2F2hTjK5ZhVtjfV+nYPR413wAtRrD6+QxAypknIKHJSaD1ToDihhh1FXtmcJsiDmfJ8RKqrWtnordo+XLWqFj3lGqluMz21uqxTfY6o7k3IZ+wQZqV9NAoHeEyipKGGgUNyfTq6O6tXq9F7a+LuMkSYpLPtB6dCPFJWnWc6tN609HxZX3KM4OHz3zs/MVs87G2NhjzpGSLUJYqnm47k0dy63Bfvapsjps/i2hE0V6dkNUY0olUJkahJlvM3viC3i3tQzqTQx5MowfjGGkqE8WnZphFx3x6RBbVtbcSb9SXydBxOSOra+xxNXrgoAcedP0YZxt2jLtQakHMcAhvrYAo50Kuq5Q0PlWf5KejKY1gdUSfFCykocH2Ji5YyKoo+1mByitA42zgKD2cxjIdg2+vUJKjfp88NnYtWv7LdHJrzrc7NMfLZ3N5JqZPXDeJa0Srhk91+W2ZA0uw8H6ySf5rdS+RXx2OaEMlrk8czqyXMZ34xxTBTsgzTmi1Sauj2NrNTy1/YjgdKHN2jqfZKVnIiOxfBPtTSnMyov/u3QFzgs4WISEbGWJ3hrl34/N1huIcs37cUPGtBjvfYrJlc+Jv6LqrK6O5yBED7wOnS3Pb6KRBvmBMXKfautu1Xb37INLek3BnCVO0c+UK8f+Yfpr/Zp6srcwI1DCOQKZtnW88UopZUEcd2uWrbZBp60p5KZfhiZba7n9WpksFyXYo4kJ5cLfuA+cevTMvnCVTkjtbacP7aFU2FylPlvSIvT2mKJ7t/kDvwCj3Vdol12jNtWmWDGAWzPIowrSVssjLfKt5FamH0c6+EepW10WtIcVI2Qwua0jK78cUrblSJjCref6+oNXk1/p0qVU1nzHNxZGzlr+G2p/CTyO3eQ+j0y1YhS2aA0zBvlmNcE200iKM11aBl5mZhpZ9t/zsnDSt3JqzxNds3WyMfVKbygHNmtc6a2HKZ6Hx3KHxPFCHLTprtFo09cYSPRVji5Y+rQzlV4dbqwbluUhZ9sgMahggpRtLhVHti1TlGN+g3oq01kVaHVit7mmAu+ZDkP61vry6v85390jdJN+mRx4Yxy99WqVD8rlMbXWkxhSQ83VtX93V36Ya5N4lC4qU+R4nrhg+derRc5pL+nO9s6Vk561FMPeWXuk2xsa2qfyrFeSI1kRG69IgrlOLWMvvyhEtWaRrjs8RUea/Qz4V+x3VMbPb2o5JVPAnbLzJq8ry4khhTPqXMm/7K9HrvhO/RhQTzrV33QVa9UcYKTDGZBL8nmVGI4S7HJ8ksEfbJfu5aqf4FG/sSHSNpF6o3wfYGI567Vx355bpsenbL6Alat2Ouq+FzC8J5ijxO8uJXod2tZH2URdL72ej1dG7XPG9Sg/zJb5WH3Nq40YWNsorYtrq02AuLFE9LowJ4VKvF3Xkryd5HZn5dCqUsmltKBczDWxjnlG8JN0DRYTPu7vi9eY+FvrRXaHXJaxLjWskSpiNS3V+wLW0mJU6v7IPce35yt0ocXaisp3CUHd3C2u/2ULGZP0SJeVsuLUre7sQpchZGKbQU3yjtyw+dGl+Cg/+jJQvOjQcQ3KHTfBvb6httfsObkO81GXOaEZUg7agvxR7d3Q/iy2qdfTSoe7SD+EQzmMIupakH9JOWld2pixL7lIPp/+KrMBUxaL0tmX9Prhc5J6scqrTnyFZNrk3Q2W+i1O3L4ZDSE+KXML58LmG1ItjZb7TVK8PhrrcgyKHOjzMPYawMbet6/NyOVXra5VLKA/eBcyJi8HhyV95rGLbhVioqTMi754DWofjCupmt/h/+2H4WE71eYVyy+i7Zs8DRp3bxToji/5w/TVjuYXM5nKO4TzTvHfWW/LzY78vqjVSqdObd08f/VE7BwyvheI8qCwd491ZZOUNpYLnAj4ZUvUf9fdz8rcRXuY0yuSoQ8mcU5RTMy1kauYbl77emc9CZLJ0ymQqUrNxRJNuxG6rfXUT/m/nHmDd26H8XUr+jVj/92f7UHtM1sNk0Tlz0Ka6mLIf9hStT+/2/myZxHiXl+/2tqAGz8IbVIv3fO9Se7zr2yr0rfwbJLzW76hU9QsRyfLpnl1XXehB8eSNc0Dme74R3aXnLBbfPBsFnC2a+1PLEi3oE/lmQbcU33Wk7NFcneizejw5wBv2nTw/FKlfUl1H23nccyXOB6WcD5Y4Z6SdIofXzmfVd7PKuGw7XPp57uxEt0spzrbnedW50Z1SLnwHvRo/qMAPHCmbpP0XFAlPVXU2b15Bc65lck9Yx8pkIlkPGGd28vGujmxPKnidBPT/din6tiPpHsjSpfx3RCdsU6KXaN3skvR807E6k3qrQlrzPUqmae862nlgbi1WZ+kTPe84c2H+GsGC1gPupuZmopQ9iUvodOlGYEyU+I5kNaVjQZ5jkcJAlETP1KcX1zaW/w7EauFo89rGb65dv7+59tmW/hsRH6ifqJ+pK2Aff6s+g5E4UIcK/1bEH9Wf1J+3/rD1l62/bv2Nm753TmN+rAr/tv7xPyv45gY=</latexit> d ⇠ 105
  4. Comparing Distributions for Single Cells • Until recently, samples contained

    many cells (bulk omics) • Today, we can measure omics at the single cell level1. 2 carelli et al. 2018 2Lähnemann et al. 2020 Single-cell profiling uncovers cellular heterogeneity • Until recently, samples contained many cells (bulk omics) • Today, we can measure omics at the single cell level1. 2 1Mincarelli et al. 2018 2Lähnemann et al. 2020 <latexit sha1_base64="8h9qfn6MXuBvKOcg4p0NkYUZouc=">AAACx3icjVHLTsJAFD3UF+ILdemmkZi4Ii0x6pLgRneYCJIgMe0wwITSNu2USIgLf8Ct/pnxD/QvvDMOiUqMTtP2zLn3nJl7rx8HIpWO85qzFhaXllfyq4W19Y3NreL2TjONsoTxBouCKGn5XsoDEfKGFDLgrTjh3sgP+LU/PFPx6zFPUhGFV3IS887I64eiJ5gnFVXLguFtseSUHb3seeAaUIJZ9aj4ght0EYEhwwgcISThAB5Setpw4SAmroMpcQkhoeMc9yiQNqMsThkesUP69mnXNmxIe+WZajWjUwJ6E1LaOCBNRHkJYXWareOZdlbsb95T7anuNqG/b7xGxEoMiP1LN8v8r07VItHDqa5BUE2xZlR1zLhkuivq5vaXqiQ5xMQp3KV4Qphp5azPttakunbVW0/H33SmYtWemdwM7+qWNGD35zjnQbNSdo/LR5eVUrVmRp3HHvZxSPM8QRXnqKNB3gM84gnP1oUVWWPr7jPVyhnNLr4t6+EDdTmQuA==</latexit> Bulk <latexit sha1_base64="xfWO8cpwoNz5R1B8gV9utdLBqVI=">AAACznicjVHLSsNAFD2Nr1pfVZdugkVwVZIi6rLoxmVF+4BaJJlO69BpEpJJoZTi1h9wq58l/oH+hXfGFNQiOiHJmXPPuTP3Xj+SIlGO85qzFhaXllfyq4W19Y3NreL2TiMJ05jxOgtlGLd8L+FSBLyuhJK8FcXcG/qSN/3BuY43RzxORBhcq3HEO0OvH4ieYJ4iqn0lgr7kNuNS3hZLTtkxy54HbgZKyFYtLL7gBl2EYEgxBEcARVjCQ0JPGy4cRMR1MCEuJiRMnGOKAnlTUnFSeMQO6NunXTtjA9rrnIlxMzpF0huT08YBeULSxYT1abaJpyazZn/LPTE59d3G9PezXENiFe6I/cs3U/7Xp2tR6OHU1CCopsgwujqWZUlNV/TN7S9VKcoQEadxl+IxYWacsz7bxpOY2nVvPRN/M0rN6j3LtCne9S1pwO7Pcc6DRqXsHpePLiul6lk26jz2sI9DmucJqrhADXXT8Uc84dmqWSNrat1/Sq1c5tnFt2U9fACwKpOS</latexit> Single cell
  5. Comparing Distributions for Single Cells • Until recently, samples contained

    many cells (bulk omics) • Today, we can measure omics at the single cell level1. 2 carelli et al. 2018 2Lähnemann et al. 2020 Single-cell profiling uncovers cellular heterogeneity • Until recently, samples contained many cells (bulk omics) • Today, we can measure omics at the single cell level1. 2 1Mincarelli et al. 2018 2Lähnemann et al. 2020 <latexit sha1_base64="8h9qfn6MXuBvKOcg4p0NkYUZouc=">AAACx3icjVHLTsJAFD3UF+ILdemmkZi4Ii0x6pLgRneYCJIgMe0wwITSNu2USIgLf8Ct/pnxD/QvvDMOiUqMTtP2zLn3nJl7rx8HIpWO85qzFhaXllfyq4W19Y3NreL2TjONsoTxBouCKGn5XsoDEfKGFDLgrTjh3sgP+LU/PFPx6zFPUhGFV3IS887I64eiJ5gnFVXLguFtseSUHb3seeAaUIJZ9aj4ght0EYEhwwgcISThAB5Setpw4SAmroMpcQkhoeMc9yiQNqMsThkesUP69mnXNmxIe+WZajWjUwJ6E1LaOCBNRHkJYXWareOZdlbsb95T7anuNqG/b7xGxEoMiP1LN8v8r07VItHDqa5BUE2xZlR1zLhkuivq5vaXqiQ5xMQp3KV4Qphp5azPttakunbVW0/H33SmYtWemdwM7+qWNGD35zjnQbNSdo/LR5eVUrVmRp3HHvZxSPM8QRXnqKNB3gM84gnP1oUVWWPr7jPVyhnNLr4t6+EDdTmQuA==</latexit> Bulk <latexit sha1_base64="xfWO8cpwoNz5R1B8gV9utdLBqVI=">AAACznicjVHLSsNAFD2Nr1pfVZdugkVwVZIi6rLoxmVF+4BaJJlO69BpEpJJoZTi1h9wq58l/oH+hXfGFNQiOiHJmXPPuTP3Xj+SIlGO85qzFhaXllfyq4W19Y3NreL2TiMJ05jxOgtlGLd8L+FSBLyuhJK8FcXcG/qSN/3BuY43RzxORBhcq3HEO0OvH4ieYJ4iqn0lgr7kNuNS3hZLTtkxy54HbgZKyFYtLL7gBl2EYEgxBEcARVjCQ0JPGy4cRMR1MCEuJiRMnGOKAnlTUnFSeMQO6NunXTtjA9rrnIlxMzpF0huT08YBeULSxYT1abaJpyazZn/LPTE59d3G9PezXENiFe6I/cs3U/7Xp2tR6OHU1CCopsgwujqWZUlNV/TN7S9VKcoQEadxl+IxYWacsz7bxpOY2nVvPRN/M0rN6j3LtCne9S1pwO7Pcc6DRqXsHpePLiul6lk26jz2sI9DmucJqrhADXXT8Uc84dmqWSNrat1/Sq1c5tnFt2U9fACwKpOS</latexit> Single cell <latexit sha1_base64="pydPpuNuJAJzk3J9ohxA5exGGlo=">AAACyHicjVHLSsNAFD2Nr1pfVZdugkVwVZIi6s6iG3FVwbSFtkgyndaheZFMlFLc+ANu9cvEP9C/8M6YglpEJyQ5c+49Z+be68W+SKVlvRaMufmFxaXicmlldW19o7y51UyjLGHcYZEfJW3PTbkvQu5IIX3ejhPuBp7PW97oTMVbtzxJRRReyXHMe4E7DMVAMFcS5XS9gXlyXa5YVUsvcxbYOaggX42o/IIu+ojAkCEARwhJ2IeLlJ4ObFiIiethQlxCSOg4xz1KpM0oi1OGS+yIvkPadXI2pL3yTLWa0Sk+vQkpTeyRJqK8hLA6zdTxTDsr9jfvifZUdxvT38u9AmIlboj9SzfN/K9O1SIxwLGuQVBNsWZUdSx3yXRX1M3NL1VJcoiJU7hP8YQw08ppn02tSXXtqreujr/pTMWqPctzM7yrW9KA7Z/jnAXNWtU+rB5c1ir103zURexgF/s0zyPUcY4GHPIWeMQTno0LIzbujPFnqlHINdv4toyHD4JFkLc=</latexit> ? <latexit sha1_base64="QNHLtJL77Xel7kqDwcr8uqkXoFI=">AAAC6XicjVHLTtwwFD2EUt5tCks2VqdIrKIEocJyBBuWIHUAiSKUGM9gjRNHtoM0GvED7NhVbPkBtvAjVf+g/Yteu0EqINQ6SnJ87j3HvvcWtZLWpemPiWjyzdTb6ZnZufmFxXfv4w9LB1Y3hose10qboyK3QslK9Jx0ShzVRuRlocRhMdzx8cMLYazU1Rc3qsVJmQ8q2Zc8d0Sdxp92VGOdMIwLpSzrG12ynFlZDZRghdS1HSXsNO6kSRoWewmyFnTQrj0df8dXnEGDo0EJgQqOsEIOS88xMqSoiTvBmDhDSIa4wCXmSNtQlqCMnNghfQe0O27Zivbe0wY1p1MUvYaUDKuk0ZRnCPvTWIg3wdmzr3mPg6e/24j+RetVEutwTuy/dI+Z/6vztTj0sRVqkFRTHRhfHW9dmtAVf3P2V1WOHGriPD6juCHMg/KxzyxobKjd9zYP8Z8h07N+z9vcBr/8LWnA2fNxvgQH60n2OdnYX+90t9tRz2AFH7FG89xEF7vYQ4+8r3CHezxEw+g6+hbd/EmNJlrNMp6s6PY3BdOdqw==</latexit> Cluster cells from a single biopsy. <latexit sha1_base64="NAYrO+hblycchNy+rUEIB63nwtY=">AAAC6XicjVHLLgRBFD3a+z1Y2nQMYTXpEcGOYGFJYphkRma6y0Vnqh/prvbIxA/Y2YmtH7DlR8Qf8BdulZ7EI0J1uvvUufecqnuvF0s/VY7z0mV19/T29Q8MDg2PjI6NFyYm99MoSwRVRCSjpOq5KUk/pIrylaRqnJAbeJIOvNamjh+cUZL6UbinLmM6DNyT0D/2hauYahRm64ouWNduNrf4NDcUND9ve6TOiUJbkJTp2lWjUHRKjln2T1DOQRH52okKz6jjCBEEMgQghFCMJVyk/NRQhoOYuUO0mUsY+SZOuMIQazPOIs5wmW3x94R3tZwNea89U6MWfIrkN2GljTnWRJyXMNan2SaeGWfN/ubdNp76bpf893KvgFmFU2b/0nUy/6vTtSgcY9XU4HNNsWF0dSJ3yUxX9M3tT1UpdoiZ0/iI4wljYZSdPttGk5radW9dE381mZrVe5HnZnjTt+QBl7+P8yfYXyyVl0tLu4vF9Y181AOYxgwWeJ4rWMc2dlBh72s84BFPVsu6sW6tu49UqyvXTOHLsu7fAYBOnkY=</latexit> “Distance” between cells? <latexit sha1_base64="yFN6xhMLWSFTo6y4Ic3WSee5g64=">AAAC2HicjVHLSsNAFD2Nr1pf0S7dBIvoqqRF1GXRjTsr9IW1lGQ6raFpEjIToRTBnbj1B9zqF4l/oH/hnTGCWkQnJDlz7j1n5t7rRr4npG2/ZIyZ2bn5hexibml5ZXXNXN9oiDCJGa+z0A/jlusI7nsBr0tP+rwVxdwZuT5vusNjFW9e8Vh4YVCT44h3Rs4g8PoecyRRXTN/WrPCwBrwgIsdS0QO48WuWbCLtl7WNCiloIB0VUPzGRfoIQRDghE4AkjCPhwIetoowUZEXAcT4mJCno5zXCNH2oSyOGU4xA7pO6BdO2UD2itPodWMTvHpjUlpYZs0IeXFhNVplo4n2lmxv3lPtKe625j+buo1Ilbikti/dJ+Z/9WpWiT6ONQ1eFRTpBlVHUtdEt0VdXPrS1WSHCLiFO5RPCbMtPKzz5bWCF276q2j4686U7Fqz9LcBG/qljTg0s9xToNGuVjaL+6dlQuVo3TUWWxiC7s0zwNUcIIq6uQ9xgMe8WScGzfGrXH3kWpkUk0e35Zx/w7KEZZE</latexit> OT on genes’ space. <latexit sha1_base64="pydPpuNuJAJzk3J9ohxA5exGGlo=">AAACyHicjVHLSsNAFD2Nr1pfVZdugkVwVZIi6s6iG3FVwbSFtkgyndaheZFMlFLc+ANu9cvEP9C/8M6YglpEJyQ5c+49Z+be68W+SKVlvRaMufmFxaXicmlldW19o7y51UyjLGHcYZEfJW3PTbkvQu5IIX3ejhPuBp7PW97oTMVbtzxJRRReyXHMe4E7DMVAMFcS5XS9gXlyXa5YVUsvcxbYOaggX42o/IIu+ojAkCEARwhJ2IeLlJ4ObFiIiethQlxCSOg4xz1KpM0oi1OGS+yIvkPadXI2pL3yTLWa0Sk+vQkpTeyRJqK8hLA6zdTxTDsr9jfvifZUdxvT38u9AmIlboj9SzfN/K9O1SIxwLGuQVBNsWZUdSx3yXRX1M3NL1VJcoiJU7hP8YQw08ppn02tSXXtqreujr/pTMWqPctzM7yrW9KA7Z/jnAXNWtU+rB5c1ir103zURexgF/s0zyPUcY4GHPIWeMQTno0LIzbujPFnqlHINdv4toyHD4JFkLc=</latexit> ?
  6. Comparing Distributions for Single Cells • Until recently, samples contained

    many cells (bulk omics) • Today, we can measure omics at the single cell level1. 2 carelli et al. 2018 2Lähnemann et al. 2020 Single-cell profiling uncovers cellular heterogeneity • Until recently, samples contained many cells (bulk omics) • Today, we can measure omics at the single cell level1. 2 1Mincarelli et al. 2018 2Lähnemann et al. 2020 <latexit sha1_base64="8h9qfn6MXuBvKOcg4p0NkYUZouc=">AAACx3icjVHLTsJAFD3UF+ILdemmkZi4Ii0x6pLgRneYCJIgMe0wwITSNu2USIgLf8Ct/pnxD/QvvDMOiUqMTtP2zLn3nJl7rx8HIpWO85qzFhaXllfyq4W19Y3NreL2TjONsoTxBouCKGn5XsoDEfKGFDLgrTjh3sgP+LU/PFPx6zFPUhGFV3IS887I64eiJ5gnFVXLguFtseSUHb3seeAaUIJZ9aj4ght0EYEhwwgcISThAB5Setpw4SAmroMpcQkhoeMc9yiQNqMsThkesUP69mnXNmxIe+WZajWjUwJ6E1LaOCBNRHkJYXWareOZdlbsb95T7anuNqG/b7xGxEoMiP1LN8v8r07VItHDqa5BUE2xZlR1zLhkuivq5vaXqiQ5xMQp3KV4Qphp5azPttakunbVW0/H33SmYtWemdwM7+qWNGD35zjnQbNSdo/LR5eVUrVmRp3HHvZxSPM8QRXnqKNB3gM84gnP1oUVWWPr7jPVyhnNLr4t6+EDdTmQuA==</latexit> Bulk <latexit sha1_base64="xfWO8cpwoNz5R1B8gV9utdLBqVI=">AAACznicjVHLSsNAFD2Nr1pfVZdugkVwVZIi6rLoxmVF+4BaJJlO69BpEpJJoZTi1h9wq58l/oH+hXfGFNQiOiHJmXPPuTP3Xj+SIlGO85qzFhaXllfyq4W19Y3NreL2TiMJ05jxOgtlGLd8L+FSBLyuhJK8FcXcG/qSN/3BuY43RzxORBhcq3HEO0OvH4ieYJ4iqn0lgr7kNuNS3hZLTtkxy54HbgZKyFYtLL7gBl2EYEgxBEcARVjCQ0JPGy4cRMR1MCEuJiRMnGOKAnlTUnFSeMQO6NunXTtjA9rrnIlxMzpF0huT08YBeULSxYT1abaJpyazZn/LPTE59d3G9PezXENiFe6I/cs3U/7Xp2tR6OHU1CCopsgwujqWZUlNV/TN7S9VKcoQEadxl+IxYWacsz7bxpOY2nVvPRN/M0rN6j3LtCne9S1pwO7Pcc6DRqXsHpePLiul6lk26jz2sI9DmucJqrhADXXT8Uc84dmqWSNrat1/Sq1c5tnFt2U9fACwKpOS</latexit> Single cell <latexit sha1_base64="pydPpuNuJAJzk3J9ohxA5exGGlo=">AAACyHicjVHLSsNAFD2Nr1pfVZdugkVwVZIi6s6iG3FVwbSFtkgyndaheZFMlFLc+ANu9cvEP9C/8M6YglpEJyQ5c+49Z+be68W+SKVlvRaMufmFxaXicmlldW19o7y51UyjLGHcYZEfJW3PTbkvQu5IIX3ejhPuBp7PW97oTMVbtzxJRRReyXHMe4E7DMVAMFcS5XS9gXlyXa5YVUsvcxbYOaggX42o/IIu+ojAkCEARwhJ2IeLlJ4ObFiIiethQlxCSOg4xz1KpM0oi1OGS+yIvkPadXI2pL3yTLWa0Sk+vQkpTeyRJqK8hLA6zdTxTDsr9jfvifZUdxvT38u9AmIlboj9SzfN/K9O1SIxwLGuQVBNsWZUdSx3yXRX1M3NL1VJcoiJU7hP8YQw08ppn02tSXXtqreujr/pTMWqPctzM7yrW9KA7Z/jnAXNWtU+rB5c1ir103zURexgF/s0zyPUcY4GHPIWeMQTno0LIzbujPFnqlHINdv4toyHD4JFkLc=</latexit> ? <latexit sha1_base64="QNHLtJL77Xel7kqDwcr8uqkXoFI=">AAAC6XicjVHLTtwwFD2EUt5tCks2VqdIrKIEocJyBBuWIHUAiSKUGM9gjRNHtoM0GvED7NhVbPkBtvAjVf+g/Yteu0EqINQ6SnJ87j3HvvcWtZLWpemPiWjyzdTb6ZnZufmFxXfv4w9LB1Y3hose10qboyK3QslK9Jx0ShzVRuRlocRhMdzx8cMLYazU1Rc3qsVJmQ8q2Zc8d0Sdxp92VGOdMIwLpSzrG12ynFlZDZRghdS1HSXsNO6kSRoWewmyFnTQrj0df8dXnEGDo0EJgQqOsEIOS88xMqSoiTvBmDhDSIa4wCXmSNtQlqCMnNghfQe0O27Zivbe0wY1p1MUvYaUDKuk0ZRnCPvTWIg3wdmzr3mPg6e/24j+RetVEutwTuy/dI+Z/6vztTj0sRVqkFRTHRhfHW9dmtAVf3P2V1WOHGriPD6juCHMg/KxzyxobKjd9zYP8Z8h07N+z9vcBr/8LWnA2fNxvgQH60n2OdnYX+90t9tRz2AFH7FG89xEF7vYQ4+8r3CHezxEw+g6+hbd/EmNJlrNMp6s6PY3BdOdqw==</latexit> Cluster cells from a single biopsy. <latexit sha1_base64="NAYrO+hblycchNy+rUEIB63nwtY=">AAAC6XicjVHLLgRBFD3a+z1Y2nQMYTXpEcGOYGFJYphkRma6y0Vnqh/prvbIxA/Y2YmtH7DlR8Qf8BdulZ7EI0J1uvvUufecqnuvF0s/VY7z0mV19/T29Q8MDg2PjI6NFyYm99MoSwRVRCSjpOq5KUk/pIrylaRqnJAbeJIOvNamjh+cUZL6UbinLmM6DNyT0D/2hauYahRm64ouWNduNrf4NDcUND9ve6TOiUJbkJTp2lWjUHRKjln2T1DOQRH52okKz6jjCBEEMgQghFCMJVyk/NRQhoOYuUO0mUsY+SZOuMIQazPOIs5wmW3x94R3tZwNea89U6MWfIrkN2GljTnWRJyXMNan2SaeGWfN/ubdNp76bpf893KvgFmFU2b/0nUy/6vTtSgcY9XU4HNNsWF0dSJ3yUxX9M3tT1UpdoiZ0/iI4wljYZSdPttGk5radW9dE381mZrVe5HnZnjTt+QBl7+P8yfYXyyVl0tLu4vF9Y181AOYxgwWeJ4rWMc2dlBh72s84BFPVsu6sW6tu49UqyvXTOHLsu7fAYBOnkY=</latexit> “Distance” between cells? <latexit sha1_base64="yFN6xhMLWSFTo6y4Ic3WSee5g64=">AAAC2HicjVHLSsNAFD2Nr1pf0S7dBIvoqqRF1GXRjTsr9IW1lGQ6raFpEjIToRTBnbj1B9zqF4l/oH/hnTGCWkQnJDlz7j1n5t7rRr4npG2/ZIyZ2bn5hexibml5ZXXNXN9oiDCJGa+z0A/jlusI7nsBr0tP+rwVxdwZuT5vusNjFW9e8Vh4YVCT44h3Rs4g8PoecyRRXTN/WrPCwBrwgIsdS0QO48WuWbCLtl7WNCiloIB0VUPzGRfoIQRDghE4AkjCPhwIetoowUZEXAcT4mJCno5zXCNH2oSyOGU4xA7pO6BdO2UD2itPodWMTvHpjUlpYZs0IeXFhNVplo4n2lmxv3lPtKe625j+buo1Ilbikti/dJ+Z/9WpWiT6ONQ1eFRTpBlVHUtdEt0VdXPrS1WSHCLiFO5RPCbMtPKzz5bWCF276q2j4686U7Fqz9LcBG/qljTg0s9xToNGuVjaL+6dlQuVo3TUWWxiC7s0zwNUcIIq6uQ9xgMe8WScGzfGrXH3kWpkUk0e35Zx/w7KEZZE</latexit> OT on genes’ space. <latexit sha1_base64="c8Nzu7i/2HdZbRFNoq24LWiMXCg=">AAAC53icjVHLLgRBFD3TXmO8BkubionEatIjguWEjY2ExCBBpLsUKmq6Ol3VRCb2dnZi6wds+RPxB/yFW6UnwUSoTnefOveeU3XvjVMljQ3D11LQ1z8wOFQeroyMjo1PVCendozOMy5aXCud7cWREUomomWlVWIvzUTUjpXYjc/XXHz3QmRG6mTbXqXisB2dJvJE8sgSdVSd3YgsP2NcKGVYLOylEAmzl5rFUqdGClNnR9VaWA/9Yr2gUYAairWpqy84wDE0OHK0IZDAElaIYOjZRwMhUuIO0SEuIyR9XOAaFdLmlCUoIyL2nL6ntNsv2IT2ztN4NadTFL0ZKRnmSKMpLyPsTmM+nntnx/7m3fGe7m5X9I8LrzaxFmfE/qXrZv5X52qxOMGKr0FSTalnXHW8cMl9V9zN2ZeqLDmkxDl8TPGMMPfKbp+Z1xhfu+tt5ONvPtOxbs+L3Bzv7pY04MbPcfaCnYV6Y6m+uLVQa64Woy5jBrOYp3kuo4l1bKJF3jd4xBOeAxncBnfB/WdqUCo00/i2gocPIpGc9w==</latexit> Match cells between two biopsies. <latexit sha1_base64="smAhPpTgHUrzBKRMXffs73pgv0w=">AAAC2HicjVHLSsQwFD1TX+N7dJZugoPoaugMoi5FN+4cYV44irQxajDTliYVBhHciVt/wK1+kfgH+hfexAo+EE1pe3LuPSe594aJktr4/nPBGxoeGR0rjk9MTk3PzJbm5ts6zlIuWjxWcdoNAy2UjETLSKNEN0lF0A+V6ITn2zbeuRCplnHUNINEHPaD00ieSB4Yoo5K5d0miyPGhVJ6mekk4KJ6VKr4Vd8t9hPUclBBvhpx6QkHOEYMjgx9CEQwhBUCaHp6qMFHQtwhLolLCUkXF7jCBGkzyhKUERB7Tt9T2vVyNqK99dROzekURW9KSoYl0sSUlxK2pzEXz5yzZX/zvnSe9m4D+oe5V59YgzNi/9J9ZP5XZ2sxOMGGq0FSTYljbHU8d8lcV+zN2aeqDDkkxFl8TPGUMHfKjz4zp9GudtvbwMVfXKZl7Z7nuRle7S1pwLXv4/wJ2vVqba26ulevbG7loy5iAYtYoXmuYxM7aKBF3gPc4wGP3r537d14t++pXiHXlPFleXdvzGyWRQ==</latexit> OT on cells’ space. <latexit sha1_base64="pydPpuNuJAJzk3J9ohxA5exGGlo=">AAACyHicjVHLSsNAFD2Nr1pfVZdugkVwVZIi6s6iG3FVwbSFtkgyndaheZFMlFLc+ANu9cvEP9C/8M6YglpEJyQ5c+49Z+be68W+SKVlvRaMufmFxaXicmlldW19o7y51UyjLGHcYZEfJW3PTbkvQu5IIX3ejhPuBp7PW97oTMVbtzxJRRReyXHMe4E7DMVAMFcS5XS9gXlyXa5YVUsvcxbYOaggX42o/IIu+ojAkCEARwhJ2IeLlJ4ObFiIiethQlxCSOg4xz1KpM0oi1OGS+yIvkPadXI2pL3yTLWa0Sk+vQkpTeyRJqK8hLA6zdTxTDsr9jfvifZUdxvT38u9AmIlboj9SzfN/K9O1SIxwLGuQVBNsWZUdSx3yXRX1M3NL1VJcoiJU7hP8YQw08ppn02tSXXtqreujr/pTMWqPctzM7yrW9KA7Z/jnAXNWtU+rB5c1ir103zURexgF/s0zyPUcY4GHPIWeMQTno0LIzbujPFnqlHINdv4toyHD4JFkLc=</latexit> ?
  7. Robust High Dimensional OT Wε c (α, β) = inf

    π {⟨c, π⟩ + εKL(π|α ⊗ β) : π1 = α, π2 = β} Entropic regularization: Erwin Schrödinger ε β α Parallelism Smoothness Marco Cuturi Alfred Galichon +
  8. Robust High Dimensional OT Wε c (α, β) = inf

    π {⟨c, π⟩ + εKL(π|α ⊗ β) : π1 = α, π2 = β} Entropic regularization: Erwin Schrödinger ε β α Parallelism Smoothness Marco Cuturi Alfred Galichon + Sample complexity Richard 
 Dudley Aude Genevay 𝔼 (|W0 c − ̂ W0 c |) = O(n−1/d) 𝔼 (|Wε c − ̂ Wε c |) = O(ε−dn−1/2) ε > 0 +
  9. Robust High Dimensional OT Wε c (α, β) = inf

    π {⟨c, π⟩ + εKL(π|α ⊗ β) : π1 = α, π2 = β} Entropic regularization: Erwin Schrödinger ε β α Parallelism Smoothness Marco Cuturi Alfred Galichon + Sample complexity Richard 
 Dudley Aude Genevay 𝔼 (|W0 c − ̂ W0 c |) = O(n−1/d) 𝔼 (|Wε c − ̂ Wε c |) = O(ε−dn−1/2) ε > 0 + Unbalanced OT: Wε,τ c (α, β) := inf π ⟨c, π⟩ + εKL(π|α ⊗ β) + τKL(π1 |α) + τKL(π2 |β) [Liero et al] [Chizat et al] [Monsaingeon et al] Matthias Liero Lenaic Chizat Bernhard Schmitzer
  10. Robust High Dimensional OT Wε c (α, β) = inf

    π {⟨c, π⟩ + εKL(π|α ⊗ β) : π1 = α, π2 = β} Entropic regularization: Erwin Schrödinger ε β α Parallelism Smoothness Marco Cuturi Alfred Galichon + Sample complexity Richard 
 Dudley Aude Genevay 𝔼 (|W0 c − ̂ W0 c |) = O(n−1/d) 𝔼 (|Wε c − ̂ Wε c |) = O(ε−dn−1/2) ε > 0 + Debiasing: ¯ Wε c (α, β) := Wε c (α, β) − Wε c (α, α)/2 − Wε c (β, β) ε→+∞ ⟶ MMD(α − β)2 [Genevay et al] [Séjourné, Feydy et al] Thibault Séjourné Jean Feydy Unbalanced OT: Wε,τ c (α, β) := inf π ⟨c, π⟩ + εKL(π|α ⊗ β) + τKL(π1 |α) + τKL(π2 |β) [Liero et al] [Chizat et al] [Monsaingeon et al] Matthias Liero Lenaic Chizat Bernhard Schmitzer
  11. Single-cell profiling uncovers cellular heterogeneity • Until recently, samples contained

    many cells (bulk omics) • Today, we can measure omics at the single cell level1. 2 1Mincarelli et al. 2018 2Lähnemann et al. 2020 Comparing Two Cells with OT • Until recently, samples contained many cells (bulk omics) • Today, we can measure omics at the single cell level1. 2 1Mincarelli et al. 2018 2Lähnemann et al. 2020 <latexit sha1_base64="i7/quCY4fyUmnPWfUroseKDhnuU=">AABE7HictVzbcty4EYU3t41z8yaPeeFG65Q35XVkxblUbaVqLY1sa621Zc9I9q7Hds2FGtOmhuPhzPgyq79I5SWVSp7yG/mOfECqkqf8QvoCEOAMyAYVxyxJIIjT3WgCje4G6P4kTfLZ5uY/zr33jW9+69vfef+757/3/R/88EcXPvjxUZ7Np4P4cJCl2fRhv5fHaTKOD2fJLI0fTqZx76Sfxg/6L3bw+YNFPM2TbNyZvZnEj096o3FynAx6M6jqbifZJ8k4nyTTePj0wsbmlU36F60XrurChtL/DrIPPvyn6qqhytRAzdWJitVYzaCcqp7K4XqkrqpNNYG6x2oJdVMoJfQ8VqfqPGDn0CqGFj2ofQG/R3D3SNeO4R5p5oQeAJcUfqaAjNRFwGTQbgpl5BbR8zlRxtoq2kuiibK9gb99TesEamfqGdRKONMyFId9malj9TvqQwJ9mlAN9m6gqcxJKyh55PRqBhQmUIflITyfQnlASKPniDA59R1126Pn/6KWWIv3A912rv5NUl6EK1Jt3fusoNBTC6If0ducwzOWJwXOI6AQ6z5i6RXp+oR6P4b2S6i/A9cplYxO+nAtqfa0FrkDlw+5IyJvwuVD3hSR+3D5kPsi8gAuH/JAIxE7JZ378W24fPi2yPkeXD7kPRF5Hy4f8r6IPILLhzwSkV/B5UN+JSJvwOVD3hCRt+HyIW+LyA5cPmRHRB7C5UMeishduHzIXY2snqlTuDKikwiz8jqUyzzQUqRQc12Ub5usow+7HTCnBxVYeVa34K8f2wrQaVyB3Q0Yd8cVWHnk3QQb6cfKtugWrSY+7C0RuwcjwI/dE7Gfq+cV2M8DZtqLCqw81/ahnR8rW98v4M6P/ULE3oGSHyuvUXehxo+9G7BiTCqwByL2nnpZgQ2x+tMKrGz322BX/Fh5nepAez82xJrOK7CyPT0CD8aPlVerB1Drxz4QsQ/V6wrsQxH7JVh3P/bLgBX2bQXWrLHnaQUZkT8Sw4yto9YrZiWWJkCtJ/BPi7UlJd+4D/USZlRgRoQ5ERE3C8TNQMR+gdgPlisv7GhO/q7MpV0g2oGIfrE2YWkmth8W7bGUBiBaBaK1gqjzSPFdm74syLswNRJyVqxcWArpU1bYbyzFejzUW16DuFtC8Nh+RiP/MkVLGEGhpuqoPSvWeEZGdF+HeEXRm+ml4SHjZoVVcFGvRVTfg+qLqDce1BsRNfeg5iJq4UEtRJSd+S6uGzACrP7xXSzpjkcA+8jVVwRewXVYdW7BHI1g/ByAF3ifau7C3zbF3tJVJxlG87hOYpbjcckST6G0VBtQb6PCFsXXKc2wGCTjlnd1jI93mNtY6jnHVvi0WMmjImMSTicheUYFHfQWI5pPzejcpppT8u641Ax/q5j3ptQMv0saPyUvnkvN8DMt/ewMsnc0tnMGbBtm00Rr35ab0uD8C9Mw5fO06qLFxbd6oscM0nvdkP6efjN7Z3gvO1Ri/dhyMxq507+81L8mNKyec0fPzaig98RerylFjXsy1nGvLTeVIaNVdKzlsHdN3wy2Geo3Y8rNaByAx7VDMffSKTcdvZOiN7bcjMaR4rznKXnyptyMxojuWR+23IwGZlt6Os635aaWHTXAsbMtN7XqY8oCYw6IxzzXWK9oSn7SXFNLyD+oz9a4Pv/6OoY5mydFjFBPyfq21XT6xVpWL5HxF2KwarOGcqB/MXd8sDKNpdoS4yuWYVZa39fp2DUeNb8PWoxg9vMegJQzT0FCk5NA650Cxati1FXumcFtiTgcJccrqK6unYneouXLWaNy3VOqleIy21urxy7Z65zG3oR8wn3SrKSH/co3XEVR0tB+SUMyvSa6e6vna1n7myJusoKYFCNtQDtCvJNWH6f6tN52dHxR7/LM4OI9Hzt+Mdt8rK0NxjwZ2SKUpY6n287kkdw6XFcvK5vj5mcRvVG0VwuyGgntSOViFGqyxeyNL+ne0j6kPTnkwTQG8B4jTWWieNcMs+iYT4/Iorr2VuKN+jIZOi7nZHWNPa5Hjxz0yINuHuPswIpxB0odiBkO4a4TEOWcL3SVkcan6pNidzSjN1gf0aclC2losL2JSxayLsp+VqLyCtA4GjhKD6exSsfgu2uU5KjfJ4+NXcuW/yLt3Jr97R6N8erRXJ2JGRLXLeIa0azhXV2+W+XAEiy9T7bIf63vJfJrwhFtqMT1icOZ9TKmHf+YItgJecYpzTZpdpRbu/mp1SeG04Eye+e4m52RhYzI/kWwPmU0JiP6cc8OmB10tggp2cgQu5MU3o3P10nEMWb9uETxqQY73mKyZXPib+i6syunscgRA68Dpytj2+hkn3zBmLhOtXW3c7t+9UGkPSfhjhKmaMfKJeL/Mf02P2acbKyNCNQwvoFc2zrf+8goZkEd9WiVr7dBpq0r5UeFDE+01Hb9szJ9VJKsRREXyoOr9RA4D+ieeeEomZLc+VobXkfrsrlIebKiR+ztMUXxbPdHegVGuS/TKrlBc65Lo2QEo2BWRBGmrZRFXuVbz6tMPYx2/n+hbnVd1hpSjJTN4LKGpPx+TNGaK2UKo5rH7wuaTX6tT1da1fMZ01g8ceby11D7Ifw2cpv7MDr9klXYpjHAFOyd1QjXRGstwnhtl3iZkWlo2XvLz45J08qtOUt8zdbNxtiLxlQOaNS81lkLUz4LjecOjeeBOuzQXqPVoqk3luipGFt09G5lKL8m3DoNKM9FyrJHZlBJgJRuLBVGdShSlWN8g3or0toUafVgtrq7Ae6cD0H65/rq7P66WN0jdYN8mwF5YBy/DGmWJuRzmdr6SI0pIOdr2r66s79LNci9TxYUKfM5TpwxvOs0oOu0kPTnemXLyM5bi2DOLb3SbYyN7VL5V2vIE5oTOc1Lg7hGLWItvytHtGKRrjg+R0SZ/x75VOx31MfMbmv7TqKSP2HjTZ5VlhdHCmPSv5R521uLXvec+DWimHCuves+0Gr+hpECY0wmwe9Z5vSGcJXjnQT2aPtkP9ftFO/ijR2JrpDUS/X7ABvDUa8d6+7YMj02ffsFtESt27fuayHzS4M5SvzOsqPXo1XtRPuoy5X7s9Hq6VWufF+nh/kKX6uPObVxIwsb5ZUxXfVpMBeWqBkXxoRwadaLJvI3k7yJzLw7FUrZtDaUy5kGtjHPKF6SzoEiwufdXfJ6cx8L/eiv0esT1qXGNRIlzMZlOj/gWlrMSkUrEZJbL61JqbMeVa0Xloe7alg7zpYyJiuYKil3w63dPnRL0YqcjWEKA8Une6viRJfmp3Dh70j5okTDMSSH2AY/97raUbvv4FTES13mzGZENWgThisxeE/3s9yiXkcvHeou/RAO4TwS0LUkfUIralPZmbIsuUs9nP4rsgZTFYvS25bN++BykXuyzqlJfxKycHJvEmW+yWnaF8MhpCdlLuF8eH9D6sWxMt82NeuDoS73oMyhCQ9zniHsndvWzXm5nOr1tc4llAevA2bnxeBwB7A6ZrHtQizU1Hkj754DWofjGupmtfhf+2H4WE7NeYVyy+mbs+cBb53bxTozi35x8zljuYWM5mqO4TyzonfWa/LzY/8vavSmMqc3754++qV2DBheS8X5UFk6xrujyMobSgX3B3wyZOo/6u/n5K8SXhY0quRoQsnsV1RTMy1kaubLS1/vzLMQmSydKpnK1Gw80aaTsTtqT92An53CA2x6SpS/qeS/iPV/RzuE2mOyHiabzhmELtXFlAWxu2lDurfnaKskxjO9fMa3AzW4J75PtXje9w61xzO/nVLfqr8k4bn+hcrUsBSZrO7y2XnVhx6Ud+A4F2S+943oTD1ns/gE2knAHiOfo+JIyXz9vCTEkOLCVUmXhDCjpY5y30u5T2eS4gra/VLfBjTCJ3qnH/cd8Hx+r8guReqXVNfTqwOu1JJUBx6pHlFmoE/634QI7dfqMvy9rMt+SQ/WJM3pHZQleu08qz8JduodF/ZrxouUBzOZuoVul1FUb3cP6zOxrUoufOK9Hj+qwY8cKdv0tl5Q3D1V9bnDeQ3NuZbJ3c8dK5P3ZD1gNNsrxkd9/Lyo4bUI6P/tSvRtR9KbIEufsu0R7edNiV6qdbNL0vO5yvq87a0aac1Xm0zTnqy048CckazfE0j1uKue/XwOUsrVxBV03LnOJzKl0yKJl5I8PycBpyF6Ab2V+xrSU4nKXJRkHvAl8iJAlkUAnWNBmmORwkiURNuHpxc2rq7+Xx/rhaOtK1d/c+Xava2Nz7b1/wPyvvqp+pm6BGvfb9VnMP4P1CFwmqg/qr+ov7bGrT+0/tT6Mzd975zG/ESV/rX+9l8VWkR2</latexit> Bio-inspired <latexit sha1_base64="hPtC3MVgY6+R6Tu/wDKXRGuu+n0=">AABE63ictVzbchu5EYU3t41z8yaPeZmN1ilvyuvIinOp2krV2qIsa621ZZOSvWvZriE5omkPOTSHpC9cfUUqL6lU8pTvyHfkA1KVPOUX0hdggCEx0xjF8ZQkDAanu9EDNLobGHcn6TCfbW7+49x73/jmt779nfe/e/573//BD3904YMfH+XZfNpLDntZmk0fduM8SYfj5HA2nKXJw8k0iUfdNHnQfbGNzx8skmk+zMad2ZtJ8ngUD8bDk2EvnkHVo1Y8iz/pT4eLZPz0wsbmlU36F60XrurChtL/DrIPPvynOlZ9lamemquRStRYzaCcqljlcD1SV9WmmkDdY7WEuimUhvQ8UafqPGDn0CqBFjHUvoDfA7h7pGvHcI80c0L3gEsKP1NARuoiYDJoN4Uycovo+ZwoY20V7SXRRNnewN+upjWC2pl6BrUSzrQMxWFfZupE/Y76MIQ+TagGe9fTVOakFZQ8cno1AwoTqMNyH55PodwjpNFzRJic+o66jen5v6gl1uJ9T7edq3+TlBfhilRb9z4rKMRqQfQjeptzeMbypMB5ABQS3UcsvSJdj6j3Y2i/hPo7cJ1SyeikC9eSak9rkdtw+ZDbInIXLh9yV0Tuw+VD7ovIA7h8yAONROyUdO7Ht+Hy4dsi53tw+ZD3ROR9uHzI+yLyCC4f8khEfgWXD/mViLwJlw95U0TehsuHvC0iO3D5kB0ReQiXD3koInfg8iF3NLJ6pk7hyojOUJiV16Fc5oGWIoWa66J8N8g6+rA3AuZ0rwIrz+oW/PVjWwE6TSqwOwHj7qQCK4+8XbCRfqxsi27RauLD3hKxezAC/Ng9Efu5el6B/Txgpr2owMpzbR/a+bGy9f0C7vzYL0TsHSj5sfIadRdq/Ni7ASvGpAJ7IGLvqZcV2BCrP63Ayna/DXbFj5XXqQ6092NDrOm8Aivb0yPwYPxYebV6ALV+7AMR+1C9rsA+FLFfgnX3Y78MWGHfVmDNGnueVpAB+SMJzNg6anExK7E0AWqxwD8t1paUfOMu1EuYQYEZEGYkInYLxG4gYr9A7AfLlRd2NCd/V+bSLhDtQES3WJuwNBPb94v2WEoDEK0C0VpB1Hmk+K5NXxbkXZgaCTkrVi4shfQpK+w3lhI9Huotr0HcLSF4bD+jkX+ZoiWMoFBTddSeFWs8IyO6r0O8oujN9NLwkHGzwiq4qNciqutBdUXUGw/qjYiae1BzEbXwoBYiys58F3ccMAKs/vFdLOmORwD7yNVXBF7BdVh1bsEcjWD8HIAXeJ9q7sLfNsXe0lUnGUbzuE5iluNxyRJPobRUG1Bvo8IWxdcpzbAEJOOWd3WMj3eY21jqOcdW+LRYyaMiYxJOZ0jyDAo66C1GNJ+a0blNNafk3XGpGf5WMe9NqRl+hzR+Sl48l5rhZ1r62Rlk72hs5wzYNsymida+LTelwfkXpmHK52nVRYuLb3WkxwzSe92Q/p5+M3tneC/bVGL92HIzGrnTv7zUvyY0rJ5zR8/NqKD3xF6vKUWNezLWca8tN5Uho1V0rOWwd03fDLbp6zdjys1oHIDHtU0x99IpNx29k6I3ttyMxpHivOcpefKm3IzGgO5ZH7bcjAZmW2Id59tyU8uOGuDY2ZabWvUxZYExB8RjnmusVzQlP2muqQ3JP6jP1rg+//o6hjmbJ0WMUE/J+rbVdLrFWlYvkfEXErBqs4ZyoH8xd3ywMo2l2hLjK5ZhVlrf1+nYNR41vw9ajGD28x6AlDNPQUKTk0DrnQLFq2LUVe6ZwW2JOBwlJyuoY107E71Fy5ezRuW6p1QrxWW2t1aPx2Svcxp7E/IJ90mzkh72K99wFUVJQ/slDcn0mujurZ6vZe1virjJCmJSjLQe7QjxTlp9nOrTetvR8UW9yzODi/d87PjFbPOJtjYY82Rki1CWOp5uO5NHcutwXb2sbI6bn0X0RtFeLchqDGlHKhejUJMtZm98SfeW9iHtySEPptGD9xhpKhPFu2aYRcd8ekQW1bW3Em/Ul8nQcTknq2vscT164KAHHnTzGGcbVow7UOpAzHAId52AKOd8oauMND5VnxS7oxm9wfqIPi1ZSEOD7U1SspB1UfazEpVXgMbRwFF6OI1VOgZ/vEZJjvp98tjYtWz5L9LOrdnfjmmMV4/m6kxMn7huEdeIZg3v6vLdKgeWYOl9skX+a30vkV8TjmhDJa5PHM6slzHt+CcUwU7IM05ptkmzo9zazU+tPjGcDpTZO8fd7IwsZET2L4L1KaMxGdGPe3bA7KCzRUjJRobYnWHh3fh8naE4xqwfN1R8qsGOt4Rs2Zz4G7ru7MppLHLEwOvA6crYNjrZJ18wIa5Tbd3t3K5ffRBpz0m4o4Qp2rFyifh/TL/NjxknG2sjAjWMbyDXts73PjKKWVBHMa3y9TbItHWl/KiQ4YmW2q5/VqaPSpK1KOJCeXC17gPnHt0zLxwlU5I7X2vD62hdNhcpT1b0iL09oSie7f5Ar8Ao92VaJTdozh3TKBnAKJgVUYRpK2WRV/nW8ypTD6Od/1+oW12XtYYUI2UzuKwhKb+fULTmSpnCqObx+4Jmk1/r05VW9XzGNBZHzlz+Gmo/hN9GbnMfRqdbsgo3aAwwBXtnNcI10VqLMF43SrzMyDS07L3lZ8ekaeXWnCW+ZutmY+xFYyoHNGpe66yFKZ+FxnOHxvNAHXZor9Fq0dQbS/RUjC06ercylF8Tbp0GlOciZdkjM6hhgJRuLBVGtS9SlWN8g3or0toUacUwW93dAHfOhyD9c311dn9drO6Rukm+TY88MI5f+jRLh+Rzmdr6SI0pIOdr2r66s/+YapB7lywoUuZznDhjeNepR9dpIenP9cqWkZ23FsGcW3ql2xgbe0zlX60hRzQncpqXBnGNWiRafleOaMUiXXF8jogy/zH5VOx31MfMbmv7TqKSP2HjTZ5VlhdHCmPSv5R521uLXvec+DWimHCuvesu0Gr+hpECY0wmwe9Z5vSGcJXjnQT2aLtkP9ftFO/ijR2JrpDUS/X7ABvDUa8d6+7YMj02ffsFtESt27fuayHzS4M5SvzOsqMX06o20j7qcuX+bLRivcqV7+v0MF/ha/UxpzZuZGGjvDLmWH0azIUlasaFMSFcmvWiifzNJG8iM+9OhVI2rQ3lcqaBbcwzipekc6CI8Hl3l7ze3MdCP7pr9LqEdalxjUQJs3GZzg+4lhazUtFKhOTWS2tS6qxHVeuF5eGuGtaOs6VMyAqmSsrdcGu3D8elaEXOxjCFnuKTvVVxokvzU7jwd6R8UaLhGJJDbIOfe11tq513cCripS5zZjOiGrQJ/ZUYPNb9LLeo19FLh7pLP4RDOI8h6FqSfkgralPZmbIsuUs9nP4rsgZTlYjS25bN++BykXuyzqlJf4Zk4eTeDJX5JqdpXwyHkJ6UuYTz4f0NqRcnynzb1KwPhrrcgzKHJjzMeYawd25bN+flcqrX1zqXUB68DpidF4PDHcDqmMW2C7FQU+eNvHsOaB1Oaqib1eJ/7YfhYzk15xXKLadvzp4HvHVul+jMLPrFzeeM5RYymqs5hvPMit5Zr8nPj/2/qNGbypzevHv66JfaMWB4LRXnQ2XpGO+OIitvKBXcH/DJkKn/qL+fk79KeFnQqJKjCSWzX1FNzbSQqZkvL329M89CZLJ0qmQqU7PxRJtOxm6rPXUTfrYLD7DpKVH+ppL/Itb/HW0fak/IephsOmcQjqkuoSyI3U3r0709R1slMZ7p5TO+HajBPfF9qsXzvneoPZ757ZT6Vv0lCc/1L1Sm+qXIZHWXz86rLvSgvAPHuSDzvW9EZ+o5m8Un0EYBe4x8joojJfP185IQfYoLVyVdEsKMljrKXS/lLp1JSipod0t969EIn+idftx3wPP5cZFditQvqS7WqwOu1JJUBx6pHlFmoEv634QI7dfqMvy9rMt+SQ/WJM3pHZQleu08qz8JduodF/ZrxouUBzOZuoVul1FUb3cP6zOxrUoufOK9Hj+owQ8cKdv0tl5Q3D1V9bnDeQ3NuZbJ3c8dK5P3ZD1gNBsX46M+fl7U8FoE9P92Jfq2I+kuyNKlbHtE+3lTopdq3eyQ9Hyusj5ve6tGWvPVJtO0JyvtODBnJOv3BFI97qpnP5+DlHI1SQUdd67ziUzptMjQS0men5OA0xBxQG/lvob0VKIyFyWZB3yJvAiQZRFA50SQ5kSkMBAl0fbh6YWNq6v/18d64WjrytXfXLl2b2vjsxv6/wF5X/1U/UxdgrXvt+ozGP8H6pA4/VH9Rf21NWr9ofWn1p+56XvnNOYnqvSv9bf/AhVkQ/Y=</latexit> Data-driven <latexit sha1_base64="CntraNBg9mYuBJLKHR51k3rL0i0=">AABFAHictVxbbxTJFS42tw25scljpKg3XiI2Io5xyEVaRVrwGOPFwMCMDbsY0Fzaw+D29DA9MwZm/RLlx0R5iaLkKS/5HfkBkZKn/IWcS1VX9Ux1n2qH0LJdXV3fOadOV50651Q13XEyzKYbG/+48N5Xvvq1r3/j/W9e/Na3v/Pd71364PsHWTqb9OL9Xpqkk8fdThYnw1G8Px1Ok/jxeBJ3TrpJ/Kh7vIXPH83jSTZMR+3pm3H89KQzGA2Phr3OFKqeX/rRlXh9sB7Nh51oEg9mCVVHo3h6mk6Os4+fX1rbWN+gf9Fq4ZourCn9r5l+8OE/1aHqq1T11EydqFiN1BTKieqoDK4n6praUGOoe6oWUDeB0pCex+pMXQTsDFrF0KIDtcfwewB3T3TtCO6RZkboHnBJ4GcCyEhdBkwK7SZQRm4RPZ8RZawto70gmijbG/jb1bROoHaqXkCthDMtQ3HYl6k6Ur+hPgyhT2Oqwd71NJUZaQUlj5xeTYHCGOqw3IfnEyj3CGn0HBEmo76jbjv0/F/UEmvxvqfbztS/ScrLcEWqpXuf5hQ6ak70I3qbM3jG8iTAeQAUYt1HLJ2Srk+o9yNov4D6e3CdUcnopAvXgmrPKpFbcPmQWyJyBy4fckdE7sHlQ+6JyCZcPmRTIxE7IZ378S24fPiWyPkBXD7kAxH5EC4f8qGIPIDLhzwQkV/A5UN+ISJvweVD3hKRd+DyIe+IyDZcPmRbRO7D5UPui8htuHzIbY0sn6kTuFKiMxRm5Q0oF3mgpUig5oYo302yjj7szYA53SvByrO6AX/92EaATuMS7HbAuDsqwcojbwdspB8r26LbtJr4sLdF7C6MAD92V8R+pl6WYD8LmGnHJVh5ru1BOz9Wtr534c6PvSti70HJj5XXqPtQ48feD1gxxiXYpoh9oF6VYEOs/qQEK9v9FtgVP1Zep9rQ3o8NsaazEqxsTw/Ag/Fj5dXqEdT6sY9E7GP1ugT7WMR+Dtbdj/08YIV9W4I1a+xFWkEG5I/EMGOrqHXyWYmlMVDrCPyTfG1JyDfuQr2EGeSYAWFORMROjtgJROzliL1gubLcjmbk78pcWjmiFYjo5msTlqZi+37eHktJAKKRIxpLiCqPFN+16cucvAtTIyGn+cqFpZA+pbn9xlKsx0O15TWI+wUEj+0XNPKvUrSEERRqqorai3yNZ2RE91WIU4reTC8NDxk3za2Ci3otoroeVFdEvfGg3oiomQc1E1FzD2ououzMd3GHASPA6h/fxYLueASwj1x+ReAV3IBV5zbM0QjGTxO8wIdUcx/+tij2lq4qyTCax3USsxxPC5Z4AqWFWoN6GxU2KL5OaIbFIBm3vK9jfLzD3MZCzzm2wmf5Sh7lGZNwOkOSZ5DTQW8xovlUj84dqjkj745L9fC383lvSvXw26TxM/LiuVQPP9XST88he1tj2+fAtmA2jbX2bbkuDc6/MA1TvkirLlpcfKsneswgvdc16e/qN7N7jveyRSXWjy3Xo5E5/csK/atDw+o5c/Rcjwp6T+z1mlJUuycjHffacl0ZUlpFR1oOe1f3zWCbvn4zplyPRhM8ri2KuRdOue7oHee9seV6NA4U5z3PyJM35Xo0BnTP+rDlejQw29LRcb4t17XsqAGOnW25rlUfURYYc0A85rnGekUT8pNmmtqQ/IPqbI3r86+uY5izeZbHCNWUrG9bTqebr2XVEhl/IQarNq0pB/oXM8cHK9JYqE0xvmIZpoX1fZWOXeNR83ugxQhmP+8BSDnzBCQ0OQm03glQvCZGXcWeGdymiMNRcrSEOtS1U9FbtHw5a1Sse061Ulxme2v1eEj2OqOxNyafcI80K+lhr/QNl1GUNLRX0JBMr47u3ur5WtT+hogbLyHG+Ujr0Y4Q76RVx6k+rbccHV/WuzxTuHjPx45fzDYfaWuDMU9KtghlqeLptjN5JLcO19Wryua4+VlEbxTt1ZysxpB2pDIxCjXZYvbGF3Rvae/TnhzyYBo9eI+RpjJWvGuGWXTMp0dkUV17K/FGfZkMHZczsrrGHlejBw564EHXj3G2YMW4B6U2xAz7cNcOiHIu5rpKSeMT9bN8dzSlN1gd0ScFC2losL2JCxayKsp+UaByCmgcDRylh9NYpmPwhyuU5KjfJ4+NXYuW/zLt3Jr97Q6N8fLRXJ6J6RPXTeIa0azhXV2+W+bAEiy8TzbJf63uJfKrwxFtqMT1mcOZ9TKiHf+YItgxecYJzTZpdhRbu/mp5SeGU1OZvXPczU7JQkZk/yJYn1IakxH9uGcHzA46W4SEbGSI3Rnm3o3P1xmKY8z6cUPFpxrseIvJls2Iv6Hrzq6MxiJHDLwOnC2NbaOTPfIFY+I60dbdzu3q1QeR9pyEO0qYoh0rV4j/x/Tb/JhxsrYyIlDD+AYybet87yOlmAV11KFVvtoGmbaulB/lMjzTUtv1z8r0UUGyBkVcKA+u1n3g3KN75oWjZEJyZytteB2tyuYi5fGSHrG3RxTFs90f6BUY5b5Kq+QazblDGiUDGAXTPIowbaUs8jLfal5F6mG0s/8LdavrotaQYqRsBpc1JOX3Y4rWXCkTGNU8fo9pNvm1PllqVc1nRGPxxJnLX0Lth/DbyG3uw+h0C1bhJo0BpmDvrEa4JlppEcbrZoGXGZmGlr23/OyYNK3cmvPE12zdbIw9r02lSaPmtc5amPJ5aLx0aLwM1GGb9hqtFk29sUTPxdiirXcrQ/nV4dauQXkmUpY9MoMaBkjpxlJhVPsiVTnGN6i3Iq0NkVYHZqu7G+DO+RCkf64vz+4v89U9UrfIt+mRB8bxS59m6ZB8LlNbHakxBeR8XdtXd/YfUg1y75IFRcp8jhNnDO869eg6yyX9iV7ZUrLz1iKYc0unuo2xsYdU/sUK8oTmREbz0iCuU4tYy+/KES1ZpHXH54go898hn4r9juqY2W1t30lU8CdsvMmzyvLiSGFE+pcyb7sr0euuE79GFBPOtHfdBVr13zBSYIzJJPg9y4zeEK5yvJPAHm2X7OeqneJdvJEj0TpJvVC/DbAxHPXase6OLdNj07efQkvUun3rvhYyvySYo8TvPDt6HVrVTrSPuli6Px+tjl7livdVepgt8bX6mFEbN7KwUV4Rc6g+CebCEtXjwpgQLvV6UUf+epLXkZl3p0Ipm9aGcjHTwDbmBcVL0jlQRPi8uyteb+5joR/dFXpdwrrUuEaihNm4VOcHXEuLWaloKUJy66U1KXHWo7L1wvJwVw1rx9lSxmQFEyXlbri124fDQrQiZ2OYQk/xyd6yONGl+Qlc+DtSvijRcAzJIbbAz72httT2OzgV8UqXObMZUQ3ahP5SDN7R/Sy2qNbRK4e6Sz+EQziPIehakn5IK2pd2ZmyLLlLPZz+KVmDiYpF6W3L+n1wucg9WeVUpz9DsnByb4bKfJNTty+GQ0hPilzC+fD+htSLI2W+barXB0Nd7kGRQx0e5jxD2Du3revzcjlV62uVSygPXgfMzovB4Q5gecxi24VYqInzRt49B7QORxXUzWrxv/bD8LGc6vMK5ZbRN2cvA946t4t1Zhb94vpzxnILGc3lHMN5pnnvrNfk58f+X1TrTaVOb949ffRL7RgwvBaK86GydIx3R5GVN5QK7g/4ZEjVf9TfL8hfJbzKaZTJUYeS2a8op2ZayNTMl5e+3plnITJZOmUyFanZeKJFJ2O31K66BT9buQdY95Qof1PJfxHr/462D7VHZD1MNp0zCIdUF1MWxO6m9enenqMtkxjP9PIZ3zbU4J74HtXied971B7P/LYLfSv/koTn+l2Vqn4hMlne5bPzqgs9KO7AcS7IfO8b0Zl6zmbxCbSTgD1GPkfFkZL5+nlBiD7FhcuSLghhRksV5a6XcpfOJMUltLuFvvVohI/1Tj/uO+D5/E6eXYrUz6muo1cHXKklqZoeqZ5QZqBL+t+ACO2X6ir8varLfkmbK5Jm9A6KEr12nlWfBDvzjgv7NeNlyoOZTN1ct0spqre7h9WZ2EYpFz7xXo0fVOAHjpQtelvHFHdPVHXucFZBc6ZlcvdzR8rkPVkPGM128vFRHT/PK3jNA/p/pxR9x5F0B2TpUrY9ov28CdFLtG62SXo+V1mdt71dIa35apNp2pOVdhyYM5LVewKJHnfls5/PQUq5mriEjjvX+USmdFpk6KUkz89xwGmITkBv5b6G9FSiMhMlmQV8iTwPkGUeQOdIkOZIpDAQJdH24fmltWvL/9fHauFgc/3ar9avP9hc+/Sm/n9A3lc/VD9WV2Dt+7X6FMZ/U+0Dp9+rP6q/qL82ftf4Q+NPjT9z0/cuaMwPVOFf42//Bf4tS4Y=</latexit> (e.g. via regulation networks) <latexit sha1_base64="HkSeENueEhaqEXwG12Vc/2aoSZM=">AABE6XictVxbcxPJFW42tw25scljXmbjJcWmWGIccqnaStWCZcCLAYNkA4uB0mUkC480QiOJi9Y/IpWXVCp5yg/J78gPSFXylL+Qc+me7pF65vQ4hCnbPT39nXP6TPfpc0730Jkkw2y2ufmPcx9845vf+vZ3Pvzu+e99/wc//NGFj358mKXzaTc+6KZJOn3caWdxMhzHB7PhLIkfT6Zxe9RJ4kedk218/mgRT7NhOm7N3k7iZ6P2YDzsD7vtGVQ92T5Oh904SvsvLmxsXtmkf9F64aoubCj9bz/96ON/qiPVU6nqqrkaqViN1QzKiWqrDK6n6qraVBOoe6aWUDeF0pCex+pUnQfsHFrF0KINtSfwewB3T3XtGO6RZkboLnBJ4GcKyEhdBEwK7aZQRm4RPZ8TZawto70kmijbW/jb0bRGUDtTx1Ar4UzLUBz2Zab66nfUhyH0aUI12LuupjInraDkkdOrGVCYQB2We/B8CuUuIY2eI8Jk1HfUbZue/4taYi3ed3Xbufo3SXkRrkg1de/TnEJbLYh+RG9zDs9YngQ4D4BCrPuIpdek6xH1fgztl1B/D65TKhmddOBaUu1pJXIbLh9yW0TegsuHvCUi9+DyIfdE5D5cPuS+RiJ2Sjr345tw+fBNkfMDuHzIByLyIVw+5EMReQiXD3koIr+Cy4f8SkTehMuHvCki78DlQ94RkS24fMiWiDyAy4c8EJE7cPmQOxpZPlOncKVEZyjMyutQLvJAS5FAzXVRvhtkHX3YGwFzuluClWd1A/76sY0AncYl2J2Acdcvwcoj7xbYSD9WtkW3aTXxYW+L2F0YAX7sroj9Ur0swX4ZMNNOSrDyXNuDdn6sbH3vwp0fe1fE3oOSHyuvUfehxo+9H7BiTEqw+yL2gXpVgg2x+tMSrGz3m2BX/Fh5nWpBez82xJrOS7CyPT0ED8aPlVerR1Drxz4SsY/VmxLsYxH7BKy7H/skYIV9V4I1a+x5WkEG5I/EMGOrqLXzWYmlCVBrC/yTfG1JyDfuQL2EGeSYAWFGIuJWjrgViNjLEXvBcmW5Hc3I35W5NHNEMxDRydcmLM3E9r28PZaSAEQjRzRWEFUeKb5r05cFeRemRkLO8pULSyF9SnP7jaVYj4dqy2sQ9wsIHtvHNPIvU7SEERRqqoracb7GMzKi+yrEa4reTC8NDxk3y62Ci3ojojoeVEdEvfWg3oqouQc1F1ELD2ohouzMd3FHASPA6h/fxZLueASwj1x+ReAVXIdV5zbM0QjGzz54gQ+p5j78bVLsLV1VkmE0j+skZjmeFSzxFEpLtQH1NipsUHyd0AyLQTJueV/H+HiHuY2lnnNshU/zlTzKMybhdIYkzyCng95iRPOpHp07VHNK3h2X6uFv5/PelOrhd0jjp+TFc6kefqaln51B9pbGts6AbcJsmmjt23JdGpx/YRqmfJ5WXbS4+FZHeswgvTc16e/qN7N7hveyTSXWjy3Xo5E5/csK/atDw+o5c/Rcjwp6T+z1mlJUuydjHffacl0ZUlpFx1oOe1f3zWCbnn4zplyPxj54XNsUcy+dct3RO8l7Y8v1aBwqznuekidvyvVoDOie9WHL9WhgtqWt43xbrmvZUQMcO9tyXas+piww5oB4zHON9Yqm5CfNNbUh+QfV2RrX519fxzBn8zyPEaopWd+2nE4nX8uqJTL+QgxWbVZTDvQv5o4PVqSxVFtifMUyzArr+zodu8aj5vdAixHMft4DkHLmCUhochJovROgeFWMuoo9M7gtEYejpL+COtK1M9FbtHw5a1Sse0G1Ulxme2v1eET2OqOxNyGfcI80K+lhr/QNl1GUNLRX0JBMr47u3un5WtT+poibrCAm+Ujr0o4Q76RVx6k+rTcdHV/UuzwzuHjPx45fzDb3tbXBmCclW4SyVPF025k8kluH6+plZXPc/CyiN4r2akFWY0g7UpkYhZpsMXvjS7q3tA9oTw55MI0uvMdIU5ko3jXDLDrm0yOyqK69lXijvkyGjssZWV1jj6vRAwc98KDrxzjbsGLcg1ILYoYDuGsFRDnnc12lpPGp+izfHU3pDVZH9EnBQhoabG/igoWsirKPC1ReAxpHA0fp4TRW6Rj80RolOer3yWNj16Llv0g7t2Z/u01jvHw0l2diesR1i7hGNGt4V5fvVjmwBEvvky3yX6t7ifzqcEQbKnF97nBmvYxpxz+mCHZCnnFCs02aHcXWbn5q9YnhtK/M3jnuZqdkISOyfxGsTymNyYh+3LMDZgedLUJCNjLE7gxz78bn6wzFMWb9uKHiUw12vMVky+bE39B1Z1dGY5EjBl4HTlfGttHJHvmCMXGdautu53b16oNIe07CHSVM0Y6VS8T/U/ptfsw42VgbEahhfAOZtnW+95FSzII6atMqX22DTFtXyk9yGZ5rqe36Z2X6pCBZgyIulAdX6x5w7tI988JRMiW5s7U2vI5WZXOR8mRFj9jbPkXxbPcHegVGuS/TKrlBc+6IRskARsEsjyJMWymLvMq3mleRehjt7P9C3eq6qDWkGCmbwWUNSfn9mKI1V8oERjWP3xOaTX6tT1daVfMZ01gcOXP5a6j9GH4buc19GJ1OwSrcoDHAFOyd1QjXRGstwnjdKPAyI9PQsveWnx2TppVbc5b4mq2bjbEXtans06h5o7MWpnwWGi8dGi8DddiivUarRVNvLNELMbZo6d3KUH51uLVqUJ6LlGWPzKCGAVK6sVQY1Z5IVY7xDeqdSGtTpNWG2eruBrhzPgTpn+urs/vrfHWP1E3ybbrkgXH80qNZOiSfy9RWR2pMATlf0/bVnf1HVIPcO2RBkTKf48QZw7tOXbpOc0l/rle2lOy8tQjm3NJr3cbY2CMq/2oNOaI5kdG8NIhr1CLW8rtyRCsW6Yrjc0SU+W+TT8V+R3XM7La27yQq+BM23uRZZXlxpDAm/UuZt9216HXXiV8jignn2rvuAK36bxgpMMZkEvyeZUZvCFc53klgj7ZD9nPdTvEu3tiR6ApJvVS/D7AxHPXase6OLdNj07dfQEvUun3rvhYyvySYo8TvLDt6bVrVRtpHXa7cn41WW69yxfsqPcxX+Fp9zKmNG1nYKK+IOVKfB3NhiepxYUwIl3q9qCN/PcnryMy7U6GUTWtDuZhpYBtzTPGSdA4UET7v7pLXm/tU6EdnjV6HsC41rpEoYTYu1fkB19JiVipaiZDcemlNSpz1qGy9sDzcVcPacbaUMVnBREm5G27t9uGoEK3I2Rim0FV8srcsTnRpfg4X/o6UL0o0HENyiE3wc6+rbbXzHk5FvNJlzmxGVIM2obcSg7d1P4stqnX0yqHu0g/hEM5jCLqWpB/SilpXdqYsS+5SD6f/mqzBVMWi9LZl/T64XOSerHOq058hWTi5N0Nlvsmp2xfDIaQnRS7hfHh/Q+pFX5lvm+r1wVCXe1DkUIeHOc8Q9s5t6/q8XE7V+lrnEsqD1wGz82JwuANYHrPYdiEWauq8kffPAa1Dv4K6WS3+134YPpZTfV6h3DL65uxlwFvndrHOzKJfXH/OWG4ho7mcYzjPNO+d9Zr8/Nj/i2q9qdTpzfunj36pHQOG11JxPlSWjvHuKLLyhlLB/QGfDKn6j/r7OfmrhFc5jTI56lAy+xXl1EwLmZr58tLXO/MsRCZLp0ymIjUbTzTpZOy22lU34Wc79wDrnhLlbyr5L2L939H2oLZP1sNk0zmDcER1MWVB7G5aj+7tOdoyifFML5/xbUEN7onvUS2e971H7fHMb6vQt/IvSXiu31Wp6hUik9VdPjuvOtCD4g4c54LM974RnannbBafQBsF7DHyOSqOlMzXz0tC9CguXJV0SQgzWqood7yUO3QmKS6h3Sn0rUsjfKJ3+nHfAc/nt/PsUqR+SXVtvTrgSi1Jte+R6illBjqk/02I0H6tLsPfy7rsl3R/TdKM3kFRojfOs+qTYKfecWG/ZrxIeTCTqVvodilF9Xb3sDoT2yjlwifeq/GDCvzAkbJJb+uE4u6pqs4dzitozrVM7n7uWJm8J+sBo9l2Pj6q4+dFBa9FQP/vlKLvOJLeAlk6lG2PaD9vSvQSrZsdkp7PVVbnbW9XSGu+2mSa9mSlHQfmjGT1nkCix1357OdzkFKuJi6h4851PpEpnRYZeinJ83MScBqiHdBbua8hPZWozEVJ5gFfIi8CZFkE0OkL0vRFCgNREm0fXlzYuLr6f32sFw63rlz9zZVrD7Y2vrih/x+QD9VP1c/UJVj7fqu+gPG/rw6A00j9Uf1F/bVx0vhD40+NP3PTD85pzE9U4V/jb/8FSllC8w==</latexit> Choice of <latexit sha1_base64="5KehH7u5mRjTvh4RNybA2k4jlhs=">AABE8XictVzbchu5EYU3t41zWW/ymJfZaJ14txRHVpxL1Vaq1hZlWWvZlk1K9q5luzjkiKY94tAckr5w9SGpvKRSyVM+It+RD0hV8pRfSF+AAYbETGMUR1MSMSBOd6MHaHQ3MIrH6TCfbmz849x73/jmt779nfe/e/573//BDz+48OGPDvNsNuklB70szSYP426epMNRcjAdTtPk4XiSdE/iNHkQv9jC7x/Mk0k+zEad6Ztx8vikOxgNj4e97hSqnl74YJCMkp/nUR9YdUe95OmFtY3LG/QTrRau6MKa0j/72Ycf/VMdqb7KVE/N1IlK1EhNoZyqrsrheqSuqA01hrrHagF1EygN6ftEnarzgJ1BqwRadKH2BfwdwN0jXTuCe6SZE7oHXFL4nQAyUhcBk0G7CZSRW0Tfz4gy1lbRXhBNlO0NfMaa1gnUTtUzqJVwpmUoDvsyVcfqd9SHIfRpTDXYu56mMiOtoOSR06spUBhDHZb78P0Eyj1CGj1HhMmp76jbLn3/L2qJtXjf021n6t8k5UW4ItXWvc8KCl01J/oRPc0ZfMfypMB5ABQS3UcsvSJdn1DvR9B+AfV34DqlktFJDNeCak9rkVtw+ZBbInIHLh9yR0TuweVD7onIfbh8yH2NROyEdO7Ht+Hy4dsi53tw+ZD3ROR9uHzI+yLyEC4f8lBEfgWXD/mViLwBlw95Q0TegsuHvCUiO3D5kB0ReQCXD3kgIrfh8iG3NbJ6pk7gyojOUJiV16Bc5oGWIoWaa6J818k6+rDXA+Z0rwIrz+oWfPqxrQCdJhXY7YBxd1yBlUfeDthIP1a2RTdpNfFhb4rYXRgBfuyuiP1CPa/AfhEw015UYOW5tgft/FjZ+t6GOz/2toi9AyU/Vl6j7kKNH3s3YMUYV2D3Rew99bICG2L1JxVY2e63wa74sfI61YH2fmyINZ1VYGV7eggejB8rr1YPoNaPfSBiH6rXFdiHIvZLsO5+7JcBK+zbCqxZY8/TCjIgfySBGVtHrVvMSiyNgVpX4J8Wa0tKvnEM9RJmUGAGhDkRETsFYicQsVcg9oLlygs7mpO/K3NpF4h2ICIu1iYsTcX2/aI9ltIARKtAtJYQdR4pPmvTlzl5F6ZGQk6LlQtLIX3KCvuNpUSPh3rLaxB3Swge289o5K9TtIQRFGqqjtqzYo1nZET3dYhXFL2ZXhoeMm5aWAUX9VpExR5ULKLeeFBvRNTMg5qJqLkHNRdRdua7uKOAEWD1j89iQXc8AthHrr4i8AquwapzE+ZoBONnH7zA+1RzFz7bFHtLV51kGM3jOolZjsclSzyB0kKtQb2NClsUX6c0wxKQjFve1TE+3mFuY6HnHFvh02Ilj4qMSTidIckzKOigtxjRfGpG5xbVnJJ3x6Vm+JvFvDelZvht0vgpefFcaoafaumnZ5C9o7GdM2DbMJvGWvu23JQG51+Yhimfp1UXLS4+1RM9ZpDe64b0d/WT2T3Dc9miEuvHlpvRyJ3+5aX+NaFh9Zw7em5GBb0n9npNKWrck5GOe225qQwZraIjLYe9a/pksE1fPxlTbkZjHzyuLYq5F0656egdF72x5WY0DhXnPU/JkzflZjQGdM/6sOVmNDDb0tVxvi03teyoAY6dbbmpVR9RFhhzQDzmucZ6RRPyk2aa2pD8g/psjevzr65jmLN5UsQI9ZSsb1tNJy7WsnqJjL+QgFWbNpQD/YuZ44OVaSzUphhfsQzT0vq+Sseu8aj5PdBiBLOf9wCknHkKEpqcBFrvFCheEaOucs8MblPE4Sg5XkId6dqp6C1avpw1Ktc9pVopLrO9tXo8Inud09gbk0+4R5qV9LBX+YSrKEoa2itpSKbXRHdv9Xwta39DxI2XEONipPVoR4h30urjVJ/W246OL+pdnilcvOdjxy9mm4+1tcGYJyNbhLLU8XTbmTySW4fr6rqyOW7+LqInivZqTlZjSDtSuRiFmmwxe+MLure0D2hPDnkwjR48x0hTGSveNcMsOubTI7Korr2VeKO+TIaOyzlZXWOP69EDBz3woJvHOFuwYtyBUgdihgO46wREOecLXWWk8Yn6RbE7mtETrI/o05KFNDTY3iQlC1kXZT8rUXkFaBwNHKWH01imY/BHK5TkqN8nj41dy5b/Iu3cmv3tLo3x6tFcnYnpE9dN4hrRrOFdXb5b5sASLLzfbJL/Wt9L5NeEI9pQiesThzPrZUQ7/glFsGPyjFOabdLsKLd281PL3xhO+8rsneNudkYWMiL7F8H6lNGYjOjXPTtgdtDZIqRkI0PszrDwbny+zlAcY9aPGyo+1WDHW0K2bEb8DV13duU0Fjli4HXgdGlsG53skS+YENeJtu52btevPoi05yTcUcIU7Vi5RPw/ob/m14yTtZURgRrGJ5BrW+d7HhnFLKijLq3y9TbItHWl/LiQ4YmW2q5/VqaPS5K1KOJCeXC17gPnHt0zLxwlE5I7X2nD62hdNhcpj5f0iL09piie7f5Ar8Ao9zqtkms0545olAxgFEyLKMK0lbLIy3zreZWph9HO/y/Ura7LWkOKkbIZXNaQlN9PKFpzpUxhVPP4fUGzya/1yVKrej4jGosnzlz+Gmo/gr9GbnMfRicuWYXrNAaYgr2zGuGaaKVFGK/rJV5mZBpa9t7ys2PStHJrzhJfs3WzMfa8MZV9GjWvddbClM9C47lD43mgDju012i1aOqNJXoqxhYdvVsZyq8Jt04DyjORsuyRGdQwQEo3lgqj2hepyjG+Qb0VaW2ItLowW93dAHfOhyD9c315dn9drO6RukG+TY88MI5f+jRLh+Rzmdr6SI0pIOer2r66s/+IapB7TBYUKfM5TpwxvOvUo+u0kPRnemXLyM5bi2DOLb3SbYyNPaLyr1aQJzQncpqXBnGVWiRafleOaMkiXXZ8jogy/13yqdjvqI+Z3db2mUQlf8LGmzyrLC+OFEakfynztrsSve468WtEMeFMe9cx0Gr+hJECY0wmwe9Z5vSEcJXjnQT2aGOyn6t2infxRo5El0nqhfp9gI3hqNeOdXdsmR6bvn0KLVHr9qn7Wsj80mCOEr+z7Oh1aVU70T7qYun+bLS6epUr39fpYbbE1+pjRm3cyMJGeWXMkfosmAtL1IwLY0K4NOtFE/mbSd5EZt6dCqVsWhvK5UwD25hnFC9J50AR4fPuLnm9uU+EfsQr9GLCutS4RqKE2bhM5wdcS4tZqWgpQnLrpTUpddajqvXC8nBXDWvH2VImZAVTJeVuuLXbh6NStCJnY5hCT/HJ3qo40aX5GVz4N1K+KNFwDMkhtsHPvaa21PY7OBXxUpc5sxlRDdqE/lIM3tX9LLeo19FLh7pLP4RDOI8h6FqSfkgralPZmbIsuUs9nP4rsgYTlYjS25bN++BykXuyyqlJf4Zk4eTeDJV5J6dpXwyHkJ6UuYTz4f0NqRfHyrzb1KwPhrrcgzKHJjzMeYawZ25bN+flcqrX1yqXUB68DpidF4PDHcDqmMW2C7FQE+eJvHsOaB2Oa6ib1eJ/7YfhYzk15xXKLad3zp4HPHVul+jMLPrFzeeM5RYymqs5hvPMit5Zr8nPj/2/qNGTypzevHv66JfaMWB4LRTnQ2XpGO+OIitvKBXcH/DJkKn/qL+fk99KeFnQqJKjCSWzX1FNzbSQqZk3L329M9+FyGTpVMlUpmbjiTadjN1Su+oG/G4VHmDTU6L8TiV/Itb/Hm0fao/JephsOmcQjqguoSyI3U3r0709R1slMZ7p5TO+HajBPfE9qsXzvneoPZ757ZT6Vv0mCc/12ypT/VJksrzLZ+dVDD0o78BxLsi87xvRmXrOZvEJtJOAPUY+R8WRknn7eUGIPsWFy5IuCGFGSx3l2Es5pjNJSQXtuNS3Ho3wsd7px30HPJ/fLbJLkfol1XX16oArtSTVvkeqR5QZiEn/GxCh/Vqtw+e6Lvsl3V+RNKdnUJbotfNd/UmwU++4sG8zXqQ8mMnUzXW7jKJ6u3tYn4ltVXLhE+/1+EENfuBI2aan9YLi7omqzx3OamjOtEzufu5Imbwn6wGj2W4xPurj53kNr3lA/29Vom85ku6ALDFl2yPaz5sQvVTrZpuk53OV9XnbmzXSmrc2maY9WWnHgTkjWb8nkOpxVz37+RyklKtJKui4c51PZEqnRYZeSvL8HAechugG9Fbua0hPJSozUZJZwJvI8wBZ5gF0jgVpjkUKA1ESbR+eXli7svy/PlYLh5uXr/zm8tV7m2ufX9f/B+R99RP1U3UJ1r7fqs9h/O+rA4X/D+SP6i/qr6289YfWn1p/5qbvndOYH6vST+tv/wUsa0XE</latexit> gene’s distance <latexit sha1_base64="TEoaH1ZLGYM2D1MIJ1swGNjy450=">AABDAnictVxLkxu3EYachy3lJSfHXCZZKyWnZGW1ViWpcqXK2odWa1HSSuSuZJuSio8hRWnIoTjk6kHvLT8g1+Qn5JbKNVX5HfkHySmH/IH0AxhgSMw0ZqNoancxIL7uRgNodDdAdafJKJtvbv7j3Hvf+vZ3vvv+B+cvfO/7P/jhjy5++OPjLF3MevFRL03S2aNuJ4uT0SQ+mo/mSfxoOos7424SP+y+2MHPH57Es2yUTlrzN9P48bgznIwGo15nDlXH2bQzy+KnFzc2r27Sv2i9cE0XNpT+d5h+GP1HtVVfpaqnFmqsYjVRcygnqqMyeL5W19SmmkLdY7WEuhmURvR5rE7VBcAuoFUMLTpQ+wJ+D+Hta107gXekmRG6B1wS+JkBMlKXAJNCuxmUkVtEny+IMtaW0V4STZTtDfztalpjqJ2rZ1Ar4UzLUBz2Za4G6rfUhxH0aUo12LueprIgraDkkdOrOVCYQh2W+/D5DMo9Qho9R4TJqO+o2w59/k9qibX43tNtF+pfJOUleCLV1L1PcwoddUL0IxrNBXzG8iTAeQgUYt1HLL0iXY+p9xNov4T6u/CcUsnopAvPkmpPK5E78PiQOyJyHx4fcl9ENuDxIRsi8hAeH/JQIxE7I5378U14fPimyPk+PD7kfRH5AB4f8oGIPIbHhzwWkV/B40N+JSJvwuND3hSRt+HxIW+LyBY8PmRLRB7B40Meicg9eHzIPY0sX6kzeFKiMxJW5Q0oF3mgpUig5oYo3zZZRx92O2BN90qw8qrehb9+7G6ATuMS7F7AvBuUYOWZtw820o+VbdEt2k182Fsi9gBmgB97IGK/UM9LsF8ErLQXJVh5rTWgnR8rW9878ObH3hGxd6Hkx8p71D2o8WPvBewY0xLsoYi9r16WYEOs/qwEK9v9JtgVP1bep1rQ3o8NsaaLEqxsT4/Bg/Fj5d3qIdT6sQ9F7CP1ugT7SMR+Cdbdj/0yYId9W4I1e+wF2kGG5I/EsGKrqHXyVYmlKVDrCPyTfG9JyDfuQr2EGeaYIWHGImI/R+wHIho5ohEsV5bb0Yz8XZlLM0c0AxHdfG/C0lxs38/bYykJQOzmiN0VRJVHimNt+nJC3oWpkZDzfOfCUkif0tx+YynW86Ha8hrEvQKC5/YzmvlXKFrCCAo1VUXtWb7HMzKi9yrEK4reTC8NDxk3z62Ci3otoroeVFdEvfGg3oiohQe1EFEnHtSJiLIr38W1A2aA1T+OxZLeeAawj1z+ROAV3IBd5xas0QjmzyF4gQ+o5h78bVLsLT1VkmE0j/skZjkeFyzxDEpLtQH1Nircpfg6oRUWg2Tc8p6O8fENcxtLvebYCp/mO3mUZ0zC6YxInmFOB73FiNZTPTq3qeaUvDsu1cPfyte9KdXD75HGT8mL51I9/FxLPz+D7C2NbZ0B24TVNNXat+W6NDj/wjRM+QLtumhxcVTHes4gvdc16R/okTk4w7jsUIn1Y8v1aGRO/7JC/+rQsHrOHD3Xo4LeE3u9phTV7slEx722XFeGlHbRiZbDvtUdGWzT1yNjyvVoHILHtUMx99Ip152907w3tlyPxrHivOcpefKmXI/GkN5ZH7ZcjwZmWzo6zrflupYdNcCxsy3XteoTygJjDojnPNdYr2hGftJCUxuRf1CdrXF9/vV9DHM2T/IYoZqS9W3L6XTzvaxaIuMvxGDV5jXlQP9i4fhgRRpLtSXGVyzDvLC/r9OxezxqvgFajGD18xmAlDNPQEKTk0DrnQDFa2LUVeyZwW2JOJwlgxVUW9fORW/R8uWsUbHuKdVKcZntrdVjm+x1RnNvSj5hgzQr6aFROsJlFCUNNQoakunV0d1bvV6L2t8UcdMVxDSfaT06EeKTtOo41af1pqPjS/qUZw4Pn/nY+YvZ5oG2NhjzpGSLUJYqnm47k0dy63BfvaJsjps/i2hE0V6dkNUY0YlUJkahJlvM3viS3i3tIzqTQx5MowfjGGkqU8WnZphFx3x6RBbVtbcSb9SXydBxOSOra+xxNXrooIcedP0YZwd2jLtQakHMcARvrYAo50Kuq5Q0PlOf5KejKY1gdUSfFCykocH2Ji5YyKoo+1mByitA42zgKD2cxiodg2+vUZKjfp88NnYtWv5LdHJrzrc7NMfLZ3N5JqZPXLeIa0Srhk91+W2VA0uw9H6yRf5rdS+RXx2OaEMlrk8czqyXCZ34xxTBTskzTmi1Sauj2NrNT61+YjgdKnN2jqfZKVnIiOxfBPtTSnMyoh/37oA5QWeLkJCNDLE7o9y78fk6I3GOWT9upPhWg51vMdmyBfE3dN3VldFc5IiB94HTlbltdNIgXzAmrjNt3e3art59EGnvSbizhCnauXKZ+H9Mv82PmScbazMCNYwjkGlb5xuPlGIW1FGHdvlqG2TaulJ+lMvwREtt9z8r00cFyXYp4kJ5cLfuA+cevTMvnCUzkjtba8P7aFU2FylPV/SIvR1QFM92f6h3YJT7Cu2SG7Tm2jRLhjAL5nkUYdpKWeRVvtW8itTDaGf/F+pW10WtIcVI2Qwua0jK78cUrblSJjCref6+oNXk1/pspVU1nwnNxbGzlr+B2p/BbyO3eQ+j0y1YhW2aA0zBvlmNcE201iKM13aBl5mZhpZ9t/zsnDSt3JqzxNds3WyMfVKbyiHNmtc6a2HKZ6Hx3KHxPFCHLTprtFo09cYSPRVji5Y+rQzlV4dbqwblhUhZ9sgMahQgpRtLhVHti1TlGN+g3oq0NkVaHVit7mmAu+ZDkP61vrq6v8l390jdJN+mRx4Yxy99WqUj8rlMbXWkxhSQ83VtX93V36Ya5N4lC4qU+R4nrhg+derRc5pL+gu9s6Vk561FMPeWXuk2xsa2qfzpGnJMayKjdWkQ16lFrOV35YhWLNJVx+eIKPPfIZ+K/Y7qmNltbcckKvgTNt7kVWV5caQwIf1LmbeDtej1wIlfI4oJF9q77gKt+iOMFBhjMgl+zzKjEcJdjk8S2KPtkv1ct1N8ijdxJLpKUi/V7wJsDEe9dq67c8v02PTtl9AStW5H3ddC5pcEc5T4neVEr0O72lj7qMuV97PR6uhdrvhepYfFCl+rjwW1cSMLG+UVMW31WTAXlqgeF8aEcKnXizry15O8jsx8OhVK2bQ2lIuZBrYxzyheku6BIsLn3V32enMfC/3ortHrEtalxjUSJczGpTo/4FpazEqdX9uHuPZ85W6UODtR2U5hqLu7hbXfbCFjsn6JknI23NqVvV2IUuQsDFPoKb7RWxYfujQ/gwd/R8oXHRqOIbnDJvi3N9SO2nsHtyFe6jJnNCOqQVvQX4m9O7qfxRbVOnrpUHfph3AI5zECXUvSj2gnrSs7U5Yld6mH039FVmCmYlF627J+H1wuck/WOdXpz4gsm9ybkTLfxanbF8MhpCdFLuF8+FxD6sVAme801euDoS73oMihDg9zjyFszG3r+rxcTtX6WucSyoN3AXPiYnB48lceq9h2IRZq5ozIu+eA1mFQQd3sFv9rPwwfy6k+r1BuGX3X7HnAqHO7WGdk0R+uv2Yst5DZXM4xnGea9856S35+7PdFtUYqdXrz7umjP2rngOG1VJwHlaVjvDuLrLyhVPBcwCdDqv6t/n5O/jbCy5xGmRx1KJlzinJqpoVMzXzj0tc781mITJZOmUxFajaOaNKN2B11oG7Cz07uAda9HcrfpeS/iPV/f7YPtQOyHiaLzpmDNtXFlP2wp2h9erf3Z8skxru8fLe3BTV4Ft6gWrzne5fa413fVqFv5d8g4bV+R6WqX4hIVk/37LrqQg+KJ2+cAzLf843oLj1nsfjm2TjgbNHcn1qVaEmfyDcLuqX4riNlj+bqVJ/V48kB3rDv5PmhSP2K6jrazuOeK3E+LOV8uMI5I+0UObx2Pqu+m1XGZcfh0s9zZye6XUpxtj3Pq86N7pZy4Tvo1fhhBX7oSNkk7b+gSHimqrN5iwqaCy2Te8I6USYTyXrAOLOTj3d1ZHtSweskoP+3S9G3HUn3QZYu5b8jOmGbEb1E62aPpOebjtWZ1FsV0prvUTJNe9fRzgNza7E6S5/oeceZC/O/ESxpPeBuam4mStmTuIROl24ExkSJ70hWUxoI8gxECkNREj1Tn17cuLb6/0CsF463rl779dXr97c2Pt/W/0fEB+qn6ufqMtjH36jPYSQO1RFweq7+oP6o/rT9++0/b/9l+6/c9L1zGvMTVfi3/bf/AlXX44w=</latexit> sparse <latexit sha1_base64="hTb29Gui6+TqErQwUSkV1IIo0O4=">AABDAXictVxLkxu3EYachy3lJSfHXCZZKyWnZGW1ViWpcqXK2odWa1HSSuSuZJuSio8hRWnIoTjk6kHvKT8g1+Qn5JbKNYf8jvyD5JRD/kD6AQwwJGYas1E0tbsYEF93owE0uhugutNklM03N/9x7r1vffs7333/g/MXvvf9H/zwRxc//PFxli5mvfiolybp7FG3k8XJaBIfzUfzJH40ncWdcTeJH3Zf7ODnD0/iWTZKJ635m2n8eNwZTkaDUa8zh6qjSTrK3jy9uLF5dZP+ReuFa7qwofS/w/TD6D+qrfoqVT21UGMVq4maQzlRHZXB87W6pjbVFOoeqyXUzaA0os9jdaouAHYBrWJo0YHaF/B7CG9f69oJvCPNjNA94JLAzwyQkboEmBTazaCM3CL6fEGUsbaM9pJoomxv4G9X0xpD7Vw9g1oJZ1qG4rAvczVQv6U+jKBPU6rB3vU0lQVpBSWPnF7NgcIU6rDch89nUO4R0ug5IkxGfUfddujzf1JLrMX3nm67UP8iKS/BE6mm7n2aU+ioE6If0Wgu4DOWJwHOQ6AQ6z5i6RXpeky9n0D7JdTfheeUSkYnXXiWVHtaidyBx4fcEZH78PiQ+yKyAY8P2RCRh/D4kIcaidgZ6dyPb8LjwzdFzvfh8SHvi8gH8PiQD0TkMTw+5LGI/AoeH/IrEXkTHh/ypoi8DY8PeVtEtuDxIVsi8ggeH/JIRO7B40PuaWT5Sp3BkxKdkbAqb0C5yAMtRQI1N0T5tsk6+rDbAWu6V4KVV/Uu/PVjdwN0Gpdg9wLm3aAEK8+8fbCRfqxsi27RbuLD3hKxBzAD/NgDEfuFel6C/SJgpb0owcprrQHt/FjZ+t6BNz/2joi9CyU/Vt6j7kGNH3svYMeYlmAPRex99bIEG2L1ZyVY2e43wa74sfI+1YL2fmyINV2UYGV7egwejB8r71YPodaPfShiH6nXJdhHIvZLsO5+7JcBO+zbEqzZYy/QDjIkfySGFVtFrZOvSixNgVpH4J/ke0tCvnEX6iXMMMcMCTMWEfs5Yj8Q0cgRjWC5styOZuTvylyaOaIZiOjmexOW5mL7ft4eS0kAYjdH7K4gqjxSHGvTlxPyLkyNhJznOxeWQvqU5vYbS7GeD9WW1yDuFRA8t5/RzL9C0RJGUKipKmrP8j2ekRG9VyFeUfRmeml4yLh5bhVc1GsR1fWguiLqjQf1RkQtPKiFiDrxoE5ElF35Lq4dMAOs/nEslvTGM4B95PInAq/gBuw6t2CNRjB/DsELfEA19+Bvk2Jv6amSDKN53Ccxy/G4YIlnUFqqDai3UeEuxdcJrbAYJOOW93SMj2+Y21jqNcdW+DTfyaM8YxJOZ0TyDHM66C1GtJ7q0blNNafk3XGpHv5Wvu5NqR5+jzR+Sl48l+rh51r6+Rlkb2ls6wzYJqymqda+LdelwfkXpmHKF2jXRYuLozrWcwbpva5J/0CPzMEZxmWHSqwfW65HI3P6lxX6V4eG1XPm6LkeFfSe2Os1pah2TyY67rXlujKktItOtBz2re7IYJu+HhlTrkfjEDyuHYq5l0657uyd5r2x5Xo0jhXnPU/JkzflejSG9M76sOV6NDDb0tFxvi3XteyoAY6dbbmuVZ9QFhhzQDznucZ6RTPykxaa2oj8g+psjevzr+9jmLN5kscI1ZSsb1tOp5vvZdUSGX8hBqs2rykH+hcLxwcr0liqLTG+Yhnmhf19nY7d41HzDdBiBKufzwCknHkCEpqcBFrvBCheE6OuYs8MbkvE4SwZrKDaunYueouWL2eNinVPqVaKy2xvrR7bZK8zmntT8gkbpFlJD43SES6jKGmoUdCQTK+O7t7q9VrU/qaIm64gpvlM69GJEJ+kVcepPq03HR1f0qc8c3j4zMfOX8w2D7S1wZgnJVuEslTxdNuZPJJbh/vqFWVz3PxZRCOK9uqErMaITqQyMQo12WL2xpf0bmkf0Zkc8mAaPRjHSFOZKj41wyw65tMjsqiuvZV4o75Mho7LGVldY4+r0UMHPfSg68c4O7Bj3IVSC2KGI3hrBUQ5F3JdpaTxmfokPx1NaQSrI/qkYCENDbY3ccFCVkXZzwpUXgEaZwNH6eE0VukYfHuNkhz1++SxsWvR8l+ik1tzvt2hOV4+m8szMX3iukVcI1o1fKrLb6scWIKl95Mt8l+re4n86nBEGypxfeJwZr1M6MQ/pgh2Sp5xQqtNWh3F1m5+avUTw+lQmbNzPM1OyUJGZP8i2J9SmpMR/bh3B8wJOluEhGxkiN0Z5d6Nz9cZiXPM+nEjxbca7HyLyZYtiL+h666ujOYiRwy8D5yuzG2jkwb5gjFxnWnrbtd29e6DSHtPwp0lTNHOlcvE/2P6bX7MPNlYmxGoYRyBTNs633ikFLOgjjq0y1fbINPWlfKjXIYnWmq7/1mZPipItksRF8qDu3UfOPfonXnhLJmR3NlaG95Hq7K5SHm6okfs7YCieLb7Q70Do9xXaJfcoDXXplkyhFkwz6MI01bKIq/yreZVpB5GO/u/ULe6LmoNKUbKZnBZQ1J+P6ZozZUygVnN8/cFrSa/1mcrrar5TGgujp21/A3U/gx+G7nNexidbsEqbNMcYAr2zWqEa6K1FmG8tgu8zMw0tOy75WfnpGnl1pwlvmbrZmPsk9pUDmnWvNZZC1M+C43nDo3ngTps0Vmj1aKpN5boqRhbtPRpZSi/OtxaNSgvRMqyR2ZQowAp3VgqjGpfpCrH+Ab1VqS1KdLqwGp1TwPcNR+C9K/11dX9Tb67R+om+TY98sA4funTKh2Rz2VqqyM1poCcr2v76q7+NtUg9y5ZUKTM9zhxxfCpU4+e01zSX+idLSU7by2Cubf0SrcxNrZN5U/XkGNaExmtS4O4Ti1iLb8rR7Rika46PkdEmf8O+VTsd1THzG5rOyZRwZ+w8SavKsuLI4UJ6V/KvB2sRa8HTvwaUUy40N51F2jVH2GkwBiTSfB7lhmNEO5yfJLAHm2X7Oe6neJTvIkj0VWSeql+F2BjOOq1c92dW6bHpm+/hJaodTvqvhYyvySYo8TvLCd6HdrVxtpHXa68n41WR+9yxfcqPSxW+Fp9LKiNG1nYKK+IaavPgrmwRPW4MCaES71e1JG/nuR1ZObTqVDKprWhXMw0sI15RvGSdA8UET7v7rLXm/tY6Ed3jV6XsC41rpEoYTYu1fkB19JiVur82j7Etecrd6PE2YnKdgpD3d0trP1mCxmT9UuUlLPh1q7s7UKUImdhmEJP8Y3esvjQpfkZPPg7Ur7o0HAMyR02wb+9oXbU3ju4DfFSlzmjGVEN2oL+Suzd0f0stqjW0UuHuks/hEM4jxHoWpJ+RDtpXdmZsiy5Sz2c/iuyAjMVi9LblvX74HKRe7LOqU5/RmTZ5N6MlPkuTt2+GA4hPSlyCefD5xpSLwbKfKepXh8MdbkHRQ51eJh7DGFjblvX5+VyqtbXOpdQHrwLmBMXg8OTv/JYxbYLsVAzZ0TePQe0DoMK6ma3+F/7YfhYTvV5hXLL6LtmzwNGndvFOiOL/nD9NWO5hczmco7hPNO8d9Zb8vNjvy+qNVKp05t3Tx/9UTsHDK+l4jyoLB3j3Vlk5Q2lgucCPhlS9W/193PytxFe5jTK5KhDyZxTlFMzLWRq5huXvt6Zz0JksnTKZCpSs3FEk27E7qgDdRN+dnIPsO7tUP4uJf9FrP/7s32oHZD1MFl0zhy0qS6m7Ic9RevTu70/WyYx3uXlu70tqMGz8AbV4j3fu9Qe7/q2Cn0r/wYJr/U7KlX9QkSyerpn11UXelA8eeMckPmeb0R36TmLxTfPxgFni+b+1KpES/pEvlnQLcV3HSl7NFen+qweTw7whn0nzw9F6ldU19F2HvdcifNhKefDFc4ZaafI4bXzWfXdrDIuOw6Xfp47O9HtUoqz7XledW50t5QL30Gvxg8r8ENHyiZp/wVFwjNVnc1bVNBcaJncE9aJMplI1gPGmZ18vKsj25MKXicB/b9dir7tSLoPsnQp/x3RCduM6CVaN3skPd90rM6k3qqQ1nyPkmnau452Hphbi9VZ+kTPO85cmP+NYEnrAXdTczNRyp7EJXS6dCMwJkp8R7Ka0kCQZyBSGIqS6Jn69OLGtdX/B2K9cLx19dqvr16/v7Xx+bb+PyI+UD9VP1eXwT7+Rn0OI3GojhTeWfiD+qP60/bvt/+8/Zftv3LT985pzE9U4d/23/4L/TTjJg==</latexit> noisy Wc (α, β) ∥α − β∥1 α β β α α β π c(xi , yj ) c(xi , yj ) Metric learning: key question.
  12. Paired Multi-omics Integration > pip install mowgli <latexit sha1_base64="D+BTpQDTLsuQxDGkm5bQcuzxV/s=">AABE53ictVzbchTJES3WtzW+sfajX3qtxcE6WCwwvkRsOGJBI4QWLQhmJNhlgOieaQ0Drelhbghm9Q0Ovzgc9pO/xN/hD3CE/eRfcF6quqpnqjurZUyHpOrqOplZ2VVZmVnVJONsOJ1tbv7j3Hvf+Oa3vv2d9797/nvf/8EPf3Thgx8fTvP5pJce9PIsnzxK4mmaDUfpwWw4y9JH40kaHydZ+jB5uYXPHy7SyXSYjzqzN+P0yXE8GA2Phr14BlUPu/F4PMlPnl3Y2LyySf+i9cJVXdhQ+t9+/sGH/1Rd1Ve56qm5OlapGqkZlDMVqylcj9VVtanGUPdELaFuAqUhPU/VqToP2Dm0SqFFDLUv4fcA7h7r2hHcI80poXvAJYOfCSAjdREwObSbQBm5RfR8TpSxtor2kmiibG/gb6JpHUPtTD2HWglnWobisC8zdaR+R30YQp/GVIO962kqc9IKSh45vZoBhTHUYbkPzydQ7hHS6DkizJT6jrqN6fm/qCXW4n1Pt52rf5OUF+GKVFv3Pi8oxGpB9CN6m3N4xvJkwHkAFFLdRyy9Jl0fU+9H0H4J9XfhOqWS0UkC15JqT2uRW3D5kFsicgcuH3JHRO7B5UPuich9uHzIfY1E7IR07se34fLh2yLn+3D5kPdF5AO4fMgHIvIQLh/yUER+BZcP+ZWIvAWXD3lLRN6By4e8IyI7cPmQHRF5AJcPeSAit+HyIbc1snqmTuDKic5QmJU3oFzmgZYig5obonw3yTr6sDcD5nSvAivP6hb89WNbATpNK7DbAePuqAIrj7wdsJF+rGyLbtNq4sPeFrG7MAL82F0R+7l6UYH9PGCmvazAynNtD9r5sbL1/QLu/NgvROxdKPmx8hp1D2r82HsBK8a4ArsvYu+rVxXYEKs/qcDKdr8NdsWPldepDrT3Y0Os6bwCK9vTQ/Bg/Fh5tXoItX7sQxH7SJ1UYB+J2C/BuvuxXwassG8rsGaNPU8ryID8kRRmbB21uJiVWBoDtVjgnxVrS0a+cQL1EmZQYAaEORYROwViJxCxVyD2guWaFnZ0Sv6uzKVdINqBiKRYm7A0E9v3i/ZYygIQrQLRWkHUeaT4rk1fFuRdmBoJOStWLiyF9Ckv7DeWUj0e6i2vQdwrIXhsP6eRf5miJYygUFN11J4XazwjI7qvQ7ym6M300vCQcbPCKrioExGVeFCJiHrjQb0RUXMPai6iFh7UQkTZme/iugEjwOof38WS7ngEsI9cfUXgFdyAVec2zNEIxs8+eIEPqOYe/G1T7C1ddZJhNI/rJGY5npQs8QRKS7UB9TYqbFF8ndEMS0EybnlPx/h4h7mNpZ5zbIVPi5U8KjIm4XSGJM+goIPeYkTzqRmdO1RzSt4dl5rhbxfz3pSa4bdJ46fkxXOpGX6mpZ+dQfaOxnbOgG3DbBpr7dtyUxqcf2EapnyeVl20uPhWj/WYQXonDenv6jeze4b3skUl1o8tN6Mxdfo3LfWvCQ2r56mj52ZU0Htir9eUosY9Gem415abypDTKjrScti7pm8G2/T1mzHlZjT2wePaoph76ZSbjt5x0RtbbkbjUHHe85Q8eVNuRmNA96wPW25GA7MtsY7zbbmpZUcNcOxsy02t+oiywJgD4jHPNdYrmpCfNNfUhuQf1GdrXJ9/fR3DnM3TIkaop2R922o6SbGW1Utk/IUUrNqsoRzoX8wdH6xMY6muifEVyzArre/rdOwaj5rfAy1GMPt5D0DKmWcgoclJoPXOgOJVMeoq98zgrok4HCVHK6iurp2J3qLly1mjct0zqpXiMttbq8cu2espjb0x+YR7pFlJD3uVb7iKoqShvZKGZHpNdPdWz9ey9jdF3HgFMS5GWo92hHgnrT5O9Wm97ej4ot7lmcHFez52/GK2+UhbG4x5crJFKEsdT7edySO5dbiuXlY2x83PInqjaK8WZDWGtCM1FaNQky1mb3xJ95b2Ae3JIQ+m0YP3GGkqY8W7ZphFx3x6RBbVtbcSb9SXydBxeUpW19jjevTAQQ886OYxzhasGHeh1IGY4QDuOgFRzvlCVzlpfKI+KXZHc3qD9RF9VrKQhgbbm7RkIeui7OclKq8BjaOBo/RwGqt0DL67RkmO+n3y2Ni1bPkv0s6t2d+OaYxXj+bqTEyfuF4jrhHNGt7V5btVDizB0vvkGvmv9b1Efk04og2VuD51OLNeRrTjn1IEOybPOKPZJs2Ocms3P7X6xHDaV2bvHHezc7KQEdm/CNannMZkRD/u2QGzg84WISMbGWJ3hoV34/N1huIYs37cUPGpBjveUrJlc+Jv6Lqza0pjkSMGXgdOV8a20cke+YIpcZ1o627ndv3qg0h7TsIdJUzRjpVLxP9j+m1+zDjZWBsRqGF8A1Nt63zvI6eYBXUU0ypfb4NMW1fKjwoZnmqp7fpnZfqoJFmLIi6UB1frPnDu0T3zwlEyIbmna214Ha3L5iLl8YoesbdHFMWz3R/oFRjlvkyr5AbNuS6NkgGMglkRRZi2UhZ5lW89rzL1MNrT/wt1q+uy1pBipGwGlzUk5fdTitZcKTMY1Tx+X9Js8mt9stKqns+IxuKxM5e/htoP4beR29yH0UlKVuEmjQGmYO+sRrgmWmsRxutmiZcZmYaWvbf87Jg0rdyas8TXbN1sjL1oTGWfRs2JzlqY8llovHBovAjUYYf2Gq0WTb2xRM/E2KKjdytD+TXh1mlAeS5Slj0ygxoGSOnGUmFU+yJVOcY3qLcirU2RVgyz1d0NcOd8CNI/11dn99fF6h6pW+Tb9MgD4/ilT7N0SD6Xqa2P1JgCcr6u7as7+7tUg9wTsqBImc9x4ozhXaceXaeFpD/XK1tOdt5aBHNu6bVuY2xsl8q/WkMe05yY0rw0iOvUItXyu3JEKxbpiuNzRJT5j8mnYr+jPmZ2W9t3EpX8CRtv8qyyvDhSGJH+pczb7lr0uuvErxHFhHPtXSdAq/kbRgqMMZkEv2c5pTeEqxzvJLBHm5D9XLdTvIs3ciS6QlIv1e8DbAxHvXasu2PL9Nj07RfQErVu37qvhcwvC+Yo8TvLjl5Mq9qx9lGXK/dnoxXrVa58X6eH+Qpfq485tXEjCxvllTFd9WkwF5aoGRfGhHBp1osm8jeTvInMvDsVStm0NpTLmQa2Mc8pXpLOgSLC591d8npzHwv9SNboJYR1qXGNRAmzcbnOD7iWFrNS0UqE5NZLa1LmrEdV64Xl4a4a1o6zpUzJCmZKyt1wa7cP3VK0ImdjmEJP8cneqjjRpfkpXPg7Ur4o0XAMySG2wc+9obbU9js4FfFKlzmzGVEN2oT+Sgwe636WW9Tr6JVD3aUfwiGcxxB0LUk/pBW1qexMWZbcpR5O/zVZg4lKRelty+Z9cLnIPVnn1KQ/Q7Jwcm+GynyT07QvhkNIT8pcwvnw/obUiyNlvm1q1gdDXe5BmUMTHuY8Q9g7t62b83I51etrnUsoD14HzM6LweEOYHXMYtuFWKiJ80bePQe0Dkc11M1q8b/2w/CxnJrzCuU2pW/OXgS8dW6X6sws+sXN54zlFjKaqzmG88yL3lmvyc+P/b+o0ZvKnd68e/rol9oxYHgtFedDZekY744iK28oFdwf8MmQq/+ov5+Tv0p4VdCokqMJJbNfUU3NtJCpmS8vfb0zz0JksnSqZCpTs/FEm07GbqlddQt+tgoPsOkpUf6mkv8i1v8dbR9qj8h6mGw6ZxC6VJdSFsTupvXp3p6jrZIYz/TyGd8O1OCe+B7V4nnfu9Qez/x2Sn2r/pKE5/oXKlf9UmSyustn51UCPSjvwHEuyHzvG9GZes5m8Qm044A9Rj5HxZGS+fp5SYg+xYWrki4JYUZLHeXESzmhM0lpBe2k1LcejfCx3unHfQc8nx8X2aVI/ZLqYr064EotSbXvkeoxZQYS0v8mRGi/Vpfh72Vd9ku6vybplN5BWaIT51n9SbBT77iwXzNepDyYydQtdLuconq7e1ifiW1VcuET7/X4QQ1+4EjZprf1kuLuiarPHc5raM61TO5+7kiZvCfrAaPZuBgf9fHzoobXIqD/dyrRdxxJd0CWhLLtEe3nTYhepnWzTdLzucr6vO3tGmnNV5tM056stOPAnJGs3xPI9Lirnv18DlLK1aQVdNy5zicypdMiQy8leX6OA05DxAG9lfsa0lOJylyUZB7wJfIiQJZFAJ0jQZojkcJAlETbh2cXNq6u/l8f64XDa1eu/ubK9fvXNz67qf8fkPfVT9XP1CVY+36rPoPxv68OaMX/o/qL+mtr2PpD60+tP3PT985pzE9U6V/rb/8FqTdClw==</latexit> ⇡

    <latexit sha1_base64="wrGTSrLUuaRimMADBfs8YT8hOX0=">AABE5nictVzbchu5EYU3t41z8yaPeZmN1ilvyuvIjnOp2krV2qIsa821ZZOSvWvaLl5GFO0hh+aQ9IWrX0jlJZVKnvIn+Y58QKqSp/xC+gIMMCRmGqM4npKEweB0N3qARncD4940GWXz7e1/nHvvG9/81re/8/53z3/v+z/44Y8ufPDjoyxdzPrxYT9N0tmjXjeLk9EkPpyP5kn8aDqLu+NeEj/svdjB5w+X8SwbpZP2/M00fjLuDiej41G/O4eqo858NI6zZxe2tq9s079os3BVF7aU/neQfvDhP1VHDVSq+mqhxipWEzWHcqK6KoPrsbqqttUU6p6oFdTNoDSi57E6VecBu4BWMbToQu0L+D2Eu8e6dgL3SDMjdB+4JPAzA2SkLgImhXYzKCO3iJ4viDLWltFeEU2U7Q387WlaY6idqxOolXCmZSgO+zJXx+p31IcR9GlKNdi7vqayIK2g5JHTqzlQmEIdlgfwfAblPiGNniPCZNR31G2Xnv+LWmIt3vd124X6N0l5Ea5ItXTv05xCVy2JfkRvcwHPWJ4EOA+BQqz7iKVXpOsx9X4C7VdQfxeuUyoZnfTgWlHtaSVyBy4fckdE7sHlQ+6JyCZcPmRTRB7A5UMeaCRiZ6RzP74Flw/fEjnfh8uHvC8iH8DlQz4QkUdw+ZBHIvIruHzIr0TkLbh8yFsi8g5cPuQdEdmGy4dsi8hDuHzIQxG5C5cPuauR5TN1BldKdEbCrLwB5SIPtBQJ1NwQ5btJ1tGHvRkwp/slWHlWN+CvH9sI0Glcgt0NGHfHJVh55O2BjfRjZVt0m1YTH/a2iN2HEeDH7ovYz9XzEuznATPtRQlWnmtNaOfHytb3C7jzY78QsXeh5MfKa9Q9qPFj7wWsGNMS7IGIva9elmBDrP6sBCvb/RbYFT9WXqfa0N6PDbGmixKsbE+PwIPxY+XV6iHU+rEPRewj9boE+0jEfgnW3Y/9MmCFfVuCNWvseVpBhuSPxDBjq6h181mJpSlQ6wr8k3xtScg37kG9hBnmmCFhxiJiL0fsBSKaOaIZLFeW29GM/F2ZSytHtAIRvXxtwtJcbD/I22MpCUA0ckRjDVHlkeK7Nn1ZkndhaiTkPF+5sBTSpzS331iK9XiotrwGca+A4LF9QiP/MkVLGEGhpqqoneRrPCMjuq9CvKLozfTS8JBx89wquKjXIqrnQfVE1BsP6o2IWnhQCxG19KCWIsrOfBfXCRgBVv/4LlZ0xyOAfeTyKwKv4AasOrdhjkYwfg7AC3xANffgb4tib+mqkgyjeVwnMcvxpGCJZ1BaqS2ot1Fhg+LrhGZYDJJxy3s6xsc7zG2s9JxjK3yar+RRnjEJpzMieYY5HfQWI5pP9ejcoZpT8u64VA9/O5/3plQPv0saPyUvnkv18HMt/fwMsrc1tn0GbAtm01Rr35br0uD8C9Mw5fO06qLFxbc61mMG6b2uSX9fv5n9M7yXHSqxfmy5Ho3M6V9W6F8dGlbPmaPnelTQe2Kv15Si2j2Z6LjXluvKkNIqOtFy2Lu6bwbbDPSbMeV6NA7A49qhmHvllOuO3mneG1uuR+NIcd7zlDx5U65HY0j3rA9brkcDsy1dHefbcl3Ljhrg2NmW61r1CWWBMQfEY55rrFc0Iz9poamNyD+ozta4Pv/mOoY5m6d5jFBNyfq25XR6+VpWLZHxF2KwavOacqB/sXB8sCKNlbomxlcsw7ywvm/SsWs8ar4JWoxg9vMegJQzT0BCk5NA650Axati1FXsmcFdE3E4So7XUB1dOxe9RcuXs0bFumdUK8VltrdWjx2y1xmNvSn5hE3SrKSHZukbLqMoaahZ0JBMr47u3ur5WtT+toibriGm+Ujr044Q76RVx6k+rbccHV/UuzxzuHjPx45fzDYfa2uDMU9KtghlqeLptjN5JLcO19XLyua4+VlEbxTt1ZKsxoh2pDIxCjXZYvbGV3RvaR/SnhzyYBp9eI+RpjJVvGuGWXTMp0dkUV17K/FGfZkMHZczsrrGHlejhw566EHXj3F2YMW4C6U2xAyHcNcOiHLO57pKSeMz9Um+O5rSG6yO6JOChTQ02N7EBQtZFWWfFKi8AjSOBo7Sw2ms0zH4zgYlOer3yWNj16Llv0g7t2Z/u0tjvHw0l2diBsT1GnGNaNbwri7frXNgCVbeJ9fIf63uJfKrwxFtqMT1qcOZ9TKhHf+YItgpecYJzTZpdhRbu/mp9SeG04Eye+e4m52ShYzI/kWwPqU0JiP6cc8OmB10tggJ2cgQuzPKvRufrzMSx5j140aKTzXY8RaTLVsQf0PXnV0ZjUWOGHgdOF0b20YnTfIFY+I609bdzu3q1QeR9pyEO0qYoh0rl4j/x/Tb/JhxsrUxIlDD+AYybet87yOlmAV11KVVvtoGmbaulB/lMjzVUtv1z8r0UUGyBkVcKA+u1gPg3Kd75oWjZEZyZxtteB2tyuYi5emaHrG3xxTFs90f6hUY5b5Mq+QWzbkOjZIhjIJ5HkWYtlIWeZ1vNa8i9TDa2f+FutV1UWtIMVI2g8sakvL7MUVrrpQJjGoevy9oNvm1PltrVc1nQmNx7Mzlr6H2Q/ht5Db3YXR6Batwk8YAU7B3ViNcE220CON1s8DLjExDy95bfnZMmlZuzVnia7ZuNsZe1qZyQKPmtc5amPJZaDx3aDwP1GGb9hqtFk29sUTPxNiirXcrQ/nV4dauQXkhUpY9MoMaBUjpxlJhVAciVTnGN6i3Iq1tkVYXZqu7G+DO+RCkf66vz+6v89U9UrfIt+mTB8bxy4Bm6Yh8LlNbHakxBeR8XdtXd/Z3qAa598iCImU+x4kzhned+nSd5pL+XK9sKdl5axHMuaVXuo2xsR0q/2oDOaY5kdG8NIjr1CLW8rtyRGsW6Yrjc0SU+e+ST8V+R3XM7La27yQq+BM23uRZZXlxpDAh/UuZt/2N6HXfiV8jigkX2rvuAa36bxgpMMZkEvyeZUZvCFc53klgj7ZH9nPTTvEu3sSR6ApJvVK/D7AxHPXase6OLdNj07dfQEvUun3rvhYyvySYo8TvLDt6XVrVxtpHXa3dn41WV69yxfsqPSzW+Fp9LKiNG1nYKK+I6ahPg7mwRPW4MCaES71e1JG/nuR1ZObdqVDKprWhXMw0sI05oXhJOgeKCJ93d8nrzX0s9KO3Qa9HWJca10iUMBuX6vyAa2kxKxWtRUhuvbQmJc56VLZeWB7uqmHtOFvKmKxgoqTcDbd2+9ApRCtyNoYp9BWf7C2LE12an8KFvyPlixINx5AcYgv83BtqR+2+g1MRL3WZM5sR1aBNGKzF4F3dz2KLah29dKi79EM4hPMYga4l6Ue0otaVnSnLkrvUw+m/ImswU7EovW1Zvw8uF7knm5zq9GdEFk7uzUiZb3Lq9sVwCOlJkUs4H97fkHpxrMy3TfX6YKjLPShyqMPDnGcIe+e2dX1eLqdqfW1yCeXB64DZeTE43AEsj1lsuxALNXPeyLvngNbhuIK6WS3+134YPpZTfV6h3DL65ux5wFvndrHOzKJfXH/OWG4ho7mcYzjPNO+d9Zr8/Nj/i2q9qdTpzbunj36pHQOG10pxPlSWjvHuKLLyhlLB/QGfDKn6j/r7OfmrhJc5jTI56lAy+xXl1EwLmZr58tLXO/MsRCZLp0ymIjUbT7ToZOyO2le34Gcn9wDrnhLlbyr5L2L939EOoPaYrIfJpnMGoUN1MWVB7G7agO7tOdoyifFML5/xbUMN7ok3qRbP+96l9njmt13oW/mXJDzXv1CpGhQik/VdPjuvetCD4g4c54LM974RnannbBafQBsH7DHyOSqOlMzXzytCDCguXJd0RQgzWqoo97yUe3QmKS6h3Sv0rU8jfKp3+nHfAc/nd/PsUqR+SXVdvTrgSi1JdeCR6jFlBnqk/22I0H6tLsPfy7rsl/RgQ9KM3kFRotfOs+qTYKfecWG/ZrxIeTCTqVvqdilF9Xb3sDoT2yjlwifeq/HDCvzQkbJFb+sFxd0zVZ07XFTQXGiZ3P3ciTJ5T9YDRrPdfHxUx8/LCl7LgP7fKUXfcSTdA1l6lG2PaD9vRvQSrZtdkp7PVVbnbW9XSGu+2mSa9mSlHQfmjGT1nkCix1357OdzkFKuJi6h4851PpEpnRYZeSnJ83MacBqiG9Bbua8hPZWoLERJFgFfIi8DZFkG0DkWpDkWKQxFSbR9eHZh6+r6//WxWTi6duXqb65cv39967Ob+v8BeV/9VP1MXYK177fqMxj/B+oQOD1Xf1R/UX9tnDT+0PhT48/c9L1zGvMTVfjX+Nt/ASJ+QhU=</latexit> ⇥ <latexit sha1_base64="D+BTpQDTLsuQxDGkm5bQcuzxV/s=">AABE53ictVzbchTJES3WtzW+sfajX3qtxcE6WCwwvkRsOGJBI4QWLQhmJNhlgOieaQ0Drelhbghm9Q0Ovzgc9pO/xN/hD3CE/eRfcF6quqpnqjurZUyHpOrqOplZ2VVZmVnVJONsOJ1tbv7j3Hvf+Oa3vv2d9797/nvf/8EPf3Thgx8fTvP5pJce9PIsnzxK4mmaDUfpwWw4y9JH40kaHydZ+jB5uYXPHy7SyXSYjzqzN+P0yXE8GA2Phr14BlUPu/F4PMlPnl3Y2LyySf+i9cJVXdhQ+t9+/sGH/1Rd1Ve56qm5OlapGqkZlDMVqylcj9VVtanGUPdELaFuAqUhPU/VqToP2Dm0SqFFDLUv4fcA7h7r2hHcI80poXvAJYOfCSAjdREwObSbQBm5RfR8TpSxtor2kmiibG/gb6JpHUPtTD2HWglnWobisC8zdaR+R30YQp/GVIO962kqc9IKSh45vZoBhTHUYbkPzydQ7hHS6DkizJT6jrqN6fm/qCXW4n1Pt52rf5OUF+GKVFv3Pi8oxGpB9CN6m3N4xvJkwHkAFFLdRyy9Jl0fU+9H0H4J9XfhOqWS0UkC15JqT2uRW3D5kFsicgcuH3JHRO7B5UPuich9uHzIfY1E7IR07se34fLh2yLn+3D5kPdF5AO4fMgHIvIQLh/yUER+BZcP+ZWIvAWXD3lLRN6By4e8IyI7cPmQHRF5AJcPeSAit+HyIbc1snqmTuDKic5QmJU3oFzmgZYig5obonw3yTr6sDcD5nSvAivP6hb89WNbATpNK7DbAePuqAIrj7wdsJF+rGyLbtNq4sPeFrG7MAL82F0R+7l6UYH9PGCmvazAynNtD9r5sbL1/QLu/NgvROxdKPmx8hp1D2r82HsBK8a4ArsvYu+rVxXYEKs/qcDKdr8NdsWPldepDrT3Y0Os6bwCK9vTQ/Bg/Fh5tXoItX7sQxH7SJ1UYB+J2C/BuvuxXwassG8rsGaNPU8ryID8kRRmbB21uJiVWBoDtVjgnxVrS0a+cQL1EmZQYAaEORYROwViJxCxVyD2guWaFnZ0Sv6uzKVdINqBiKRYm7A0E9v3i/ZYygIQrQLRWkHUeaT4rk1fFuRdmBoJOStWLiyF9Ckv7DeWUj0e6i2vQdwrIXhsP6eRf5miJYygUFN11J4XazwjI7qvQ7ym6M300vCQcbPCKrioExGVeFCJiHrjQb0RUXMPai6iFh7UQkTZme/iugEjwOof38WS7ngEsI9cfUXgFdyAVec2zNEIxs8+eIEPqOYe/G1T7C1ddZJhNI/rJGY5npQs8QRKS7UB9TYqbFF8ndEMS0EybnlPx/h4h7mNpZ5zbIVPi5U8KjIm4XSGJM+goIPeYkTzqRmdO1RzSt4dl5rhbxfz3pSa4bdJ46fkxXOpGX6mpZ+dQfaOxnbOgG3DbBpr7dtyUxqcf2EapnyeVl20uPhWj/WYQXonDenv6jeze4b3skUl1o8tN6Mxdfo3LfWvCQ2r56mj52ZU0Htir9eUosY9Gem415abypDTKjrScti7pm8G2/T1mzHlZjT2wePaoph76ZSbjt5x0RtbbkbjUHHe85Q8eVNuRmNA96wPW25GA7MtsY7zbbmpZUcNcOxsy02t+oiywJgD4jHPNdYrmpCfNNfUhuQf1GdrXJ9/fR3DnM3TIkaop2R922o6SbGW1Utk/IUUrNqsoRzoX8wdH6xMY6muifEVyzArre/rdOwaj5rfAy1GMPt5D0DKmWcgoclJoPXOgOJVMeoq98zgrok4HCVHK6iurp2J3qLly1mjct0zqpXiMttbq8cu2espjb0x+YR7pFlJD3uVb7iKoqShvZKGZHpNdPdWz9ey9jdF3HgFMS5GWo92hHgnrT5O9Wm97ej4ot7lmcHFez52/GK2+UhbG4x5crJFKEsdT7edySO5dbiuXlY2x83PInqjaK8WZDWGtCM1FaNQky1mb3xJ95b2Ae3JIQ+m0YP3GGkqY8W7ZphFx3x6RBbVtbcSb9SXydBxeUpW19jjevTAQQ886OYxzhasGHeh1IGY4QDuOgFRzvlCVzlpfKI+KXZHc3qD9RF9VrKQhgbbm7RkIeui7OclKq8BjaOBo/RwGqt0DL67RkmO+n3y2Ni1bPkv0s6t2d+OaYxXj+bqTEyfuF4jrhHNGt7V5btVDizB0vvkGvmv9b1Efk04og2VuD51OLNeRrTjn1IEOybPOKPZJs2Ocms3P7X6xHDaV2bvHHezc7KQEdm/CNannMZkRD/u2QGzg84WISMbGWJ3hoV34/N1huIYs37cUPGpBjveUrJlc+Jv6Lqza0pjkSMGXgdOV8a20cke+YIpcZ1o627ndv3qg0h7TsIdJUzRjpVLxP9j+m1+zDjZWBsRqGF8A1Nt63zvI6eYBXUU0ypfb4NMW1fKjwoZnmqp7fpnZfqoJFmLIi6UB1frPnDu0T3zwlEyIbmna214Ha3L5iLl8YoesbdHFMWz3R/oFRjlvkyr5AbNuS6NkgGMglkRRZi2UhZ5lW89rzL1MNrT/wt1q+uy1pBipGwGlzUk5fdTitZcKTMY1Tx+X9Js8mt9stKqns+IxuKxM5e/htoP4beR29yH0UlKVuEmjQGmYO+sRrgmWmsRxutmiZcZmYaWvbf87Jg0rdyas8TXbN1sjL1oTGWfRs2JzlqY8llovHBovAjUYYf2Gq0WTb2xRM/E2KKjdytD+TXh1mlAeS5Slj0ygxoGSOnGUmFU+yJVOcY3qLcirU2RVgyz1d0NcOd8CNI/11dn99fF6h6pW+Tb9MgD4/ilT7N0SD6Xqa2P1JgCcr6u7as7+7tUg9wTsqBImc9x4ozhXaceXaeFpD/XK1tOdt5aBHNu6bVuY2xsl8q/WkMe05yY0rw0iOvUItXyu3JEKxbpiuNzRJT5j8mnYr+jPmZ2W9t3EpX8CRtv8qyyvDhSGJH+pczb7lr0uuvErxHFhHPtXSdAq/kbRgqMMZkEv2c5pTeEqxzvJLBHm5D9XLdTvIs3ciS6QlIv1e8DbAxHvXasu2PL9Nj07RfQErVu37qvhcwvC+Yo8TvLjl5Mq9qx9lGXK/dnoxXrVa58X6eH+Qpfq485tXEjCxvllTFd9WkwF5aoGRfGhHBp1osm8jeTvInMvDsVStm0NpTLmQa2Mc8pXpLOgSLC591d8npzHwv9SNboJYR1qXGNRAmzcbnOD7iWFrNS0UqE5NZLa1LmrEdV64Xl4a4a1o6zpUzJCmZKyt1wa7cP3VK0ImdjmEJP8cneqjjRpfkpXPg7Ur4o0XAMySG2wc+9obbU9js4FfFKlzmzGVEN2oT+Sgwe636WW9Tr6JVD3aUfwiGcxxB0LUk/pBW1qexMWZbcpR5O/zVZg4lKRelty+Z9cLnIPVnn1KQ/Q7Jwcm+GynyT07QvhkNIT8pcwvnw/obUiyNlvm1q1gdDXe5BmUMTHuY8Q9g7t62b83I51etrnUsoD14HzM6LweEOYHXMYtuFWKiJ80bePQe0Dkc11M1q8b/2w/CxnJrzCuU2pW/OXgS8dW6X6sws+sXN54zlFjKaqzmG88yL3lmvyc+P/b+o0ZvKnd68e/rol9oxYHgtFedDZekY744iK28oFdwf8MmQq/+ov5+Tv0p4VdCokqMJJbNfUU3NtJCpmS8vfb0zz0JksnSqZCpTs/FEm07GbqlddQt+tgoPsOkpUf6mkv8i1v8dbR9qj8h6mGw6ZxC6VJdSFsTupvXp3p6jrZIYz/TyGd8O1OCe+B7V4nnfu9Qez/x2Sn2r/pKE5/oXKlf9UmSyustn51UCPSjvwHEuyHzvG9GZes5m8Qm044A9Rj5HxZGS+fp5SYg+xYWrki4JYUZLHeXESzmhM0lpBe2k1LcejfCx3unHfQc8nx8X2aVI/ZLqYr064EotSbXvkeoxZQYS0v8mRGi/Vpfh72Vd9ku6vybplN5BWaIT51n9SbBT77iwXzNepDyYydQtdLuconq7e1ifiW1VcuET7/X4QQ1+4EjZprf1kuLuiarPHc5raM61TO5+7kiZvCfrAaPZuBgf9fHzoobXIqD/dyrRdxxJd0CWhLLtEe3nTYhepnWzTdLzucr6vO3tGmnNV5tM056stOPAnJGs3xPI9Lirnv18DlLK1aQVdNy5zicypdMiQy8leX6OA05DxAG9lfsa0lOJylyUZB7wJfIiQJZFAJ0jQZojkcJAlETbh2cXNq6u/l8f64XDa1eu/ubK9fvXNz67qf8fkPfVT9XP1CVY+36rPoPxv68OaMX/o/qL+mtr2PpD60+tP3PT985pzE9U6V/rb/8FqTdClw==</latexit> ⇡ <latexit sha1_base64="4zRMyofGVvZDzHMLkoMkcIwcgkU=">AABE6nictVzbchu5EYU3t41z8yaPeZmN1ilvylFkxU5StZWqtUVZ1lpryyYle23ZLl5G9NgjDs0h6QtXP5HKSyqVPOU/8h35gFQlT/mF9AUYYEjMNEZxNCURA+J0N3qARncDo944TfLpxsY/zn3wjW9+69vf+fC757/3/R/88EcXPvrxYZ7NJv34oJ+l2eRhr5vHaTKKD6bJNI0fjidx96SXxg96L7fw+wfzeJIn2agzfTuOn5x0h6PkOOl3p1D1qJ/O8mk8SUbDZxfWNtavbcDPZrSxjp9Xr0W65lp0hWo2NtaU/tnPPvr4n+pIDVSm+mqmTlSsRmoK5VR1VQ7XY3VFbagx1D1RC6ibQCmh72N1qs4DdgatYmjRhdqX8HcId4917QjukWZO6D5wSeF3AshIXQRMBu0mUEZuEX0/I8pYW0V7QTRRtrfw2dO0TqB2qp5DrYQzLUNx2JepOla/oz4k0Kcx1WDv+prKjLSCkkdOr6ZAYQx1WB7A9xMo9wlp9BwRJqe+o2679P2/qCXW4n1ft52pf5OUF+GKVFv3PisodNWc6Ef0NGfwHcuTAuchUIh1H7H0mnR9Qr0fQfsF1N+B65RKRic9uBZUe1qL3ILLh9wSkTtw+ZA7InIPLh9yT0Tuw+VD7mskYiekcz++DZcP3xY534PLh7wnIu/D5UPeF5GHcPmQhyLyEVw+5CMReRMuH/KmiLwNlw95W0R24PIhOyLyAC4f8kBEbsPlQ25rZPVMncCVEZ1EmJXXoVzmgZYihZrronw3yDr6sDcC5nS/AivP6hZ8+rGtAJ3GFdjtgHF3XIGVR94O2Eg/VrZFt2g18WFvidhdGAF+7K6I/UK9qMB+ETDTXlZg5bm2B+38WNn6fgl3fuyXIvYOlPxYeY26CzV+7N2AFWNcgd0XsffUqwpsiNWfVGBlu98Gu+LHyutUB9r7sSHWdFaBle3pIXgwfqy8Wj2AWj/2gYh9qN5UYB+K2K/AuvuxXwWssO8qsGaNPU8ryJD8kRhmbB21bjErsTQGal2Bf1qsLSn5xj2olzDDAjMkzImI2CkQO4GIvQKxFyxXXtjRnPxdmUu7QLQDEb1ibcLSVGw/KNpjKQ1AtApEawlR55HiszZ9mZN3YWok5LRYubAU0qessN9YivV4qLe8BnG3hOCx/ZxG/mWKljCCQk3VUXterPGMjOi+DvGaojfTS8NDxk0Lq+Ci3oiongfVE1FvPai3ImrmQc1E1NyDmosoO/Nd3FHACLD6x2exoDseAewjV18ReAXXYdW5BXM0gvGzD17gfaq5C59tir2lq04yjOZxncQsx5OSJZ5AaaHWoN5GhS2Kr1OaYTFIxi3v6hgf7zC3sdBzjq3wabGSR0XGJJxOQvIMCzroLUY0n5rRuU01p+TdcakZ/lYx702pGX6bNH5KXjyXmuGnWvrpGWTvaGznDNg2zKax1r4tN6XB+RemYcrnadVFi4tP9USPGaT3piH9Xf1kds/wXLaoxPqx5WY0cqd/eal/TWhYPeeOnptRQe+JvV5Tihr3ZKTjXltuKkNGq+hIy2Hvmj4ZbDPQT8aUm9HYB49ri2LuhVNuOnrHRW9suRmNQ8V5z1Py5E25GY0h3bM+bLkZDcy2dHWcb8tNLTtqgGNnW25q1UeUBcYcEI95rrFe0YT8pJmmlpB/UJ+tcX3+1XUMczZPixihnpL1bavp9Iq1rF4i4y/EYNWmDeVA/2Lm+GBlGgu1KcZXLMO0tL6v0rFrPGp+D7QYweznPQApZ56ChCYngdY7BYpXxKir3DOD2xRxOEqOl1BHunYqeouWL2eNynXPqFaKy2xvrR6PyF7nNPbG5BPukWYlPexVPuEqipKG9koakuk10d07PV/L2t8QceMlxLgYaX3aEeKdtPo41af1tqPji3qXZwoX7/nY8YvZ5mNtbTDmycgWoSx1PN12Jo/k1uG6elnZHDd/F9ETRXs1J6uR0I5ULkahJlvM3viC7i3tA9qTQx5Mow/PMdJUxop3zTCLjvn0iCyqa28l3qgvk6Hjck5W19jjevTQQQ896OYxzhasGHeg1IGY4QDuOgFRzvlCVxlpfKJ+WeyOZvQE6yP6tGQhDQ22N3HJQtZF2c9LVF4DGkcDR+nhNJbpGPzRCiU56vfJY2PXsuW/SDu3Zn+7S2O8ejRXZ2IGxHWTuEY0a3hXl++WObAEC+83m+S/1vcS+TXhiDZU4vrU4cx6GdGOf0wR7Jg845RmmzQ7yq3d/NTyN4bTvjJ757ibnZGFjMj+RbA+ZTQmI/p1zw6YHXS2CCnZyBC7kxTejc/XScQxZv24RPGpBjveYrJlM+Jv6LqzK6exyBEDrwOnS2Pb6GSPfMGYuE60dbdzu371QaQ9J+GOEqZox8ol4v8p/TW/ZpysrYwI1DA+gVzbOt/zyChmQR11aZWvt0GmrSvlJ4UMT7XUdv2zMn1SkqxFERfKg6v1ADj36Z554SiZkNz5ShteR+uyuUh5vKRH7O0xRfFs94d6BUa5L9MquUZz7ohGyRBGwbSIIkxbKYu8zLeeV5l6GO38/0Ld6rqsNaQYKZvBZQ1J+f2YojVXyhRGNY/flzSb/FqfLLWq5zOisXjizOWvofZj+GvkNvdhdHolq3CDxgBTsHdWI1wTrbQI43WjxMuMTEPL3lt+dkyaVm7NWeJrtm42xp43prJPo+aNzlqY8llovHBovAjUYYf2Gq0WTb2xRM/E2KKjdytD+TXh1mlAeSZSlj0yg0oCpHRjqTCqA5GqHOMb1DuR1oZIqwuz1d0NcOd8CNI/15dn99fF6h6pm+Tb9MkD4/hlQLM0IZ/L1NZHakwBOV/V9tWd/UdUg9x7ZEGRMp/jxBnDu059uk4LSX+uV7aM7Ly1CObc0mvdxtjYIyr/egV5QnMip3lpEFepRazld+WIlizSuuNzRJT575JPxX5HfczstrbPJCr5Ezbe5FlleXGkMCL9S5m33ZXoddeJXyOKCWfau+4BreZPGCkwxmQS/J5lTk8IVzneSWCPtkf2c9VO8S7eyJFonaReqN8H2BiOeu1Yd8eW6bHp2y+gJWrdPnVfC5lfGsxR4neWHb0urWon2kddLN2fjVZXr3Ll+zo9zJb4Wn3MqI0bWdgor4w5Up8Fc2GJmnFhTAiXZr1oIn8zyZvIzLtToZRNa0O5nGlgG/Oc4iXpHCgifN7dJa8396nQj94KvR5hXWpcI1HCbFym8wOupcWsVLQUIbn10pqUOutR1XphebirhrXjbCljsoKpknI33Nrtw1EpWpGzMUyhr/hkb1Wc6NL8DC78GylflGg4huQQ2+DnXldbavs9nIp4pcuc2YyoBm3CYCkG7+p+llvU6+iVQ92lH8IhnEcCupakT2hFbSo7U5Yld6mH039N1mCiYlF627J5H1wuck9WOTXpT0IWTu5Nosw7OU37YjiE9KTMJZwP729IvThW5t2mZn0w1OUelDk04WHOM4Q9c9u6OS+XU72+VrmE8uB1wOy8GBzuAFbHLLZdiIWaOE/k/XNA63BcQ92sFv9rPwwfy6k5r1BuOb1z9iLgqXO7WGdm0S9uPmcst5DRXM0xnGdW9M56TX5+7P9FjZ5U5vTm/dNHv9SOAcNroTgfKkvHeHcUWXlDqeD+gE+GTP1H/f2c/FbCq4JGlRxNKJn9impqpoVMzbx56eud+S5EJkunSqYyNRtPtOlk7JbaVTfhd6vwAJueEuV3KvkTsf73aAdQe0zWw2TTOYNwRHUxZUHsbtqA7u052iqJ8Uwvn/HtQA3uie9RLZ73vUPt8cxvp9S36jdJeK5/qTI1KEUmy7t8dl71oAflHTjOBZn3fSM6U8/ZLD6BdhKwx8jnqDhSMm8/LwgxoLhwWdIFIcxoqaPc81Lu0ZmkuIJ2r9S3Po3wsd7px30HPJ/fLbJLkfoV1XX16oArtSTVvkeqx5QZ6JH+NyBCu6Yuw+dlXfZLur8iaU7PoCzRG+e7+pNgp95xYd9mvEh5MJOpm+t2GUX1dvewPhPbquTCJ97r8cMa/NCRsk1P6yXF3RNVnzuc1dCcaZnc/dyRMnlP1gNGs91ifNTHz/MaXvOA/t+uRN92JN0BWXqUbY9oP29C9FKtm22Sns9V1udtb9VIa97aZJr2ZKUdB+aMZP2eQKrHXfXs53OQUq4mrqDjznU+kSmdFkm8lOT5OQ44DdEN6K3c15CeSlRmoiSzgDeR5wGyzAPoHAvSHIsUhqIk2j48u7Bm/sVHVF043Fy/8pv1q/c21z6/of8PyIfqp+pn6hKsfb9Vn8P431cHwGmk/qj+ov7aSlt/aP2p9Wdu+sE5jfmJKv20/vZfLKxEFw==</latexit> clustering <latexit sha1_base64="lIRSBtvJcg/dPYE+yx9m6aNrdEs=">AABE6XictVzbchTJES3WtzW+sfajX3qtxcE6WHnQwhpiwxELGiG0CBDMSMAiIObSGgb1XJieGS6z+giHXxwO+8kf4u/wBzjCfvIvOC9VXdUz1Z3VMqZDUnV1ncys7KqszKxq2uOkn05rtX+c+eA73/3e93/w4Q/P/ujHP/npz8599PODdDSbdOL9zigZTR61W2mc9Ifx/rQ/TeJH40ncGrST+GH7eBOfP5zHk7Q/Gjanb8fx00GrN+wf9TutKVQ93o6HcZTG0+j5ubXa+rVrtcuXrkW19Su12sbVL6BQ+3zj6pUr0aX1Gv1bU/rf3uijj/+pDlVXjVRHzdRAxWqoplBOVEulcD1Rl1RNjaHuqVpA3QRKfXoeqxN1FrAzaBVDixbUHsPvHtw90bVDuEeaKaE7wCWBnwkgI3UeMCNoN4Eycovo+YwoY20R7QXRRNnewt+2pjWA2ql6AbUSzrQMxWFfpupIXaU+9KFPY6rB3nU0lRlpBSWPnF5NgcIY6rDchecTKHcIafQcESalvqNuW/T8X9QSa/G+o9vO1L9JyvNwRaqhez/KKLTUnOhH9DZn8IzlSYBzDyjEuo9Yek26HlDvh9B+AfV34TqhktFJG64F1Z6UIjfh8iE3ReQ2XD7ktojchcuH3BWRe3D5kHsaidgJ6dyPb8DlwzdEzvfh8iHvi8gHcPmQD0TkAVw+5IGI/AYuH/IbEXkTLh/ypoi8DZcPeVtENuHyIZsich8uH3JfRG7B5UNuaWTxTJ3ANSI6fWFWXodyngdaigRqrovy3SDr6MPeCJjTnQKsPKvr8NePrQfoNC7AbgWMu6MCrDzytsFG+rGyLbpFq4kPe0vE7sAI8GN3ROzX6mUB9uuAmXZcgJXn2i6082Nl63sH7vzYOyL2LpT8WHmNugc1fuy9gBVjXIDdE7H31asCbIjVnxRgZbvfALvix8rrVBPa+7Eh1nRWgJXt6QF4MH6svFo9hFo/9qGIfaTeFGAfidjHYN392McBK+y7AqxZY8/SCtIjfySGGVtGrZXNSiyNgVpL4J9ka0tCvnEb6iVML8P0CDMQEdsZYjsQsZshdoPlSjM7mpK/K3NpZIhGIKKdrU1Ymortu1l7LCUBiHqGqC8hyjxSfNemL3PyLkyNhJxmKxeWQvo0yuw3lmI9Hsotr0HcyyF4bL+gkX+RoiWMoFBTZdReZGs8IyO6L0O8pujN9NLwkHHTzCq4qDciqu1BtUXUWw/qrYiaeVAzETX3oOYiys58F3cYMAKs/vFdLOiORwD7yMVXBF7BdVh1bsEcjWD87IEX+IBq7sHfBsXe0lUmGUbzuE5iluNpzhJPoLRQa1Bvo8I6xdcJzbAYJOOW93SMj3eY21joOcdW+CRbyaMsYxJOp0/y9DI66C1GNJ+q0blNNSfk3XGpGv5WNu9NqRp+izR+Ql48l6rhp1r66Slkb2ps8xTYBsymsda+LVelwfkXpmHKZ2nVRYuLb3WgxwzSe1OR/o5+MzuneC+bVGL92HI1GqnTvzTXvyo0rJ5TR8/VqKD3xF6vKUWVezLUca8tV5VhRKvoUMth76q+GWzT1W/GlKvR2AOPa5Ni7oVTrjp6x1lvbLkajQPFec8T8uRNuRqNHt2zPmy5Gg3MtrR0nG/LVS07aoBjZ1uuatWHlAXGHBCPea6xXtGE/KSZptYn/6A8W+P6/KvrGOZsnmUxQjkl69sW02lna1m5RMZfiMGqTSvKgf7FzPHB8jQWakOMr1iGaW59X6Vj13jU/C5oMYLZz3sAUs48AQlNTgKtdwIUL4lRV75nBrch4nCUHC2hDnXtVPQWLV/OGuXrnlOtFJfZ3lo9HpK9Tmnsjckn3CXNSnrYLXzDRRQlDe3mNCTTq6K7d3q+5rVfE3HjJcQ4G2kd2hHinbTyONWn9Yaj4/N6l2cKF+/52PGL2eYjbW0w5hmRLUJZyni67Uweya3DdfWisjlufhbRG0V7NSer0acdqVSMQk22mL3xBd1b2vu0J4c8mEYH3mOkqYwV75phFh3z6RFZVNfeSrxRXyZDx+WUrK6xx+XonoPuedDVY5xNWDHuQqkJMcM+3DUDopyzma5GpPGJ+izbHR3RGyyP6JOchTQ02N7EOQtZFmW/yFF5DWgcDRylh9NYpmPwhyuU5KjfJ4+NXfOW/zzt3Jr97RaN8eLRXJyJ6RLXDeIa0azhXV2+W+bAEiy8TzbIfy3vJfKrwhFtqMT1mcOZ9TKkHf+YItgxecYJzTZpduRbu/mp5SeG054ye+e4mz0iCxmR/YtgfRrRmIzoxz07YHbQ2SIkZCND7E4/8258vk5fHGPWj+srPtVgx1tMtmxG/A1dd3alNBY5YuB14GRpbBud7JIvGBPXibbudm6Xrz6ItOck3FHCFO1YuUD8P6Xf5seMk7WVEYEaxjeQalvnex8jillQRy1a5cttkGnrSvlJJsMzLbVd/6xMn+Qkq1PEhfLgat0Fzh26Z144SiYkd7rShtfRsmwuUh4v6RF7e0RRPNv9nl6BUe6LtEqu0Zw7pFHSg1EwzaII01bKIi/zLeeVpx5GO/2/ULe6zmsNKUbKZnBZQ1J+P6ZozZUygVHN4/eYZpNf65OlVuV8hjQWB85c/hZqP4bfRm5zH0annbMKN2gMMAV7ZzXCNdFKizBeN3K8zMg0tOy95WfHpGnl1pwmvmbrZmPseWUqezRq3uishSmfhsZLh8bLQB02aa/RatHUG0v0XIwtmnq3MpRfFW7NCpRnImXZIzOofoCUbiwVRrUrUpVjfIN6J9KqibRaMFvd3QB3zocg/XN9eXZ/m63ukbpJvk2HPDCOX7o0S/vkc5na8kiNKSDny9q+urP/kGqQe5ssKFLmc5w4Y3jXqUPXSSbpr/XKNiI7by2CObf0WrcxNvaQyp+vIAc0J1KalwZxmVrEWn5XjmjJIq07PkdEmf8W+VTsd5THzG5r+06inD9h402eVZYXRwpD0r+UedtZiV53nPg1ophwpr3rNtCq/oaRAmNMJsHvWab0hnCV450E9mjbZD9X7RTv4g0didZJ6oX6fYCN4ajXjnV3bJkem779Blqi1u1b97WQ+SXBHCV+p9nRa9GqNtA+6mLp/nS0WnqVy9+X6WG2xNfqY0Zt3MjCRnl5zKH6MpgLS1SNC2NCuFTrRRX5q0leRWbenQqlbFobyvlMA9uYFxQvSedAEeHz7i54vblPhX60V+i1CetS4xqJEmbjRjo/4FpazEpFSxGSWy+tSYmzHhWtF5aHu2pYO86WMiYrmCgpd8Ot3T4c5qIVORvDFDqKT/YWxYkuzS/hwt+R8kWJhmNIDrEBfu51tam23sOpiFe6zJnNiGrQJnSXYvCW7me+RbmOXjnUXfohHMJ59EHXkvR9WlGrys6UZcld6uH0X5M1mKhYlN62rN4Hl4vck1VOVfrTJwsn96avzDc5VftiOIT0JM8lnA/vb0i9OFLm26ZqfTDU5R7kOVThYc4zhL1z27o6L5dTub5WuYTy4HXA7LwYHO4AFscstl2IhZo4b+T9c0DrcFRC3awW/2s/DB/LqTqvUG4pfXP2MuCtc7tYZ2bRL64+Zyy3kNFczDGc5yjrnfWa/PzY/4sqvamR05v3Tx/9UjsGDK+F4nyoLB3j3VFk5Q2lgvsDPhlG6j/q72fkrxJeZTSK5KhCyexXFFMzLWRq5stLX+/MsxCZLJ0imfLUbDzRoJOxm2pH3YSfzcwDrHpKlL+p5L+I9X9H24XaI7IeJpvOGYRDqospC2J307p0b8/RFkmMZ3r5jG8TanBPfJdq8bzvXWqPZ36bub4Vf0nCc/2OGqluLjJZ3uWz86oNPcjvwHEuyHzvG9GZes5m8Qm0QcAeI5+j4kjJfP28IESX4sJlSReEMKOljHLbS7lNZ5LiAtrtXN86NMLHeqcf9x3wfH4ryy5F6rdU19KrA67UklR7HqmeUGagTfqvQYR2RV2Evxd12S/p3oqkKb2DvERvnGflJ8FOvOPCfs14nvJgJlM31+1GFNXb3cPyTGy9kAufeC/H90rwPUfKBr2tY4q7J6o8dzgroTnTMrn7uUNl8p6sB4xmW9n4KI+f5yW85gH9v12Ivu1Iug2ytCnbHtF+3oToJVo3WyQ9n6ssz9veKpHWfLXJNO3JSjsOzBnJ8j2BRI+74tnP5yClXE1cQMed63wiUzot0vdSkufnOOA0RCugt3JfQ3oqUZmJkswCvkSeB8gyD6BzJEhzJFLoiZJo+/D83Jr5Lz6i4sLBxvqlL9Yv399Y++qG/n9APlS/VL9SF2Dt+536Csb/ntoHTgP1R/UX9df6cf0P9T/V/8xNPzijMb9QuX/1v/0XbJNDCg==</latexit> Gene set <latexit sha1_base64="p9qBAtT0sQ9OxWrZqTMkFBJLPXA=">AABE6nictVzbchTJES3WtzW+sfajX3qtxcE6WHnQwhpiwxELGiG0CBDMSLAgIObSGg30TA9z4zKrn3D4xeGwn/wf/g5/gCPsJ/+C81LVVT1T3VktYzokVVfXyczKrsrKzKqmPUr6k2mt9o8zH3znu9/7/g8+/OHZH/34Jz/92bmPfn4wSWfjTrzfSZN0/KjdmsRJfxjvT/vTJH40GsetQTuJH7ZfbuLzh/N4POmnw+b07Sh+Omj1hv2jfqc1harH8XDc7xwP4uH0+bm12vq1a7XLl65FtfUrtdrG1S+gUPt84+qVK9Gl9Rr9W1P631760cf/VIeqq1LVUTM1ULEaqimUE9VSE7ieqEuqpkZQ91QtoG4MpT49j9WJOgvYGbSKoUULal/C7x7cPdG1Q7hHmhNCd4BLAj9jQEbqPGBSaDeGMnKL6PmMKGNtEe0F0UTZ3sLftqY1gNqpOoZaCWdahuKwL1N1pK5SH/rQpxHVYO86msqMtIKSR06vpkBhBHVY7sLzMZQ7hDR6jggzob6jblv0/F/UEmvxvqPbztS/ScrzcEWqoXufZhRaak70I3qbM3jG8iTAuQcUYt1HLL0mXQ+o90Nov4D6u3CdUMnopA3XgmpPSpGbcPmQmyJyGy4fcltE7sLlQ+6KyD24fMg9jUTsmHTuxzfg8uEbIuf7cPmQ90XkA7h8yAci8gAuH/JARD6Gy4d8LCJvwuVD3hSRt+HyIW+LyCZcPmRTRO7D5UPui8gtuHzILY0snqljuFKi0xdm5XUo53mgpUig5roo3w2yjj7sjYA53SnAyrO6Dn/92HqATuMC7FbAuDsqwMojbxtspB8r26JbtJr4sLdE7A6MAD92R8R+rV4UYL8OmGkvC7DyXNuFdn6sbH3vwJ0fe0fE3oWSHyuvUfegxo+9F7BijAqweyL2vnpVgA2x+uMCrGz3G2BX/Fh5nWpCez82xJrOCrCyPT0AD8aPlVerh1Drxz4UsY/UmwLsIxH7DVh3P/abgBX2XQHWrLFnaQXpkT8Sw4wto9bKZiWWRkCtJfBPsrUlId+4DfUSppdheoQZiIjtDLEdiNjNELvBck0yOzohf1fm0sgQjUBEO1ubsDQV23ez9lhKAhD1DFFfQpR5pPiuTV/m5F2YGgk5zVYuLIX0Kc3sN5ZiPR7KLa9B3MsheGwf08i/SNESRlCoqTJqx9kaz8iI7ssQryl6M700PGTcNLMKLuqNiGp7UG0R9daDeiuiZh7UTETNPai5iLIz38UdBowAq398Fwu64xHAPnLxFYFXcB1WnVswRyMYP3vgBT6gmnvwt0Gxt3SVSYbRPK6TmOV4mrPEYygt1BrU26iwTvF1QjMsBsm45T0d4+Md5jYWes6xFT7JVvIoy5iE0+mTPL2MDnqLEc2nanRuU80JeXdcqoa/lc17U6qG3yKNn5AXz6Vq+KmWfnoK2Zsa2zwFtgGzaaS1b8tVaXD+hWmY8lladdHi4lsd6DGD9N5UpL+j38zOKd7LJpVYP7ZcjcbE6d8k178qNKyeJ46eq1FB74m9XlOKKvdkqONeW64qQ0qr6FDLYe+qvhls09VvxpSr0dgDj2uTYu6FU646ekdZb2y5Go0DxXnPE/LkTbkajR7dsz5suRoNzLa0dJxvy1UtO2qAY2dbrmrVh5QFxhwQj3musV7RmPykmabWJ/+gPFvj+vyr6xjmbJ5lMUI5JevbFtNpZ2tZuUTGX4jBqk0ryoH+xczxwfI0FmpDjK9YhmlufV+lY9d41PwuaDGC2c97AFLOPAEJTU4CrXcCFC+JUVe+Zwa3IeJwlBwtoQ517VT0Fi1fzhrl655TrRSX2d5aPR6SvZ7Q2BuRT7hLmpX0sFv4hosoShrazWlIpldFd+/0fM1rvybiRkuIUTbSOrQjxDtp5XGqT+sNR8fn9S7PFC7e87HjF7PNR9raYMyTki1CWcp4uu1MHsmtw3X1orI5bn4W0RtFezUnq9GnHamJGIWabDF74wu6t7T3aU8OeTCNDrzHSFMZKd41wyw65tMjsqiuvZV4o75Mho7LE7K6xh6Xo3sOuudBV49xNmHFuAulJsQM+3DXDIhyzma6SknjY/VZtjua0hssj+iTnIU0NNjexDkLWRZlH+eovAY0jgaO0sNpLNMx+MMVSnLU75PHxq55y3+edm7N/naLxnjxaC7OxHSJ6wZxjWjW8K4u3y1zYAkW3icb5L+W9xL5VeGINlTi+szhzHoZ0o5/TBHsiDzjhGabNDvyrd381PITw2lPmb1z3M1OyUJGZP8iWJ9SGpMR/bhnB8wOOluEhGxkiN3pZ96Nz9fpi2PM+nF9xaca7HiLyZbNiL+h686uCY1Fjhh4HThZGttGJ7vkC8bEdaytu53b5asPIu05CXeUMEU7Vi4Q/0/pt/kx42RtZUSghvENTLSt872PlGIW1FGLVvlyG2TaulJ+ksnwTEtt1z8r0yc5yeoUcaE8uFp3gXOH7pkXjpIxyT1ZacPraFk2FymPlvSIvT2iKJ7tfk+vwCj3RVol12jOHdIo6cEomGZRhGkrZZGX+ZbzylMPoz35v1C3us5rDSlGymZwWUNSfj+maM2VMoFRzeP3Jc0mv9bHS63K+QxpLA6cufwt1H4Mv43c5j6MTjtnFW7QGGAK9s5qhGuilRZhvG7keJmRaWjZe8vPjknTyq05TXzN1s3G2PPKVPZo1LzRWQtTPg2NFw6NF4E6bNJeo9WiqTeW6LkYWzT1bmUovyrcmhUoz0TKskdmUP0AKd1YKoxqV6Qqx/gG9U6kVRNptWC2ursB7pwPQfrn+vLs/jZb3SN1k3ybDnlgHL90aZb2yecyteWRGlNAzpe1fXVn/yHVIPc2WVCkzOc4ccbwrlOHrpNM0l/rlS0lO28tgjm39Fq3MTb2kMqfryAHNCcmNC8N4jK1iLX8rhzRkkVad3yOiDL/LfKp2O8oj5nd1vadRDl/wsabPKssL44UhqR/KfO2sxK97jjxa0Qx4Ux7122gVf0NIwXGmEyC37Oc0BvCVY53EtijbZP9XLVTvIs3dCRaJ6kX6vcBNoajXjvW3bFlemz69htoiVq3b93XQuaXBHOU+J1mR69Fq9pA+6iLpfvT0WrpVS5/X6aH2RJfq48ZtXEjCxvl5TGH6stgLixRNS6MCeFSrRdV5K8meRWZeXcqlLJpbSjnMw1sY44pXpLOgSLC591d8Hpznwr9aK/QaxPWpcY1EiXMxqU6P+BaWsxKRUsRklsvrUmJsx4VrReWh7tqWDvOljImK5goKXfDrd0+HOaiFTkbwxQ6ik/2FsWJLs0v4cLfkfJFiYZjSA6xAX7udbWptt7DqYhXusyZzYhq0CZ0l2Lwlu5nvkW5jl451F36IRzCefRB15L0fVpRq8rOlGXJXerh9F+TNRirWJTetqzeB5eL3JNVTlX60ycLJ/emr8w3OVX7YjiE9CTPJZwP729IvThS5tuman0w1OUe5DlU4WHOM4S9c9u6Oi+XU7m+VrmE8uB1wOy8GBzuABbHLLZdiIUaO2/k/XNA63BUQt2sFv9rPwwfy6k6r1BuE/rm7EXAW+d2sc7Mol9cfc5YbiGjuZhjOM806531mvz82P+LKr2p1OnN+6ePfqkdA4bXQnE+VJaO8e4osvKGUsH9AZ8MqfqP+vsZ+auEVxmNIjmqUDL7FcXUTAuZmvny0tc78yxEJkunSKY8NRtPNOhk7KbaUTfhZzPzAKueEuVvKvkvYv3f0Xah9oish8mmcwbhkOpiyoLY3bQu3dtztEUS45lePuPbhBrcE9+lWjzve5fa45nfZq5vxV+S8Fy/o1LVzUUmy7t8dl61oQf5HTjOBZnvfSM6U8/ZLD6BNgjYY+RzVBwpma+fF4ToUly4LOmCEGa0lFFueym36UxSXEC7netbh0b4SO/0474Dns9vZdmlSP2W6lp6dcCVWpJqzyPVE8oMtEn/NYjQrqiL8PeiLvsl3VuRdELvIC/RG+dZ+UmwE++4sF8znqc8mMnUzXW7lKJ6u3tYnomtF3LhE+/l+F4JvudI2aC39ZLi7rEqzx3OSmjOtEzufu5Qmbwn6wGj2VY2Psrj53kJr3lA/28Xom87km6DLG3Ktke0nzcmeonWzRZJz+cqy/O2t0qkNV9tMk17stKOA3NGsnxPINHjrnj28zlIKVcTF9Bx5zqfyJROi/S9lOT5OQo4DdEK6K3c15CeSlRmoiSzgC+R5wGyzAPoHAnSHIkUeqIk2j48P7dm/ouPqLhwsLF+6Yv1y/c31r66of8fkA/VL9Wv1AVY+36nvoLxv6f2gdNQ/VH9Rf21ntT/UP9T/c/c9IMzGvMLlftX/9t/AXSsRDY=</latexit> enrichment Geert-Jan Huizing Laura Cantini min (wk ),(Hm ) {∑ m ∑ k Wcm (Hm wk , αm k ) : wk ≥ 0,Hm ≥ 0} wk αk ATAC ATAC H αk RNA RNA H
  13. (Unbalanced) OT Across Cells <latexit sha1_base64="dr9fl5ndkD+EfhnptSEBNz9eg14=">AABBxXictVzrdhu3EYbTS2L35rQ/+2dbxT1Oj6vIstvEJ6fnRJZkWTFtyyYlO4lsH15WNO0ll+aS9IXR6SP0b/s0fY6+Qfurr9C5AAssid3Bqq5xJGFBfDODWWAwMwDdGSeDbLqx8c9zH/zghz/68Ycfnb/wk5/+7Oe/uPjxL4+ydDbpxofdNEknjzvtLE4Go/hwOpgm8ePxJG4PO0n8qPNyGz9/NI8n2SAdtaZvx/GTYbs/GpwMuu0pNB322m+jq88urm2sb36+eePatWhjfYP+QeXGjS/+eP1GdFW3rCn97yD9ODpUx6qnUtVVMzVUsRqpKdQT1VYZlO/UVbWhxtD2RC2gbQK1AX0eq1N1AbAz6BVDjza0voTffXj6TreO4BlpZoTuApcEfiaAjNQlwKTQbwJ15BbR5zOijK1ltBdEE2V7C387mtYQWqfqObRKONMzFIdjmaoT9QWNYQBjGlMLjq6rqcxIKyh55IxqChTG0Ib1Hnw+gXqXkEbPEWEyGjvqtk2f/4t6Yis+d3Xfmfo3SXkJSqSaevRpTqGt5kQ/orc5g89YngQ494FCrMeItdek6yGNfgT9F9B+D8op1YxOOlAW1HpaidyG4kNui8g9KD7knohsQPEhGyLyAIoPeaCRiJ2Qzv34JhQfvilyfgDFh3wgIh9C8SEfisgjKD7kkYj8FooP+a2IvAXFh7wlIu9A8SHviMgWFB+yJSIPofiQhyJyF4oPuauR5St1AiUlOgNhVW5BvcgDLUUCLVuifDfJOvqwNwPWdLcEK6/qHfjrx+4E6DQuwe4GzLuTEqw88/bARvqxsi26TbuJD3tbxO7DDPBj90Xs1+pFCfbrgJX2sgQrr7UG9PNjZet7F5782Lsi9h7U/Fh5j7oPLX7s/YAdY1yCPRCxD9SrEmyI1Z+UYGW73wS74sfK+1QL+vuxIdZ0VoKV7ekReDB+rLxbPYJWP/aRiH2s3pRgH4vYb8C6+7HfBOyw70qwZo+9QDtIn/yRGFZsFbV2viqxNgZqbYF/ku8tCfnGHWiXMP0c0yfMUETs5Yi9QEQjRzSC5cpyO5qRvytzaeaIZiCik+9NWJuK/Xt5f6wlAYidHLGzhKjySPFdm7HMybswLRJymu9cWAsZU5rbb6zFej5UW16DuF9A8Nx+TjP/CkVLGEGhpqqoPc/3eEZG9FyFeE3Rmxml4SHjprlVcFFvRFTHg+qIqLce1FsRNfOgZiJq7kHNRZRd+S7uOGAGWP3ju1jQE88A9pHLSwRewRbsOrdhjUYwfw7AC3xILffhb5Nib6lUSYbRPO6TmOV4UrDEE6gt1Bq026hwh+LrhFZYDJJxz/s6xscnzG0s9JpjK3ya7+RRnjEJpzMgefo5HfQWI1pP9ejcoZZT8u64Vg9/O1/3plYPv0saPyUvnmv18FMt/fQMsrc0tnUGbBNW01hr39br0uD8C9Mw9Qu066LFxbc61HMG6b2pSX9fv5n9M7yXbaqxfmy9Ho3MGV9WGF8dGlbPmaPnelTQe2Kv19Si2iMZ6bjX1uvKkNIuOtJy2Ke6bwb79PSbMfV6NA7A49qmmHvh1OvO3nE+GluvR+NIcd7zlDx5U69Ho0/PrA9br0cDsy1tHefbel3Ljhrg2NnW61r1EWWBMQfEc55brFc0IT9ppqkNyD+ozta4Pv/qPoY5m6d5jFBNyfq25XQ6+V5WLZHxF2KwatOacqB/MXN8sCKNhdoU4yuWYVrY31fp2D0eNd8ALUaw+vkMQMqZJyChyUmg9U6A4lUx6iqOzOA2RRzOkpMl1LFunYreouXLWaNi2zNqleIyO1qrx2Oy1xnNvTH5hA3SrKSHRukbLqMoaahR0JBMr47u3un1WtT+hogbLyHG+Uzr0okQn6RVx6k+rTcdHV/SpzxTKHzmY+cvZptPtLXBmCclW4SyVPF0+5k8ktuG++oVZXPc/FlEbxTt1ZysxoBOpDIxCjXZYvbGF/RsaR/SmRzyYBpdeI+RpjJWfGqGWXTMp0dkUV17K/FGfZkMHdczsrrGHlej+w6670HXj3G2Yce4B7UWxAyH8NQKiHIu5LpKSeMT9Yf8dDSlN1gd0ScFC2losL2JCxayKsp+XqDyGtA4GzhKD6exTMfgj1coyVG/Tx4buxYt/yU6uTXn222a4+WzuTwT0yOum8Q1olXDp7r8tMyBJVh4P9kk/7V6lMivDke0oRLXpw5n1suITvxjimDH5BkntNqk1VHs7eanlj8xnA6UOTvH0+yULGRE9i+C/SmlORnRj3t3wJygs0VIyEaG2J1B7t34fJ2BOMesHzdQfKvBzreYbNmM+Bu67urKaC5yxMD7wOnS3DY6aZAvGBPXibbudm1X7z6ItPck3FnCFO1cuUz8P6Xf5sfMk7WVGYEaxjeQaVvnex8pxSyoozbt8tU2yPR1pfwkl+Gpltruf1amTwqS7VDEhfLgbt0Dzl16Zl44SyYkd7bSh/fRqmwuUh4v6RFHe0JRPNv9vt6BUe4rtEuu0Zo7plnSh1kwzaMI01fKIi/zreZVpB5GO/u/ULe6LmoNKUbKZnBZQ1J+P6ZozZUygVnN8/clrSa/1idLvar5jGguDp21/D20/gZ+G7nNcxidTsEq3KQ5wBTsk9UIt0QrPcJ43SzwMjPT0LLPlp+dk6aX23KW+Jqtm42x57WpHNCseaOzFqZ+FhovHBovAnXYorNGq0XTbizRMzG2aOnTylB+dbi1alCeiZRlj8ygBgFSurFUGNWeSFWO8Q3qnUhrQ6TVhtXqnga4az4E6V/ry6v7+3x3j9Qt8m265IFx/NKjVTogn8u0VkdqTAE5X9f21V39x9SC3DtkQZEy3+PEFcOnTl0qp7mkv9M7W0p23loEc2/pte5jbOwx1a+tIIe0JjJalwZxnXrEWn5XjmjJIq07PkdEmf82+VTsd1THzG5v+06igj9h401eVZYXRwoj0r+UedtfiV73nfg1ophwpr3rDtCq/4aRAmNMJsHvWWb0hnCX45ME9mg7ZD9X7RSf4o0cidZJ6oX6c4CN4ajXznV3bpkRm7H9Hnqi1u1b9/WQ+SXBHCV+ZznRa9OuNtQ+6mLp+Wy02nqXKz5X6WG2xNfqY0Z93MjCRnlFzLH6MpgLS1SPC2NCuNQbRR3560leR2Y+nQqlbHobysVMA9uY5xQvSfdAEeHz7i57vblPhXF0Vuh1COtS4xaJEmbjUp0fcC0tZqXOr+xD3Hq+cjdKnJ2obKcw1N3dwtpvtpAxWb9ESTkb7u3KflyIUuQsDFPoKr7RWxYfujS/hIK/I+WLDg3HkNxhE/zbLbWtdt/DbYhXus4ZzYha0Bb0lmLvth5nsUe1jl451F36IRzCeQxA15L0A9pJ68rOlGXJXerh9F+TFZioWJTe9qw/BpeLPJJVTnXGMyDLJo9moMx3ceqOxXAIGUmRSzgfPteQRnGizHea6o3BUJdHUORQh4e5xxD2zm3v+rxcTtX6WuUSyoN3AXPiYnB48lceq9h+IRZq4ryR988BrcNJBXWzW/yv4zB8LKf6vEK5ZfRdsxcBb537xToji/5w/TVjuYXM5nKO4TzTfHTWW/LzY78vqvWmUmc0758++qN2DhheC8V5UFk6xruzyMobSgXPBXwypOo/6h/n5G8jvMpplMlRh5I5pyinZnrI1Mw3Ln2jM5+FyGTplMlUpGbjiCbdiN1W++oW/GznHmDd26H8XUr+i1j/92d70HpC1sNk0TlzcExtMWU/7Claj57t/dkyifEuL9/tbUELnoU3qBXv+d6j/njXt1UYW/k3SHit31Wp6hUikuXTPbuuOjCC4skb54DM93wjukvPWSy+eTYMOFs096eWJVrQJ/LNgk4pvuNI2aW5OtZn9XhygDfs23l+KFKfUVtb23nccyXOB6WcD5Y4Z6SdIoc3zmfVd7PKuGw7XHp57myu+6UUZ9vzvOrc6E4pF76DXo3vV+D7jpRN0v5LioQnqjqbN6ugOdMyuSesI2UykawHjDPb+fuujmznFbzmAeO/U4q+40i6B7J0KP8d0QnbhOglWje7JD3fdKzOpN6ukFZ/j/LZxTXzXxhE5ZWjzfWrf1q//mBz7aub+v85+Ej9Wv1WXYY1/rn6CqgdqEM6d/+r+pv6+9be1nBrujXnrh+c05hfqcK/rb/8F4c4oig=</latexit> day 1 <latexit sha1_base64="MTxCuQn84HaqJmL3FztUTylLjR8=">AABBxnictVxtcxS5ERaXlzvIG5d8zJdJfKS4FPHZhgKurlJ1xja2DwOGXRvuboHal/GyMN5ZdnZtYM9V+Qn5mvyZ/I78g+RT/kL6RRppdjXTGoegsq3R6ulu9Uit7paWzigZZJOVlX9e+OhHP/7JTz/+5OKln/38F7/81eVPf32YpdNxNz7opkk6ftppZ3EyGMYHk8EkiZ+OxnH7uJPETzqvN/DzJyfxOBukw+bk3Sh+dtzuDwdHg257Ak2Hvfa7aPX2i8tLK8tf3v7y5s1b0cryreu3Vm5eh8oK/YtWdWVJ6X/76afRgWqpnkpVV03VsYrVUE2gnqi2yqB8r1bVihpB2zM1g7Yx1Ab0eazO1CXATqFXDD3a0Poafvfh6XvdOoRnpJkRugtcEvgZAzJSVwCTQr8x1JFbRJ9PiTK2ltGeEU2U7R387Whax9A6US+hVcKZnqE4HMtEHanbNIYBjGlELTi6rqYyJa2g5JEzqglQGEEb1nvw+RjqXUIaPUeEyWjsqNs2ff4v6omt+NzVfafq3yTlFSiRaujRpzmFtjoh+hG9zSl8xvIkwLkPFGI9Rqydkq6PafRD6D+D9gdQzqhmdNKBMqPWs0rkBhQfckNEbkPxIbdF5B4UH3JPRO5D8SH3NRKxY9K5H9+A4sM3RM6PoPiQj0TkYyg+5GMReQjFhzwUkd9B8SG/E5F3ofiQd0XkPSg+5D0R2YTiQzZF5AEUH/JARG5B8SG3NLJ8pY6hpERnIKzKdagXeaClSKBlXZTvDllHH/ZOwJrulmDlVb0Jf/3YzQCdxiXYrYB5d1SClWfeNthIP1a2RTu0m/iwOyJ2F2aAH7srYr9Rr0qw3wSstNclWHmt7UE/P1a2vvfhyY+9L2IfQM2Plfeoh9Dixz4M2DFGJdh9EftIvSnBhlj9cQlWtvsNsCt+rLxPNaG/HxtiTaclWNmeHoIH48fKu9UTaPVjn4jYp+ptCfapiP0WrLsf+23ADvu+BGv22Eu0g/TJH4lhxVZRa+erEmsjoNYW+Cf53pKQb9yBdgnTzzF9whyLiO0csR2I2MsRe8FyZbkdzcjflbk0ckQjENHJ9yasTcT+vbw/1pIAxGaO2JxDVHmk+K7NWE7IuzAtEnKS71xYCxlTmttvrMV6PlRbXoN4WEDw3H5JM/8aRUsYQaGmqqi9zPd4Rkb0XIU4pejNjNLwkHGT3Cq4qLciquNBdUTUOw/qnYiaelBTEXXiQZ2IKLvyXVwrYAZY/eO7mNETzwD2kctLBF7BOuw6O7BGI5g/++AFPqaWh/C3QbG3VKokw2ge90nMcjwrWOIx1GZqCdptVLhJ8XVCKywGybjnQx3j4xPmNmZ6zbEVPst38ijPmITTGZA8/ZwOeosRrad6dO5Ryxl5d1yrh9/J172p1cNvkcbPyIvnWj38REs/OYfsTY1tngPbgNU00tq39bo0OP/CNEz9Eu26aHHxrR7rOYP03takv6vfzO453ssG1Vg/tl6PRuaMLyuMrw4Nq+fM0XM9Kug9sddralHtkQx13GvrdWVIaRcdajnsU903g316+s2Yej0a++BxbVDMPXPqdWfvKB+Nrdejcag473lGnryp16PRp2fWh63Xo4HZlraO8229rmVHDXDsbOt1rfqQssCYA+I5zy3WKxqTnzTV1AbkH1Rna1yff3Efw5zN8zxGqKZkfdtyOp18L6uWyPgLMVi1SU050L+YOj5YkcZMrYnxFcswKezvi3TsHo+a3wMtRrD6+QxAypknIKHJSaD1ToDiqhh1FUdmcGsiDmfJ0RyqpVsnordo+XLWqNj2glqluMyO1uqxRfY6o7k3Ip9wjzQr6WGv9A2XUZQ0tFfQkEyvju7e6/Va1P6KiBvNIUb5TOvSiRCfpFXHqT6tNxwdX9GnPBMofOZj5y9mm4+0tcGYJyVbhLJU8XT7mTyS24b76jVlc9z8WURvFO3VCVmNAZ1IZWIUarLF7I3P6NnSPqAzOeTBNLrwHiNNZaT41Ayz6JhPj8iiuvZW4o36Mhk6rmdkdY09rkb3HXTfg64f42zAjvEAak2IGQ7gqRkQ5VzKdZWSxsfqT/npaEpvsDqiTwoW0tBgexMXLGRVlP2yQOUU0DgbOEoPpzFPx+BbC5TkqN8nj41di5b/Cp3cmvPtNs3x8tlcnonpEdc14hrRquFTXX6a58ASzLyfrJH/Wj1K5FeHI9pQietzhzPrZUgn/jFFsCPyjBNabdLqKPZ281PznxhO+8qcneNpdkoWMiL7F8H+lNKcjOjHvTtgTtDZIiRkI0PsziD3bny+zkCcY9aPGyi+1WDnW0y2bEr8DV13dWU0Fzli4H3gbG5uG53skS8YE9extu52bVfvPoi09yTcWcIU7Vy5Svw/p9/mx8yTpYUZgRrGN5BpW+d7HynFLKijNu3y1TbI9HWl/CyX4bmW2u5/VqbPCpJtUsSF8uBu3QPOXXpmXjhLxiR3ttCH99GqbC5SHs3pEUd7RFE82/2+3oFR7mu0Sy7RmmvRLOnDLJjkUYTpK2WR5/lW8ypSD6Od/V+oW10XtYYUI2UzuKwhKb8fU7TmSpnArOb5+5pWk1/r47le1XyGNBePnbX8A7T+Dn4buc1zGJ1OwSrcoTnAFOyT1Qi3RAs9wnjdKfAyM9PQss+Wn52Tppfbcp74mq2bjbFPalPZp1nzVmctTP08NF45NF4F6rBJZ41Wi6bdWKIXYmzR1KeVofzqcGvWoDwVKcsemUENAqR0Y6kwqj2RqhzjG9R7kdaKSKsNq9U9DXDXfAjSv9bnV/cP+e4eqbvk23TJA+P4pUerdEA+l2mtjtSYAnK+oe2ru/pb1ILcO2RBkTLf48QVw6dOXSpnuaR/0DtbSnbeWgRzb+lU9zE2tkX16wvIY1oTGa1Lg7hBPWItvytHNGeRlh2fI6LMf5t8KvY7qmNmt7d9J1HBn7DxJq8qy4sjhSHpX8q87S5Er7tO/BpRTDjV3nUHaNV/w0iBMSaT4PcsM3pDuMvxSQJ7tB2yn4t2ik/xho5EyyT1TP05wMZw1Gvnuju3zIjN2P4IPVHr9q37esj8kmCOEr/znOi1aVc71j7qbO75fLTaepcrPlfpYTrH1+pjSn3cyMJGeUVMS30VzIUlqseFMSFc6o2ijvz1JK8jM59OhVI2vQ3lYqaBbcxLipeke6CI8Hl3V73e3OfCODoL9DqEdalxi0QJs3Gpzg+4lhazUhcX9iFuvVi5GyXOTlS2Uxjq7m5h7TdbyJisX6KknA33dmVvFaIUOQvDFLqKb/SWxYcuza+g4O9I+aJDwzEkd9gA/3ZdbaitD3Ab4o2uc0Yzoha0Bb252Lutx1nsUa2jNw51l34Ih3AeA9C1JP2AdtK6sjNlWXKXejj9U7ICYxWL0tue9cfgcpFHssipzngGZNnk0QyU+S5O3bEYDiEjKXIJ58PnGtIojpT5TlO9MRjq8giKHOrwMPcYwt657V2fl8upWl+LXEJ58C5gTlwMDk/+ymMV2y/EQo2dN/LhOaB1OKqgbnaL/3Ucho/lVJ9XKLeMvmv2KuCtc79YZ2TRH66/Ziy3kNlczjGcZ5qPznpLfn7s90W13lTqjObD00d/1M4Bw2umOA8qS8d4dxZZeUOp4LmAT4ZU/Uf944L8bYQ3OY0yOepQMucU5dRMD5ma+calb3TmsxCZLJ0ymYrUbBzRoBuxG2pX3YWfjdwDrHs7lL9LyX8R6//+bA9aj8h6mCw6Zw5a1BZT9sOeovXo2d6fLZMY7/Ly3d4mtOBZ+B614j3fB9Qf7/o2C2Mr/wYJr/X7KlW9QkQyf7pn11UHRlA8eeMckPmeb0R36TmLxTfPjgPOFs39qXmJZvSJfLOgU4rvOFJ2aa6O9Fk9nhzgDft2nh+K1BfU1tZ2HvdcifN+Kef9Oc4ZaafI4a3zWfXdrDIuGw6XXp47O9H9Uoqz7XledW50s5QL30Gvxvcr8H1HygZp/zVFwmNVnc2bVtCcapncE9ahMplI1gPGme38fVdHticVvE4Cxn+vFH3PkXQbZOlQ/juiE7Yx0Uu0brZIer7pWJ1J3amQVn+P8sXlpdX5/8tgsXK4trx6c/nGo7Wlr+/o/+fgE/Vb9Xt1Fdb4LfU1UNtXB8Dhlfqr+pv6+/rO+nB9un7KXT+6oDG/UYV/63/5L35Roms=</latexit>

    day 18 <latexit sha1_base64="vh31vAG5AzHYBeJ+kRgiWs/Cvbc=">AAAC3XicjVHLSsNAFD3GV62vqBvBTbAIrkpSxMdOdOOyom2FWkoyjnUwLyYToYju3Ilbf8Ct/o74B/oX3hlT8IHohCRnzr3nzNx7gzQUmXLdlyFreGR0bLw0UZ6cmp6Ztefmm1mSS8YbLAkTeRT4GQ9FzBtKqJAfpZL7URDyVnC+q+OtCy4zkcSHqp/yTuT3YnEqmK+I6tqL7QN2Jngg4h6XDleOHzo119vqdO2KW3XNcn4CrwAVFKue2M84xgkSMOSIwBFDEQ7hI6OnDQ8uUuI6uCROEhImznGFMmlzyuKU4RN7Tt8e7doFG9Nee2ZGzeiUkF5JSgcrpEkoTxLWpzkmnhtnzf7mfWk89d369A8Kr4hYhTNi/9INMv+r07UonGLT1CCoptQwujpWuOSmK/rmzqeqFDmkxGl8QnFJmBnloM+O0WSmdt1b38RfTaZm9Z4VuTne9C1pwN73cf4EzVrVW6+u7dcq2zvFqEtYwjJWaZ4b2MYe6miQ9zUe8Ignq2vdWLfW3UeqNVRoFvBlWffvgniYEA==</latexit> [Schiebinger et al 2019] <latexit sha1_base64="E7xwgtYw1POYNmjFBGWIgnslFAY=">AABEKHictVzdcxPJER8uXwf54i6PedmLjxSXIsT2UZekrlJ1IBvjw4BBsuEOAaWPtRCstUIrCYPOlf8kr0nln8i/kLfUveYpecq/kP6Y2ZmVZrdnHcKU7dnR/Lp7emd6untGdMfJMJuur3977r3vfPd73//B++cv/PBHP/7JTy9+8OFhls4mvfiglybp5FG3k8XJcBQfTIfTJH40nsSd424SP+y+bODnD+fxJBumo9b0zTh+ctwZjIZHw15nCk3PLn74+GGn3x+OBtN0dCXa+P2nnz15dnFt/eo6/YtWKxu6sqb0v/30g4/+qNqqr1LVUzN1rGI1UlOoJ6qjMiiP1YZaV2Noe6IW0DaB2pA+j9WpugDYGfSKoUcHWl/C7wE8PdatI3hGmhmhe8AlgZ8JICN1CTAp9JtAHblF9PmMKGNrGe0F0UTZ3sDfrqZ1DK1T9RxaJZzpGYrDsUzVkfodjWEIYxpTC46up6nMSCsoeeSMagoUxtCG9T58PoF6j5BGzxFhMho76rZDn/+LemIrPvd035n6N0l5CUqkmnr0aU6ho+ZEP6K3OYPPWJ4EOA+AQqzHiLXXpOtjGv0I+i+g/S6UU6oZnXShLKj1tBLZgOJDNkTkDhQfckdE7kHxIfdE5D4UH3JfIxE7IZ378U0oPnxT5Hwfig95X0Q+gOJDPhCRh1B8yEMR+TUUH/JrEXkTig95U0TehuJD3haRLSg+ZEtEHkDxIQ9E5DYUH3JbI8tX6gRKSnSGwqq8DvUiD7QUCbRcF+W7QdbRh70RsKZ7JVh5VW/BXz92K0CncQl2O2DeHZVg5Zm3AzbSj5Vt0S3aTXzYWyJ2F2aAH7srYr9UL0qwXwastJclWHmt7UE/P1a2vnfgyY+9I2LvQs2Plfeoe9Dix94L2DHGJdh9EXtfvSrBhlj9SQlWtvtNsCt+rLxPtaC/HxtiTWclWNmeHoIH48fKu9VDaPVjH4rYR+qkBPtIxH4F1t2P/Spgh31bgjV77AXaQQbkj8SwYquodfJVibUxUOsI/JN8b0nIN+5Cu4QZ5JgBYY5FxE6O2AlE7OWIvWC5styOZuTvylyaOaIZiOjmexPWpmL/ft4fa0kAYitHbC0hqjxSfNdmLHPyLkyLhJzmOxfWQsaU5vYba7GeD9WW1yDuFRA8t5/TzL9C0RJGUKipKmrP8z2ekRE9VyFeU/RmRml4yLhpbhVc1ImI6npQXRH1xoN6I6JmHtRMRM09qLmIsivfxbUDZoDVP76LBT3xDGAfubxE4BVch13nFqzRCObPPniBD6jlHvxtUuwtlSrJMJrHfRKzHE8KlngCtYVag3YbFW5RfJ3QCotBMu55T8f4+IS5jYVec2yFT/OdPMozJuF0hiTPIKeD3mJE66kendvUckreHdfq4W/l697U6uG3SeOn5MVzrR5+qqWfnkH2lsa2zoBtwmoaa+3bel0anH9hGqZ+gXZdtLj4Vo/1nEF6JzXp7+o3s3uG99KgGuvH1uvRyJzxZYXx1aFh9Zw5eq5HBb0n9npNLao9kpGOe229rgwp7aIjLYd9qvtmsE9fvxlTr0djHzyuBsXcC6ded/aO89HYej0ah4rznqfkyZt6PRoDemZ92Ho9Gpht6eg439brWnbUAMfOtl7Xqo8oC4w5IJ7z3GK9ogn5STNNbUj+QXW2xvX5V/cxzNk8zWOEakrWty2n0833smqJjL8Qg1Wb1pQD/YuZ44MVaSzUphhfsQzTwv6+Ssfu8aj5PdBiBKufzwCknHkCEpqcBFrvBChuiFFXcWQGtynicJYcLaHaunUqeouWL2eNim3PqFWKy+xorR7bZK8zmntj8gn3SLOSHvZK33AZRUlDewUNyfTq6O6tXq9F7a+LuPESYpzPtB6dCPFJWnWc6tN609HxJX3KM4XCZz52/mK2+UhbG4x5UrJFKEsVT7efySO5bbivXlE2x82fRfRG0V7NyWoM6UQqE6NQky1mb3xBz5b2AZ3JIQ+m0YP3GGkqY8WnZphFx3x6RBbVtbcSb9SXydBxPSOra+xxNXrgoAcedP0YpwE7xl2otSBmOICnVkCUcyHXVUoan6hf56ejKb3B6og+KVhIQ4PtTVywkFVR9vMCldeAxtnAUXo4jWU6Bt9eoSRH/T55bOxatPyX6OTWnG93aI6Xz+byTEyfuG4S14hWDZ/q8tMyB5Zg4f1kk/zX6lEivzoc0YZKXJ86nFkvIzrxjymCHZNnnNBqk1ZHsbebn1r+xHDaV+bsHE+zU7KQEdm/CPanlOZkRD/u3QFzgs4WISEbGWJ3hrl34/N1huIcs37cUPGtBjvfYrJlM+Jv6LqrK6O5yBED7wOnS3Pb6GSPfMGYuE60dbdru3r3QaS9J+HOEqZo58pl4v8J/TY/Zp6srcwI1DC+gUzbOt/7SClmQR11aJevtkGmryvlx7kMT7XUdv+zMn1ckGyLIi6UB3frPnDu0TPzwlkyIbmzlT68j1Zlc5HyeEmPONojiuLZ7g/0DoxyX6Fdco3WXJtmyQBmwTSPIkxfKYu8zLeaV5F6GO3s/0Ld6rqoNaQYKZvBZQ1J+f2YojVXygRmNc/fl7Sa/FqfLPWq5jOiuXjsrOVvoPUj+G3kNs9hdLoFq3CD5gBTsE9WI9wSrfQI43WjwMvMTEPLPlt+dk6aXm7LWeJrtm42xp7XprJPs+ZEZy1M/Sw0Xjg0XgTqsEVnjVaLpt1YomdibNHSp5Wh/Opwa9WgPBMpyx6ZQQ0DpHRjqTCqfZGqHOMb1FuR1rpIqwOr1T0NcNd8CNK/1pdX9zf57h6pm+Tb9MgD4/ilT6t0SD6Xaa2O1JgCcr6m7au7+tvUgty7ZEGRMt/jxBXDp049Kqe5pL/UO1tKdt5aBHNv6bXuY2xsm+qfriCPaU1ktC4N4hr1iLX8rhzRkkW66vgcEWX+O+RTsd9RHTO7ve07iQr+hI03eVVZXhwpjEj/UuZtdyV63XXi14hiwpn2rrtAq/4bRgqMMZkEv2eZ0RvCXY5PEtij7ZL9XLVTfIo3ciS6SlIv1B8CbAxHvXauu3PLjNiM7VfQE7Vu37qvh8wvCeYo8TvLiV6HdrVj7aMulp7PRqujd7nic5UeZkt8rT5m1MeNLGyUV8S01efBXFiielwYE8Kl3ijqyF9P8joy8+lUKGXT21AuZhrYxjyneEm6B4oIn3d32evNfSKMo7tCr0tYlxq3SJQwG5fq/IBraTErdX5lH+LW85W7UeLsRGU7haHu7hbWfrOFjMn6JUrK2XBvV/Z2IUqRszBMoaf4Rm9ZfOjS/BwK/o6ULzo0HENyh03wb6+rhtp+B7chXuk6ZzQjakFb0F+KvTt6nMUe1Tp65VB36YdwCOcxBF1L0g9pJ60rO1OWJXeph9N/TVZgomJRetuz/hhcLvJIVjnVGc+QLJs8mqEy38WpOxbDIWQkRS7hfPhcQxrFkTLfaao3BkNdHkGRQx0e5h5D2Du3vevzcjlV62uVSygP3gXMiYvB4clfeaxi+4VYqInzRt49B7QORxXUzW7xv47D8LGc6vMK5ZbRd81eBLx17hfrjCz6w/XXjOUWMpvLOYbzTPPRWW/Jz4/9vqjWm0qd0bx7+uiP2jlgeC0U50Fl6RjvziIrbygVPBfwyZCq/6i/nZO/jfAqp1EmRx1K5pyinJrpIVMz37j0jc58FiKTpVMmU5GajSOadCO2oXbVTfhp5B5g3duh/F1K/otY//dn+9B6RNbDZNE5c9CmtpiyH/YUrU/P9v5smcR4l5fv9ragBc/C96gV7/nepf5417dVGFv5N0h4rd9RqeoXIpLl0z27rrowguLJG+eAzPd8I7pLz1ksvnl2HHC2aO5PLUu0oE/kmwXdUnzXkbJHc3Wsz+rx5ABv2Hfy/FCkfkNtHW3ncc+VOO+Xct5f4pyRdoocTpzPqu9mlXFpOFz6ee5srvulFGfb87zq3OhWKRe+g16NH1TgB46UTdL+S4qEJ6o6mzeroDnTMrknrCNlMpGsB4wzO/n7ro5s5xW85gHjv12Kvu1IugOydCn/HdEJ24ToJVo32yQ933SszqTeqpDWfI+Sadq7jnYemFuL1Vn6RM87zlyY/41gQesBd1NzM1HKnsQldLp0IzAmSnxHUjo3kOWRpQmRRaIyEyWZBXx7dx4gyzyAzpEgzZFIYSBKolfws4trG8v/P8Zq5XDz6sZnV6/d31z74ob+vzPeVz9Xv1CXYd/4rfoCZui+OgBOJ+pP6s/qL42/Nv7e+EfjW+763jmN+Zkq/Gv887+4kyDk</latexit> [Waddington, 1936] Conrad Waddington Geoffrey Schiebinger
  14. (Unbalanced) OT Across Cells <latexit sha1_base64="dr9fl5ndkD+EfhnptSEBNz9eg14=">AABBxXictVzrdhu3EYbTS2L35rQ/+2dbxT1Oj6vIstvEJ6fnRJZkWTFtyyYlO4lsH15WNO0ll+aS9IXR6SP0b/s0fY6+Qfurr9C5AAssid3Bqq5xJGFBfDODWWAwMwDdGSeDbLqx8c9zH/zghz/68Ycfnb/wk5/+7Oe/uPjxL4+ydDbpxofdNEknjzvtLE4Go/hwOpgm8ePxJG4PO0n8qPNyGz9/NI8n2SAdtaZvx/GTYbs/GpwMuu0pNB322m+jq88urm2sb36+eePatWhjfYP+QeXGjS/+eP1GdFW3rCn97yD9ODpUx6qnUtVVMzVUsRqpKdQT1VYZlO/UVbWhxtD2RC2gbQK1AX0eq1N1AbAz6BVDjza0voTffXj6TreO4BlpZoTuApcEfiaAjNQlwKTQbwJ15BbR5zOijK1ltBdEE2V7C387mtYQWqfqObRKONMzFIdjmaoT9QWNYQBjGlMLjq6rqcxIKyh55IxqChTG0Ib1Hnw+gXqXkEbPEWEyGjvqtk2f/4t6Yis+d3Xfmfo3SXkJSqSaevRpTqGt5kQ/orc5g89YngQ494FCrMeItdek6yGNfgT9F9B+D8op1YxOOlAW1HpaidyG4kNui8g9KD7knohsQPEhGyLyAIoPeaCRiJ2Qzv34JhQfvilyfgDFh3wgIh9C8SEfisgjKD7kkYj8FooP+a2IvAXFh7wlIu9A8SHviMgWFB+yJSIPofiQhyJyF4oPuauR5St1AiUlOgNhVW5BvcgDLUUCLVuifDfJOvqwNwPWdLcEK6/qHfjrx+4E6DQuwe4GzLuTEqw88/bARvqxsi26TbuJD3tbxO7DDPBj90Xs1+pFCfbrgJX2sgQrr7UG9PNjZet7F5782Lsi9h7U/Fh5j7oPLX7s/YAdY1yCPRCxD9SrEmyI1Z+UYGW73wS74sfK+1QL+vuxIdZ0VoKV7ekReDB+rLxbPYJWP/aRiH2s3pRgH4vYb8C6+7HfBOyw70qwZo+9QDtIn/yRGFZsFbV2viqxNgZqbYF/ku8tCfnGHWiXMP0c0yfMUETs5Yi9QEQjRzSC5cpyO5qRvytzaeaIZiCik+9NWJuK/Xt5f6wlAYidHLGzhKjySPFdm7HMybswLRJymu9cWAsZU5rbb6zFej5UW16DuF9A8Nx+TjP/CkVLGEGhpqqoPc/3eEZG9FyFeE3Rmxml4SHjprlVcFFvRFTHg+qIqLce1FsRNfOgZiJq7kHNRZRd+S7uOGAGWP3ju1jQE88A9pHLSwRewRbsOrdhjUYwfw7AC3xILffhb5Nib6lUSYbRPO6TmOV4UrDEE6gt1Bq026hwh+LrhFZYDJJxz/s6xscnzG0s9JpjK3ya7+RRnjEJpzMgefo5HfQWI1pP9ejcoZZT8u64Vg9/O1/3plYPv0saPyUvnmv18FMt/fQMsrc0tnUGbBNW01hr39br0uD8C9Mw9Qu066LFxbc61HMG6b2pSX9fv5n9M7yXbaqxfmy9Ho3MGV9WGF8dGlbPmaPnelTQe2Kv19Si2iMZ6bjX1uvKkNIuOtJy2Ke6bwb79PSbMfV6NA7A49qmmHvh1OvO3nE+GluvR+NIcd7zlDx5U69Ho0/PrA9br0cDsy1tHefbel3Ljhrg2NnW61r1EWWBMQfEc55brFc0IT9ppqkNyD+ozta4Pv/qPoY5m6d5jFBNyfq25XQ6+V5WLZHxF2KwatOacqB/MXN8sCKNhdoU4yuWYVrY31fp2D0eNd8ALUaw+vkMQMqZJyChyUmg9U6A4lUx6iqOzOA2RRzOkpMl1LFunYreouXLWaNi2zNqleIyO1qrx2Oy1xnNvTH5hA3SrKSHRukbLqMoaahR0JBMr47u3un1WtT+hogbLyHG+Uzr0okQn6RVx6k+rTcdHV/SpzxTKHzmY+cvZptPtLXBmCclW4SyVPF0+5k8ktuG++oVZXPc/FlEbxTt1ZysxoBOpDIxCjXZYvbGF/RsaR/SmRzyYBpdeI+RpjJWfGqGWXTMp0dkUV17K/FGfZkMHdczsrrGHlej+w6670HXj3G2Yce4B7UWxAyH8NQKiHIu5LpKSeMT9Yf8dDSlN1gd0ScFC2losL2JCxayKsp+XqDyGtA4GzhKD6exTMfgj1coyVG/Tx4buxYt/yU6uTXn222a4+WzuTwT0yOum8Q1olXDp7r8tMyBJVh4P9kk/7V6lMivDke0oRLXpw5n1suITvxjimDH5BkntNqk1VHs7eanlj8xnA6UOTvH0+yULGRE9i+C/SmlORnRj3t3wJygs0VIyEaG2J1B7t34fJ2BOMesHzdQfKvBzreYbNmM+Bu67urKaC5yxMD7wOnS3DY6aZAvGBPXibbudm1X7z6ItPck3FnCFO1cuUz8P6Xf5sfMk7WVGYEaxjeQaVvnex8pxSyoozbt8tU2yPR1pfwkl+Gpltruf1amTwqS7VDEhfLgbt0Dzl16Zl44SyYkd7bSh/fRqmwuUh4v6RFHe0JRPNv9vt6BUe4rtEuu0Zo7plnSh1kwzaMI01fKIi/zreZVpB5GO/u/ULe6LmoNKUbKZnBZQ1J+P6ZozZUygVnN8/clrSa/1idLvar5jGguDp21/D20/gZ+G7nNcxidTsEq3KQ5wBTsk9UIt0QrPcJ43SzwMjPT0LLPlp+dk6aX23KW+Jqtm42x57WpHNCseaOzFqZ+FhovHBovAnXYorNGq0XTbizRMzG2aOnTylB+dbi1alCeiZRlj8ygBgFSurFUGNWeSFWO8Q3qnUhrQ6TVhtXqnga4az4E6V/ry6v7+3x3j9Qt8m265IFx/NKjVTogn8u0VkdqTAE5X9f21V39x9SC3DtkQZEy3+PEFcOnTl0qp7mkv9M7W0p23loEc2/pte5jbOwx1a+tIIe0JjJalwZxnXrEWn5XjmjJIq07PkdEmf82+VTsd1THzG5v+06igj9h401eVZYXRwoj0r+UedtfiV73nfg1ophwpr3rDtCq/4aRAmNMJsHvWWb0hnCX45ME9mg7ZD9X7RSf4o0cidZJ6oX6c4CN4ajXznV3bpkRm7H9Hnqi1u1b9/WQ+SXBHCV+ZznRa9OuNtQ+6mLp+Wy02nqXKz5X6WG2xNfqY0Z93MjCRnlFzLH6MpgLS1SPC2NCuNQbRR3560leR2Y+nQqlbHobysVMA9uY5xQvSfdAEeHz7i57vblPhXF0Vuh1COtS4xaJEmbjUp0fcC0tZqXOr+xD3Hq+cjdKnJ2obKcw1N3dwtpvtpAxWb9ESTkb7u3KflyIUuQsDFPoKr7RWxYfujS/hIK/I+WLDg3HkNxhE/zbLbWtdt/DbYhXus4ZzYha0Bb0lmLvth5nsUe1jl451F36IRzCeQxA15L0A9pJ68rOlGXJXerh9F+TFZioWJTe9qw/BpeLPJJVTnXGMyDLJo9moMx3ceqOxXAIGUmRSzgfPteQRnGizHea6o3BUJdHUORQh4e5xxD2zm3v+rxcTtX6WuUSyoN3AXPiYnB48lceq9h+IRZq4ryR988BrcNJBXWzW/yv4zB8LKf6vEK5ZfRdsxcBb537xToji/5w/TVjuYXM5nKO4TzTfHTWW/LzY78vqvWmUmc0758++qN2DhheC8V5UFk6xruzyMobSgXPBXwypOo/6h/n5G8jvMpplMlRh5I5pyinZnrI1Mw3Ln2jM5+FyGTplMlUpGbjiCbdiN1W++oW/GznHmDd26H8XUr+i1j/92d70HpC1sNk0TlzcExtMWU/7Claj57t/dkyifEuL9/tbUELnoU3qBXv+d6j/njXt1UYW/k3SHit31Wp6hUikuXTPbuuOjCC4skb54DM93wjukvPWSy+eTYMOFs096eWJVrQJ/LNgk4pvuNI2aW5OtZn9XhygDfs23l+KFKfUVtb23nccyXOB6WcD5Y4Z6SdIoc3zmfVd7PKuGw7XHp57myu+6UUZ9vzvOrc6E4pF76DXo3vV+D7jpRN0v5LioQnqjqbN6ugOdMyuSesI2UykawHjDPb+fuujmznFbzmAeO/U4q+40i6B7J0KP8d0QnbhOglWje7JD3fdKzOpN6ukFZ/j/LZxTXzXxhE5ZWjzfWrf1q//mBz7aub+v85+Ej9Wv1WXYY1/rn6CqgdqEM6d/+r+pv6+9be1nBrujXnrh+c05hfqcK/rb/8F4c4oig=</latexit> day 1 <latexit sha1_base64="MTxCuQn84HaqJmL3FztUTylLjR8=">AABBxnictVxtcxS5ERaXlzvIG5d8zJdJfKS4FPHZhgKurlJ1xja2DwOGXRvuboHal/GyMN5ZdnZtYM9V+Qn5mvyZ/I78g+RT/kL6RRppdjXTGoegsq3R6ulu9Uit7paWzigZZJOVlX9e+OhHP/7JTz/+5OKln/38F7/81eVPf32YpdNxNz7opkk6ftppZ3EyGMYHk8EkiZ+OxnH7uJPETzqvN/DzJyfxOBukw+bk3Sh+dtzuDwdHg257Ak2Hvfa7aPX2i8tLK8tf3v7y5s1b0cryreu3Vm5eh8oK/YtWdWVJ6X/76afRgWqpnkpVV03VsYrVUE2gnqi2yqB8r1bVihpB2zM1g7Yx1Ab0eazO1CXATqFXDD3a0Poafvfh6XvdOoRnpJkRugtcEvgZAzJSVwCTQr8x1JFbRJ9PiTK2ltGeEU2U7R387Whax9A6US+hVcKZnqE4HMtEHanbNIYBjGlELTi6rqYyJa2g5JEzqglQGEEb1nvw+RjqXUIaPUeEyWjsqNs2ff4v6omt+NzVfafq3yTlFSiRaujRpzmFtjoh+hG9zSl8xvIkwLkPFGI9Rqydkq6PafRD6D+D9gdQzqhmdNKBMqPWs0rkBhQfckNEbkPxIbdF5B4UH3JPRO5D8SH3NRKxY9K5H9+A4sM3RM6PoPiQj0TkYyg+5GMReQjFhzwUkd9B8SG/E5F3ofiQd0XkPSg+5D0R2YTiQzZF5AEUH/JARG5B8SG3NLJ8pY6hpERnIKzKdagXeaClSKBlXZTvDllHH/ZOwJrulmDlVb0Jf/3YzQCdxiXYrYB5d1SClWfeNthIP1a2RTu0m/iwOyJ2F2aAH7srYr9Rr0qw3wSstNclWHmt7UE/P1a2vvfhyY+9L2IfQM2Plfeoh9Dixz4M2DFGJdh9EftIvSnBhlj9cQlWtvsNsCt+rLxPNaG/HxtiTaclWNmeHoIH48fKu9UTaPVjn4jYp+ptCfapiP0WrLsf+23ADvu+BGv22Eu0g/TJH4lhxVZRa+erEmsjoNYW+Cf53pKQb9yBdgnTzzF9whyLiO0csR2I2MsRe8FyZbkdzcjflbk0ckQjENHJ9yasTcT+vbw/1pIAxGaO2JxDVHmk+K7NWE7IuzAtEnKS71xYCxlTmttvrMV6PlRbXoN4WEDw3H5JM/8aRUsYQaGmqqi9zPd4Rkb0XIU4pejNjNLwkHGT3Cq4qLciquNBdUTUOw/qnYiaelBTEXXiQZ2IKLvyXVwrYAZY/eO7mNETzwD2kctLBF7BOuw6O7BGI5g/++AFPqaWh/C3QbG3VKokw2ge90nMcjwrWOIx1GZqCdptVLhJ8XVCKywGybjnQx3j4xPmNmZ6zbEVPst38ijPmITTGZA8/ZwOeosRrad6dO5Ryxl5d1yrh9/J172p1cNvkcbPyIvnWj38REs/OYfsTY1tngPbgNU00tq39bo0OP/CNEz9Eu26aHHxrR7rOYP03takv6vfzO453ssG1Vg/tl6PRuaMLyuMrw4Nq+fM0XM9Kug9sddralHtkQx13GvrdWVIaRcdajnsU903g316+s2Yej0a++BxbVDMPXPqdWfvKB+Nrdejcag473lGnryp16PRp2fWh63Xo4HZlraO8229rmVHDXDsbOt1rfqQssCYA+I5zy3WKxqTnzTV1AbkH1Rna1yff3Efw5zN8zxGqKZkfdtyOp18L6uWyPgLMVi1SU050L+YOj5YkcZMrYnxFcswKezvi3TsHo+a3wMtRrD6+QxAypknIKHJSaD1ToDiqhh1FUdmcGsiDmfJ0RyqpVsnordo+XLWqNj2glqluMyO1uqxRfY6o7k3Ip9wjzQr6WGv9A2XUZQ0tFfQkEyvju7e6/Va1P6KiBvNIUb5TOvSiRCfpFXHqT6tNxwdX9GnPBMofOZj5y9mm4+0tcGYJyVbhLJU8XT7mTyS24b76jVlc9z8WURvFO3VCVmNAZ1IZWIUarLF7I3P6NnSPqAzOeTBNLrwHiNNZaT41Ayz6JhPj8iiuvZW4o36Mhk6rmdkdY09rkb3HXTfg64f42zAjvEAak2IGQ7gqRkQ5VzKdZWSxsfqT/npaEpvsDqiTwoW0tBgexMXLGRVlP2yQOUU0DgbOEoPpzFPx+BbC5TkqN8nj41di5b/Cp3cmvPtNs3x8tlcnonpEdc14hrRquFTXX6a58ASzLyfrJH/Wj1K5FeHI9pQietzhzPrZUgn/jFFsCPyjBNabdLqKPZ281PznxhO+8qcneNpdkoWMiL7F8H+lNKcjOjHvTtgTtDZIiRkI0PsziD3bny+zkCcY9aPGyi+1WDnW0y2bEr8DV13dWU0Fzli4H3gbG5uG53skS8YE9extu52bVfvPoi09yTcWcIU7Vy5Svw/p9/mx8yTpYUZgRrGN5BpW+d7HynFLKijNu3y1TbI9HWl/CyX4bmW2u5/VqbPCpJtUsSF8uBu3QPOXXpmXjhLxiR3ttCH99GqbC5SHs3pEUd7RFE82/2+3oFR7mu0Sy7RmmvRLOnDLJjkUYTpK2WR5/lW8ypSD6Od/V+oW10XtYYUI2UzuKwhKb8fU7TmSpnArOb5+5pWk1/r47le1XyGNBePnbX8A7T+Dn4buc1zGJ1OwSrcoTnAFOyT1Qi3RAs9wnjdKfAyM9PQss+Wn52Tppfbcp74mq2bjbFPalPZp1nzVmctTP08NF45NF4F6rBJZ41Wi6bdWKIXYmzR1KeVofzqcGvWoDwVKcsemUENAqR0Y6kwqj2RqhzjG9R7kdaKSKsNq9U9DXDXfAjSv9bnV/cP+e4eqbvk23TJA+P4pUerdEA+l2mtjtSYAnK+oe2ru/pb1ILcO2RBkTLf48QVw6dOXSpnuaR/0DtbSnbeWgRzb+lU9zE2tkX16wvIY1oTGa1Lg7hBPWItvytHNGeRlh2fI6LMf5t8KvY7qmNmt7d9J1HBn7DxJq8qy4sjhSHpX8q87S5Er7tO/BpRTDjV3nUHaNV/w0iBMSaT4PcsM3pDuMvxSQJ7tB2yn4t2ik/xho5EyyT1TP05wMZw1Gvnuju3zIjN2P4IPVHr9q37esj8kmCOEr/znOi1aVc71j7qbO75fLTaepcrPlfpYTrH1+pjSn3cyMJGeUVMS30VzIUlqseFMSFc6o2ijvz1JK8jM59OhVI2vQ3lYqaBbcxLipeke6CI8Hl3V73e3OfCODoL9DqEdalxi0QJs3Gpzg+4lhazUhcX9iFuvVi5GyXOTlS2Uxjq7m5h7TdbyJisX6KknA33dmVvFaIUOQvDFLqKb/SWxYcuza+g4O9I+aJDwzEkd9gA/3ZdbaitD3Ab4o2uc0Yzoha0Bb252Lutx1nsUa2jNw51l34Ih3AeA9C1JP2AdtK6sjNlWXKXejj9U7ICYxWL0tue9cfgcpFHssipzngGZNnk0QyU+S5O3bEYDiEjKXIJ58PnGtIojpT5TlO9MRjq8giKHOrwMPcYwt657V2fl8upWl+LXEJ58C5gTlwMDk/+ymMV2y/EQo2dN/LhOaB1OKqgbnaL/3Ucho/lVJ9XKLeMvmv2KuCtc79YZ2TRH66/Ziy3kNlczjGcZ5qPznpLfn7s90W13lTqjObD00d/1M4Bw2umOA8qS8d4dxZZeUOp4LmAT4ZU/Uf944L8bYQ3OY0yOepQMucU5dRMD5ma+calb3TmsxCZLJ0ymYrUbBzRoBuxG2pX3YWfjdwDrHs7lL9LyX8R6//+bA9aj8h6mCw6Zw5a1BZT9sOeovXo2d6fLZMY7/Ly3d4mtOBZ+B614j3fB9Qf7/o2C2Mr/wYJr/X7KlW9QkQyf7pn11UHRlA8eeMckPmeb0R36TmLxTfPjgPOFs39qXmJZvSJfLOgU4rvOFJ2aa6O9Fk9nhzgDft2nh+K1BfU1tZ2HvdcifN+Kef9Oc4ZaafI4a3zWfXdrDIuGw6XXp47O9H9Uoqz7XledW50s5QL30Gvxvcr8H1HygZp/zVFwmNVnc2bVtCcapncE9ahMplI1gPGme38fVdHticVvE4Cxn+vFH3PkXQbZOlQ/juiE7Yx0Uu0brZIer7pWJ1J3amQVn+P8sXlpdX5/8tgsXK4trx6c/nGo7Wlr+/o/+fgE/Vb9Xt1Fdb4LfU1UNtXB8Dhlfqr+pv6+/rO+nB9un7KXT+6oDG/UYV/63/5L35Roms=</latexit>

    day 18 <latexit sha1_base64="vh31vAG5AzHYBeJ+kRgiWs/Cvbc=">AAAC3XicjVHLSsNAFD3GV62vqBvBTbAIrkpSxMdOdOOyom2FWkoyjnUwLyYToYju3Ilbf8Ct/o74B/oX3hlT8IHohCRnzr3nzNx7gzQUmXLdlyFreGR0bLw0UZ6cmp6Ztefmm1mSS8YbLAkTeRT4GQ9FzBtKqJAfpZL7URDyVnC+q+OtCy4zkcSHqp/yTuT3YnEqmK+I6tqL7QN2Jngg4h6XDleOHzo119vqdO2KW3XNcn4CrwAVFKue2M84xgkSMOSIwBFDEQ7hI6OnDQ8uUuI6uCROEhImznGFMmlzyuKU4RN7Tt8e7doFG9Nee2ZGzeiUkF5JSgcrpEkoTxLWpzkmnhtnzf7mfWk89d369A8Kr4hYhTNi/9INMv+r07UonGLT1CCoptQwujpWuOSmK/rmzqeqFDmkxGl8QnFJmBnloM+O0WSmdt1b38RfTaZm9Z4VuTne9C1pwN73cf4EzVrVW6+u7dcq2zvFqEtYwjJWaZ4b2MYe6miQ9zUe8Ignq2vdWLfW3UeqNVRoFvBlWffvgniYEA==</latexit> [Schiebinger et al 2019] <latexit sha1_base64="E7xwgtYw1POYNmjFBGWIgnslFAY=">AABEKHictVzdcxPJER8uXwf54i6PedmLjxSXIsT2UZekrlJ1IBvjw4BBsuEOAaWPtRCstUIrCYPOlf8kr0nln8i/kLfUveYpecq/kP6Y2ZmVZrdnHcKU7dnR/Lp7emd6untGdMfJMJuur3977r3vfPd73//B++cv/PBHP/7JTy9+8OFhls4mvfiglybp5FG3k8XJcBQfTIfTJH40nsSd424SP+y+bODnD+fxJBumo9b0zTh+ctwZjIZHw15nCk3PLn74+GGn3x+OBtN0dCXa+P2nnz15dnFt/eo6/YtWKxu6sqb0v/30g4/+qNqqr1LVUzN1rGI1UlOoJ6qjMiiP1YZaV2Noe6IW0DaB2pA+j9WpugDYGfSKoUcHWl/C7wE8PdatI3hGmhmhe8AlgZ8JICN1CTAp9JtAHblF9PmMKGNrGe0F0UTZ3sDfrqZ1DK1T9RxaJZzpGYrDsUzVkfodjWEIYxpTC46up6nMSCsoeeSMagoUxtCG9T58PoF6j5BGzxFhMho76rZDn/+LemIrPvd035n6N0l5CUqkmnr0aU6ho+ZEP6K3OYPPWJ4EOA+AQqzHiLXXpOtjGv0I+i+g/S6UU6oZnXShLKj1tBLZgOJDNkTkDhQfckdE7kHxIfdE5D4UH3JfIxE7IZ378U0oPnxT5Hwfig95X0Q+gOJDPhCRh1B8yEMR+TUUH/JrEXkTig95U0TehuJD3haRLSg+ZEtEHkDxIQ9E5DYUH3JbI8tX6gRKSnSGwqq8DvUiD7QUCbRcF+W7QdbRh70RsKZ7JVh5VW/BXz92K0CncQl2O2DeHZVg5Zm3AzbSj5Vt0S3aTXzYWyJ2F2aAH7srYr9UL0qwXwastJclWHmt7UE/P1a2vnfgyY+9I2LvQs2Plfeoe9Dix94L2DHGJdh9EXtfvSrBhlj9SQlWtvtNsCt+rLxPtaC/HxtiTWclWNmeHoIH48fKu9VDaPVjH4rYR+qkBPtIxH4F1t2P/Spgh31bgjV77AXaQQbkj8SwYquodfJVibUxUOsI/JN8b0nIN+5Cu4QZ5JgBYY5FxE6O2AlE7OWIvWC5styOZuTvylyaOaIZiOjmexPWpmL/ft4fa0kAYitHbC0hqjxSfNdmLHPyLkyLhJzmOxfWQsaU5vYba7GeD9WW1yDuFRA8t5/TzL9C0RJGUKipKmrP8z2ekRE9VyFeU/RmRml4yLhpbhVc1ImI6npQXRH1xoN6I6JmHtRMRM09qLmIsivfxbUDZoDVP76LBT3xDGAfubxE4BVch13nFqzRCObPPniBD6jlHvxtUuwtlSrJMJrHfRKzHE8KlngCtYVag3YbFW5RfJ3QCotBMu55T8f4+IS5jYVec2yFT/OdPMozJuF0hiTPIKeD3mJE66kendvUckreHdfq4W/l697U6uG3SeOn5MVzrR5+qqWfnkH2lsa2zoBtwmoaa+3bel0anH9hGqZ+gXZdtLj4Vo/1nEF6JzXp7+o3s3uG99KgGuvH1uvRyJzxZYXx1aFh9Zw5eq5HBb0n9npNLao9kpGOe229rgwp7aIjLYd9qvtmsE9fvxlTr0djHzyuBsXcC6ded/aO89HYej0ah4rznqfkyZt6PRoDemZ92Ho9Gpht6eg439brWnbUAMfOtl7Xqo8oC4w5IJ7z3GK9ogn5STNNbUj+QXW2xvX5V/cxzNk8zWOEakrWty2n0833smqJjL8Qg1Wb1pQD/YuZ44MVaSzUphhfsQzTwv6+Ssfu8aj5PdBiBKufzwCknHkCEpqcBFrvBChuiFFXcWQGtynicJYcLaHaunUqeouWL2eNim3PqFWKy+xorR7bZK8zmntj8gn3SLOSHvZK33AZRUlDewUNyfTq6O6tXq9F7a+LuPESYpzPtB6dCPFJWnWc6tN609HxJX3KM4XCZz52/mK2+UhbG4x5UrJFKEsVT7efySO5bbivXlE2x82fRfRG0V7NyWoM6UQqE6NQky1mb3xBz5b2AZ3JIQ+m0YP3GGkqY8WnZphFx3x6RBbVtbcSb9SXydBxPSOra+xxNXrgoAcedP0YpwE7xl2otSBmOICnVkCUcyHXVUoan6hf56ejKb3B6og+KVhIQ4PtTVywkFVR9vMCldeAxtnAUXo4jWU6Bt9eoSRH/T55bOxatPyX6OTWnG93aI6Xz+byTEyfuG4S14hWDZ/q8tMyB5Zg4f1kk/zX6lEivzoc0YZKXJ86nFkvIzrxjymCHZNnnNBqk1ZHsbebn1r+xHDaV+bsHE+zU7KQEdm/CPanlOZkRD/u3QFzgs4WISEbGWJ3hrl34/N1huIcs37cUPGtBjvfYrJlM+Jv6LqrK6O5yBED7wOnS3Pb6GSPfMGYuE60dbdru3r3QaS9J+HOEqZo58pl4v8J/TY/Zp6srcwI1DC+gUzbOt/7SClmQR11aJevtkGmryvlx7kMT7XUdv+zMn1ckGyLIi6UB3frPnDu0TPzwlkyIbmzlT68j1Zlc5HyeEmPONojiuLZ7g/0DoxyX6Fdco3WXJtmyQBmwTSPIkxfKYu8zLeaV5F6GO3s/0Ld6rqoNaQYKZvBZQ1J+f2YojVXygRmNc/fl7Sa/FqfLPWq5jOiuXjsrOVvoPUj+G3kNs9hdLoFq3CD5gBTsE9WI9wSrfQI43WjwMvMTEPLPlt+dk6aXm7LWeJrtm42xp7XprJPs+ZEZy1M/Sw0Xjg0XgTqsEVnjVaLpt1YomdibNHSp5Wh/Opwa9WgPBMpyx6ZQQ0DpHRjqTCqfZGqHOMb1FuR1rpIqwOr1T0NcNd8CNK/1pdX9zf57h6pm+Tb9MgD4/ilT6t0SD6Xaa2O1JgCcr6m7au7+tvUgty7ZEGRMt/jxBXDp049Kqe5pL/UO1tKdt5aBHNv6bXuY2xsm+qfriCPaU1ktC4N4hr1iLX8rhzRkkW66vgcEWX+O+RTsd9RHTO7ve07iQr+hI03eVVZXhwpjEj/UuZtdyV63XXi14hiwpn2rrtAq/4bRgqMMZkEv2eZ0RvCXY5PEtij7ZL9XLVTfIo3ciS6SlIv1B8CbAxHvXauu3PLjNiM7VfQE7Vu37qvh8wvCeYo8TvLiV6HdrVj7aMulp7PRqujd7nic5UeZkt8rT5m1MeNLGyUV8S01efBXFiielwYE8Kl3ijqyF9P8joy8+lUKGXT21AuZhrYxjyneEm6B4oIn3d32evNfSKMo7tCr0tYlxq3SJQwG5fq/IBraTErdX5lH+LW85W7UeLsRGU7haHu7hbWfrOFjMn6JUrK2XBvV/Z2IUqRszBMoaf4Rm9ZfOjS/BwK/o6ULzo0HENyh03wb6+rhtp+B7chXuk6ZzQjakFb0F+KvTt6nMUe1Tp65VB36YdwCOcxBF1L0g9pJ60rO1OWJXeph9N/TVZgomJRetuz/hhcLvJIVjnVGc+QLJs8mqEy38WpOxbDIWQkRS7hfPhcQxrFkTLfaao3BkNdHkGRQx0e5h5D2Du3vevzcjlV62uVSygP3gXMiYvB4clfeaxi+4VYqInzRt49B7QORxXUzW7xv47D8LGc6vMK5ZbRd81eBLx17hfrjCz6w/XXjOUWMpvLOYbzTPPRWW/Jz4/9vqjWm0qd0bx7+uiP2jlgeC0U50Fl6RjvziIrbygVPBfwyZCq/6i/nZO/jfAqp1EmRx1K5pyinJrpIVMz37j0jc58FiKTpVMmU5GajSOadCO2oXbVTfhp5B5g3duh/F1K/otY//dn+9B6RNbDZNE5c9CmtpiyH/YUrU/P9v5smcR4l5fv9ragBc/C96gV7/nepf5417dVGFv5N0h4rd9RqeoXIpLl0z27rrowguLJG+eAzPd8I7pLz1ksvnl2HHC2aO5PLUu0oE/kmwXdUnzXkbJHc3Wsz+rx5ABv2Hfy/FCkfkNtHW3ncc+VOO+Xct5f4pyRdoocTpzPqu9mlXFpOFz6ee5srvulFGfb87zq3OhWKRe+g16NH1TgB46UTdL+S4qEJ6o6mzeroDnTMrknrCNlMpGsB4wzO/n7ro5s5xW85gHjv12Kvu1IugOydCn/HdEJ24ToJVo32yQ933SszqTeqpDWfI+Sadq7jnYemFuL1Vn6RM87zlyY/41gQesBd1NzM1HKnsQldLp0IzAmSnxHUjo3kOWRpQmRRaIyEyWZBXx7dx4gyzyAzpEgzZFIYSBKolfws4trG8v/P8Zq5XDz6sZnV6/d31z74ob+vzPeVz9Xv1CXYd/4rfoCZui+OgBOJ+pP6s/qL42/Nv7e+EfjW+763jmN+Zkq/Gv887+4kyDk</latexit> [Waddington, 1936] Conrad Waddington Geoffrey Schiebinger
  15. OT for Single cell genomics Gromov Wasserstein as metric learning

    Inverse OT for metric learning Wasserstein Singular Vectors for metric learning
  16. Supervised Ground Metric Learning c ↦ Wc (α, β) =

    infπ1 =α,π2 =β ⟨c, π⟩ + εKL(π|α ⊗ β) α ↦ Wc (α, β) = supf,g ⟨f, α⟩ + ⟨g, β⟩ − ε⟨ef ⊕ g−c ε , α ⊗ β⟩ convex ⟶ concave ⟶
  17. Supervised Ground Metric Learning c ↦ Wc (α, β) =

    infπ1 =α,π2 =β ⟨c, π⟩ + εKL(π|α ⊗ β) α ↦ Wc (α, β) = supf,g ⟨f, α⟩ + ⟨g, β⟩ − ε⟨ef ⊕ g−c ε , α ⊗ β⟩ convex ⟶ concave ⟶ inf c∈ 𝒞 ∑ i,j λi,j Wc (αi , αj ) Ground metric learning: [Cuturi, Avis 2014] α2 α3 λ1,2 > 0 α1 λ1,3 > 0 λ1,2 > 0
  18. Supervised Ground Metric Learning c ↦ Wc (α, β) =

    infπ1 =α,π2 =β ⟨c, π⟩ + εKL(π|α ⊗ β) α ↦ Wc (α, β) = supf,g ⟨f, α⟩ + ⟨g, β⟩ − ε⟨ef ⊕ g−c ε , α ⊗ β⟩ convex ⟶ concave ⟶ If : convex, congested optimal transport ∀(i, j), λi,j ≤ 0 xt xs 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Figure 5: 2D and 3D display of the optimal metric −2 −1.5 −1 −0.5 72 74 76 78 xt xs 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Figure 5: 2D and 3D display of the optimal metric ⇠?. 0 200 400 600 800 1000 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 200 400 600 800 1000 64 66 68 70 72 74 76 78 [Benmansour, Carlier, Peyré and Santambrogio, 2010] α2 α1 inf c∈ 𝒞 ∑ i,j λi,j Wc (αi , αj ) Ground metric learning: [Cuturi, Avis 2014] α2 α3 λ1,2 > 0 α1 λ1,3 > 0 λ1,2 > 0
  19. Supervised Ground Metric Learning c ↦ Wc (α, β) =

    infπ1 =α,π2 =β ⟨c, π⟩ + εKL(π|α ⊗ β) α ↦ Wc (α, β) = supf,g ⟨f, α⟩ + ⟨g, β⟩ − ε⟨ef ⊕ g−c ε , α ⊗ β⟩ convex ⟶ concave ⟶ If : convex, congested optimal transport ∀(i, j), λi,j ≤ 0 xt xs 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Figure 5: 2D and 3D display of the optimal metric −2 −1.5 −1 −0.5 72 74 76 78 xt xs 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Figure 5: 2D and 3D display of the optimal metric ⇠?. 0 200 400 600 800 1000 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 200 400 600 800 1000 64 66 68 70 72 74 76 78 [Benmansour, Carlier, Peyré and Santambrogio, 2010] α2 α1 inf c∈ 𝒞 ∑ i,j λi,j Wc (αi , αj ) Ground metric learning: [Cuturi, Avis 2014] α2 α3 λ1,2 > 0 α1 λ1,3 > 0 λ1,2 > 0 14 Matthieu Heitz et al. infc∈ 𝒞 ∫1 0 Wc (αt , ̂ αt ) Approximating curves by geodesics : ̂ αt c αt [Heitz, Bonneel, Coeurjolly, Cuturi and G. Peyré, 2021]
  20. Gromov-Wasserstein ↵ 2 M1 + (X) and dX distance on

    X. <latexit sha1_base64="1+NKKLxN5DihfabBzQ+RV5f3JvI=">AABFuXictVzvctu4EUeu/67uv1z7sV/Ys9NJeqlru9dpZzKduURWHF+cxIlkJ7ko8VASJSuhREWUFCc6PVEfos/Qj21foP3UV+juAiBACeSCbhqObRDEb3exBBa7CzDtcTxIpzs7f7/yyXe++73v/+DTH2786Mc/+enPrn7289M0mU060UkniZPJs3aYRvFgFJ1MB9M4ejaeROGwHUdP229q+PzpPJqkg2TUnL4fRy+HYX806A064RSqzq7Wt1phXAtag1HQejA8++LV7vXWs4vaja2NcNTd2Fq0iMViEnWX3TN4stwKuiBVOOpEQTIKtrDx1vbZ1c2d7R36F6wXdlVhU6h/x8lnn2+LluiKRHTETAxFJEZiCuVYhCKF64XYFTtiDHUvxQLqJlAa0PNILMUGYGfQKoIWIdS+gd99uHuhakdwjzRTQneASww/E0AG4hpgEmg3gTJyC+j5jChjbRHtBdFE2d7D37aiNYTaqTiHWg6nW/risC9T0RN/oj4MoE9jqsHedRSVGWkFJQ+sXk2BwhjqsNyF5xModwip9RwQJqW+o25Dev4vaom1eN9RbWfi3yTlNbgC0VC9TzIKoZgT/YDe5gyeSXli4NwHCpHqI5beka6H1PsRtF9A/UO4llTSOmnDtaDaZSmyBpcLWWORB3C5kAcs8gguF/KIRR7D5UIeKyRiJ6RzN74BlwvfYDk/hsuFfMwin8DlQj5hkadwuZCnLPIbuFzIb1jkXbhcyLss8j5cLuR9FtmEy4VsssgTuFzIExZZh8uFrCtk8UydwJUQnQEzK29DOc8DLUUMNbdZ+e6QdXRh73jM6U4Blp/V+/DXjd330GlUgK17jLteAZYfeQdgI91Y3hbdo9XEhb3HYg9hBLixhyz2a/G6APu1x0x7U4Dl59oRtHNjeev7AO7c2Acs9iGU3Fh+jXoENW7sI48VY1yAPWaxj8XbAqyP1Z8UYHm73wC74sby61QT2ruxPtZ0VoDl7ekpeDBuLL9aPYVaN/Ypi30mLgqwz1jsc7DubuxzjxX2QwFWr7EbtIL0yR+JYMaWUQuzWYmlMVALGf5xtrbE5Bu3oZ7D9DNMnzBDFnGQIQ48EUcZ4shbrjSzoyn5uzyXRoZoeCLa2dqEpSnbvpu1x1LsgdjPEPsriDKPFN+17sucvAtdwyGn2cqFJZ8+JZn9xlKkxkO55dWIRzmEHNvnNPJvUrSEERRqqozaebbGS2RA92WIdxS96V5qHjxumlkFG3XBotoOVJtFvXeg3rOomQM1Y1FzB2rOoszMt3EtjxFg9I/vYkF3cgRIH7n4CsAruA2rzj2YowGMn2PwAp9QzSP426DYm7vKJMNoHtdJzHK8zFniCZQWYhPqTVS4T/F1TDMsAslky0cqxsc7zG0s1JyTVniZreRBljHxpzMgefoZHfQWA5pP1ejcp5oleXeyVA1/L5v3ulQNXyeNL8mLl6Vq+KmSfnoJ2ZsK27wEtgGzaay0b8pVacj8i6Shyxu06qLFxbc6VGMG6V1UpH+o3szhJd5LjUpSP6ZcjUZq9S/N9a8KDaPn1NJzNSroPUmvV5eCyj0ZqbjXlKvKkNAqOlJymLuqbwbbdNWb0eVqNI7B46pRzL2wylVH7zjrjSlXo3EqZN5zSZ68Llej0ad7qQ9TrkYDsy2hivNNuaplRw3I2NmUq1r1EWWBMQckx7ysMV7RhPykmaI2IP+gPFtj+/zr6xjmbF5lMUI5JePbFtNpZ2tZuUTaX4jAqk0ryoH+xczywfI0FmKPja+kDNPc+r5Ox6zxqPkj0GIAs1/uAXA58xgk1DkJtN4xUNxlo658zzRuj8XhKOmtoFqqdsp6i4avzBrl686olovLTG+NHltkr1Mae2PyCY9Is5wejgrfcBFFTkNHOQ3x9Kro7oOar3nt77C48QpinI20Du0IyZ208jjVpfWGpeNrapdnCpfc8zHjF7PNPWVtMOZJyBahLGU87XY6j2TX4bp6U5gct3wW0BtFezUnqzGgHamUjUJ1tlh64wu6N7RPaE8OeUgaHXiPgaIyFnLXDLPomE8PyKLa9pbjjfrSGTpZTsnqantcju5b6L4DXT3GqcGK8RBKTYgZTuCu6RHlbGS6SkjjE/HbbHc0oTdYHtHHOQupaUh7E+UsZFmUfZ6j8g7QOBpklO5PY5WOxrfWKPFRv0seE7vmLf812rnV+9shjfHi0VyciekS1z3iGtCskbu68m6Vg5Rg4XyyR/5reS+RXxWOaEM5rq8szlIvI9rxjyiCHZNnHNNs42ZHvrWdn1p9ojkdC713jrvZCVnIgOxfAOtTQmMyoB/77IDeQZcWISYb6WN3Bpl34/J1BuwYM37cQMhTDWa8RWTLZsRf07VnV0pjUUYMch1YroxtrZMj8gUj4jpR1t3M7fLVB5HmnIQ9SiRFM1auE/8b9Fv/6HGyuTYiUMP4BlJl61zvI6GYBXUU0ipfboN0W1vKrUyGV0pqs/4ZmbZyku1TxIXy4GrdBc4dupe8cJRMSO50rY1cR8uyuUh5vKJH7G2Ponhp9/tqBUa5b9IquUlzrkWjpA+jYJpFEbotl0Ve5VvOK0/dj3b6f6FudJ3XGlIMhMngSg1x+f2IojVbyhhGtRy/b2g2ubU+WWlVzmdEY3FozeVvofZX8FvLre/96LRzVuEOjQFJwdwZjciaYK2FH687OV56ZGpa5t7wM2NSt7JrLhNfS+tmYux5ZSrHNGouVNZCly9D47VF47WnDpu012i0qOu1JTpjY4um2q305VeFW7MC5RlLmffINGrgIaUdS/lR7bJU+Rhfoz6wtHZYWiHMVns3wJ7zPkj3XF+d3d9mq3sg7pJv0yEPTMYvXZqlA/K5dG15pCYpIOcvlX21Z3+LapB7mywoUpbnOHHGyF2nDl3LTNJfq5UtITtvLII+t/ROtdE2tkXl368hhzQnUpqXGvEltYiU/LYcwYpF2rZ8joAy/yH5VNLvKI+Z7dbmnQQ5f8LEm3JWGV4yUhiR/rnM2+Fa9Hpoxa8BxYQz5V23gVb1N4wUJEZnEtyeZUpvCFc5uZMgPdo22c91OyV38UaWRNsk9UL82cPGyKjXjHV7bOke6779Blqi1s1bd7Xg+cXeHDl+l9nRC2lVGyofdbFyfzlaoVrl8vdlepit8DX6mFEbO7IwUV4e0xK3vLlIiapxkRgfLtV6UUX+apJXkVnuTvlS1q015XymQdqYc4qXuHOgiHB5d9ed3twNph/tNXptwtrUZA1HCbNxicoP2JYWs1LBSoRk13NrUmytR0XrheFhrxrGjktLGZEVjAWXu5Gt7T60ctEKn42RFDpCnuwtihNtmrfgwt+BcEWJmqNPDrEBfu5tURP1j3Aq4q0qy8xmQDVoE7orMXio+plvUa6jtxZ1m74PB38eA9A1J/2AVtSqskvKvOQ2dX/678gaTETESm9aVu+DzYXvyTqnKv0ZkIXjezMQ+pucqn3RHHx6kufiz0fub3C96An9bVO1PmjqfA/yHKrw0OcZ/N65aV2dl82pXF/rXHx5yHVA77xoHO4AFscspp2PhZpYb+Tjc0Dr0CuhrleL/7Ufmo/hVJ2XL7eUvjl77fHWZbtIZWbRL64+Zww3n9FczNGfZ5L1znhNbn7S/wsqvanE6s3Hp49+qRkDmtdCyHwoL53E26PIyOtLBfcHXDIk4j/ir1f4rxLeZjSK5KhCSe9XFFPTLXhq+stLV+/0Mx+ZDJ0imfLUTDzRoJOxNXEo7sJPLfMAq54Sld9Uyr+IdX9H24XaHlkPnU2XGYQW1UWUBTG7aV26N+doiyTGM73yjG8TanBP/Ihq8bzvQ2qPZ36bub4Vf0ki5/oDkYhuLjJZ3eUz86oNPcjvwMlckP7eN6Az9TKbJU+gDT32GOU5Khkp6a+fF4ToUly4KumCEHq0lFFuOym36UxSVEC7netbh0b4WO30474Dns8Ps+xSIH5HdaFaHXCl5qQ6dkj1gjIDbdL/DkRofxA34e9NVXZLerwmaUrvIC/RhfWs/CTY0jkuzNeM1ygPpjN1c9Uuoaje7B6WZ2L3C7nIE+/l+H4Jvm9J2aC39Ybi7okozx3OSmjOlEz2fu5I6Lyn1ANGs2E2Psrj53kJr7lH/+8Xou9bkh6ALG3Ktge0nzcherHSTZ2kl+cqy/O290qk1V9tSprmZKUZB/qMZBkH/Kqsxsx++eVZ+cqAX5i56dhz/bnHvgv2hJNInszkskeRh0TyjCh3fmXgpMRbjLHH+YzQo7d8X316ylGZsZLMPL6NnnvIMveg02Ok6bEU+qwkymKdXd3cXf3fR9YLp3vbuzvbu4/3Nr+6o/5nkk/FL8Xn4jqsxn8UX8GMPBYnwOkv4m/iH+Kf9Vv1sH5efy2bfnJFYX4hcv/q6X8Bsadz9A==</latexit> <latexit sha1_base64="1+NKKLxN5DihfabBzQ+RV5f3JvI=">AABFuXictVzvctu4EUeu/67uv1z7sV/Ys9NJeqlru9dpZzKduURWHF+cxIlkJ7ko8VASJSuhREWUFCc6PVEfos/Qj21foP3UV+juAiBACeSCbhqObRDEb3exBBa7CzDtcTxIpzs7f7/yyXe++73v/+DTH2786Mc/+enPrn7289M0mU060UkniZPJs3aYRvFgFJ1MB9M4ejaeROGwHUdP229q+PzpPJqkg2TUnL4fRy+HYX806A064RSqzq7Wt1phXAtag1HQejA8++LV7vXWs4vaja2NcNTd2Fq0iMViEnWX3TN4stwKuiBVOOpEQTIKtrDx1vbZ1c2d7R36F6wXdlVhU6h/x8lnn2+LluiKRHTETAxFJEZiCuVYhCKF64XYFTtiDHUvxQLqJlAa0PNILMUGYGfQKoIWIdS+gd99uHuhakdwjzRTQneASww/E0AG4hpgEmg3gTJyC+j5jChjbRHtBdFE2d7D37aiNYTaqTiHWg6nW/risC9T0RN/oj4MoE9jqsHedRSVGWkFJQ+sXk2BwhjqsNyF5xModwip9RwQJqW+o25Dev4vaom1eN9RbWfi3yTlNbgC0VC9TzIKoZgT/YDe5gyeSXli4NwHCpHqI5beka6H1PsRtF9A/UO4llTSOmnDtaDaZSmyBpcLWWORB3C5kAcs8gguF/KIRR7D5UIeKyRiJ6RzN74BlwvfYDk/hsuFfMwin8DlQj5hkadwuZCnLPIbuFzIb1jkXbhcyLss8j5cLuR9FtmEy4VsssgTuFzIExZZh8uFrCtk8UydwJUQnQEzK29DOc8DLUUMNbdZ+e6QdXRh73jM6U4Blp/V+/DXjd330GlUgK17jLteAZYfeQdgI91Y3hbdo9XEhb3HYg9hBLixhyz2a/G6APu1x0x7U4Dl59oRtHNjeev7AO7c2Acs9iGU3Fh+jXoENW7sI48VY1yAPWaxj8XbAqyP1Z8UYHm73wC74sby61QT2ruxPtZ0VoDl7ekpeDBuLL9aPYVaN/Ypi30mLgqwz1jsc7DubuxzjxX2QwFWr7EbtIL0yR+JYMaWUQuzWYmlMVALGf5xtrbE5Bu3oZ7D9DNMnzBDFnGQIQ48EUcZ4shbrjSzoyn5uzyXRoZoeCLa2dqEpSnbvpu1x1LsgdjPEPsriDKPFN+17sucvAtdwyGn2cqFJZ8+JZn9xlKkxkO55dWIRzmEHNvnNPJvUrSEERRqqozaebbGS2RA92WIdxS96V5qHjxumlkFG3XBotoOVJtFvXeg3rOomQM1Y1FzB2rOoszMt3EtjxFg9I/vYkF3cgRIH7n4CsAruA2rzj2YowGMn2PwAp9QzSP426DYm7vKJMNoHtdJzHK8zFniCZQWYhPqTVS4T/F1TDMsAslky0cqxsc7zG0s1JyTVniZreRBljHxpzMgefoZHfQWA5pP1ejcp5oleXeyVA1/L5v3ulQNXyeNL8mLl6Vq+KmSfnoJ2ZsK27wEtgGzaay0b8pVacj8i6Shyxu06qLFxbc6VGMG6V1UpH+o3szhJd5LjUpSP6ZcjUZq9S/N9a8KDaPn1NJzNSroPUmvV5eCyj0ZqbjXlKvKkNAqOlJymLuqbwbbdNWb0eVqNI7B46pRzL2wylVH7zjrjSlXo3EqZN5zSZ68Llej0ad7qQ9TrkYDsy2hivNNuaplRw3I2NmUq1r1EWWBMQckx7ysMV7RhPykmaI2IP+gPFtj+/zr6xjmbF5lMUI5JePbFtNpZ2tZuUTaX4jAqk0ryoH+xczywfI0FmKPja+kDNPc+r5Ox6zxqPkj0GIAs1/uAXA58xgk1DkJtN4xUNxlo658zzRuj8XhKOmtoFqqdsp6i4avzBrl686olovLTG+NHltkr1Mae2PyCY9Is5wejgrfcBFFTkNHOQ3x9Kro7oOar3nt77C48QpinI20Du0IyZ208jjVpfWGpeNrapdnCpfc8zHjF7PNPWVtMOZJyBahLGU87XY6j2TX4bp6U5gct3wW0BtFezUnqzGgHamUjUJ1tlh64wu6N7RPaE8OeUgaHXiPgaIyFnLXDLPomE8PyKLa9pbjjfrSGTpZTsnqantcju5b6L4DXT3GqcGK8RBKTYgZTuCu6RHlbGS6SkjjE/HbbHc0oTdYHtHHOQupaUh7E+UsZFmUfZ6j8g7QOBpklO5PY5WOxrfWKPFRv0seE7vmLf812rnV+9shjfHi0VyciekS1z3iGtCskbu68m6Vg5Rg4XyyR/5reS+RXxWOaEM5rq8szlIvI9rxjyiCHZNnHNNs42ZHvrWdn1p9ojkdC713jrvZCVnIgOxfAOtTQmMyoB/77IDeQZcWISYb6WN3Bpl34/J1BuwYM37cQMhTDWa8RWTLZsRf07VnV0pjUUYMch1YroxtrZMj8gUj4jpR1t3M7fLVB5HmnIQ9SiRFM1auE/8b9Fv/6HGyuTYiUMP4BlJl61zvI6GYBXUU0ipfboN0W1vKrUyGV0pqs/4ZmbZyku1TxIXy4GrdBc4dupe8cJRMSO50rY1cR8uyuUh5vKJH7G2Ponhp9/tqBUa5b9IquUlzrkWjpA+jYJpFEbotl0Ve5VvOK0/dj3b6f6FudJ3XGlIMhMngSg1x+f2IojVbyhhGtRy/b2g2ubU+WWlVzmdEY3FozeVvofZX8FvLre/96LRzVuEOjQFJwdwZjciaYK2FH687OV56ZGpa5t7wM2NSt7JrLhNfS+tmYux5ZSrHNGouVNZCly9D47VF47WnDpu012i0qOu1JTpjY4um2q305VeFW7MC5RlLmffINGrgIaUdS/lR7bJU+Rhfoz6wtHZYWiHMVns3wJ7zPkj3XF+d3d9mq3sg7pJv0yEPTMYvXZqlA/K5dG15pCYpIOcvlX21Z3+LapB7mywoUpbnOHHGyF2nDl3LTNJfq5UtITtvLII+t/ROtdE2tkXl368hhzQnUpqXGvEltYiU/LYcwYpF2rZ8joAy/yH5VNLvKI+Z7dbmnQQ5f8LEm3JWGV4yUhiR/rnM2+Fa9Hpoxa8BxYQz5V23gVb1N4wUJEZnEtyeZUpvCFc5uZMgPdo22c91OyV38UaWRNsk9UL82cPGyKjXjHV7bOke6779Blqi1s1bd7Xg+cXeHDl+l9nRC2lVGyofdbFyfzlaoVrl8vdlepit8DX6mFEbO7IwUV4e0xK3vLlIiapxkRgfLtV6UUX+apJXkVnuTvlS1q015XymQdqYc4qXuHOgiHB5d9ed3twNph/tNXptwtrUZA1HCbNxicoP2JYWs1LBSoRk13NrUmytR0XrheFhrxrGjktLGZEVjAWXu5Gt7T60ctEKn42RFDpCnuwtihNtmrfgwt+BcEWJmqNPDrEBfu5tURP1j3Aq4q0qy8xmQDVoE7orMXio+plvUa6jtxZ1m74PB38eA9A1J/2AVtSqskvKvOQ2dX/678gaTETESm9aVu+DzYXvyTqnKv0ZkIXjezMQ+pucqn3RHHx6kufiz0fub3C96An9bVO1PmjqfA/yHKrw0OcZ/N65aV2dl82pXF/rXHx5yHVA77xoHO4AFscspp2PhZpYb+Tjc0Dr0CuhrleL/7Ufmo/hVJ2XL7eUvjl77fHWZbtIZWbRL64+Zww3n9FczNGfZ5L1znhNbn7S/wsqvanE6s3Hp49+qRkDmtdCyHwoL53E26PIyOtLBfcHXDIk4j/ir1f4rxLeZjSK5KhCSe9XFFPTLXhq+stLV+/0Mx+ZDJ0imfLUTDzRoJOxNXEo7sJPLfMAq54Sld9Uyr+IdX9H24XaHlkPnU2XGYQW1UWUBTG7aV26N+doiyTGM73yjG8TanBP/Ihq8bzvQ2qPZ36bub4Vf0ki5/oDkYhuLjJZ3eUz86oNPcjvwMlckP7eN6Az9TKbJU+gDT32GOU5Khkp6a+fF4ToUly4KumCEHq0lFFuOym36UxSVEC7netbh0b4WO30474Dns8Ps+xSIH5HdaFaHXCl5qQ6dkj1gjIDbdL/DkRofxA34e9NVXZLerwmaUrvIC/RhfWs/CTY0jkuzNeM1ygPpjN1c9Uuoaje7B6WZ2L3C7nIE+/l+H4Jvm9J2aC39Ybi7okozx3OSmjOlEz2fu5I6Lyn1ANGs2E2Psrj53kJr7lH/+8Xou9bkh6ALG3Ktge0nzcherHSTZ2kl+cqy/O290qk1V9tSprmZKUZB/qMZBkH/Kqsxsx++eVZ+cqAX5i56dhz/bnHvgv2hJNInszkskeRh0TyjCh3fmXgpMRbjLHH+YzQo7d8X316ylGZsZLMPL6NnnvIMveg02Ok6bEU+qwkymKdXd3cXf3fR9YLp3vbuzvbu4/3Nr+6o/5nkk/FL8Xn4jqsxn8UX8GMPBYnwOkv4m/iH+Kf9Vv1sH5efy2bfnJFYX4hcv/q6X8Bsadz9A==</latexit> <latexit sha1_base64="1+NKKLxN5DihfabBzQ+RV5f3JvI=">AABFuXictVzvctu4EUeu/67uv1z7sV/Ys9NJeqlru9dpZzKduURWHF+cxIlkJ7ko8VASJSuhREWUFCc6PVEfos/Qj21foP3UV+juAiBACeSCbhqObRDEb3exBBa7CzDtcTxIpzs7f7/yyXe++73v/+DTH2786Mc/+enPrn7289M0mU060UkniZPJs3aYRvFgFJ1MB9M4ejaeROGwHUdP229q+PzpPJqkg2TUnL4fRy+HYX806A064RSqzq7Wt1phXAtag1HQejA8++LV7vXWs4vaja2NcNTd2Fq0iMViEnWX3TN4stwKuiBVOOpEQTIKtrDx1vbZ1c2d7R36F6wXdlVhU6h/x8lnn2+LluiKRHTETAxFJEZiCuVYhCKF64XYFTtiDHUvxQLqJlAa0PNILMUGYGfQKoIWIdS+gd99uHuhakdwjzRTQneASww/E0AG4hpgEmg3gTJyC+j5jChjbRHtBdFE2d7D37aiNYTaqTiHWg6nW/risC9T0RN/oj4MoE9jqsHedRSVGWkFJQ+sXk2BwhjqsNyF5xModwip9RwQJqW+o25Dev4vaom1eN9RbWfi3yTlNbgC0VC9TzIKoZgT/YDe5gyeSXli4NwHCpHqI5beka6H1PsRtF9A/UO4llTSOmnDtaDaZSmyBpcLWWORB3C5kAcs8gguF/KIRR7D5UIeKyRiJ6RzN74BlwvfYDk/hsuFfMwin8DlQj5hkadwuZCnLPIbuFzIb1jkXbhcyLss8j5cLuR9FtmEy4VsssgTuFzIExZZh8uFrCtk8UydwJUQnQEzK29DOc8DLUUMNbdZ+e6QdXRh73jM6U4Blp/V+/DXjd330GlUgK17jLteAZYfeQdgI91Y3hbdo9XEhb3HYg9hBLixhyz2a/G6APu1x0x7U4Dl59oRtHNjeev7AO7c2Acs9iGU3Fh+jXoENW7sI48VY1yAPWaxj8XbAqyP1Z8UYHm73wC74sby61QT2ruxPtZ0VoDl7ekpeDBuLL9aPYVaN/Ypi30mLgqwz1jsc7DubuxzjxX2QwFWr7EbtIL0yR+JYMaWUQuzWYmlMVALGf5xtrbE5Bu3oZ7D9DNMnzBDFnGQIQ48EUcZ4shbrjSzoyn5uzyXRoZoeCLa2dqEpSnbvpu1x1LsgdjPEPsriDKPFN+17sucvAtdwyGn2cqFJZ8+JZn9xlKkxkO55dWIRzmEHNvnNPJvUrSEERRqqozaebbGS2RA92WIdxS96V5qHjxumlkFG3XBotoOVJtFvXeg3rOomQM1Y1FzB2rOoszMt3EtjxFg9I/vYkF3cgRIH7n4CsAruA2rzj2YowGMn2PwAp9QzSP426DYm7vKJMNoHtdJzHK8zFniCZQWYhPqTVS4T/F1TDMsAslky0cqxsc7zG0s1JyTVniZreRBljHxpzMgefoZHfQWA5pP1ejcp5oleXeyVA1/L5v3ulQNXyeNL8mLl6Vq+KmSfnoJ2ZsK27wEtgGzaay0b8pVacj8i6Shyxu06qLFxbc6VGMG6V1UpH+o3szhJd5LjUpSP6ZcjUZq9S/N9a8KDaPn1NJzNSroPUmvV5eCyj0ZqbjXlKvKkNAqOlJymLuqbwbbdNWb0eVqNI7B46pRzL2wylVH7zjrjSlXo3EqZN5zSZ68Llej0ad7qQ9TrkYDsy2hivNNuaplRw3I2NmUq1r1EWWBMQckx7ysMV7RhPykmaI2IP+gPFtj+/zr6xjmbF5lMUI5JePbFtNpZ2tZuUTaX4jAqk0ryoH+xczywfI0FmKPja+kDNPc+r5Ox6zxqPkj0GIAs1/uAXA58xgk1DkJtN4xUNxlo658zzRuj8XhKOmtoFqqdsp6i4avzBrl686olovLTG+NHltkr1Mae2PyCY9Is5wejgrfcBFFTkNHOQ3x9Kro7oOar3nt77C48QpinI20Du0IyZ208jjVpfWGpeNrapdnCpfc8zHjF7PNPWVtMOZJyBahLGU87XY6j2TX4bp6U5gct3wW0BtFezUnqzGgHamUjUJ1tlh64wu6N7RPaE8OeUgaHXiPgaIyFnLXDLPomE8PyKLa9pbjjfrSGTpZTsnqantcju5b6L4DXT3GqcGK8RBKTYgZTuCu6RHlbGS6SkjjE/HbbHc0oTdYHtHHOQupaUh7E+UsZFmUfZ6j8g7QOBpklO5PY5WOxrfWKPFRv0seE7vmLf812rnV+9shjfHi0VyciekS1z3iGtCskbu68m6Vg5Rg4XyyR/5reS+RXxWOaEM5rq8szlIvI9rxjyiCHZNnHNNs42ZHvrWdn1p9ojkdC713jrvZCVnIgOxfAOtTQmMyoB/77IDeQZcWISYb6WN3Bpl34/J1BuwYM37cQMhTDWa8RWTLZsRf07VnV0pjUUYMch1YroxtrZMj8gUj4jpR1t3M7fLVB5HmnIQ9SiRFM1auE/8b9Fv/6HGyuTYiUMP4BlJl61zvI6GYBXUU0ipfboN0W1vKrUyGV0pqs/4ZmbZyku1TxIXy4GrdBc4dupe8cJRMSO50rY1cR8uyuUh5vKJH7G2Ponhp9/tqBUa5b9IquUlzrkWjpA+jYJpFEbotl0Ve5VvOK0/dj3b6f6FudJ3XGlIMhMngSg1x+f2IojVbyhhGtRy/b2g2ubU+WWlVzmdEY3FozeVvofZX8FvLre/96LRzVuEOjQFJwdwZjciaYK2FH687OV56ZGpa5t7wM2NSt7JrLhNfS+tmYux5ZSrHNGouVNZCly9D47VF47WnDpu012i0qOu1JTpjY4um2q305VeFW7MC5RlLmffINGrgIaUdS/lR7bJU+Rhfoz6wtHZYWiHMVns3wJ7zPkj3XF+d3d9mq3sg7pJv0yEPTMYvXZqlA/K5dG15pCYpIOcvlX21Z3+LapB7mywoUpbnOHHGyF2nDl3LTNJfq5UtITtvLII+t/ROtdE2tkXl368hhzQnUpqXGvEltYiU/LYcwYpF2rZ8joAy/yH5VNLvKI+Z7dbmnQQ5f8LEm3JWGV4yUhiR/rnM2+Fa9Hpoxa8BxYQz5V23gVb1N4wUJEZnEtyeZUpvCFc5uZMgPdo22c91OyV38UaWRNsk9UL82cPGyKjXjHV7bOke6779Blqi1s1bd7Xg+cXeHDl+l9nRC2lVGyofdbFyfzlaoVrl8vdlepit8DX6mFEbO7IwUV4e0xK3vLlIiapxkRgfLtV6UUX+apJXkVnuTvlS1q015XymQdqYc4qXuHOgiHB5d9ed3twNph/tNXptwtrUZA1HCbNxicoP2JYWs1LBSoRk13NrUmytR0XrheFhrxrGjktLGZEVjAWXu5Gt7T60ctEKn42RFDpCnuwtihNtmrfgwt+BcEWJmqNPDrEBfu5tURP1j3Aq4q0qy8xmQDVoE7orMXio+plvUa6jtxZ1m74PB38eA9A1J/2AVtSqskvKvOQ2dX/678gaTETESm9aVu+DzYXvyTqnKv0ZkIXjezMQ+pucqn3RHHx6kufiz0fub3C96An9bVO1PmjqfA/yHKrw0OcZ/N65aV2dl82pXF/rXHx5yHVA77xoHO4AFscspp2PhZpYb+Tjc0Dr0CuhrleL/7Ufmo/hVJ2XL7eUvjl77fHWZbtIZWbRL64+Zww3n9FczNGfZ5L1znhNbn7S/wsqvanE6s3Hp49+qRkDmtdCyHwoL53E26PIyOtLBfcHXDIk4j/ir1f4rxLeZjSK5KhCSe9XFFPTLXhq+stLV+/0Mx+ZDJ0imfLUTDzRoJOxNXEo7sJPLfMAq54Sld9Uyr+IdX9H24XaHlkPnU2XGYQW1UWUBTG7aV26N+doiyTGM73yjG8TanBP/Ihq8bzvQ2qPZ36bub4Vf0ki5/oDkYhuLjJZ3eUz86oNPcjvwMlckP7eN6Az9TKbJU+gDT32GOU5Khkp6a+fF4ToUly4KumCEHq0lFFuOym36UxSVEC7netbh0b4WO30474Dns8Ps+xSIH5HdaFaHXCl5qQ6dkj1gjIDbdL/DkRofxA34e9NVXZLerwmaUrvIC/RhfWs/CTY0jkuzNeM1ygPpjN1c9Uuoaje7B6WZ2L3C7nIE+/l+H4Jvm9J2aC39Ybi7okozx3OSmjOlEz2fu5I6Lyn1ANGs2E2Psrj53kJr7lH/+8Xou9bkh6ALG3Ktge0nzcherHSTZ2kl+cqy/O290qk1V9tSprmZKUZB/qMZBkH/Kqsxsx++eVZ+cqAX5i56dhz/bnHvgv2hJNInszkskeRh0TyjCh3fmXgpMRbjLHH+YzQo7d8X316ylGZsZLMPL6NnnvIMveg02Ok6bEU+qwkymKdXd3cXf3fR9YLp3vbuzvbu4/3Nr+6o/5nkk/FL8Xn4jqsxn8UX8GMPBYnwOkv4m/iH+Kf9Vv1sH5efy2bfnJFYX4hcv/q6X8Bsadz9A==</latexit> <latexit sha1_base64="1+NKKLxN5DihfabBzQ+RV5f3JvI=">AABFuXictVzvctu4EUeu/67uv1z7sV/Ys9NJeqlru9dpZzKduURWHF+cxIlkJ7ko8VASJSuhREWUFCc6PVEfos/Qj21foP3UV+juAiBACeSCbhqObRDEb3exBBa7CzDtcTxIpzs7f7/yyXe++73v/+DTH2786Mc/+enPrn7289M0mU060UkniZPJs3aYRvFgFJ1MB9M4ejaeROGwHUdP229q+PzpPJqkg2TUnL4fRy+HYX806A064RSqzq7Wt1phXAtag1HQejA8++LV7vXWs4vaja2NcNTd2Fq0iMViEnWX3TN4stwKuiBVOOpEQTIKtrDx1vbZ1c2d7R36F6wXdlVhU6h/x8lnn2+LluiKRHTETAxFJEZiCuVYhCKF64XYFTtiDHUvxQLqJlAa0PNILMUGYGfQKoIWIdS+gd99uHuhakdwjzRTQneASww/E0AG4hpgEmg3gTJyC+j5jChjbRHtBdFE2d7D37aiNYTaqTiHWg6nW/risC9T0RN/oj4MoE9jqsHedRSVGWkFJQ+sXk2BwhjqsNyF5xModwip9RwQJqW+o25Dev4vaom1eN9RbWfi3yTlNbgC0VC9TzIKoZgT/YDe5gyeSXli4NwHCpHqI5beka6H1PsRtF9A/UO4llTSOmnDtaDaZSmyBpcLWWORB3C5kAcs8gguF/KIRR7D5UIeKyRiJ6RzN74BlwvfYDk/hsuFfMwin8DlQj5hkadwuZCnLPIbuFzIb1jkXbhcyLss8j5cLuR9FtmEy4VsssgTuFzIExZZh8uFrCtk8UydwJUQnQEzK29DOc8DLUUMNbdZ+e6QdXRh73jM6U4Blp/V+/DXjd330GlUgK17jLteAZYfeQdgI91Y3hbdo9XEhb3HYg9hBLixhyz2a/G6APu1x0x7U4Dl59oRtHNjeev7AO7c2Acs9iGU3Fh+jXoENW7sI48VY1yAPWaxj8XbAqyP1Z8UYHm73wC74sby61QT2ruxPtZ0VoDl7ekpeDBuLL9aPYVaN/Ypi30mLgqwz1jsc7DubuxzjxX2QwFWr7EbtIL0yR+JYMaWUQuzWYmlMVALGf5xtrbE5Bu3oZ7D9DNMnzBDFnGQIQ48EUcZ4shbrjSzoyn5uzyXRoZoeCLa2dqEpSnbvpu1x1LsgdjPEPsriDKPFN+17sucvAtdwyGn2cqFJZ8+JZn9xlKkxkO55dWIRzmEHNvnNPJvUrSEERRqqozaebbGS2RA92WIdxS96V5qHjxumlkFG3XBotoOVJtFvXeg3rOomQM1Y1FzB2rOoszMt3EtjxFg9I/vYkF3cgRIH7n4CsAruA2rzj2YowGMn2PwAp9QzSP426DYm7vKJMNoHtdJzHK8zFniCZQWYhPqTVS4T/F1TDMsAslky0cqxsc7zG0s1JyTVniZreRBljHxpzMgefoZHfQWA5pP1ejcp5oleXeyVA1/L5v3ulQNXyeNL8mLl6Vq+KmSfnoJ2ZsK27wEtgGzaay0b8pVacj8i6Shyxu06qLFxbc6VGMG6V1UpH+o3szhJd5LjUpSP6ZcjUZq9S/N9a8KDaPn1NJzNSroPUmvV5eCyj0ZqbjXlKvKkNAqOlJymLuqbwbbdNWb0eVqNI7B46pRzL2wylVH7zjrjSlXo3EqZN5zSZ68Llej0ad7qQ9TrkYDsy2hivNNuaplRw3I2NmUq1r1EWWBMQckx7ysMV7RhPykmaI2IP+gPFtj+/zr6xjmbF5lMUI5JePbFtNpZ2tZuUTaX4jAqk0ryoH+xczywfI0FmKPja+kDNPc+r5Ox6zxqPkj0GIAs1/uAXA58xgk1DkJtN4xUNxlo658zzRuj8XhKOmtoFqqdsp6i4avzBrl686olovLTG+NHltkr1Mae2PyCY9Is5wejgrfcBFFTkNHOQ3x9Kro7oOar3nt77C48QpinI20Du0IyZ208jjVpfWGpeNrapdnCpfc8zHjF7PNPWVtMOZJyBahLGU87XY6j2TX4bp6U5gct3wW0BtFezUnqzGgHamUjUJ1tlh64wu6N7RPaE8OeUgaHXiPgaIyFnLXDLPomE8PyKLa9pbjjfrSGTpZTsnqantcju5b6L4DXT3GqcGK8RBKTYgZTuCu6RHlbGS6SkjjE/HbbHc0oTdYHtHHOQupaUh7E+UsZFmUfZ6j8g7QOBpklO5PY5WOxrfWKPFRv0seE7vmLf812rnV+9shjfHi0VyciekS1z3iGtCskbu68m6Vg5Rg4XyyR/5reS+RXxWOaEM5rq8szlIvI9rxjyiCHZNnHNNs42ZHvrWdn1p9ojkdC713jrvZCVnIgOxfAOtTQmMyoB/77IDeQZcWISYb6WN3Bpl34/J1BuwYM37cQMhTDWa8RWTLZsRf07VnV0pjUUYMch1YroxtrZMj8gUj4jpR1t3M7fLVB5HmnIQ9SiRFM1auE/8b9Fv/6HGyuTYiUMP4BlJl61zvI6GYBXUU0ipfboN0W1vKrUyGV0pqs/4ZmbZyku1TxIXy4GrdBc4dupe8cJRMSO50rY1cR8uyuUh5vKJH7G2Ponhp9/tqBUa5b9IquUlzrkWjpA+jYJpFEbotl0Ve5VvOK0/dj3b6f6FudJ3XGlIMhMngSg1x+f2IojVbyhhGtRy/b2g2ubU+WWlVzmdEY3FozeVvofZX8FvLre/96LRzVuEOjQFJwdwZjciaYK2FH687OV56ZGpa5t7wM2NSt7JrLhNfS+tmYux5ZSrHNGouVNZCly9D47VF47WnDpu012i0qOu1JTpjY4um2q305VeFW7MC5RlLmffINGrgIaUdS/lR7bJU+Rhfoz6wtHZYWiHMVns3wJ7zPkj3XF+d3d9mq3sg7pJv0yEPTMYvXZqlA/K5dG15pCYpIOcvlX21Z3+LapB7mywoUpbnOHHGyF2nDl3LTNJfq5UtITtvLII+t/ROtdE2tkXl368hhzQnUpqXGvEltYiU/LYcwYpF2rZ8joAy/yH5VNLvKI+Z7dbmnQQ5f8LEm3JWGV4yUhiR/rnM2+Fa9Hpoxa8BxYQz5V23gVb1N4wUJEZnEtyeZUpvCFc5uZMgPdo22c91OyV38UaWRNsk9UL82cPGyKjXjHV7bOke6779Blqi1s1bd7Xg+cXeHDl+l9nRC2lVGyofdbFyfzlaoVrl8vdlepit8DX6mFEbO7IwUV4e0xK3vLlIiapxkRgfLtV6UUX+apJXkVnuTvlS1q015XymQdqYc4qXuHOgiHB5d9ed3twNph/tNXptwtrUZA1HCbNxicoP2JYWs1LBSoRk13NrUmytR0XrheFhrxrGjktLGZEVjAWXu5Gt7T60ctEKn42RFDpCnuwtihNtmrfgwt+BcEWJmqNPDrEBfu5tURP1j3Aq4q0qy8xmQDVoE7orMXio+plvUa6jtxZ1m74PB38eA9A1J/2AVtSqskvKvOQ2dX/678gaTETESm9aVu+DzYXvyTqnKv0ZkIXjezMQ+pucqn3RHHx6kufiz0fub3C96An9bVO1PmjqfA/yHKrw0OcZ/N65aV2dl82pXF/rXHx5yHVA77xoHO4AFscspp2PhZpYb+Tjc0Dr0CuhrleL/7Ufmo/hVJ2XL7eUvjl77fHWZbtIZWbRL64+Zww3n9FczNGfZ5L1znhNbn7S/wsqvanE6s3Hp49+qRkDmtdCyHwoL53E26PIyOtLBfcHXDIk4j/ir1f4rxLeZjSK5KhCSe9XFFPTLXhq+stLV+/0Mx+ZDJ0imfLUTDzRoJOxNXEo7sJPLfMAq54Sld9Uyr+IdX9H24XaHlkPnU2XGYQW1UWUBTG7aV26N+doiyTGM73yjG8TanBP/Ihq8bzvQ2qPZ36bub4Vf0ki5/oDkYhuLjJZ3eUz86oNPcjvwMlckP7eN6Az9TKbJU+gDT32GOU5Khkp6a+fF4ToUly4KumCEHq0lFFuOym36UxSVEC7netbh0b4WO30474Dns8Ps+xSIH5HdaFaHXCl5qQ6dkj1gjIDbdL/DkRofxA34e9NVXZLerwmaUrvIC/RhfWs/CTY0jkuzNeM1ygPpjN1c9Uuoaje7B6WZ2L3C7nIE+/l+H4Jvm9J2aC39Ybi7okozx3OSmjOlEz2fu5I6Lyn1ANGs2E2Psrj53kJr7lH/+8Xou9bkh6ALG3Ktge0nzcherHSTZ2kl+cqy/O290qk1V9tSprmZKUZB/qMZBkH/Kqsxsx++eVZ+cqAX5i56dhz/bnHvgv2hJNInszkskeRh0TyjCh3fmXgpMRbjLHH+YzQo7d8X316ylGZsZLMPL6NnnvIMveg02Ok6bEU+qwkymKdXd3cXf3fR9YLp3vbuzvbu4/3Nr+6o/5nkk/FL8Xn4jqsxn8UX8GMPBYnwOkv4m/iH+Kf9Vv1sH5efy2bfnJFYX4hcv/q6X8Bsadz9A==</latexit> <latexit sha1_base64="1+NKKLxN5DihfabBzQ+RV5f3JvI=">AABFuXictVzvctu4EUeu/67uv1z7sV/Ys9NJeqlru9dpZzKduURWHF+cxIlkJ7ko8VASJSuhREWUFCc6PVEfos/Qj21foP3UV+juAiBACeSCbhqObRDEb3exBBa7CzDtcTxIpzs7f7/yyXe++73v/+DTH2786Mc/+enPrn7289M0mU060UkniZPJs3aYRvFgFJ1MB9M4ejaeROGwHUdP229q+PzpPJqkg2TUnL4fRy+HYX806A064RSqzq7Wt1phXAtag1HQejA8++LV7vXWs4vaja2NcNTd2Fq0iMViEnWX3TN4stwKuiBVOOpEQTIKtrDx1vbZ1c2d7R36F6wXdlVhU6h/x8lnn2+LluiKRHTETAxFJEZiCuVYhCKF64XYFTtiDHUvxQLqJlAa0PNILMUGYGfQKoIWIdS+gd99uHuhakdwjzRTQneASww/E0AG4hpgEmg3gTJyC+j5jChjbRHtBdFE2d7D37aiNYTaqTiHWg6nW/risC9T0RN/oj4MoE9jqsHedRSVGWkFJQ+sXk2BwhjqsNyF5xModwip9RwQJqW+o25Dev4vaom1eN9RbWfi3yTlNbgC0VC9TzIKoZgT/YDe5gyeSXli4NwHCpHqI5beka6H1PsRtF9A/UO4llTSOmnDtaDaZSmyBpcLWWORB3C5kAcs8gguF/KIRR7D5UIeKyRiJ6RzN74BlwvfYDk/hsuFfMwin8DlQj5hkadwuZCnLPIbuFzIb1jkXbhcyLss8j5cLuR9FtmEy4VsssgTuFzIExZZh8uFrCtk8UydwJUQnQEzK29DOc8DLUUMNbdZ+e6QdXRh73jM6U4Blp/V+/DXjd330GlUgK17jLteAZYfeQdgI91Y3hbdo9XEhb3HYg9hBLixhyz2a/G6APu1x0x7U4Dl59oRtHNjeev7AO7c2Acs9iGU3Fh+jXoENW7sI48VY1yAPWaxj8XbAqyP1Z8UYHm73wC74sby61QT2ruxPtZ0VoDl7ekpeDBuLL9aPYVaN/Ypi30mLgqwz1jsc7DubuxzjxX2QwFWr7EbtIL0yR+JYMaWUQuzWYmlMVALGf5xtrbE5Bu3oZ7D9DNMnzBDFnGQIQ48EUcZ4shbrjSzoyn5uzyXRoZoeCLa2dqEpSnbvpu1x1LsgdjPEPsriDKPFN+17sucvAtdwyGn2cqFJZ8+JZn9xlKkxkO55dWIRzmEHNvnNPJvUrSEERRqqozaebbGS2RA92WIdxS96V5qHjxumlkFG3XBotoOVJtFvXeg3rOomQM1Y1FzB2rOoszMt3EtjxFg9I/vYkF3cgRIH7n4CsAruA2rzj2YowGMn2PwAp9QzSP426DYm7vKJMNoHtdJzHK8zFniCZQWYhPqTVS4T/F1TDMsAslky0cqxsc7zG0s1JyTVniZreRBljHxpzMgefoZHfQWA5pP1ejcp5oleXeyVA1/L5v3ulQNXyeNL8mLl6Vq+KmSfnoJ2ZsK27wEtgGzaay0b8pVacj8i6Shyxu06qLFxbc6VGMG6V1UpH+o3szhJd5LjUpSP6ZcjUZq9S/N9a8KDaPn1NJzNSroPUmvV5eCyj0ZqbjXlKvKkNAqOlJymLuqbwbbdNWb0eVqNI7B46pRzL2wylVH7zjrjSlXo3EqZN5zSZ68Llej0ad7qQ9TrkYDsy2hivNNuaplRw3I2NmUq1r1EWWBMQckx7ysMV7RhPykmaI2IP+gPFtj+/zr6xjmbF5lMUI5JePbFtNpZ2tZuUTaX4jAqk0ryoH+xczywfI0FmKPja+kDNPc+r5Ox6zxqPkj0GIAs1/uAXA58xgk1DkJtN4xUNxlo658zzRuj8XhKOmtoFqqdsp6i4avzBrl686olovLTG+NHltkr1Mae2PyCY9Is5wejgrfcBFFTkNHOQ3x9Kro7oOar3nt77C48QpinI20Du0IyZ208jjVpfWGpeNrapdnCpfc8zHjF7PNPWVtMOZJyBahLGU87XY6j2TX4bp6U5gct3wW0BtFezUnqzGgHamUjUJ1tlh64wu6N7RPaE8OeUgaHXiPgaIyFnLXDLPomE8PyKLa9pbjjfrSGTpZTsnqantcju5b6L4DXT3GqcGK8RBKTYgZTuCu6RHlbGS6SkjjE/HbbHc0oTdYHtHHOQupaUh7E+UsZFmUfZ6j8g7QOBpklO5PY5WOxrfWKPFRv0seE7vmLf812rnV+9shjfHi0VyciekS1z3iGtCskbu68m6Vg5Rg4XyyR/5reS+RXxWOaEM5rq8szlIvI9rxjyiCHZNnHNNs42ZHvrWdn1p9ojkdC713jrvZCVnIgOxfAOtTQmMyoB/77IDeQZcWISYb6WN3Bpl34/J1BuwYM37cQMhTDWa8RWTLZsRf07VnV0pjUUYMch1YroxtrZMj8gUj4jpR1t3M7fLVB5HmnIQ9SiRFM1auE/8b9Fv/6HGyuTYiUMP4BlJl61zvI6GYBXUU0ipfboN0W1vKrUyGV0pqs/4ZmbZyku1TxIXy4GrdBc4dupe8cJRMSO50rY1cR8uyuUh5vKJH7G2Ponhp9/tqBUa5b9IquUlzrkWjpA+jYJpFEbotl0Ve5VvOK0/dj3b6f6FudJ3XGlIMhMngSg1x+f2IojVbyhhGtRy/b2g2ubU+WWlVzmdEY3FozeVvofZX8FvLre/96LRzVuEOjQFJwdwZjciaYK2FH687OV56ZGpa5t7wM2NSt7JrLhNfS+tmYux5ZSrHNGouVNZCly9D47VF47WnDpu012i0qOu1JTpjY4um2q305VeFW7MC5RlLmffINGrgIaUdS/lR7bJU+Rhfoz6wtHZYWiHMVns3wJ7zPkj3XF+d3d9mq3sg7pJv0yEPTMYvXZqlA/K5dG15pCYpIOcvlX21Z3+LapB7mywoUpbnOHHGyF2nDl3LTNJfq5UtITtvLII+t/ROtdE2tkXl368hhzQnUpqXGvEltYiU/LYcwYpF2rZ8joAy/yH5VNLvKI+Z7dbmnQQ5f8LEm3JWGV4yUhiR/rnM2+Fa9Hpoxa8BxYQz5V23gVb1N4wUJEZnEtyeZUpvCFc5uZMgPdo22c91OyV38UaWRNsk9UL82cPGyKjXjHV7bOke6779Blqi1s1bd7Xg+cXeHDl+l9nRC2lVGyofdbFyfzlaoVrl8vdlepit8DX6mFEbO7IwUV4e0xK3vLlIiapxkRgfLtV6UUX+apJXkVnuTvlS1q015XymQdqYc4qXuHOgiHB5d9ed3twNph/tNXptwtrUZA1HCbNxicoP2JYWs1LBSoRk13NrUmytR0XrheFhrxrGjktLGZEVjAWXu5Gt7T60ctEKn42RFDpCnuwtihNtmrfgwt+BcEWJmqNPDrEBfu5tURP1j3Aq4q0qy8xmQDVoE7orMXio+plvUa6jtxZ1m74PB38eA9A1J/2AVtSqskvKvOQ2dX/678gaTETESm9aVu+DzYXvyTqnKv0ZkIXjezMQ+pucqn3RHHx6kufiz0fub3C96An9bVO1PmjqfA/yHKrw0OcZ/N65aV2dl82pXF/rXHx5yHVA77xoHO4AFscspp2PhZpYb+Tjc0Dr0CuhrleL/7Ufmo/hVJ2XL7eUvjl77fHWZbtIZWbRL64+Zww3n9FczNGfZ5L1znhNbn7S/wsqvanE6s3Hp49+qRkDmtdCyHwoL53E26PIyOtLBfcHXDIk4j/ir1f4rxLeZjSK5KhCSe9XFFPTLXhq+stLV+/0Mx+ZDJ0imfLUTDzRoJOxNXEo7sJPLfMAq54Sld9Uyr+IdX9H24XaHlkPnU2XGYQW1UWUBTG7aV26N+doiyTGM73yjG8TanBP/Ihq8bzvQ2qPZ36bub4Vf0ki5/oDkYhuLjJZ3eUz86oNPcjvwMlckP7eN6Az9TKbJU+gDT32GOU5Khkp6a+fF4ToUly4KumCEHq0lFFuOym36UxSVEC7netbh0b4WO30474Dns8Ps+xSIH5HdaFaHXCl5qQ6dkj1gjIDbdL/DkRofxA34e9NVXZLerwmaUrvIC/RhfWs/CTY0jkuzNeM1ygPpjN1c9Uuoaje7B6WZ2L3C7nIE+/l+H4Jvm9J2aC39Ybi7okozx3OSmjOlEz2fu5I6Lyn1ANGs2E2Psrj53kJr7lH/+8Xou9bkh6ALG3Ktge0nzcherHSTZ2kl+cqy/O290qk1V9tSprmZKUZB/qMZBkH/Kqsxsx++eVZ+cqAX5i56dhz/bnHvgv2hJNInszkskeRh0TyjCh3fmXgpMRbjLHH+YzQo7d8X316ylGZsZLMPL6NnnvIMveg02Ok6bEU+qwkymKdXd3cXf3fR9YLp3vbuzvbu4/3Nr+6o/5nkk/FL8Xn4jqsxn8UX8GMPBYnwOkv4m/iH+Kf9Vv1sH5efy2bfnJFYX4hcv/q6X8Bsadz9A==</latexit> <latexit sha1_base64="/09Fxh2iHCiO5W2dT6pd82MVNIo=">AABF1nictVzdc9u4EUeuX9f0K9c+9oU9J52k47qOL+31etOZS2TH8cVJnEh2nIuSDCnRshLqI6SkONGpb52+9j/qa/+F/gftS/vYPnZ3ARCgBHJBNzXHFgjht7tYAovdBehonPSzyebm3y588I1vfuvb3/nwuxe/9/0f/PBHlz768VE2mqad+LAzSkbpcRRmcdIfxoeT/iSJj8dpHA6iJH4cvWrg949ncZr1R8PW5O04fjYIe8P+Sb8TTqDqxaWoPYnPADe/F0/SficYxGE2TeMgG4edOLg8bxOLeRp3F+1BODmNovnxYhG0oXE47CXx6+Bq+/issd4Ok8a63br7AuoX1y7/bvHi0trmxib9BKuF66qwJtTPweijjzdEW3TFSHTEVAxELIZiAuVEhCKD66m4LjbFGOqeiTnUpVDq0/exWIiLgJ1CqxhahFD7Cv724O6pqh3CPdLMCN0BLgn8poAMxBXAjKBdCmXkFtD3U6KMtWW050QTZXsLn5GiNYDaiTiFWg6nW/risC8TcSJ+S33oQ5/GVIO96ygqU9IKSh5YvZoAhTHUYbkL36dQ7hBS6zkgTEZ9R92G9P3fqSXW4n1HtZ2Kf5CUV+AKRFP1fpRTCMWM6Af0NKfwnZQnAc49oBCrPmLpDel6QL0fQvs51N+Ha0ElrZMIrjnVLiqRDbhcyAaL3IXLhdxlkftwuZD7LPIALhfyQCERm5LO3fgmXC58k+X8EC4X8iGLfASXC/mIRR7B5UIesciv4HIhv2KRt+FyIW+zyLtwuZB3WWQLLheyxSIP4XIhD1nkDlwu5I5Cls/UFK4R0ekzs/ImlIs80FIkUHOTle8WWUcX9pbHnO6UYPlZvQ2fbuy2h07jEuyOx7g7KcHyI28XbKQby9uiO7SauLB3WOwejAA3do/FfilelmC/9Jhpr0qw/Fzbh3ZuLG9978GdG3uPxd6HkhvLr1EPoMaNfeCxYoxLsAcs9qF4XYL1sfppCZa3+02wK24sv061oL0b62NNpyVY3p4egQfjxvKr1WOodWMfs9hjcVaCPWaxT8C6u7FPPFbYdyVYvcZepBWkR/5IDDO2ilqYz0osjYFayPBP8rUlId84gnoO08sxPcIMWMRujtj1ROzniH1vubLcjmbk7/Jcmjmi6YmI8rUJSxO2fTdvj6XEA7GdI7aXEFUeKT5r3ZcZeRe6hkNO8pULSz59GuX2G0uxGg/VllcjHhQQcmyf0shfp2gJIyjUVBW103yNl8iA7qsQbyh6073UPHjcJLcKNuqMRUUOVMSi3jpQb1nU1IGasqiZAzVjUWbm27i2xwgw+sdnMac7OQKkj1x+BeAV3IRV5w7M0QDGzwF4gY+o5gF8Nin25q4qyTCax3USsxzPCpY4hdJcrEG9iQq3Kb5OaIbFIJls+UDF+HiHuY25mnPSCi/ylTzIMyb+dPokTy+ng95iQPOpHp27VLMg706W6uHv5PNel+rhd0jjC/LiZakefqKkn5xD9pbCts6BbcJsGivtm3JdGjL/Imno8kVaddHi4lMdqDGD9M5q0t9TT2bvHM+lQSWpH1OuRyOz+pcV+leHhtFzZum5HhX0nqTXq0tB7Z4MVdxrynVlGNEqOlRymLu6TwbbdNWT0eV6NA7A42pQzD23ynVH7zjvjSnXo3EkZN5zQZ68Ltej0aN7qQ9TrkcDsy2hivNNua5lRw3I2NmU61r1IWWBMQckx7ysMV5RSn7SVFHrk39Qna2xff7VdQxzNs/zGKGakvFty+lE+VpWLZH2F2KwapOacqB/MbV8sCKNudhi4yspw6Swvq/SMWs8an4ftBjA7Jd7AFzOPAEJdU4CrXcCFK+zUVexZxq3xeJwlJwsodqqdsJ6i4avzBoV615QLReXmd4aPbbJXmc09sbkE+6TZjk97Jc+4TKKnIb2Cxri6dXR3Ts1X4va32Rx4yXEOB9pHdoRkjtp1XGqS+tNS8dX1C7PBC6552PGL2abT5S1wZhnRLYIZaniabfTeSS7DtfVdWFy3PK7gJ4o2qsZWY0+7UhlbBSqs8XSG5/TvaF9SHtyyEPS6MBzDBSVsZC7ZphFx3x6QBbVtrccb9SXztDJckZWV9vjanTPQvcc6PoxTgNWjPtQakHMcAh3LY8o52KuqxFpPBW/zHdHR/QEqyP6pGAhNQ1pb+KChayKsk8LVN4AGkeDjNL9aSzT0fj2CiU+6nfJY2LXouW/Qju3en87pDFePprLMzFd4rpFXAOaNXJXV94tc5ASzJ3fbJH/Wt1L5FeHI9pQjutzi7PUy5B2/GOKYMfkGSc027jZUWxt56eWv9GcDoTeO8fd7BFZyIDsXwDr04jGZEC/9tkBvYMuLUJCNtLH7vRz78bl6/TZMWb8uL6QpxrMeIvJlk2Jv6Zrz66MxqKMGOQ6sFga21on++QLxsQ1VdbdzO3q1QeR5pyEPUokRTNWrhL/a/RX/+pxsrYyIlDD+AQyZetcz2NEMQvqKKRVvtoG6ba2lJdzGZ4rqc36Z2S6XJBsmyIulAdX6y5w7tC95IWjJCW5s5U2ch2tyuYi5fGSHrG3JxTFS7vfUyswyr1Oq+Qazbk2jZIejIJJHkXotlwWeZlvNa8idT/a2f+FutF1UWtIMRAmgys1xOX3Y4rWbCkTGNVy/L6i2eTWerrUqprPkMbiwJrLX0Ptz+Cvllvf+9GJClbhFo0BScHcGY3ImmClhR+vWwVeemRqWube8DNjUreya84TX0vrZmLsWW0qBzRqzlTWQpfPQ+OlReOlpw5btNdotKjrtSV6wcYWLbVb6cuvDrdWDcpTljLvkWlU30NKO5byo9plqfIxvka9Y2ltsrRCmK32boA9532Q7rm+PLu/zlf3QNwm36ZDHpiMX7o0S/vkc+na6khNUkDON5R9tWd/m2qQe0QWFCnLc5w4Y+SuU4euRS7pz9XKNiI7byyCPrf0RrXRNrZN5U9WkAOaExnNS424QS1iJb8tR7BkkTYsnyOgzH9IPpX0O6pjZru1eSZBwZ8w8aacVYaXjBSGpH8u87a3Er3uWfFrQDHhVHnXEdCq/4SRgsToTILbs8zoCeEqJ3cSpEcbkf1ctVNyF29oSbRBUs/F7z1sjIx6zVi3x5buse7bL6Alat08dVcLnl/izZHjd54dvZBWtYHyUedL9+ejFapVrnhfpYfpEl+jjym1sSMLE+UVMW3xuTcXKVE9LhLjw6VeL+rIX0/yOjLL3Slfyrq1plzMNEgbc0rxEncOFBEu7+6q05u7xvQjWqEXEdamJms4SpiNG6n8gG1pMSsVLEVIdj23JiXWelS2Xhge9qph7Li0lDFZwURwuRvZ2u5DuxCt8NkYSaEj5MnesjjRpvk5XPg3EK4oUXP0ySE2wc+9KRpi5z2cinityjKzGVAN2oTuUgweqn4WW1Tr6LVF3abvw8GfRx90zUnfpxW1ruySMi+5Td2f/huyBqmIWelNy/p9sLnwPVnlVKc/fbJwfG/6Qr+TU7cvmoNPT4pc/PnI/Q2uFydCv9tUrw+aOt+DIoc6PPR5Br9nblrX52VzqtbXKhdfHnId0DsvGoc7gOUxi2nnY6FS64m8fw5oHU4qqOvV4n/th+ZjONXn5csto3fOXno8ddkuVplZ9IvrzxnDzWc0l3P05znKe2e8Jjc/6f8FtZ7UyOrN+6ePfqkZA5rXXMh8KC+dxNujyMjrSwX3B1wyjMS/xF8u8G8lvM5plMlRh5Leryinplvw1PSbl67e6e98ZDJ0ymQqUjPxRJNOxjbEnrgNv43cA6x7SlS+Uyk/Eet+j7YLtSdkPXQ2XWYQ2lQXUxbE7KZ16d6coy2TGM/0yjO+LajBPfF9qsXzvvepPZ75bRX6Vv4miZzr98RIdAuRyfIun5lXEfSguAMnc0H6fd+AztTLbJY8gTbw2GOU56hkpKTffp4Toktx4bKkc0Lo0VJFOXJSjuhMUlxCOyr0rUMjfKx2+nHfAc/nh3l2KRC/orpQrQ64UnNSHTikekqZgYj0vwkR2q/FOnyuq7Jb0oMVSTN6BkWJzqzvqk+CLZzjwrzNeIXyYDpTN1PtRhTVm93D6kzsdikXeeK9Gt+rwPcsKZv0tF5R3J2K6tzhtILmVMlk7+cOhc57Sj1gNBvm46M6fp5V8Jp59P9uKfquJekuyBJRtj2g/byU6CVKNzskvTxXWZ23vVMhrX5rU9I0JyvNONBnJKs44FtlDWb2yzfPqlcGfMPMTcee60889l2wJ5xE8mQmlz2KPSSSZ0S58yt9JyXeYow9zmeEHr3l++rTU47KlJVk6vFu9MxDlpkHnRNGmhOWQo+VRFks+n8kn9FPIAuf3lCFz67n/4/kaGvj+m82Pnm4tfbFLfWfST4UPxUfi6uwGn8qvoAZeSAOgdNfxT/Fv8V/do53/rDzx50/yaYfXFCYn4jCz86f/wsKQ4R9</latexit> Metric measure space X , (X, ↵, dX ): [Memoli 2011]<latexit sha1_base64="AkiNCXlhCi3VPvfsu2RRzG0SIYE=">AABEhnictVzrdhu3EYbTm+3ekvZn/2yquMfpcVRJcerm5PQc26IsK1Zs2qRkJ6btw8uKpr3k0rz5wug1+rd9hr5An6Nv0P7qK3QuwAJLYnewqqs9ErEgvpnBLDCYGWDVGSeD6Wxr65/nPvjBD3/045+cv3Dxpz/7+S9++eFHvzqepvNJNz7qpkk6edRpT+NkMIqPZoNZEj8aT+L2sJPEDzsvd/H7h4t4Mh2ko+bs7Th+Mmz3R4OTQbc9g6rW48ZsPhlGO1vb20+efbixtblFP9F6YVsXNpT+qacfffx31VI9laqumquhitVIzaCcqLaawvVYbastNYa6J2oJdRMoDej7WJ2qi4CdQ6sYWrSh9iX87cPdY107gnukOSV0F7gk8DsBZKQuASaFdhMoI7eIvp8TZawtor0kmijbW/jsaFpDqJ2p51Ar4UzLUBz2ZaZO1J+oDwPo05hqsHddTWVOWkHJI6dXM6Awhjos9+D7CZS7hDR6jggzpb6jbtv0/b+oJdbifVe3nat/k5SX4IpUQ/c+zSi01YLoR/Q05/Ady5MA5z5QiHUfsfSadD2k3o+g/RLq78J1SiWjkw5cS6o9LUXuwuVD7orIfbh8yH0ReQiXD3koIutw+ZB1jUTshHTuxzfg8uEbIuf7cPmQ90XkA7h8yAci8hguH/JYRH4Hlw/5nYi8BZcPeUtE3oHLh7wjIptw+ZBNEXkElw95JCL34PIh9zSyeKZO4EqJzkCYlTegnOeBliKBmhuifDfJOvqwNwPmdLcAK8/qGnz6sbUAncYF2L2AcXdSgJVH3j7YSD9WtkW3aTXxYW+L2AMYAX7sgYj9Wr0owH4dMNNeFmDluXYI7fxY2fp+A3d+7Dci9i6U/Fh5jboHNX7svYAVY1yArYvY++pVATbE6k8KsLLdb4Bd8WPldaoJ7f3YEGs6L8DK9vQYPBg/Vl6tHkKtH/tQxD5Sbwqwj0Tst2Dd/dhvA1bYdwVYs8ZepBWkT/5IDDO2jFo7m5VYGgO1tsA/ydaWhHzjDtRLmH6G6RNmKCL2M8R+IOIwQxwGyzXN7OiU/F2ZSyNDNAIRnWxtwtJMbN/L2mMpCUDUMkRtBVHmkeKzNn1ZkHdhaiTkLFu5sBTSpzSz31iK9Xgot7wGcS+H4LH9nEb+FYqWMIJCTZVRe56t8YyM6L4M8ZqiN9NLw0PGzTKr4KLeiKiOB9URUW89qLciau5BzUXUwoNaiCg7811cK2AEWP3js1jSHY8A9pGLrwi8ghuw6tyGORrB+KmDF/iAau7BZ4Nib+kqkwyjeVwnMcvxJGeJJ1Baqg2ot1FhjeLrhGZYDJJxy3s6xsc7zG0s9ZxjK3yareRRljEJpzMgefoZHfQWI5pP1ejcoZpT8u64VA1/O5v3plQNv0caPyUvnkvV8DMt/ewMsjc1tnkGbANm01hr35ar0uD8C9Mw5Yu06qLFxac61GMG6b2pSP9AP5mDMzyXXSqxfmy5Go2p079prn9VaFg9Tx09V6OC3hN7vaYUVe7JSMe9tlxVhpRW0ZGWw95VfTLYpqefjClXo1EHj2uXYu6lU646esdZb2y5Go1jxXnPU/LkTbkajT7dsz5suRoNzLa0dZxvy1UtO2qAY2dbrmrVR5QFxhwQj3musV7RhPykuaY2IP+gPFvj+vzr6xjmbJ5mMUI5JevbFtPpZGtZuUTGX4jBqs0qyoH+xdzxwfI0lmpHjK9YhllufV+nY9d41PwhaDGC2c97AFLOPAEJTU4CrXcCFLfFqCvfM4PbEXE4Sk5WUC1dOxO9RcuXs0b5umdUK8VltrdWjy2y11Mae2PyCQ9Js5IeDgufcBFFSUOHOQ3J9Kro7p2er3ntb4m48QpinI20Lu0I8U5aeZzq03rD0fElvcszg4v3fOz4xWzzibY2GPOkZItQljKebjuTR3LrcF29omyOm7+L6ImivVqQ1RjQjtRUjEJNtpi98SXdW9pHtCeHPJhGF55jpKmMFe+aYRYd8+kRWVTX3kq8UV8mQ8flKVldY4/L0X0H3fegq8c4u7Bi3IVSE2KGI7hrBkQ5FzNdpaTxifos2x1N6QmWR/RJzkIaGmxv4pyFLIuyn+eovAY0jgaO0sNprNIx+NYaJTnq98ljY9e85b9EO7dmf7tNY7x4NBdnYnrEdYe4RjRreFeX71Y5sARL7zc75L+W9xL5VeGINlTi+tThzHoZ0Y5/TBHsmDzjhGabNDvyrd381Oo3hlNdmb1z3M1OyUJGZP8iWJ9SGpMR/bpnB8wOOluEhGxkiN0ZZN6Nz9cZiGPM+nEDxaca7HiLyZbNib+h686uKY1Fjhh4HThdGdtGJ4fkC8bEdaKtu53b5asPIu05CXeUMEU7Vi4T/0/pr/k142RjbUSghvEJTLWt8z2PlGIW1FGbVvlyG2TaulJ+ksnwVEtt1z8r0yc5yWoUcaE8uFr3gHOX7pkXjpIJyT1da8PraFk2FymPV/SIvT2hKJ7tfl+vwCj3FVolN2jOtWiU9GEUzLIowrSVssirfMt55amH0Z7+X6hbXee1hhQjZTO4rCEpvx9TtOZKmcCo5vH7kmaTX+uTlVblfEY0FofOXP4eaj+Gv0Zucx9Gp5OzCjdpDDAFe2c1wjXRWoswXjdzvMzINLTsveVnx6Rp5dacJb5m62Zj7EVlKnUaNW901sKUz0LjhUPjRaAOm7TXaLVo6o0leibGFk29WxnKrwq3ZgXKc5Gy7JEZ1CBASjeWCqPaE6nKMb5BvRNpbYm02jBb3d0Ad86HIP1zfXV2f5+t7pG6Rb5Nlzwwjl96NEsH5HOZ2vJIjSkg56vavrqzv0U1yL1DFhQp8zlOnDG869Sl6zST9Hd6ZUvJzluLYM4tvdZtjI1tUfnzNeSQ5sSU5qVBXKUWsZbflSNasUibjs8RUea/TT4V+x3lMbPb2j6TKOdP2HiTZ5XlxZHCiPQvZd4O1qLXAyd+jSgmnGvvugO0qj9hpMAYk0nwe5ZTekK4yvFOAnu0HbKf63aKd/FGjkSbJPVS/TnAxnDUa8e6O7ZMj03ffg8tUev2qftayPySYI4Sv7Ps6LVpVRtqH3W5cn82Wm29yuXvy/QwX+Fr9TGnNm5kYaO8PKalvgrmwhJV48KYEC7VelFF/mqSV5GZd6dCKZvWhnI+08A25jnFS9I5UET4vLvLXm/uU6EfnTV6HcK61LhGooTZuFTnB1xLi1mpC2vrENdeKF2NEmclKlopDHV3tbD2my1kTNYvUVLOhlu7srdyUYqchWEKXcUneoviQ5fmV3Dh30j5okPDMSR32AD/9obaVXvv4TTEK13mjGZENWgLeiuxd1v3M9+iXEevHOou/RAO4TwGoGtJ+gGtpFVlZ8qy5C71cPqvyQpMVCxKb1tW74PLRe7JOqcq/RmQZZN7M1DmXZyqfTEcQnqS5xLOh/c1pF6cKPNOU7U+GOpyD/IcqvAw5xjCnrltXZ2Xy6lcX+tcQnnwKmB2XAwOd/6KYxXbLsRCTZwn8v45oHU4KaFuVov/tR+Gj+VUnVcotym9a/Yi4Klzu1hnZNEfrj5nLLeQ0VzMMZxnmvXOekt+fuz3RZWeVOr05v3TR3/UjgHDa6k4DypLx3h3FFl5Q6ngvoBPhlT9R/3jnPw2wquMRpEcVSiZfYpiaqaFTM28cenrnfkuRCZLp0imPDUbRzToROyuOlC34Hc38wCrng7ldyn5E7H+92d7UHtC1sNk0Tlz0KK6mLIfdhetR/f2/GyRxHiWl8/2NqEG98IPqRbP+d6l9njWt5nrW/EbJDzXv1Gp6uUiktXdPTuvOtCD/M4b54DMe74RnaXnLBafPBsG7C3y+SmOkMxbz0tC9CgeXJV0SQgzWsood7yUO3QWKS6g3cn1rUsjfKx3+HG/Ac/lt7OsUqT+QHVtvTrgSi1JVfdI9ZgyAh3S/xZEaF+oK/B5RZf9ktbXJJ3SM8hL9Mb5rvwE2Kl3XNi3GC9R/stk6Ba6XUrRvN01LM/A1gq58En3cny/BN93pGzQ03pJ8fZElecM5yU051omdx93pEy+k/WA0Ww7Gx/l8fOihNcioP93CtF3HEn3QZYOZdkj2sebEL1E62aPpOfzlOX52tsl0pq3NZmmPVFpx4E5G1m+F5DocVc8+/n8o5SjiQvouHOdT2JKuxOyPLI0IbJIVOaiJPOAd4QXAbIsAuicCNKciBT6oiR6BtP/5fiSfiIuXLuqC19uZ/+X43hnc/uPm5/f39m4flP/h47z6jfqt+oyrE7X1HUYoXV1BJzG6i/qr+pvtfO1zdoXtWvc9INzGvNrlfupXf8vDd4v0g==</latexit> [Sturm 2011] k(x, y, x0, y0) def. = |dX (x, x0) dY (y, y0)|2 <latexit sha1_base64="Me+rXVOTINPDARdCMVN99o+kq1w=">AABHA3ictVxLcxu5EYY3u8lGeXmTYy6T1Tprb2kdSXEqqdpK1dqUZGst27JJyfaatoqPIU2L4tB8yJJpHvNrckvlmuRX5JB/kJzyA3JJP4ABhsRMYxTHU5IwGHzdjR6g0d3AuDns98aT9fV/XPrgOx9+9N3vffz9lR/88Ec//snlT356OE6mo1Z80Er6yehJszGO+71BfDDpTfrxk+Eobpw0+/Hj5nEFnz8+jUfjXjKoTc6H8fOTRnfQ6/RajQlUHV1Ojq/Wzypr9fPK2qxO5GajuD0/+3ye3jf703h+/vn8WlSPX7fjTvRupd5+UiHcAuZa9CU8ewrPHHopfuXdi82jy6vr19fpX7Rc2NCFVaX/7SeffPpXVVdtlaiWmqoTFauBmkC5rxpqDNcztaHW1RDqnqsZ1I2g1KPnsZqrFcBOoVUMLRpQewy/u3D3TNcO4B5pjgndAi59+BkBMlJXAJNAuxGUkVtEz6dEGWvzaM+IJsp2Dn+bmtYJ1E7US6iVcKZlKA77MlEd9TvqQw/6NKQa7F1LU5mSVlDyyOnVBCgMoQ7LbXg+gnKLkEbPEWHG1HfUbYOe/5NaYi3et3TbqfoXSXkFrkhVde+TlEJDnRL9iN7mFJ6xPH3g3AUKse4jlt6Qrk+o9wNoP4P6+3DNqWR00oRrRrXzQmQFLh+yIiJvw+VD3haRe3D5kHsich8uH3JfIxE7Ip378VW4fPiqyPkhXD7kQxH5CC4f8pGIPITLhzwUkd/C5UN+KyJ34PIhd0TkXbh8yLsisgaXD1kTkQdw+ZAHInIbLh9yWyPzZ+oIroTo9IRZeRPKWR5oKfpQc1OU7xZZRx/2VsCcbuVg5Vm9BX/92K0AncY52O2AcdfJwcoj7zbYSD9WtkV3aDXxYe+I2F0YAX7sroj9Rr3KwX4TMNOOc7DyXNuDdn6sbH3vwZ0fe0/E3oeSHyuvUQ+gxo99ELBiDHOw+yL2oXqdgw2x+qMcrGz3q2BX/Fh5napBez82xJpOc7CyPT0ED8aPlVerx1Drxz4WsU/UWQ72iYh9Ctbdj30asMK+zcGaNXaFVpAu+SMxzNgiao10VmJpCNQaAv9+urb0yTduQr2E6aaYLmFORMTtFHE7ELGXIvaC5RqndnRM/q7MpZoiqoGIZro2YWkitm+n7bHUD0BspYitBUSRR4rv2vTllLwLUyMhJ+nKhaWQPiWp/cZSrMdDseU1iAcZBI/tlzTy1yhawggKNVVE7WW6xjMyovsixBuK3kwvDQ8ZN0mtgos6E1FND6opos49qHMRNfWgpiLq1IM6FVF25ru4esAIsPrHdzGjOx4B7CPnXxF4BTdh1bkDczSC8bMPXuAjqnkAf6sUe0tXkWQYzeM6iVmO5xlLPILSTK1CvY0Ktyi+7tMMi0EybvlAx/h4h7mNmZ5zbIXn6UoepRmTcDo9kqeb0kFvMaL5VI7OXaqZk3fHpXL4O+m8N6Vy+G3S+Jy8eC6Vw0+09JMLyF7T2NoFsFWYTUOtfVsuS4PzL0zDlFdo1UWLi2/1RI8ZpHdWkv6ufjO7F3gvFSqxfmy5HI2x079xpn9laFg9jx09l6OC3hN7vaYUle7JQMe9tlxWhoRW0YGWw96VfTPYpq3fjCmXo7EPHleFYu6ZUy47eodpb2y5HI1DxXnPOXnyplyORpfuWR+2XI4GZlsaOs635bKWHTXAsbMtl7XqA8oCYw6IxzzXWK9oRH7SVFPrkX9QnK1xff7ldQxzNi/SGKGYkvVt8+k007WsWCLjL8Rg1SYl5UD/Yur4YFkaM7UpxlcswySzvi/TsWs8an4PtBjB7Oc9ACln3gcJTU4CrXcfKG6IUVe2Zwa3KeJwlHQWUHVdOxG9RcuXs0bZuiOqleIy21urxzrZ6zGNvSH5hHukWUkPe7lvOI+ipKG9jIZkemV091bP16z210XccAExTEdai3aEeCetOE71ab3q6PiK3uWZwMV7Pnb8Yra5o60NxjwJ2SKUpYin287kkdw6XFfXlM1x87OI3ijaq1OyGj3akRqLUajJFrM3PqN7S/uA9uSQB9NowXuMNJWh4l0zzKJjPj0ii+raW4k36stk6Lg8Jqtr7HExuuugux50+RinAivGfSjVIGY4gLtaQJSzkuoqIY2P1Jfp7mhCb7A4ou9nLKShwfYmzljIoij7ZYbKG0DjaOAoPZzGIh2Dry9RkqN+nzw2ds1a/iu0c2v2txs0xvNHc34mpk1cN4lrRLOGd3X5bpEDSzDzPtkk/7W4l8ivDEe0oRLXFw5n1suAdvxjimCH5Bn3abZJsyPb2s1PLT4xnPaV2TvH3eyELGRE9i+C9SmhMRnRj3t2wOygs0Xok40MsTu91Lvx+To9cYxZP66n+FSDHW8x2bIp8Td03dk1prHIEQOvA/OFsW10ske+YExcR9q627ldvPog0p6TcEcJU7Rj5Srxv0a/zY8ZJ6tLIwI1jG9grG2d730kFLOgjhq0yhfbINPWlfKzVIYXWmq7/lmZPstItkURF8qDq3UbOLfonnnhKBmR3OOlNryOFmVzkfJwQY/Y2w5F8Wz3u3oFRrnXaJVcpTlXp1HShVEwSaMI01bKIi/yLeaVpR5Ge/x/oW51ndUaUoyUzeCyhqT8fkzRmitlH0Y1j99jmk1+rY8WWhXzGdBYPHHm8juo/QX8NnKb+zA6zYxVuEVjgCnYO6sRromWWoTxupXhZUamoWXvLT87Jk0rt+Yi8TVbNxtjn5amsk+j5kxnLUz5IjReOTReBeqwRnuNVoum3liiIzG2qOndylB+ZbjVSlCeipRlj8ygegFSurFUGNW2SFWO8Q3qrUhrXaTVgNnq7ga4cz4E6Z/ri7P7Xbq6R2qHfJsWeWAcv7RplvbI5zK1xZEaU0DON7R9dWd/nWqQe5MsKFLmc5w4Y3jXqUXXPJX0l3plS8jOW4tgzi290W2Mja1T+ddLyBOaE2OalwZxg1rEWn5XjmjBIl13fI6IMv8N8qnY7yiOmd3W9p1EGX/Cxps8qywvjhQGpH8p87a7FL3uOvFrRDHhVHvXTaBV/g0jBcaYTILfsxzTG8JVjncS2KNtkv1ctlO8izdwJLpOUs/U7wNsDEe9dqy7Y8v02PTtC2iJWrdv3ddC5tcP5ijxu8iOXoNWtRPto84W7i9Gq6FXuex9kR6mC3ytPqbUxo0sbJSXxdTVV8FcWKJyXBgTwqVcL8rIX07yMjLz7lQoZdPaUM5mGtjGvKR4SToHigifd3fV681dE/rRXKLXJKxLjWskSpiNS3R+wLW0mJWKFiIkt15ak/rOepS3Xlge7qph7ThbypisYF9JuRtu7fahnolW5GwMU2gpPtmbFye6NL+CC39HyhclGo4hOcQq+Lk3VUVtv4dTEa91mTObEdWgTWgvxOAN3c9si2IdvXaou/RDOITz6IGuJel7tKKWlZ0py5K71MPpvyFrMFKxKL1tWb4PLhe5J8ucyvSnRxZO7k1PmW9yyvbFcAjpSZZLOB/e35B60VHm26ZyfTDU5R5kOZThYc4zhL1z27o8L5dTsb6WuYTy4HXA7LwYHO4A5scstl2IhRo5b+T9c0Dr0CmgblaL/7Ufho/lVJ5XKLcxfXP2KuCtc7tYZ2bRLy4/Zyy3kNGczzGcZ5L2znpNfn7s/0Wl3lTi9Ob900e/1I4Bw2umOB8qS8d4dxRZeUOp4P6AT4ZE/Vv97ZL8VcLrlEaeHGUomf2KfGqmhUzNfHnp6515FiKTpZMnU5aajSeqdDK2onbVDvxUUg+w7ClR/qaS/yLW/x1tG2o7ZD1MNp0zCHWqiykLYnfT2nRvz9HmSYxnevmMbw1qcE98j2rxvO99ao9nfmuZvuV/ScJz/Z5KVDsTmSzu8tl51YQeZHfgOBdkvveN6Ew9Z7P4BNpJwB4jn6PiSMl8/TwjRJviwkVJZ4Qwo6WIctNLuUlnkuIc2s1M31o0wod6px/3HfB8fiPNLkXqV1TX0KsDrtSSVPseqZ5RZqBJ+l+HCO03ag3+rumyX9L9JUnH9A6yEp05z4pPgs2948J+zXiF8mAmU3eq2yUU1dvdw+JM7FYuFz7xXozvFuC7jpRVelvHFHePVHHucFpAc6plcvdzB8rkPVkPGM020vFRHD+fFvA6Dej/3Vz0XUfS2yBLk7LtEe3njYheX+tmm6Tnc5XFeds7BdKarzaZpj1ZaceBOSNZxAG/KqsIs5+/PCteGfALMz8dd64/Ddh3keSRZZElkaVoQ6+L5Wiro0DdtKHfkkRMLUQ/+KalN8YnV6XsWhzwxvgMrXS+p+elJFvUYcD5lUZAb+W+hvRUojIVJZkGfDt+GiDLaQCdjiBNR6TQFSXRFv3o8urG4v/Oslw43Ly+sX594+GN1a9v6f+55WP1c/Wpugreym/V12Cx9tUBcPq7+s+lDy99tPOHnT/u/Gnnz9z0g0sa8zOV+bfzl/8Cm1zBIg==</latexit> <latexit sha1_base64="Me+rXVOTINPDARdCMVN99o+kq1w=">AABHA3ictVxLcxu5EYY3u8lGeXmTYy6T1Tprb2kdSXEqqdpK1dqUZGst27JJyfaatoqPIU2L4tB8yJJpHvNrckvlmuRX5JB/kJzyA3JJP4ABhsRMYxTHU5IwGHzdjR6g0d3AuDns98aT9fV/XPrgOx9+9N3vffz9lR/88Ec//snlT356OE6mo1Z80Er6yehJszGO+71BfDDpTfrxk+Eobpw0+/Hj5nEFnz8+jUfjXjKoTc6H8fOTRnfQ6/RajQlUHV1Ojq/Wzypr9fPK2qxO5GajuD0/+3ye3jf703h+/vn8WlSPX7fjTvRupd5+UiHcAuZa9CU8ewrPHHopfuXdi82jy6vr19fpX7Rc2NCFVaX/7SeffPpXVVdtlaiWmqoTFauBmkC5rxpqDNcztaHW1RDqnqsZ1I2g1KPnsZqrFcBOoVUMLRpQewy/u3D3TNcO4B5pjgndAi59+BkBMlJXAJNAuxGUkVtEz6dEGWvzaM+IJsp2Dn+bmtYJ1E7US6iVcKZlKA77MlEd9TvqQw/6NKQa7F1LU5mSVlDyyOnVBCgMoQ7LbXg+gnKLkEbPEWHG1HfUbYOe/5NaYi3et3TbqfoXSXkFrkhVde+TlEJDnRL9iN7mFJ6xPH3g3AUKse4jlt6Qrk+o9wNoP4P6+3DNqWR00oRrRrXzQmQFLh+yIiJvw+VD3haRe3D5kHsich8uH3JfIxE7Ip378VW4fPiqyPkhXD7kQxH5CC4f8pGIPITLhzwUkd/C5UN+KyJ34PIhd0TkXbh8yLsisgaXD1kTkQdw+ZAHInIbLh9yWyPzZ+oIroTo9IRZeRPKWR5oKfpQc1OU7xZZRx/2VsCcbuVg5Vm9BX/92K0AncY52O2AcdfJwcoj7zbYSD9WtkV3aDXxYe+I2F0YAX7sroj9Rr3KwX4TMNOOc7DyXNuDdn6sbH3vwZ0fe0/E3oeSHyuvUQ+gxo99ELBiDHOw+yL2oXqdgw2x+qMcrGz3q2BX/Fh5napBez82xJpOc7CyPT0ED8aPlVerx1Drxz4WsU/UWQ72iYh9Ctbdj30asMK+zcGaNXaFVpAu+SMxzNgiao10VmJpCNQaAv9+urb0yTduQr2E6aaYLmFORMTtFHE7ELGXIvaC5RqndnRM/q7MpZoiqoGIZro2YWkitm+n7bHUD0BspYitBUSRR4rv2vTllLwLUyMhJ+nKhaWQPiWp/cZSrMdDseU1iAcZBI/tlzTy1yhawggKNVVE7WW6xjMyovsixBuK3kwvDQ8ZN0mtgos6E1FND6opos49qHMRNfWgpiLq1IM6FVF25ru4esAIsPrHdzGjOx4B7CPnXxF4BTdh1bkDczSC8bMPXuAjqnkAf6sUe0tXkWQYzeM6iVmO5xlLPILSTK1CvY0Ktyi+7tMMi0EybvlAx/h4h7mNmZ5zbIXn6UoepRmTcDo9kqeb0kFvMaL5VI7OXaqZk3fHpXL4O+m8N6Vy+G3S+Jy8eC6Vw0+09JMLyF7T2NoFsFWYTUOtfVsuS4PzL0zDlFdo1UWLi2/1RI8ZpHdWkv6ufjO7F3gvFSqxfmy5HI2x079xpn9laFg9jx09l6OC3hN7vaYUle7JQMe9tlxWhoRW0YGWw96VfTPYpq3fjCmXo7EPHleFYu6ZUy47eodpb2y5HI1DxXnPOXnyplyORpfuWR+2XI4GZlsaOs635bKWHTXAsbMtl7XqA8oCYw6IxzzXWK9oRH7SVFPrkX9QnK1xff7ldQxzNi/SGKGYkvVt8+k007WsWCLjL8Rg1SYl5UD/Yur4YFkaM7UpxlcswySzvi/TsWs8an4PtBjB7Oc9ACln3gcJTU4CrXcfKG6IUVe2Zwa3KeJwlHQWUHVdOxG9RcuXs0bZuiOqleIy21urxzrZ6zGNvSH5hHukWUkPe7lvOI+ipKG9jIZkemV091bP16z210XccAExTEdai3aEeCetOE71ab3q6PiK3uWZwMV7Pnb8Yra5o60NxjwJ2SKUpYin287kkdw6XFfXlM1x87OI3ijaq1OyGj3akRqLUajJFrM3PqN7S/uA9uSQB9NowXuMNJWh4l0zzKJjPj0ii+raW4k36stk6Lg8Jqtr7HExuuugux50+RinAivGfSjVIGY4gLtaQJSzkuoqIY2P1Jfp7mhCb7A4ou9nLKShwfYmzljIoij7ZYbKG0DjaOAoPZzGIh2Dry9RkqN+nzw2ds1a/iu0c2v2txs0xvNHc34mpk1cN4lrRLOGd3X5bpEDSzDzPtkk/7W4l8ivDEe0oRLXFw5n1suAdvxjimCH5Bn3abZJsyPb2s1PLT4xnPaV2TvH3eyELGRE9i+C9SmhMRnRj3t2wOygs0Xok40MsTu91Lvx+To9cYxZP66n+FSDHW8x2bIp8Td03dk1prHIEQOvA/OFsW10ske+YExcR9q627ldvPog0p6TcEcJU7Rj5Srxv0a/zY8ZJ6tLIwI1jG9grG2d730kFLOgjhq0yhfbINPWlfKzVIYXWmq7/lmZPstItkURF8qDq3UbOLfonnnhKBmR3OOlNryOFmVzkfJwQY/Y2w5F8Wz3u3oFRrnXaJVcpTlXp1HShVEwSaMI01bKIi/yLeaVpR5Ge/x/oW51ndUaUoyUzeCyhqT8fkzRmitlH0Y1j99jmk1+rY8WWhXzGdBYPHHm8juo/QX8NnKb+zA6zYxVuEVjgCnYO6sRromWWoTxupXhZUamoWXvLT87Jk0rt+Yi8TVbNxtjn5amsk+j5kxnLUz5IjReOTReBeqwRnuNVoum3liiIzG2qOndylB+ZbjVSlCeipRlj8ygegFSurFUGNW2SFWO8Q3qrUhrXaTVgNnq7ga4cz4E6Z/ri7P7Xbq6R2qHfJsWeWAcv7RplvbI5zK1xZEaU0DON7R9dWd/nWqQe5MsKFLmc5w4Y3jXqUXXPJX0l3plS8jOW4tgzi290W2Mja1T+ddLyBOaE2OalwZxg1rEWn5XjmjBIl13fI6IMv8N8qnY7yiOmd3W9p1EGX/Cxps8qywvjhQGpH8p87a7FL3uOvFrRDHhVHvXTaBV/g0jBcaYTILfsxzTG8JVjncS2KNtkv1ctlO8izdwJLpOUs/U7wNsDEe9dqy7Y8v02PTtC2iJWrdv3ddC5tcP5ijxu8iOXoNWtRPto84W7i9Gq6FXuex9kR6mC3ytPqbUxo0sbJSXxdTVV8FcWKJyXBgTwqVcL8rIX07yMjLz7lQoZdPaUM5mGtjGvKR4SToHigifd3fV681dE/rRXKLXJKxLjWskSpiNS3R+wLW0mJWKFiIkt15ak/rOepS3Xlge7qph7ThbypisYF9JuRtu7fahnolW5GwMU2gpPtmbFye6NL+CC39HyhclGo4hOcQq+Lk3VUVtv4dTEa91mTObEdWgTWgvxOAN3c9si2IdvXaou/RDOITz6IGuJel7tKKWlZ0py5K71MPpvyFrMFKxKL1tWb4PLhe5J8ucyvSnRxZO7k1PmW9yyvbFcAjpSZZLOB/e35B60VHm26ZyfTDU5R5kOZThYc4zhL1z27o8L5dTsb6WuYTy4HXA7LwYHO4A5scstl2IhRo5b+T9c0Dr0CmgblaL/7Ufho/lVJ5XKLcxfXP2KuCtc7tYZ2bRLy4/Zyy3kNGczzGcZ5L2znpNfn7s/0Wl3lTi9Ob900e/1I4Bw2umOB8qS8d4dxRZeUOp4P6AT4ZE/Vv97ZL8VcLrlEaeHGUomf2KfGqmhUzNfHnp6515FiKTpZMnU5aajSeqdDK2onbVDvxUUg+w7ClR/qaS/yLW/x1tG2o7ZD1MNp0zCHWqiykLYnfT2nRvz9HmSYxnevmMbw1qcE98j2rxvO99ao9nfmuZvuV/ScJz/Z5KVDsTmSzu8tl51YQeZHfgOBdkvveN6Ew9Z7P4BNpJwB4jn6PiSMl8/TwjRJviwkVJZ4Qwo6WIctNLuUlnkuIc2s1M31o0wod6px/3HfB8fiPNLkXqV1TX0KsDrtSSVPseqZ5RZqBJ+l+HCO03ag3+rumyX9L9JUnH9A6yEp05z4pPgs2948J+zXiF8mAmU3eq2yUU1dvdw+JM7FYuFz7xXozvFuC7jpRVelvHFHePVHHucFpAc6plcvdzB8rkPVkPGM020vFRHD+fFvA6Dej/3Vz0XUfS2yBLk7LtEe3njYheX+tmm6Tnc5XFeds7BdKarzaZpj1ZaceBOSNZxAG/KqsIs5+/PCteGfALMz8dd64/Ddh3keSRZZElkaVoQ6+L5Wiro0DdtKHfkkRMLUQ/+KalN8YnV6XsWhzwxvgMrXS+p+elJFvUYcD5lUZAb+W+hvRUojIVJZkGfDt+GiDLaQCdjiBNR6TQFSXRFv3o8urG4v/Oslw43Ly+sX594+GN1a9v6f+55WP1c/Wpugreym/V12Cx9tUBcPq7+s+lDy99tPOHnT/u/Gnnz9z0g0sa8zOV+bfzl/8Cm1zBIg==</latexit> <latexit sha1_base64="Me+rXVOTINPDARdCMVN99o+kq1w=">AABHA3ictVxLcxu5EYY3u8lGeXmTYy6T1Tprb2kdSXEqqdpK1dqUZGst27JJyfaatoqPIU2L4tB8yJJpHvNrckvlmuRX5JB/kJzyA3JJP4ABhsRMYxTHU5IwGHzdjR6g0d3AuDns98aT9fV/XPrgOx9+9N3vffz9lR/88Ec//snlT356OE6mo1Z80Er6yehJszGO+71BfDDpTfrxk+Eobpw0+/Hj5nEFnz8+jUfjXjKoTc6H8fOTRnfQ6/RajQlUHV1Ojq/Wzypr9fPK2qxO5GajuD0/+3ye3jf703h+/vn8WlSPX7fjTvRupd5+UiHcAuZa9CU8ewrPHHopfuXdi82jy6vr19fpX7Rc2NCFVaX/7SeffPpXVVdtlaiWmqoTFauBmkC5rxpqDNcztaHW1RDqnqsZ1I2g1KPnsZqrFcBOoVUMLRpQewy/u3D3TNcO4B5pjgndAi59+BkBMlJXAJNAuxGUkVtEz6dEGWvzaM+IJsp2Dn+bmtYJ1E7US6iVcKZlKA77MlEd9TvqQw/6NKQa7F1LU5mSVlDyyOnVBCgMoQ7LbXg+gnKLkEbPEWHG1HfUbYOe/5NaYi3et3TbqfoXSXkFrkhVde+TlEJDnRL9iN7mFJ6xPH3g3AUKse4jlt6Qrk+o9wNoP4P6+3DNqWR00oRrRrXzQmQFLh+yIiJvw+VD3haRe3D5kHsich8uH3JfIxE7Ip378VW4fPiqyPkhXD7kQxH5CC4f8pGIPITLhzwUkd/C5UN+KyJ34PIhd0TkXbh8yLsisgaXD1kTkQdw+ZAHInIbLh9yWyPzZ+oIroTo9IRZeRPKWR5oKfpQc1OU7xZZRx/2VsCcbuVg5Vm9BX/92K0AncY52O2AcdfJwcoj7zbYSD9WtkV3aDXxYe+I2F0YAX7sroj9Rr3KwX4TMNOOc7DyXNuDdn6sbH3vwZ0fe0/E3oeSHyuvUQ+gxo99ELBiDHOw+yL2oXqdgw2x+qMcrGz3q2BX/Fh5napBez82xJpOc7CyPT0ED8aPlVerx1Drxz4WsU/UWQ72iYh9Ctbdj30asMK+zcGaNXaFVpAu+SMxzNgiao10VmJpCNQaAv9+urb0yTduQr2E6aaYLmFORMTtFHE7ELGXIvaC5RqndnRM/q7MpZoiqoGIZro2YWkitm+n7bHUD0BspYitBUSRR4rv2vTllLwLUyMhJ+nKhaWQPiWp/cZSrMdDseU1iAcZBI/tlzTy1yhawggKNVVE7WW6xjMyovsixBuK3kwvDQ8ZN0mtgos6E1FND6opos49qHMRNfWgpiLq1IM6FVF25ru4esAIsPrHdzGjOx4B7CPnXxF4BTdh1bkDczSC8bMPXuAjqnkAf6sUe0tXkWQYzeM6iVmO5xlLPILSTK1CvY0Ktyi+7tMMi0EybvlAx/h4h7mNmZ5zbIXn6UoepRmTcDo9kqeb0kFvMaL5VI7OXaqZk3fHpXL4O+m8N6Vy+G3S+Jy8eC6Vw0+09JMLyF7T2NoFsFWYTUOtfVsuS4PzL0zDlFdo1UWLi2/1RI8ZpHdWkv6ufjO7F3gvFSqxfmy5HI2x079xpn9laFg9jx09l6OC3hN7vaYUle7JQMe9tlxWhoRW0YGWw96VfTPYpq3fjCmXo7EPHleFYu6ZUy47eodpb2y5HI1DxXnPOXnyplyORpfuWR+2XI4GZlsaOs635bKWHTXAsbMtl7XqA8oCYw6IxzzXWK9oRH7SVFPrkX9QnK1xff7ldQxzNi/SGKGYkvVt8+k007WsWCLjL8Rg1SYl5UD/Yur4YFkaM7UpxlcswySzvi/TsWs8an4PtBjB7Oc9ACln3gcJTU4CrXcfKG6IUVe2Zwa3KeJwlHQWUHVdOxG9RcuXs0bZuiOqleIy21urxzrZ6zGNvSH5hHukWUkPe7lvOI+ipKG9jIZkemV091bP16z210XccAExTEdai3aEeCetOE71ab3q6PiK3uWZwMV7Pnb8Yra5o60NxjwJ2SKUpYin287kkdw6XFfXlM1x87OI3ijaq1OyGj3akRqLUajJFrM3PqN7S/uA9uSQB9NowXuMNJWh4l0zzKJjPj0ii+raW4k36stk6Lg8Jqtr7HExuuugux50+RinAivGfSjVIGY4gLtaQJSzkuoqIY2P1Jfp7mhCb7A4ou9nLKShwfYmzljIoij7ZYbKG0DjaOAoPZzGIh2Dry9RkqN+nzw2ds1a/iu0c2v2txs0xvNHc34mpk1cN4lrRLOGd3X5bpEDSzDzPtkk/7W4l8ivDEe0oRLXFw5n1suAdvxjimCH5Bn3abZJsyPb2s1PLT4xnPaV2TvH3eyELGRE9i+C9SmhMRnRj3t2wOygs0Xok40MsTu91Lvx+To9cYxZP66n+FSDHW8x2bIp8Td03dk1prHIEQOvA/OFsW10ske+YExcR9q627ldvPog0p6TcEcJU7Rj5Srxv0a/zY8ZJ6tLIwI1jG9grG2d730kFLOgjhq0yhfbINPWlfKzVIYXWmq7/lmZPstItkURF8qDq3UbOLfonnnhKBmR3OOlNryOFmVzkfJwQY/Y2w5F8Wz3u3oFRrnXaJVcpTlXp1HShVEwSaMI01bKIi/yLeaVpR5Ge/x/oW51ndUaUoyUzeCyhqT8fkzRmitlH0Y1j99jmk1+rY8WWhXzGdBYPHHm8juo/QX8NnKb+zA6zYxVuEVjgCnYO6sRromWWoTxupXhZUamoWXvLT87Jk0rt+Yi8TVbNxtjn5amsk+j5kxnLUz5IjReOTReBeqwRnuNVoum3liiIzG2qOndylB+ZbjVSlCeipRlj8ygegFSurFUGNW2SFWO8Q3qrUhrXaTVgNnq7ga4cz4E6Z/ri7P7Xbq6R2qHfJsWeWAcv7RplvbI5zK1xZEaU0DON7R9dWd/nWqQe5MsKFLmc5w4Y3jXqUXXPJX0l3plS8jOW4tgzi290W2Mja1T+ddLyBOaE2OalwZxg1rEWn5XjmjBIl13fI6IMv8N8qnY7yiOmd3W9p1EGX/Cxps8qywvjhQGpH8p87a7FL3uOvFrRDHhVHvXTaBV/g0jBcaYTILfsxzTG8JVjncS2KNtkv1ctlO8izdwJLpOUs/U7wNsDEe9dqy7Y8v02PTtC2iJWrdv3ddC5tcP5ijxu8iOXoNWtRPto84W7i9Gq6FXuex9kR6mC3ytPqbUxo0sbJSXxdTVV8FcWKJyXBgTwqVcL8rIX07yMjLz7lQoZdPaUM5mGtjGvKR4SToHigifd3fV681dE/rRXKLXJKxLjWskSpiNS3R+wLW0mJWKFiIkt15ak/rOepS3Xlge7qph7ThbypisYF9JuRtu7fahnolW5GwMU2gpPtmbFye6NL+CC39HyhclGo4hOcQq+Lk3VUVtv4dTEa91mTObEdWgTWgvxOAN3c9si2IdvXaou/RDOITz6IGuJel7tKKWlZ0py5K71MPpvyFrMFKxKL1tWb4PLhe5J8ucyvSnRxZO7k1PmW9yyvbFcAjpSZZLOB/e35B60VHm26ZyfTDU5R5kOZThYc4zhL1z27o8L5dTsb6WuYTy4HXA7LwYHO4A5scstl2IhRo5b+T9c0Dr0CmgblaL/7Ufho/lVJ5XKLcxfXP2KuCtc7tYZ2bRLy4/Zyy3kNGczzGcZ5L2znpNfn7s/0Wl3lTi9Ob900e/1I4Bw2umOB8qS8d4dxRZeUOp4P6AT4ZE/Vv97ZL8VcLrlEaeHGUomf2KfGqmhUzNfHnp6515FiKTpZMnU5aajSeqdDK2onbVDvxUUg+w7ClR/qaS/yLW/x1tG2o7ZD1MNp0zCHWqiykLYnfT2nRvz9HmSYxnevmMbw1qcE98j2rxvO99ao9nfmuZvuV/ScJz/Z5KVDsTmSzu8tl51YQeZHfgOBdkvveN6Ew9Z7P4BNpJwB4jn6PiSMl8/TwjRJviwkVJZ4Qwo6WIctNLuUlnkuIc2s1M31o0wod6px/3HfB8fiPNLkXqV1TX0KsDrtSSVPseqZ5RZqBJ+l+HCO03ag3+rumyX9L9JUnH9A6yEp05z4pPgs2948J+zXiF8mAmU3eq2yUU1dvdw+JM7FYuFz7xXozvFuC7jpRVelvHFHePVHHucFpAc6plcvdzB8rkPVkPGM020vFRHD+fFvA6Dej/3Vz0XUfS2yBLk7LtEe3njYheX+tmm6Tnc5XFeds7BdKarzaZpj1ZaceBOSNZxAG/KqsIs5+/PCteGfALMz8dd64/Ddh3keSRZZElkaVoQ6+L5Wiro0DdtKHfkkRMLUQ/+KalN8YnV6XsWhzwxvgMrXS+p+elJFvUYcD5lUZAb+W+hvRUojIVJZkGfDt+GiDLaQCdjiBNR6TQFSXRFv3o8urG4v/Oslw43Ly+sX594+GN1a9v6f+55WP1c/Wpugreym/V12Cx9tUBcPq7+s+lDy99tPOHnT/u/Gnnz9z0g0sa8zOV+bfzl/8Cm1zBIg==</latexit> <latexit sha1_base64="Me+rXVOTINPDARdCMVN99o+kq1w=">AABHA3ictVxLcxu5EYY3u8lGeXmTYy6T1Tprb2kdSXEqqdpK1dqUZGst27JJyfaatoqPIU2L4tB8yJJpHvNrckvlmuRX5JB/kJzyA3JJP4ABhsRMYxTHU5IwGHzdjR6g0d3AuDns98aT9fV/XPrgOx9+9N3vffz9lR/88Ec//snlT356OE6mo1Z80Er6yehJszGO+71BfDDpTfrxk+Eobpw0+/Hj5nEFnz8+jUfjXjKoTc6H8fOTRnfQ6/RajQlUHV1Ojq/Wzypr9fPK2qxO5GajuD0/+3ye3jf703h+/vn8WlSPX7fjTvRupd5+UiHcAuZa9CU8ewrPHHopfuXdi82jy6vr19fpX7Rc2NCFVaX/7SeffPpXVVdtlaiWmqoTFauBmkC5rxpqDNcztaHW1RDqnqsZ1I2g1KPnsZqrFcBOoVUMLRpQewy/u3D3TNcO4B5pjgndAi59+BkBMlJXAJNAuxGUkVtEz6dEGWvzaM+IJsp2Dn+bmtYJ1E7US6iVcKZlKA77MlEd9TvqQw/6NKQa7F1LU5mSVlDyyOnVBCgMoQ7LbXg+gnKLkEbPEWHG1HfUbYOe/5NaYi3et3TbqfoXSXkFrkhVde+TlEJDnRL9iN7mFJ6xPH3g3AUKse4jlt6Qrk+o9wNoP4P6+3DNqWR00oRrRrXzQmQFLh+yIiJvw+VD3haRe3D5kHsich8uH3JfIxE7Ip378VW4fPiqyPkhXD7kQxH5CC4f8pGIPITLhzwUkd/C5UN+KyJ34PIhd0TkXbh8yLsisgaXD1kTkQdw+ZAHInIbLh9yWyPzZ+oIroTo9IRZeRPKWR5oKfpQc1OU7xZZRx/2VsCcbuVg5Vm9BX/92K0AncY52O2AcdfJwcoj7zbYSD9WtkV3aDXxYe+I2F0YAX7sroj9Rr3KwX4TMNOOc7DyXNuDdn6sbH3vwZ0fe0/E3oeSHyuvUQ+gxo99ELBiDHOw+yL2oXqdgw2x+qMcrGz3q2BX/Fh5napBez82xJpOc7CyPT0ED8aPlVerx1Drxz4WsU/UWQ72iYh9Ctbdj30asMK+zcGaNXaFVpAu+SMxzNgiao10VmJpCNQaAv9+urb0yTduQr2E6aaYLmFORMTtFHE7ELGXIvaC5RqndnRM/q7MpZoiqoGIZro2YWkitm+n7bHUD0BspYitBUSRR4rv2vTllLwLUyMhJ+nKhaWQPiWp/cZSrMdDseU1iAcZBI/tlzTy1yhawggKNVVE7WW6xjMyovsixBuK3kwvDQ8ZN0mtgos6E1FND6opos49qHMRNfWgpiLq1IM6FVF25ru4esAIsPrHdzGjOx4B7CPnXxF4BTdh1bkDczSC8bMPXuAjqnkAf6sUe0tXkWQYzeM6iVmO5xlLPILSTK1CvY0Ktyi+7tMMi0EybvlAx/h4h7mNmZ5zbIXn6UoepRmTcDo9kqeb0kFvMaL5VI7OXaqZk3fHpXL4O+m8N6Vy+G3S+Jy8eC6Vw0+09JMLyF7T2NoFsFWYTUOtfVsuS4PzL0zDlFdo1UWLi2/1RI8ZpHdWkv6ufjO7F3gvFSqxfmy5HI2x079xpn9laFg9jx09l6OC3hN7vaYUle7JQMe9tlxWhoRW0YGWw96VfTPYpq3fjCmXo7EPHleFYu6ZUy47eodpb2y5HI1DxXnPOXnyplyORpfuWR+2XI4GZlsaOs635bKWHTXAsbMtl7XqA8oCYw6IxzzXWK9oRH7SVFPrkX9QnK1xff7ldQxzNi/SGKGYkvVt8+k007WsWCLjL8Rg1SYl5UD/Yur4YFkaM7UpxlcswySzvi/TsWs8an4PtBjB7Oc9ACln3gcJTU4CrXcfKG6IUVe2Zwa3KeJwlHQWUHVdOxG9RcuXs0bZuiOqleIy21urxzrZ6zGNvSH5hHukWUkPe7lvOI+ipKG9jIZkemV091bP16z210XccAExTEdai3aEeCetOE71ab3q6PiK3uWZwMV7Pnb8Yra5o60NxjwJ2SKUpYin287kkdw6XFfXlM1x87OI3ijaq1OyGj3akRqLUajJFrM3PqN7S/uA9uSQB9NowXuMNJWh4l0zzKJjPj0ii+raW4k36stk6Lg8Jqtr7HExuuugux50+RinAivGfSjVIGY4gLtaQJSzkuoqIY2P1Jfp7mhCb7A4ou9nLKShwfYmzljIoij7ZYbKG0DjaOAoPZzGIh2Dry9RkqN+nzw2ds1a/iu0c2v2txs0xvNHc34mpk1cN4lrRLOGd3X5bpEDSzDzPtkk/7W4l8ivDEe0oRLXFw5n1suAdvxjimCH5Bn3abZJsyPb2s1PLT4xnPaV2TvH3eyELGRE9i+C9SmhMRnRj3t2wOygs0Xok40MsTu91Lvx+To9cYxZP66n+FSDHW8x2bIp8Td03dk1prHIEQOvA/OFsW10ske+YExcR9q627ldvPog0p6TcEcJU7Rj5Srxv0a/zY8ZJ6tLIwI1jG9grG2d730kFLOgjhq0yhfbINPWlfKzVIYXWmq7/lmZPstItkURF8qDq3UbOLfonnnhKBmR3OOlNryOFmVzkfJwQY/Y2w5F8Wz3u3oFRrnXaJVcpTlXp1HShVEwSaMI01bKIi/yLeaVpR5Ge/x/oW51ndUaUoyUzeCyhqT8fkzRmitlH0Y1j99jmk1+rY8WWhXzGdBYPHHm8juo/QX8NnKb+zA6zYxVuEVjgCnYO6sRromWWoTxupXhZUamoWXvLT87Jk0rt+Yi8TVbNxtjn5amsk+j5kxnLUz5IjReOTReBeqwRnuNVoum3liiIzG2qOndylB+ZbjVSlCeipRlj8ygegFSurFUGNW2SFWO8Q3qrUhrXaTVgNnq7ga4cz4E6Z/ri7P7Xbq6R2qHfJsWeWAcv7RplvbI5zK1xZEaU0DON7R9dWd/nWqQe5MsKFLmc5w4Y3jXqUXXPJX0l3plS8jOW4tgzi290W2Mja1T+ddLyBOaE2OalwZxg1rEWn5XjmjBIl13fI6IMv8N8qnY7yiOmd3W9p1EGX/Cxps8qywvjhQGpH8p87a7FL3uOvFrRDHhVHvXTaBV/g0jBcaYTILfsxzTG8JVjncS2KNtkv1ctlO8izdwJLpOUs/U7wNsDEe9dqy7Y8v02PTtC2iJWrdv3ddC5tcP5ijxu8iOXoNWtRPto84W7i9Gq6FXuex9kR6mC3ytPqbUxo0sbJSXxdTVV8FcWKJyXBgTwqVcL8rIX07yMjLz7lQoZdPaUM5mGtjGvKR4SToHigifd3fV681dE/rRXKLXJKxLjWskSpiNS3R+wLW0mJWKFiIkt15ak/rOepS3Xlge7qph7ThbypisYF9JuRtu7fahnolW5GwMU2gpPtmbFye6NL+CC39HyhclGo4hOcQq+Lk3VUVtv4dTEa91mTObEdWgTWgvxOAN3c9si2IdvXaou/RDOITz6IGuJel7tKKWlZ0py5K71MPpvyFrMFKxKL1tWb4PLhe5J8ucyvSnRxZO7k1PmW9yyvbFcAjpSZZLOB/e35B60VHm26ZyfTDU5R5kOZThYc4zhL1z27o8L5dTsb6WuYTy4HXA7LwYHO4A5scstl2IhRo5b+T9c0Dr0CmgblaL/7Ufho/lVJ5XKLcxfXP2KuCtc7tYZ2bRLy4/Zyy3kNGczzGcZ5L2znpNfn7s/0Wl3lTi9Ob900e/1I4Bw2umOB8qS8d4dxRZeUOp4P6AT4ZE/Vv97ZL8VcLrlEaeHGUomf2KfGqmhUzNfHnp6515FiKTpZMnU5aajSeqdDK2onbVDvxUUg+w7ClR/qaS/yLW/x1tG2o7ZD1MNp0zCHWqiykLYnfT2nRvz9HmSYxnevmMbw1qcE98j2rxvO99ao9nfmuZvuV/ScJz/Z5KVDsTmSzu8tl51YQeZHfgOBdkvveN6Ew9Z7P4BNpJwB4jn6PiSMl8/TwjRJviwkVJZ4Qwo6WIctNLuUlnkuIc2s1M31o0wod6px/3HfB8fiPNLkXqV1TX0KsDrtSSVPseqZ5RZqBJ+l+HCO03ag3+rumyX9L9JUnH9A6yEp05z4pPgs2948J+zXiF8mAmU3eq2yUU1dvdw+JM7FYuFz7xXozvFuC7jpRVelvHFHePVHHucFpAc6plcvdzB8rkPVkPGM020vFRHD+fFvA6Dej/3Vz0XUfS2yBLk7LtEe3njYheX+tmm6Tnc5XFeds7BdKarzaZpj1ZaceBOSNZxAG/KqsIs5+/PCteGfALMz8dd64/Ddh3keSRZZElkaVoQ6+L5Wiro0DdtKHfkkRMLUQ/+KalN8YnV6XsWhzwxvgMrXS+p+elJFvUYcD5lUZAb+W+hvRUojIVJZkGfDt+GiDLaQCdjiBNR6TQFSXRFv3o8urG4v/Oslw43Ly+sX594+GN1a9v6f+55WP1c/Wpugreym/V12Cx9tUBcPq7+s+lDy99tPOHnT/u/Gnnz9z0g0sa8zOV+bfzl/8Cm1zBIg==</latexit> <latexit sha1_base64="Me+rXVOTINPDARdCMVN99o+kq1w=">AABHA3ictVxLcxu5EYY3u8lGeXmTYy6T1Tprb2kdSXEqqdpK1dqUZGst27JJyfaatoqPIU2L4tB8yJJpHvNrckvlmuRX5JB/kJzyA3JJP4ABhsRMYxTHU5IwGHzdjR6g0d3AuDns98aT9fV/XPrgOx9+9N3vffz9lR/88Ec//snlT356OE6mo1Z80Er6yehJszGO+71BfDDpTfrxk+Eobpw0+/Hj5nEFnz8+jUfjXjKoTc6H8fOTRnfQ6/RajQlUHV1Ojq/Wzypr9fPK2qxO5GajuD0/+3ye3jf703h+/vn8WlSPX7fjTvRupd5+UiHcAuZa9CU8ewrPHHopfuXdi82jy6vr19fpX7Rc2NCFVaX/7SeffPpXVVdtlaiWmqoTFauBmkC5rxpqDNcztaHW1RDqnqsZ1I2g1KPnsZqrFcBOoVUMLRpQewy/u3D3TNcO4B5pjgndAi59+BkBMlJXAJNAuxGUkVtEz6dEGWvzaM+IJsp2Dn+bmtYJ1E7US6iVcKZlKA77MlEd9TvqQw/6NKQa7F1LU5mSVlDyyOnVBCgMoQ7LbXg+gnKLkEbPEWHG1HfUbYOe/5NaYi3et3TbqfoXSXkFrkhVde+TlEJDnRL9iN7mFJ6xPH3g3AUKse4jlt6Qrk+o9wNoP4P6+3DNqWR00oRrRrXzQmQFLh+yIiJvw+VD3haRe3D5kHsich8uH3JfIxE7Ip378VW4fPiqyPkhXD7kQxH5CC4f8pGIPITLhzwUkd/C5UN+KyJ34PIhd0TkXbh8yLsisgaXD1kTkQdw+ZAHInIbLh9yWyPzZ+oIroTo9IRZeRPKWR5oKfpQc1OU7xZZRx/2VsCcbuVg5Vm9BX/92K0AncY52O2AcdfJwcoj7zbYSD9WtkV3aDXxYe+I2F0YAX7sroj9Rr3KwX4TMNOOc7DyXNuDdn6sbH3vwZ0fe0/E3oeSHyuvUQ+gxo99ELBiDHOw+yL2oXqdgw2x+qMcrGz3q2BX/Fh5napBez82xJpOc7CyPT0ED8aPlVerx1Drxz4WsU/UWQ72iYh9Ctbdj30asMK+zcGaNXaFVpAu+SMxzNgiao10VmJpCNQaAv9+urb0yTduQr2E6aaYLmFORMTtFHE7ELGXIvaC5RqndnRM/q7MpZoiqoGIZro2YWkitm+n7bHUD0BspYitBUSRR4rv2vTllLwLUyMhJ+nKhaWQPiWp/cZSrMdDseU1iAcZBI/tlzTy1yhawggKNVVE7WW6xjMyovsixBuK3kwvDQ8ZN0mtgos6E1FND6opos49qHMRNfWgpiLq1IM6FVF25ru4esAIsPrHdzGjOx4B7CPnXxF4BTdh1bkDczSC8bMPXuAjqnkAf6sUe0tXkWQYzeM6iVmO5xlLPILSTK1CvY0Ktyi+7tMMi0EybvlAx/h4h7mNmZ5zbIXn6UoepRmTcDo9kqeb0kFvMaL5VI7OXaqZk3fHpXL4O+m8N6Vy+G3S+Jy8eC6Vw0+09JMLyF7T2NoFsFWYTUOtfVsuS4PzL0zDlFdo1UWLi2/1RI8ZpHdWkv6ufjO7F3gvFSqxfmy5HI2x079xpn9laFg9jx09l6OC3hN7vaYUle7JQMe9tlxWhoRW0YGWw96VfTPYpq3fjCmXo7EPHleFYu6ZUy47eodpb2y5HI1DxXnPOXnyplyORpfuWR+2XI4GZlsaOs635bKWHTXAsbMtl7XqA8oCYw6IxzzXWK9oRH7SVFPrkX9QnK1xff7ldQxzNi/SGKGYkvVt8+k007WsWCLjL8Rg1SYl5UD/Yur4YFkaM7UpxlcswySzvi/TsWs8an4PtBjB7Oc9ACln3gcJTU4CrXcfKG6IUVe2Zwa3KeJwlHQWUHVdOxG9RcuXs0bZuiOqleIy21urxzrZ6zGNvSH5hHukWUkPe7lvOI+ipKG9jIZkemV091bP16z210XccAExTEdai3aEeCetOE71ab3q6PiK3uWZwMV7Pnb8Yra5o60NxjwJ2SKUpYin287kkdw6XFfXlM1x87OI3ijaq1OyGj3akRqLUajJFrM3PqN7S/uA9uSQB9NowXuMNJWh4l0zzKJjPj0ii+raW4k36stk6Lg8Jqtr7HExuuugux50+RinAivGfSjVIGY4gLtaQJSzkuoqIY2P1Jfp7mhCb7A4ou9nLKShwfYmzljIoij7ZYbKG0DjaOAoPZzGIh2Dry9RkqN+nzw2ds1a/iu0c2v2txs0xvNHc34mpk1cN4lrRLOGd3X5bpEDSzDzPtkk/7W4l8ivDEe0oRLXFw5n1suAdvxjimCH5Bn3abZJsyPb2s1PLT4xnPaV2TvH3eyELGRE9i+C9SmhMRnRj3t2wOygs0Xok40MsTu91Lvx+To9cYxZP66n+FSDHW8x2bIp8Td03dk1prHIEQOvA/OFsW10ske+YExcR9q627ldvPog0p6TcEcJU7Rj5Srxv0a/zY8ZJ6tLIwI1jG9grG2d730kFLOgjhq0yhfbINPWlfKzVIYXWmq7/lmZPstItkURF8qDq3UbOLfonnnhKBmR3OOlNryOFmVzkfJwQY/Y2w5F8Wz3u3oFRrnXaJVcpTlXp1HShVEwSaMI01bKIi/yLeaVpR5Ge/x/oW51ndUaUoyUzeCyhqT8fkzRmitlH0Y1j99jmk1+rY8WWhXzGdBYPHHm8juo/QX8NnKb+zA6zYxVuEVjgCnYO6sRromWWoTxupXhZUamoWXvLT87Jk0rt+Yi8TVbNxtjn5amsk+j5kxnLUz5IjReOTReBeqwRnuNVoum3liiIzG2qOndylB+ZbjVSlCeipRlj8ygegFSurFUGNW2SFWO8Q3qrUhrXaTVgNnq7ga4cz4E6Z/ri7P7Xbq6R2qHfJsWeWAcv7RplvbI5zK1xZEaU0DON7R9dWd/nWqQe5MsKFLmc5w4Y3jXqUXXPJX0l3plS8jOW4tgzi290W2Mja1T+ddLyBOaE2OalwZxg1rEWn5XjmjBIl13fI6IMv8N8qnY7yiOmd3W9p1EGX/Cxps8qywvjhQGpH8p87a7FL3uOvFrRDHhVHvXTaBV/g0jBcaYTILfsxzTG8JVjncS2KNtkv1ctlO8izdwJLpOUs/U7wNsDEe9dqy7Y8v02PTtC2iJWrdv3ddC5tcP5ijxu8iOXoNWtRPto84W7i9Gq6FXuex9kR6mC3ytPqbUxo0sbJSXxdTVV8FcWKJyXBgTwqVcL8rIX07yMjLz7lQoZdPaUM5mGtjGvKR4SToHigifd3fV681dE/rRXKLXJKxLjWskSpiNS3R+wLW0mJWKFiIkt15ak/rOepS3Xlge7qph7ThbypisYF9JuRtu7fahnolW5GwMU2gpPtmbFye6NL+CC39HyhclGo4hOcQq+Lk3VUVtv4dTEa91mTObEdWgTWgvxOAN3c9si2IdvXaou/RDOITz6IGuJel7tKKWlZ0py5K71MPpvyFrMFKxKL1tWb4PLhe5J8ucyvSnRxZO7k1PmW9yyvbFcAjpSZZLOB/e35B60VHm26ZyfTDU5R5kOZThYc4zhL1z27o8L5dTsb6WuYTy4HXA7LwYHO4A5scstl2IhRo5b+T9c0Dr0CmgblaL/7Ufho/lVJ5XKLcxfXP2KuCtc7tYZ2bRLy4/Zyy3kNGczzGcZ5L2znpNfn7s/0Wl3lTi9Ob900e/1I4Bw2umOB8qS8d4dxRZeUOp4P6AT4ZE/Vv97ZL8VcLrlEaeHGUomf2KfGqmhUzNfHnp6515FiKTpZMnU5aajSeqdDK2onbVDvxUUg+w7ClR/qaS/yLW/x1tG2o7ZD1MNp0zCHWqiykLYnfT2nRvz9HmSYxnevmMbw1qcE98j2rxvO99ao9nfmuZvuV/ScJz/Z5KVDsTmSzu8tl51YQeZHfgOBdkvveN6Ew9Z7P4BNpJwB4jn6PiSMl8/TwjRJviwkVJZ4Qwo6WIctNLuUlnkuIc2s1M31o0wod6px/3HfB8fiPNLkXqV1TX0KsDrtSSVPseqZ5RZqBJ+l+HCO03ag3+rumyX9L9JUnH9A6yEp05z4pPgs2948J+zXiF8mAmU3eq2yUU1dvdw+JM7FYuFz7xXozvFuC7jpRVelvHFHePVHHucFpAc6plcvdzB8rkPVkPGM020vFRHD+fFvA6Dej/3Vz0XUfS2yBLk7LtEe3njYheX+tmm6Tnc5XFeds7BdKarzaZpj1ZaceBOSNZxAG/KqsIs5+/PCteGfALMz8dd64/Ddh3keSRZZElkaVoQ6+L5Wiro0DdtKHfkkRMLUQ/+KalN8YnV6XsWhzwxvgMrXS+p+elJFvUYcD5lUZAb+W+hvRUojIVJZkGfDt+GiDLaQCdjiBNR6TQFSXRFv3o8urG4v/Oslw43Ly+sX594+GN1a9v6f+55WP1c/Wpugreym/V12Cx9tUBcPq7+s+lDy99tPOHnT/u/Gnnz9z0g0sa8zOV+bfzl/8Cm1zBIg==</latexit> <latexit sha1_base64="Oxirc/Stga++TW0HF+4LpEcjjos=">AABGE3ictVxfc9y2EYfSpk3Vf0772Bcmijt2o7qS4jRNM56JfZJlxbItWydbjmlrjnfUiRbveL4/suzLfYw+94P0oTOdvvYD9Bu0T/0K3V0ABHgHckHVNUcSCOK3u1gCi90F6GiQJqPx2to/l9773vff/8EPP/jR8o9/8tOf/fzSh794PMomw3Z80M7SbHgYtUZxmvTjg3EyTuPDwTBu9aI0fhKdNvD5k7N4OEqyfnP8ZhA/77W6/eQ4abfGUHV06c/hOD4fT7efzI42XmxcmYZEcjqMO7Ow1xqfRNH0cDZb1fVROonzB09ns6vLYfyqEx8vh5Ne0p+Gg6RxtH4jbKWNVSpv3AijuDELwqQ/PppeCQ/PG0E4TnrxKAifvmlcfbEBzz7CKzgNwj8GYQdhYUZNiMKllbVra/QvWCysq8KKUP/2sg8/viZC0RGZaIuJ6IlY9MUYyqloiRFcz8S6WBMDqHsuplA3hFJCz2MxE8uAnUCrGFq0oPYUfnfh7pmq7cM90hwRug1cUvgZAjIQlwGTQbshlJFbQM8nRBlry2hPiSbK9gb+RopWD2rH4gRqOZxu6YvDvozFsfgD9SGBPg2oBnvXVlQmpBWUPLB6NQYKA6jDcgeeD6HcJqTWc0CYEfUdddui5/+illiL923VdiL+TVJehisQ+6r3WU6hJc6IfkBvcwLPpDwpcO4ChVj1EUuvSdc96n0f2k+h/j5cMyppnURwTal2VolswOVCNljkNlwu5DaL3IXLhdxlkXtwuZB7ConYIencjd+Hy4XfZzk/hMuFfMgiH8HlQj5ikY/hciEfs8hv4XIhv2WRt+FyIW+zyLtwuZB3WWQTLheyySIP4HIhD1jkFlwu5JZCls/UIVwZ0UmYWXkTykUeaClSqLnJyneLrKMLe8tjTrdLsPys3oS/buymh07jEuyWx7g7LsHyI28bbKQby9uiO7SauLB3WOwOjAA3dofFfiNelmC/8ZhppyVYfq7tQjs3lre+9+DOjb3HYu9DyY3l16gHUOPGPvBYMQYl2D0W+1C8KsH6WP1hCZa3+/tgV9xYfp1qQns31seaTkqwvD19DB6MG8uvVk+g1o19wmIPxXkJ9pDFPgXr7sY+9Vhh35Zg9Rq7TCtIl/yRGGZsFbVWPiuxNABqLYZ/mq8tKfnGEdRzmG6O6RKmxyK2c8S2J2I3R+x6yzXK7eiI/F2ey36O2PdERPnahKUx276Tt8dS6oHYzBGbc4gqjxTfte7LGXkXuoZDjvOVC0s+fcpy+42lWI2HasurEQ8KCDm2T2jkr1K0hBEUaqqK2km+xktkQPdViNcUveleah48bpxbBRt1zqIiBypiUW8cqDcsauJATVjUmQN1xqLMzLdxoccIMPrHdzGlOzkCpI9cfgXgFdyEVecOzNEAxs8eeIGPqOYB/N2n2Ju7qiTDaB7XScxyPC9Y4iGUpmIF6k1UuEnxdUozLAbJZMsHKsbHO8xtTNWck1Z4lq/kQZ4x8aeTkDzdnA56iwHNp3p07lLNjLw7WaqHv5PPe12qh98ijc/Ii5elevixkn58AdmbCtu8AHYfZtNAad+U69KQ+RdJQ5eXadVFi4tvtafGDNI7r0l/R72ZnQu8lwaVpH5MuR6NkdW/UaF/dWgYPY8sPdejgt6T9Hp1Kajdk76Ke025rgwZraJ9JYe5q/tmsE1HvRldrkdjDzyuBsXcU6tcd/QO8t6Ycj0aj4XMe87Ik9flejS6dC/1Ycr1aGC2paXifFOua9lRAzJ2NuW6Vr1PWWDMAckxL2uMVzQkP2miqCXkH1Rna2yff3Edw5zNizxGqKZkfNtyOlG+llVLpP2FGKzauKYc6F9MLB+sSGMqNtj4SsowLqzvi3TMGo+a3wUtBjD75R4AlzNPQUKdk0DrnQLFdTbqKvZM4zZYHI6S4zlUqGrHrLdo+MqsUbHuiGq5uMz01ugxJHs9orE3IJ9wlzTL6WG39A2XUeQ0tFvQEE+vju7eqvla1P4aixvMIQb5SGvTjpDcSauOU11a37d0fFnt8ozhkns+ZvxitvlYWRuMeTKyRShLFU+7nc4j2XW4rq4Kk+OWzwJ6o2ivzshqJLQjNWKjUJ0tlt74lO4N7QPak0MekkYb3mOgqAyE3DXDLDrm0wOyqLa95XijvnSGTpZHZHW1Pa5Gdy1014GuH+M0YMW4D6UmxAwHcNf0iHKWc11lpPGh+G2+O5rRG6yO6NOChdQ0pL2JCxayKso+KVB5DWgcDTJK96cxT0fjwwVKfNTvksfErkXLf5l2bvX+dovGePloLs/EdIjrBnENaNbIXV15N89BSjB1Ptkg/7W6l8ivDke0oRzXFxZnqZc+7fjHFMEOyDNOabZxs6PY2s5PzT/RnPaE3jvH3eyMLGRA9i+A9SmjMRnQj312QO+gS4uQko30sTtJ7t24fJ2EHWPGj0uEPNVgxltMtmxC/DVde3aNaCzKiEGuA7O5sa11sku+YExch8q6m7ldvfog0pyTsEeJpGjGyhXif5V+6x89TlYWRgRqGN/ASNk61/vIKGZBHbVola+2QbqtLeUnuQwvlNRm/TMyfVKQbJMiLpQHV+sOcG7TveSFo2RIco8W2sh1tCqbi5QHc3rE3h5TFC/tfletwCj3Kq2SKzTnQholXRgF4zyK0G25LPI832peRep+tEf/F+pG10WtIcVAmAyu1BCX348pWrOlTGFUy/F7SrPJrfXhXKtqPn0aiz1rLn8HtR/Bby23vvejExWswi0aA5KCuTMakTXBQgs/XrcKvPTI1LTMveFnxqRuZddcJL6W1s3E2Ge1qezRqDlXWQtdvgiNlxaNl546bNJeo9GirteW6IiNLZpqt9KXXx1uzRqUJyxl3iPTqMRDSjuW8qPaYanyMb5GvWVprbG0WjBb7d0Ae877IN1zfX52f5ev7oG4Tb5NmzwwGb90aJYm5HPp2upITVJAzteVfbVnf0g1yD0iC4qU5TlOnDFy16lN1yyX9NdqZcvIzhuLoM8tvVZttI0NqfzZArJHc2JE81IjrlOLWMlvyxHMWaRrls8RUOa/RT6V9DuqY2a7tXknQcGfMPGmnFWGl4wU+qR/LvO2sxC97ljxa0Ax4UR51xHQqv+GkYLE6EyC27Mc0RvCVU7uJEiPNiL7uWin5C5e35LoGkk9FTc8bIyMes1Yt8eW7rHu22+gJWrdvHVXC55f6s2R43eRHb0WrWo95aNO5+4vRqulVrnifZUeJnN8jT4m1MaOLEyUV8SE4itvLlKielwkxodLvV7Ukb+e5HVklrtTvpR1a025mGmQNuaE4iXuHCgiXN7dFac3d5XpR7RALyKsTU3WcJQwG5ep/IBtaTErFcxFSHY9tyal1npUtl4YHvaqYey4tJQxWcFUcLkb2druQ1iIVvhsjKTQFvJkb1mcaNP8Ci78HQhXlKg5+uQQ98HPvSkaYusdnIp4pcoysxlQDdqEzlwM3lL9LLao1tEri7pN34eDP48EdM1Jn9CKWld2SZmX3KbuT/81WYOhiFnpTcv6fbC58D1Z5FSnPwlZOL43idDf5NTti+bg05MiF38+cn+D68Wx0N821euDps73oMihDg99nsHvnZvW9XnZnKr1tcjFl4dcB/TOi8bhDmB5zGLa+VioofVG3j0HtA7HFdT1avG/9kPzMZzq8/LlNqJvzl56vHXZLlaZWfSL688Zw81nNJdz9OeZ5b0zXpObn/T/glpvKrN68+7po19qxoDmNRUyH8pLJ/H2KDLy+lLB/QGXDJn4j/jrEv9VwqucRpkcdSjp/YpyaroFT01/eenqnX7mI5OhUyZTkZqJJ/bpZGxD7Ijb8NPIPcC6p0TlN5XyL2Ld39F2oPaYrIfOpssMQkh1MWVBzG5ah+7NOdoyifFMrzzj24Qa3BPfpVo873uf2uOZ32ahb+Vfksi5fk9kolOITOZ3+cy8iqAHxR04mQvS3/sGdKZeZrPkCbSexx6jPEclIyX99fOUEB2KC+clnRJCj5YqypGTckRnkuIS2lGhb20a4QO104/7Dng+v5VnlwLxO6prqdUBV2pOqj2HVM8oMxCR/tcgQvtcrMLfVVV2S7q3IOmI3kFRonPrWfVJsJlzXJivGS9THkxn6s5Uu4yierN7WJ2J3SzlIk+8V+O7FfiuJeU+va1TiruHojp3OKmgOVEy2fu5faHznlIPGM228vFRHT+fVfA68+j/3VL0XUvSbZAlomx7QPt5Q6KXKt1skfTyXGV13vZOhbT6q01J05ysNONAn5Gs4oBflTWY2S+/PKteGfALMzcde64/9dh3wZ5wEsmTmVz2KPaQSJ4R5c6vJE5KvMUYeJzPaHn0lu+rT085KhNWkonHt9FnHrKcedA5ZqQ5Zil0WUmUxaL/j+RL+hfIwhfXVeHL9fz/I3m8cW3999c+e3h95etb6n8m+UD8SnwsrsBq/IX4GmbknjgQ7aX3lz5dur70+daftv6y9betv8um7y0pzC9F4d/WP/4L+p6W7w==</latexit> GW2 2 (X, Y) def. = min ⇡1=↵,⇡2= Z (X⇥Y)2 k d⇡ ⌦ ⇡ X <latexit sha1_base64="/59ZCDJZPBrZfCS8zgReJB0hTeY=">AABFdnictVxfcxPJER8u/y7kH5c8piq1OR8JlyKOTUglVVepOrCN8WHAINnAIaC00loI1lqhlYRB56+Q1+Tb5HPkGyRPec1j+s/Mzqw0uz3rELZsz87Or7und6anu2eWeJwO8+nGxj8ufPStb3/nu9/7+PsXf/DDH/34J5c++elRns0mveSwl6XZ5HHczZN0OEoOp8NpmjweT5LuSZwmj+LXW/j80TyZ5MNs1J6+GyfPTrqD0fB42OtOsarz+HTrxaW1jfUN+hetFjZ1YU3pfwfZJ5+uq47qq0z11EydqESN1BTKqeqqHK6nalNtqDHUPVMLqJtAaUjPE3WmLgJ2Bq0SaNGF2tfwewB3T3XtCO6RZk7oHnBJ4WcCyEhdBkwG7SZQRm4RPZ8RZaytor0gmijbO/gba1onUDtVL6FWwpmWoTjsy1Qdqz9RH4bQpzHVYO96msqMtIKSR06vpkBhDHVY7sPzCZR7hDR6jgiTU99Rt116/k9qibV439NtZ+pfJOVluCLV0r3PCgpdNSf6Eb3NGTxjeVLgPAAKie4jlt6Srk+o9yNov4D6e3CdUcnoJIZrQbVntcgtuHzILRG5C5cPuSsi9+HyIfdF5AFcPuSBRiJ2Qjr341tw+fAtkfMDuHzIByLyIVw+5EMReQSXD3kkIr+Gy4f8WkTegsuHvCUi78DlQ94RkW24fMi2iDyEy4c8FJE7cPmQOxpZPVMncGVEZyjMyhtQLvNAS5FCzQ1RvptkHX3YmwFzuleBlWf1Nvz1Y7cDdJpUYHcCxt1xBVYeebtgI/1Y2RbdptXEh70tYvdgBPixeyL2K/WqAvtVwEx7XYGV59o+tPNjZet7F+782Lsi9h6U/Fh5jboPNX7s/YAVY1yBPRCxD9SbCmyI1Z9UYGW73wK74sfK61Qb2vuxIdZ0VoGV7ekReDB+rLxaPYJaP/aRiH2sTiuwj0XsE7DufuyTgBX2fQXWrLEXaQUZkD+SwIyto9YtZiWWxkCtK/BPi7UlJd84hnoJMygwA8KciIjdArEbiNgvEPvBcuWFHc3J35W5tApEKxARF2sTlqZi+37RHktpAGK7QGwvIeo8UnzXpi9z8i5MjYScFisXlkL6lBX2G0uJHg/1ltcg7pcQPLZf0si/StESRlCoqTpqL4s1npER3dch3lL0ZnppeMi4aWEVXNSpiIo9qFhEvfOg3omomQc1E1FzD2ououzMd3GdgBFg9Y/vYkF3PALYR66+IvAKbsCqcxvmaATj5wC8wIdUcx/+tij2lq46yTCax3USsxzPSpZ4AqWFWoN6GxVuU3yd0gxLQDJueV/H+HiHuY2FnnNshc+KlTwqMibhdIYkz6Cgg95iRPOpGZ07VHNG3h2XmuFvF/PelJrhd0jjZ+TFc6kZfqqln55D9rbGts+BbcFsGmvt23JTGpx/YRqmfJFWXbS4+FZP9JhBeqcN6e/pN7N3jveyRSXWjy03o5E7/ctL/WtCw+o5d/TcjAp6T+z1mlLUuCcjHffaclMZMlpFR1oOe9f0zWCbvn4zptyMxgF4XFsUcy+cctPROy56Y8vNaBwpznuekSdvys1oDOie9WHLzWhgtqWr43xbbmrZUQMcO9tyU6s+oiww5oB4zHON9Yom5CfNNLUh+Qf12RrX519dxzBn87yIEeopWd+2mk5crGX1Ehl/IQGrNm0oB/oXM8cHK9NYqGtifMUyTEvr+yodu8aj5vdBixHMft4DkHLmKUhochJovVOguClGXeWeGdw1EYej5HgJ1dG1U9FbtHw5a1Sue0G1Ulxme2v12CF7ndPYG5NPuE+alfSwX/mGqyhKGtovaUim10R37/V8LWt/Q8SNlxDjYqT1aEeId9Lq41Sf1luOji/rXZ4pXLznY8cvZpuPtbXBmCcjW4Sy1PF025k8kluH6+pVZXPc/CyiN4r2ak5WY0g7UrkYhZpsMXvjC7q3tA9pTw55MI0evMdIUxkr3jXDLDrm0yOyqK69lXijvkyGjss5WV1jj+vRAwc98KCbxzhbsGLcg1IbYoZDuGsHRDkXC11lpPGJ+m2xO5rRG6yP6NOShTQ02N4kJQtZF2W/LFF5C2gcDRylh9NYpmPwnRVKctTvk8fGrmXLf5l2bs3+dpfGePVors7E9InrNeIa0azhXV2+W+bAEiy8T66R/1rfS+TXhCPaUInrc4cz62VEO/4JRbBj8oxTmm3S7Ci3dvNTy08MpwNl9s5xNzsjCxmR/YtgfcpoTEb0454dMDvobBFSspEhdmdYeDc+X2cojjHrxw0Vn2qw4y0hWzYj/oauO7tyGoscMfA6cLY0to1O9skXTIjrRFt3O7frVx9E2nMS7ihhinasXCH+n9Nv82PGydrKiEAN4xvIta3zvY+MYhbUUZdW+XobZNq6Un5WyPBcS23XPyvTZyXJtiniQnlwte4D5x7dMy8cJROSO19pw+toXTYXKY+X9Ii9PaYonu3+QK/AKPdVWiXXaM51aJQMYBRMiyjCtJWyyMt863mVqYfRzv8v1K2uy1pDipGyGVzWkJTfTyhac6VMYVTz+H1Ns8mv9clSq3o+IxqLJ85c/gZqfwm/jdzmPoxOXLIKN2kMMAV7ZzXCNdFKizBeN0u8zMg0tOy95WfHpGnl1pwnvmbrZmPseWMqBzRqTnXWwpTPQ+OVQ+NVoA7btNdotWjqjSV6IcYWbb1bGcqvCbd2A8ozkbLskRnUMEBKN5YKo9oXqcoxvkG9F2ltiLS6MFvd3QB3zocg/XN9eXZ/U6zukbpFvk2PPDCOX/o0S4fkc5na+kiNKSDn69q+urO/QzXIPSYLipT5HCfOGN516tF1Vkj6K72yZWTnrUUw55be6jbGxnao/PsV5AnNiZzmpUFcpxaJlt+VI1qySOuOzxFR5r9LPhX7HfUxs9vavpOo5E/YeJNnleXFkcKI9C9l3vZWotc9J36NKCacae86BlrN3zBSYIzJJPg9y5zeEK5yvJPAHm1M9nPVTvEu3siRaJ2kXqg/B9gYjnrtWHfHlumx6dtvoCVq3b51XwuZXxrMUeJ3nh29Lq1qJ9pHXSzdn49WV69y5fs6PcyW+Fp9zKiNG1nYKK+M6agvgrmwRM24MCaES7NeNJG/meRNZObdqVDKprWhXM40sI15SfGSdA4UET7v7orXm/tc6Ee8Qi8mrEuNayRKmI3LdH7AtbSYlYqWIiS3XlqTUmc9qlovLA931bB2nC1lQlYwVVLuhlu7feiUohU5G8MUeopP9lbFiS7NL+DC35HyRYmGY0gOsQV+7g21pXY+wKmIN7rMmc2IatAm9Jdi8K7uZ7lFvY7eONRd+iEcwnkMQdeS9ENaUZvKzpRlyV3q4fTfkjWYqESU3rZs3geXi9yTVU5N+jMkCyf3ZqjMNzlN+2I4hPSkzCWcD+9vSL04VubbpmZ9MNTlHpQ5NOFhzjOEvXPbujkvl1O9vla5hPLgdcDsvBgc7gBWxyy2XYiFmjhv5MNzQOtwXEPdrBb/az8MH8upOa9Qbjl9c/Yq4K1zu0RnZtEvbj5nLLeQ0VzNMZxnVvTOek1+fuz/RY3eVOb05sPTR7/UjgHDa6E4HypLx3h3FFl5Q6ng/oBPhkz9W/39gvxVwpuCRpUcTSiZ/YpqaqaFTM18eenrnXkWIpOlUyVTmZqNJ1p0MnZL7alb8LNVeIBNT4nyN5X8F7H+72j7UHtM1sNk0zmD0KG6hLIgdjetT/f2HG2VxHiml8/4tqEG98T3qRbP+96j9njmt13qW/WXJDzX76pM9UuRyfIun51XMfSgvAPHuSDzvW9EZ+o5m8Un0E4C9hj5HBVHSubr5wUh+hQXLku6IIQZLXWUYy/lmM4kJRW041LfejTCx3qnH/cd8Hx+t8guRep3VNfVqwOu1JJUBx6pnlJmICb9b0CE9gd1Ff5e1WW/pAcrkub0DsoSnTrP6k+CnXnHhf2a8TLlwUymbq7bZRTV293D+kzsdiUXPvFejx/U4AeOlC16W68p7p6o+tzhrIbmTMvk7ueOlMl7sh4wmu0W46M+fp7X8JoH9P9OJfqOI+kuyBJTtj2i/bwJ0Uu1bnZIej5XWZ+3vV0jrflqk2nak5V2HJgzknUc8KuyLWH285dn9SsDfmHmp+PO9ScB+y7YE0kiPpkpZY+SAIn4jKh0fmXopSRbjHHA+YxuQG/lvob0VKIyEyWZBXwbPQ+QZR5A51iQ5likMBAl0RbrxaW1zeX/fWS1cHRtfXNjffPB9bUvb+r/meRj9XP1qboCq/Ef1ZcwIw/UIeUa/6L+qv62/Z+dX+xc3vk1N/3ogsb8TJX+7Wz8F/gjXQI=</latexit> <latexit sha1_base64="/59ZCDJZPBrZfCS8zgReJB0hTeY=">AABFdnictVxfcxPJER8u/y7kH5c8piq1OR8JlyKOTUglVVepOrCN8WHAINnAIaC00loI1lqhlYRB56+Q1+Tb5HPkGyRPec1j+s/Mzqw0uz3rELZsz87Or7und6anu2eWeJwO8+nGxj8ufPStb3/nu9/7+PsXf/DDH/34J5c++elRns0mveSwl6XZ5HHczZN0OEoOp8NpmjweT5LuSZwmj+LXW/j80TyZ5MNs1J6+GyfPTrqD0fB42OtOsarz+HTrxaW1jfUN+hetFjZ1YU3pfwfZJ5+uq47qq0z11EydqESN1BTKqeqqHK6nalNtqDHUPVMLqJtAaUjPE3WmLgJ2Bq0SaNGF2tfwewB3T3XtCO6RZk7oHnBJ4WcCyEhdBkwG7SZQRm4RPZ8RZaytor0gmijbO/gba1onUDtVL6FWwpmWoTjsy1Qdqz9RH4bQpzHVYO96msqMtIKSR06vpkBhDHVY7sPzCZR7hDR6jgiTU99Rt116/k9qibV439NtZ+pfJOVluCLV0r3PCgpdNSf6Eb3NGTxjeVLgPAAKie4jlt6Srk+o9yNov4D6e3CdUcnoJIZrQbVntcgtuHzILRG5C5cPuSsi9+HyIfdF5AFcPuSBRiJ2Qjr341tw+fAtkfMDuHzIByLyIVw+5EMReQSXD3kkIr+Gy4f8WkTegsuHvCUi78DlQ94RkW24fMi2iDyEy4c8FJE7cPmQOxpZPVMncGVEZyjMyhtQLvNAS5FCzQ1RvptkHX3YmwFzuleBlWf1Nvz1Y7cDdJpUYHcCxt1xBVYeebtgI/1Y2RbdptXEh70tYvdgBPixeyL2K/WqAvtVwEx7XYGV59o+tPNjZet7F+782Lsi9h6U/Fh5jboPNX7s/YAVY1yBPRCxD9SbCmyI1Z9UYGW73wK74sfK61Qb2vuxIdZ0VoGV7ekReDB+rLxaPYJaP/aRiH2sTiuwj0XsE7DufuyTgBX2fQXWrLEXaQUZkD+SwIyto9YtZiWWxkCtK/BPi7UlJd84hnoJMygwA8KciIjdArEbiNgvEPvBcuWFHc3J35W5tApEKxARF2sTlqZi+37RHktpAGK7QGwvIeo8UnzXpi9z8i5MjYScFisXlkL6lBX2G0uJHg/1ltcg7pcQPLZf0si/StESRlCoqTpqL4s1npER3dch3lL0ZnppeMi4aWEVXNSpiIo9qFhEvfOg3omomQc1E1FzD2ououzMd3GdgBFg9Y/vYkF3PALYR66+IvAKbsCqcxvmaATj5wC8wIdUcx/+tij2lq46yTCax3USsxzPSpZ4AqWFWoN6GxVuU3yd0gxLQDJueV/H+HiHuY2FnnNshc+KlTwqMibhdIYkz6Cgg95iRPOpGZ07VHNG3h2XmuFvF/PelJrhd0jjZ+TFc6kZfqqln55D9rbGts+BbcFsGmvt23JTGpx/YRqmfJFWXbS4+FZP9JhBeqcN6e/pN7N3jveyRSXWjy03o5E7/ctL/WtCw+o5d/TcjAp6T+z1mlLUuCcjHffaclMZMlpFR1oOe9f0zWCbvn4zptyMxgF4XFsUcy+cctPROy56Y8vNaBwpznuekSdvys1oDOie9WHLzWhgtqWr43xbbmrZUQMcO9tyU6s+oiww5oB4zHON9Yom5CfNNLUh+Qf12RrX519dxzBn87yIEeopWd+2mk5crGX1Ehl/IQGrNm0oB/oXM8cHK9NYqGtifMUyTEvr+yodu8aj5vdBixHMft4DkHLmKUhochJovVOguClGXeWeGdw1EYej5HgJ1dG1U9FbtHw5a1Sue0G1Ulxme2v12CF7ndPYG5NPuE+alfSwX/mGqyhKGtovaUim10R37/V8LWt/Q8SNlxDjYqT1aEeId9Lq41Sf1luOji/rXZ4pXLznY8cvZpuPtbXBmCcjW4Sy1PF025k8kluH6+pVZXPc/CyiN4r2ak5WY0g7UrkYhZpsMXvjC7q3tA9pTw55MI0evMdIUxkr3jXDLDrm0yOyqK69lXijvkyGjss5WV1jj+vRAwc98KCbxzhbsGLcg1IbYoZDuGsHRDkXC11lpPGJ+m2xO5rRG6yP6NOShTQ02N4kJQtZF2W/LFF5C2gcDRylh9NYpmPwnRVKctTvk8fGrmXLf5l2bs3+dpfGePVors7E9InrNeIa0azhXV2+W+bAEiy8T66R/1rfS+TXhCPaUInrc4cz62VEO/4JRbBj8oxTmm3S7Ci3dvNTy08MpwNl9s5xNzsjCxmR/YtgfcpoTEb0454dMDvobBFSspEhdmdYeDc+X2cojjHrxw0Vn2qw4y0hWzYj/oauO7tyGoscMfA6cLY0to1O9skXTIjrRFt3O7frVx9E2nMS7ihhinasXCH+n9Nv82PGydrKiEAN4xvIta3zvY+MYhbUUZdW+XobZNq6Un5WyPBcS23XPyvTZyXJtiniQnlwte4D5x7dMy8cJROSO19pw+toXTYXKY+X9Ii9PaYonu3+QK/AKPdVWiXXaM51aJQMYBRMiyjCtJWyyMt863mVqYfRzv8v1K2uy1pDipGyGVzWkJTfTyhac6VMYVTz+H1Ns8mv9clSq3o+IxqLJ85c/gZqfwm/jdzmPoxOXLIKN2kMMAV7ZzXCNdFKizBeN0u8zMg0tOy95WfHpGnl1pwnvmbrZmPseWMqBzRqTnXWwpTPQ+OVQ+NVoA7btNdotWjqjSV6IcYWbb1bGcqvCbd2A8ozkbLskRnUMEBKN5YKo9oXqcoxvkG9F2ltiLS6MFvd3QB3zocg/XN9eXZ/U6zukbpFvk2PPDCOX/o0S4fkc5na+kiNKSDn69q+urO/QzXIPSYLipT5HCfOGN516tF1Vkj6K72yZWTnrUUw55be6jbGxnao/PsV5AnNiZzmpUFcpxaJlt+VI1qySOuOzxFR5r9LPhX7HfUxs9vavpOo5E/YeJNnleXFkcKI9C9l3vZWotc9J36NKCacae86BlrN3zBSYIzJJPg9y5zeEK5yvJPAHm1M9nPVTvEu3siRaJ2kXqg/B9gYjnrtWHfHlumx6dtvoCVq3b51XwuZXxrMUeJ3nh29Lq1qJ9pHXSzdn49WV69y5fs6PcyW+Fp9zKiNG1nYKK+M6agvgrmwRM24MCaES7NeNJG/meRNZObdqVDKprWhXM40sI15SfGSdA4UET7v7orXm/tc6Ee8Qi8mrEuNayRKmI3LdH7AtbSYlYqWIiS3XlqTUmc9qlovLA931bB2nC1lQlYwVVLuhlu7feiUohU5G8MUeopP9lbFiS7NL+DC35HyRYmGY0gOsQV+7g21pXY+wKmIN7rMmc2IatAm9Jdi8K7uZ7lFvY7eONRd+iEcwnkMQdeS9ENaUZvKzpRlyV3q4fTfkjWYqESU3rZs3geXi9yTVU5N+jMkCyf3ZqjMNzlN+2I4hPSkzCWcD+9vSL04VubbpmZ9MNTlHpQ5NOFhzjOEvXPbujkvl1O9vla5hPLgdcDsvBgc7gBWxyy2XYiFmjhv5MNzQOtwXEPdrBb/az8MH8upOa9Qbjl9c/Yq4K1zu0RnZtEvbj5nLLeQ0VzNMZxnVvTOek1+fuz/RY3eVOb05sPTR7/UjgHDa6E4HypLx3h3FFl5Q6ng/oBPhkz9W/39gvxVwpuCRpUcTSiZ/YpqaqaFTM18eenrnXkWIpOlUyVTmZqNJ1p0MnZL7alb8LNVeIBNT4nyN5X8F7H+72j7UHtM1sNk0zmD0KG6hLIgdjetT/f2HG2VxHiml8/4tqEG98T3qRbP+96j9njmt13qW/WXJDzX76pM9UuRyfIun51XMfSgvAPHuSDzvW9EZ+o5m8Un0E4C9hj5HBVHSubr5wUh+hQXLku6IIQZLXWUYy/lmM4kJRW041LfejTCx3qnH/cd8Hx+t8guRep3VNfVqwOu1JJUBx6pnlJmICb9b0CE9gd1Ff5e1WW/pAcrkub0DsoSnTrP6k+CnXnHhf2a8TLlwUymbq7bZRTV293D+kzsdiUXPvFejx/U4AeOlC16W68p7p6o+tzhrIbmTMvk7ueOlMl7sh4wmu0W46M+fp7X8JoH9P9OJfqOI+kuyBJTtj2i/bwJ0Uu1bnZIej5XWZ+3vV0jrflqk2nak5V2HJgzknUc8KuyLWH285dn9SsDfmHmp+PO9ScB+y7YE0kiPpkpZY+SAIn4jKh0fmXopSRbjHHA+YxuQG/lvob0VKIyEyWZBXwbPQ+QZR5A51iQ5likMBAl0RbrxaW1zeX/fWS1cHRtfXNjffPB9bUvb+r/meRj9XP1qboCq/Ef1ZcwIw/UIeUa/6L+qv62/Z+dX+xc3vk1N/3ogsb8TJX+7Wz8F/gjXQI=</latexit> <latexit sha1_base64="/59ZCDJZPBrZfCS8zgReJB0hTeY=">AABFdnictVxfcxPJER8u/y7kH5c8piq1OR8JlyKOTUglVVepOrCN8WHAINnAIaC00loI1lqhlYRB56+Q1+Tb5HPkGyRPec1j+s/Mzqw0uz3rELZsz87Or7und6anu2eWeJwO8+nGxj8ufPStb3/nu9/7+PsXf/DDH/34J5c++elRns0mveSwl6XZ5HHczZN0OEoOp8NpmjweT5LuSZwmj+LXW/j80TyZ5MNs1J6+GyfPTrqD0fB42OtOsarz+HTrxaW1jfUN+hetFjZ1YU3pfwfZJ5+uq47qq0z11EydqESN1BTKqeqqHK6nalNtqDHUPVMLqJtAaUjPE3WmLgJ2Bq0SaNGF2tfwewB3T3XtCO6RZk7oHnBJ4WcCyEhdBkwG7SZQRm4RPZ8RZaytor0gmijbO/gba1onUDtVL6FWwpmWoTjsy1Qdqz9RH4bQpzHVYO96msqMtIKSR06vpkBhDHVY7sPzCZR7hDR6jgiTU99Rt116/k9qibV439NtZ+pfJOVluCLV0r3PCgpdNSf6Eb3NGTxjeVLgPAAKie4jlt6Srk+o9yNov4D6e3CdUcnoJIZrQbVntcgtuHzILRG5C5cPuSsi9+HyIfdF5AFcPuSBRiJ2Qjr341tw+fAtkfMDuHzIByLyIVw+5EMReQSXD3kkIr+Gy4f8WkTegsuHvCUi78DlQ94RkW24fMi2iDyEy4c8FJE7cPmQOxpZPVMncGVEZyjMyhtQLvNAS5FCzQ1RvptkHX3YmwFzuleBlWf1Nvz1Y7cDdJpUYHcCxt1xBVYeebtgI/1Y2RbdptXEh70tYvdgBPixeyL2K/WqAvtVwEx7XYGV59o+tPNjZet7F+782Lsi9h6U/Fh5jboPNX7s/YAVY1yBPRCxD9SbCmyI1Z9UYGW73wK74sfK61Qb2vuxIdZ0VoGV7ekReDB+rLxaPYJaP/aRiH2sTiuwj0XsE7DufuyTgBX2fQXWrLEXaQUZkD+SwIyto9YtZiWWxkCtK/BPi7UlJd84hnoJMygwA8KciIjdArEbiNgvEPvBcuWFHc3J35W5tApEKxARF2sTlqZi+37RHktpAGK7QGwvIeo8UnzXpi9z8i5MjYScFisXlkL6lBX2G0uJHg/1ltcg7pcQPLZf0si/StESRlCoqTpqL4s1npER3dch3lL0ZnppeMi4aWEVXNSpiIo9qFhEvfOg3omomQc1E1FzD2ououzMd3GdgBFg9Y/vYkF3PALYR66+IvAKbsCqcxvmaATj5wC8wIdUcx/+tij2lq46yTCax3USsxzPSpZ4AqWFWoN6GxVuU3yd0gxLQDJueV/H+HiHuY2FnnNshc+KlTwqMibhdIYkz6Cgg95iRPOpGZ07VHNG3h2XmuFvF/PelJrhd0jjZ+TFc6kZfqqln55D9rbGts+BbcFsGmvt23JTGpx/YRqmfJFWXbS4+FZP9JhBeqcN6e/pN7N3jveyRSXWjy03o5E7/ctL/WtCw+o5d/TcjAp6T+z1mlLUuCcjHffaclMZMlpFR1oOe9f0zWCbvn4zptyMxgF4XFsUcy+cctPROy56Y8vNaBwpznuekSdvys1oDOie9WHLzWhgtqWr43xbbmrZUQMcO9tyU6s+oiww5oB4zHON9Yom5CfNNLUh+Qf12RrX519dxzBn87yIEeopWd+2mk5crGX1Ehl/IQGrNm0oB/oXM8cHK9NYqGtifMUyTEvr+yodu8aj5vdBixHMft4DkHLmKUhochJovVOguClGXeWeGdw1EYej5HgJ1dG1U9FbtHw5a1Sue0G1Ulxme2v12CF7ndPYG5NPuE+alfSwX/mGqyhKGtovaUim10R37/V8LWt/Q8SNlxDjYqT1aEeId9Lq41Sf1luOji/rXZ4pXLznY8cvZpuPtbXBmCcjW4Sy1PF025k8kluH6+pVZXPc/CyiN4r2ak5WY0g7UrkYhZpsMXvjC7q3tA9pTw55MI0evMdIUxkr3jXDLDrm0yOyqK69lXijvkyGjss5WV1jj+vRAwc98KCbxzhbsGLcg1IbYoZDuGsHRDkXC11lpPGJ+m2xO5rRG6yP6NOShTQ02N4kJQtZF2W/LFF5C2gcDRylh9NYpmPwnRVKctTvk8fGrmXLf5l2bs3+dpfGePVors7E9InrNeIa0azhXV2+W+bAEiy8T66R/1rfS+TXhCPaUInrc4cz62VEO/4JRbBj8oxTmm3S7Ci3dvNTy08MpwNl9s5xNzsjCxmR/YtgfcpoTEb0454dMDvobBFSspEhdmdYeDc+X2cojjHrxw0Vn2qw4y0hWzYj/oauO7tyGoscMfA6cLY0to1O9skXTIjrRFt3O7frVx9E2nMS7ihhinasXCH+n9Nv82PGydrKiEAN4xvIta3zvY+MYhbUUZdW+XobZNq6Un5WyPBcS23XPyvTZyXJtiniQnlwte4D5x7dMy8cJROSO19pw+toXTYXKY+X9Ii9PaYonu3+QK/AKPdVWiXXaM51aJQMYBRMiyjCtJWyyMt863mVqYfRzv8v1K2uy1pDipGyGVzWkJTfTyhac6VMYVTz+H1Ns8mv9clSq3o+IxqLJ85c/gZqfwm/jdzmPoxOXLIKN2kMMAV7ZzXCNdFKizBeN0u8zMg0tOy95WfHpGnl1pwnvmbrZmPseWMqBzRqTnXWwpTPQ+OVQ+NVoA7btNdotWjqjSV6IcYWbb1bGcqvCbd2A8ozkbLskRnUMEBKN5YKo9oXqcoxvkG9F2ltiLS6MFvd3QB3zocg/XN9eXZ/U6zukbpFvk2PPDCOX/o0S4fkc5na+kiNKSDn69q+urO/QzXIPSYLipT5HCfOGN516tF1Vkj6K72yZWTnrUUw55be6jbGxnao/PsV5AnNiZzmpUFcpxaJlt+VI1qySOuOzxFR5r9LPhX7HfUxs9vavpOo5E/YeJNnleXFkcKI9C9l3vZWotc9J36NKCacae86BlrN3zBSYIzJJPg9y5zeEK5yvJPAHm1M9nPVTvEu3siRaJ2kXqg/B9gYjnrtWHfHlumx6dtvoCVq3b51XwuZXxrMUeJ3nh29Lq1qJ9pHXSzdn49WV69y5fs6PcyW+Fp9zKiNG1nYKK+M6agvgrmwRM24MCaES7NeNJG/meRNZObdqVDKprWhXM40sI15SfGSdA4UET7v7orXm/tc6Ee8Qi8mrEuNayRKmI3LdH7AtbSYlYqWIiS3XlqTUmc9qlovLA931bB2nC1lQlYwVVLuhlu7feiUohU5G8MUeopP9lbFiS7NL+DC35HyRYmGY0gOsQV+7g21pXY+wKmIN7rMmc2IatAm9Jdi8K7uZ7lFvY7eONRd+iEcwnkMQdeS9ENaUZvKzpRlyV3q4fTfkjWYqESU3rZs3geXi9yTVU5N+jMkCyf3ZqjMNzlN+2I4hPSkzCWcD+9vSL04VubbpmZ9MNTlHpQ5NOFhzjOEvXPbujkvl1O9vla5hPLgdcDsvBgc7gBWxyy2XYiFmjhv5MNzQOtwXEPdrBb/az8MH8upOa9Qbjl9c/Yq4K1zu0RnZtEvbj5nLLeQ0VzNMZxnVvTOek1+fuz/RY3eVOb05sPTR7/UjgHDa6E4HypLx3h3FFl5Q6ng/oBPhkz9W/39gvxVwpuCRpUcTSiZ/YpqaqaFTM18eenrnXkWIpOlUyVTmZqNJ1p0MnZL7alb8LNVeIBNT4nyN5X8F7H+72j7UHtM1sNk0zmD0KG6hLIgdjetT/f2HG2VxHiml8/4tqEG98T3qRbP+96j9njmt13qW/WXJDzX76pM9UuRyfIun51XMfSgvAPHuSDzvW9EZ+o5m8Un0E4C9hj5HBVHSubr5wUh+hQXLku6IIQZLXWUYy/lmM4kJRW041LfejTCx3qnH/cd8Hx+t8guRep3VNfVqwOu1JJUBx6pnlJmICb9b0CE9gd1Ff5e1WW/pAcrkub0DsoSnTrP6k+CnXnHhf2a8TLlwUymbq7bZRTV293D+kzsdiUXPvFejx/U4AeOlC16W68p7p6o+tzhrIbmTMvk7ueOlMl7sh4wmu0W46M+fp7X8JoH9P9OJfqOI+kuyBJTtj2i/bwJ0Uu1bnZIej5XWZ+3vV0jrflqk2nak5V2HJgzknUc8KuyLWH285dn9SsDfmHmp+PO9ScB+y7YE0kiPpkpZY+SAIn4jKh0fmXopSRbjHHA+YxuQG/lvob0VKIyEyWZBXwbPQ+QZR5A51iQ5likMBAl0RbrxaW1zeX/fWS1cHRtfXNjffPB9bUvb+r/meRj9XP1qboCq/Ef1ZcwIw/UIeUa/6L+qv62/Z+dX+xc3vk1N/3ogsb8TJX+7Wz8F/gjXQI=</latexit> <latexit sha1_base64="/59ZCDJZPBrZfCS8zgReJB0hTeY=">AABFdnictVxfcxPJER8u/y7kH5c8piq1OR8JlyKOTUglVVepOrCN8WHAINnAIaC00loI1lqhlYRB56+Q1+Tb5HPkGyRPec1j+s/Mzqw0uz3rELZsz87Or7und6anu2eWeJwO8+nGxj8ufPStb3/nu9/7+PsXf/DDH/34J5c++elRns0mveSwl6XZ5HHczZN0OEoOp8NpmjweT5LuSZwmj+LXW/j80TyZ5MNs1J6+GyfPTrqD0fB42OtOsarz+HTrxaW1jfUN+hetFjZ1YU3pfwfZJ5+uq47qq0z11EydqESN1BTKqeqqHK6nalNtqDHUPVMLqJtAaUjPE3WmLgJ2Bq0SaNGF2tfwewB3T3XtCO6RZk7oHnBJ4WcCyEhdBkwG7SZQRm4RPZ8RZaytor0gmijbO/gba1onUDtVL6FWwpmWoTjsy1Qdqz9RH4bQpzHVYO96msqMtIKSR06vpkBhDHVY7sPzCZR7hDR6jgiTU99Rt116/k9qibV439NtZ+pfJOVluCLV0r3PCgpdNSf6Eb3NGTxjeVLgPAAKie4jlt6Srk+o9yNov4D6e3CdUcnoJIZrQbVntcgtuHzILRG5C5cPuSsi9+HyIfdF5AFcPuSBRiJ2Qjr341tw+fAtkfMDuHzIByLyIVw+5EMReQSXD3kkIr+Gy4f8WkTegsuHvCUi78DlQ94RkW24fMi2iDyEy4c8FJE7cPmQOxpZPVMncGVEZyjMyhtQLvNAS5FCzQ1RvptkHX3YmwFzuleBlWf1Nvz1Y7cDdJpUYHcCxt1xBVYeebtgI/1Y2RbdptXEh70tYvdgBPixeyL2K/WqAvtVwEx7XYGV59o+tPNjZet7F+782Lsi9h6U/Fh5jboPNX7s/YAVY1yBPRCxD9SbCmyI1Z9UYGW73wK74sfK61Qb2vuxIdZ0VoGV7ekReDB+rLxaPYJaP/aRiH2sTiuwj0XsE7DufuyTgBX2fQXWrLEXaQUZkD+SwIyto9YtZiWWxkCtK/BPi7UlJd84hnoJMygwA8KciIjdArEbiNgvEPvBcuWFHc3J35W5tApEKxARF2sTlqZi+37RHktpAGK7QGwvIeo8UnzXpi9z8i5MjYScFisXlkL6lBX2G0uJHg/1ltcg7pcQPLZf0si/StESRlCoqTpqL4s1npER3dch3lL0ZnppeMi4aWEVXNSpiIo9qFhEvfOg3omomQc1E1FzD2ououzMd3GdgBFg9Y/vYkF3PALYR66+IvAKbsCqcxvmaATj5wC8wIdUcx/+tij2lq46yTCax3USsxzPSpZ4AqWFWoN6GxVuU3yd0gxLQDJueV/H+HiHuY2FnnNshc+KlTwqMibhdIYkz6Cgg95iRPOpGZ07VHNG3h2XmuFvF/PelJrhd0jjZ+TFc6kZfqqln55D9rbGts+BbcFsGmvt23JTGpx/YRqmfJFWXbS4+FZP9JhBeqcN6e/pN7N3jveyRSXWjy03o5E7/ctL/WtCw+o5d/TcjAp6T+z1mlLUuCcjHffaclMZMlpFR1oOe9f0zWCbvn4zptyMxgF4XFsUcy+cctPROy56Y8vNaBwpznuekSdvys1oDOie9WHLzWhgtqWr43xbbmrZUQMcO9tyU6s+oiww5oB4zHON9Yom5CfNNLUh+Qf12RrX519dxzBn87yIEeopWd+2mk5crGX1Ehl/IQGrNm0oB/oXM8cHK9NYqGtifMUyTEvr+yodu8aj5vdBixHMft4DkHLmKUhochJovVOguClGXeWeGdw1EYej5HgJ1dG1U9FbtHw5a1Sue0G1Ulxme2v12CF7ndPYG5NPuE+alfSwX/mGqyhKGtovaUim10R37/V8LWt/Q8SNlxDjYqT1aEeId9Lq41Sf1luOji/rXZ4pXLznY8cvZpuPtbXBmCcjW4Sy1PF025k8kluH6+pVZXPc/CyiN4r2ak5WY0g7UrkYhZpsMXvjC7q3tA9pTw55MI0evMdIUxkr3jXDLDrm0yOyqK69lXijvkyGjss5WV1jj+vRAwc98KCbxzhbsGLcg1IbYoZDuGsHRDkXC11lpPGJ+m2xO5rRG6yP6NOShTQ02N4kJQtZF2W/LFF5C2gcDRylh9NYpmPwnRVKctTvk8fGrmXLf5l2bs3+dpfGePVors7E9InrNeIa0azhXV2+W+bAEiy8T66R/1rfS+TXhCPaUInrc4cz62VEO/4JRbBj8oxTmm3S7Ci3dvNTy08MpwNl9s5xNzsjCxmR/YtgfcpoTEb0454dMDvobBFSspEhdmdYeDc+X2cojjHrxw0Vn2qw4y0hWzYj/oauO7tyGoscMfA6cLY0to1O9skXTIjrRFt3O7frVx9E2nMS7ihhinasXCH+n9Nv82PGydrKiEAN4xvIta3zvY+MYhbUUZdW+XobZNq6Un5WyPBcS23XPyvTZyXJtiniQnlwte4D5x7dMy8cJROSO19pw+toXTYXKY+X9Ii9PaYonu3+QK/AKPdVWiXXaM51aJQMYBRMiyjCtJWyyMt863mVqYfRzv8v1K2uy1pDipGyGVzWkJTfTyhac6VMYVTz+H1Ns8mv9clSq3o+IxqLJ85c/gZqfwm/jdzmPoxOXLIKN2kMMAV7ZzXCNdFKizBeN0u8zMg0tOy95WfHpGnl1pwnvmbrZmPseWMqBzRqTnXWwpTPQ+OVQ+NVoA7btNdotWjqjSV6IcYWbb1bGcqvCbd2A8ozkbLskRnUMEBKN5YKo9oXqcoxvkG9F2ltiLS6MFvd3QB3zocg/XN9eXZ/U6zukbpFvk2PPDCOX/o0S4fkc5na+kiNKSDn69q+urO/QzXIPSYLipT5HCfOGN516tF1Vkj6K72yZWTnrUUw55be6jbGxnao/PsV5AnNiZzmpUFcpxaJlt+VI1qySOuOzxFR5r9LPhX7HfUxs9vavpOo5E/YeJNnleXFkcKI9C9l3vZWotc9J36NKCacae86BlrN3zBSYIzJJPg9y5zeEK5yvJPAHm1M9nPVTvEu3siRaJ2kXqg/B9gYjnrtWHfHlumx6dtvoCVq3b51XwuZXxrMUeJ3nh29Lq1qJ9pHXSzdn49WV69y5fs6PcyW+Fp9zKiNG1nYKK+M6agvgrmwRM24MCaES7NeNJG/meRNZObdqVDKprWhXM40sI15SfGSdA4UET7v7orXm/tc6Ee8Qi8mrEuNayRKmI3LdH7AtbSYlYqWIiS3XlqTUmc9qlovLA931bB2nC1lQlYwVVLuhlu7feiUohU5G8MUeopP9lbFiS7NL+DC35HyRYmGY0gOsQV+7g21pXY+wKmIN7rMmc2IatAm9Jdi8K7uZ7lFvY7eONRd+iEcwnkMQdeS9ENaUZvKzpRlyV3q4fTfkjWYqESU3rZs3geXi9yTVU5N+jMkCyf3ZqjMNzlN+2I4hPSkzCWcD+9vSL04VubbpmZ9MNTlHpQ5NOFhzjOEvXPbujkvl1O9vla5hPLgdcDsvBgc7gBWxyy2XYiFmjhv5MNzQOtwXEPdrBb/az8MH8upOa9Qbjl9c/Yq4K1zu0RnZtEvbj5nLLeQ0VzNMZxnVvTOek1+fuz/RY3eVOb05sPTR7/UjgHDa6E4HypLx3h3FFl5Q6ng/oBPhkz9W/39gvxVwpuCRpUcTSiZ/YpqaqaFTM18eenrnXkWIpOlUyVTmZqNJ1p0MnZL7alb8LNVeIBNT4nyN5X8F7H+72j7UHtM1sNk0zmD0KG6hLIgdjetT/f2HG2VxHiml8/4tqEG98T3qRbP+96j9njmt13qW/WXJDzX76pM9UuRyfIun51XMfSgvAPHuSDzvW9EZ+o5m8Un0E4C9hj5HBVHSubr5wUh+hQXLku6IIQZLXWUYy/lmM4kJRW041LfejTCx3qnH/cd8Hx+t8guRep3VNfVqwOu1JJUBx6pnlJmICb9b0CE9gd1Ff5e1WW/pAcrkub0DsoSnTrP6k+CnXnHhf2a8TLlwUymbq7bZRTV293D+kzsdiUXPvFejx/U4AeOlC16W68p7p6o+tzhrIbmTMvk7ueOlMl7sh4wmu0W46M+fp7X8JoH9P9OJfqOI+kuyBJTtj2i/bwJ0Uu1bnZIej5XWZ+3vV0jrflqk2nak5V2HJgzknUc8KuyLWH285dn9SsDfmHmp+PO9ScB+y7YE0kiPpkpZY+SAIn4jKh0fmXopSRbjHHA+YxuQG/lvob0VKIyEyWZBXwbPQ+QZR5A51iQ5likMBAl0RbrxaW1zeX/fWS1cHRtfXNjffPB9bUvb+r/meRj9XP1qboCq/Ef1ZcwIw/UIeUa/6L+qv62/Z+dX+xc3vk1N/3ogsb8TJX+7Wz8F/gjXQI=</latexit> <latexit sha1_base64="/59ZCDJZPBrZfCS8zgReJB0hTeY=">AABFdnictVxfcxPJER8u/y7kH5c8piq1OR8JlyKOTUglVVepOrCN8WHAINnAIaC00loI1lqhlYRB56+Q1+Tb5HPkGyRPec1j+s/Mzqw0uz3rELZsz87Or7und6anu2eWeJwO8+nGxj8ufPStb3/nu9/7+PsXf/DDH/34J5c++elRns0mveSwl6XZ5HHczZN0OEoOp8NpmjweT5LuSZwmj+LXW/j80TyZ5MNs1J6+GyfPTrqD0fB42OtOsarz+HTrxaW1jfUN+hetFjZ1YU3pfwfZJ5+uq47qq0z11EydqESN1BTKqeqqHK6nalNtqDHUPVMLqJtAaUjPE3WmLgJ2Bq0SaNGF2tfwewB3T3XtCO6RZk7oHnBJ4WcCyEhdBkwG7SZQRm4RPZ8RZaytor0gmijbO/gba1onUDtVL6FWwpmWoTjsy1Qdqz9RH4bQpzHVYO96msqMtIKSR06vpkBhDHVY7sPzCZR7hDR6jgiTU99Rt116/k9qibV439NtZ+pfJOVluCLV0r3PCgpdNSf6Eb3NGTxjeVLgPAAKie4jlt6Srk+o9yNov4D6e3CdUcnoJIZrQbVntcgtuHzILRG5C5cPuSsi9+HyIfdF5AFcPuSBRiJ2Qjr341tw+fAtkfMDuHzIByLyIVw+5EMReQSXD3kkIr+Gy4f8WkTegsuHvCUi78DlQ94RkW24fMi2iDyEy4c8FJE7cPmQOxpZPVMncGVEZyjMyhtQLvNAS5FCzQ1RvptkHX3YmwFzuleBlWf1Nvz1Y7cDdJpUYHcCxt1xBVYeebtgI/1Y2RbdptXEh70tYvdgBPixeyL2K/WqAvtVwEx7XYGV59o+tPNjZet7F+782Lsi9h6U/Fh5jboPNX7s/YAVY1yBPRCxD9SbCmyI1Z9UYGW73wK74sfK61Qb2vuxIdZ0VoGV7ekReDB+rLxaPYJaP/aRiH2sTiuwj0XsE7DufuyTgBX2fQXWrLEXaQUZkD+SwIyto9YtZiWWxkCtK/BPi7UlJd84hnoJMygwA8KciIjdArEbiNgvEPvBcuWFHc3J35W5tApEKxARF2sTlqZi+37RHktpAGK7QGwvIeo8UnzXpi9z8i5MjYScFisXlkL6lBX2G0uJHg/1ltcg7pcQPLZf0si/StESRlCoqTpqL4s1npER3dch3lL0ZnppeMi4aWEVXNSpiIo9qFhEvfOg3omomQc1E1FzD2ououzMd3GdgBFg9Y/vYkF3PALYR66+IvAKbsCqcxvmaATj5wC8wIdUcx/+tij2lq46yTCax3USsxzPSpZ4AqWFWoN6GxVuU3yd0gxLQDJueV/H+HiHuY2FnnNshc+KlTwqMibhdIYkz6Cgg95iRPOpGZ07VHNG3h2XmuFvF/PelJrhd0jjZ+TFc6kZfqqln55D9rbGts+BbcFsGmvt23JTGpx/YRqmfJFWXbS4+FZP9JhBeqcN6e/pN7N3jveyRSXWjy03o5E7/ctL/WtCw+o5d/TcjAp6T+z1mlLUuCcjHffaclMZMlpFR1oOe9f0zWCbvn4zptyMxgF4XFsUcy+cctPROy56Y8vNaBwpznuekSdvys1oDOie9WHLzWhgtqWr43xbbmrZUQMcO9tyU6s+oiww5oB4zHON9Yom5CfNNLUh+Qf12RrX519dxzBn87yIEeopWd+2mk5crGX1Ehl/IQGrNm0oB/oXM8cHK9NYqGtifMUyTEvr+yodu8aj5vdBixHMft4DkHLmKUhochJovVOguClGXeWeGdw1EYej5HgJ1dG1U9FbtHw5a1Sue0G1Ulxme2v12CF7ndPYG5NPuE+alfSwX/mGqyhKGtovaUim10R37/V8LWt/Q8SNlxDjYqT1aEeId9Lq41Sf1luOji/rXZ4pXLznY8cvZpuPtbXBmCcjW4Sy1PF025k8kluH6+pVZXPc/CyiN4r2ak5WY0g7UrkYhZpsMXvjC7q3tA9pTw55MI0evMdIUxkr3jXDLDrm0yOyqK69lXijvkyGjss5WV1jj+vRAwc98KCbxzhbsGLcg1IbYoZDuGsHRDkXC11lpPGJ+m2xO5rRG6yP6NOShTQ02N4kJQtZF2W/LFF5C2gcDRylh9NYpmPwnRVKctTvk8fGrmXLf5l2bs3+dpfGePVors7E9InrNeIa0azhXV2+W+bAEiy8T66R/1rfS+TXhCPaUInrc4cz62VEO/4JRbBj8oxTmm3S7Ci3dvNTy08MpwNl9s5xNzsjCxmR/YtgfcpoTEb0454dMDvobBFSspEhdmdYeDc+X2cojjHrxw0Vn2qw4y0hWzYj/oauO7tyGoscMfA6cLY0to1O9skXTIjrRFt3O7frVx9E2nMS7ihhinasXCH+n9Nv82PGydrKiEAN4xvIta3zvY+MYhbUUZdW+XobZNq6Un5WyPBcS23XPyvTZyXJtiniQnlwte4D5x7dMy8cJROSO19pw+toXTYXKY+X9Ii9PaYonu3+QK/AKPdVWiXXaM51aJQMYBRMiyjCtJWyyMt863mVqYfRzv8v1K2uy1pDipGyGVzWkJTfTyhac6VMYVTz+H1Ns8mv9clSq3o+IxqLJ85c/gZqfwm/jdzmPoxOXLIKN2kMMAV7ZzXCNdFKizBeN0u8zMg0tOy95WfHpGnl1pwnvmbrZmPseWMqBzRqTnXWwpTPQ+OVQ+NVoA7btNdotWjqjSV6IcYWbb1bGcqvCbd2A8ozkbLskRnUMEBKN5YKo9oXqcoxvkG9F2ltiLS6MFvd3QB3zocg/XN9eXZ/U6zukbpFvk2PPDCOX/o0S4fkc5na+kiNKSDn69q+urO/QzXIPSYLipT5HCfOGN516tF1Vkj6K72yZWTnrUUw55be6jbGxnao/PsV5AnNiZzmpUFcpxaJlt+VI1qySOuOzxFR5r9LPhX7HfUxs9vavpOo5E/YeJNnleXFkcKI9C9l3vZWotc9J36NKCacae86BlrN3zBSYIzJJPg9y5zeEK5yvJPAHm1M9nPVTvEu3siRaJ2kXqg/B9gYjnrtWHfHlumx6dtvoCVq3b51XwuZXxrMUeJ3nh29Lq1qJ9pHXSzdn49WV69y5fs6PcyW+Fp9zKiNG1nYKK+M6agvgrmwRM24MCaES7NeNJG/meRNZObdqVDKprWhXM40sI15SfGSdA4UET7v7orXm/tc6Ee8Qi8mrEuNayRKmI3LdH7AtbSYlYqWIiS3XlqTUmc9qlovLA931bB2nC1lQlYwVVLuhlu7feiUohU5G8MUeopP9lbFiS7NL+DC35HyRYmGY0gOsQV+7g21pXY+wKmIN7rMmc2IatAm9Jdi8K7uZ7lFvY7eONRd+iEcwnkMQdeS9ENaUZvKzpRlyV3q4fTfkjWYqESU3rZs3geXi9yTVU5N+jMkCyf3ZqjMNzlN+2I4hPSkzCWcD+9vSL04VubbpmZ9MNTlHpQ5NOFhzjOEvXPbujkvl1O9vla5hPLgdcDsvBgc7gBWxyy2XYiFmjhv5MNzQOtwXEPdrBb/az8MH8upOa9Qbjl9c/Yq4K1zu0RnZtEvbj5nLLeQ0VzNMZxnVvTOek1+fuz/RY3eVOb05sPTR7/UjgHDa6E4HypLx3h3FFl5Q6ng/oBPhkz9W/39gvxVwpuCRpUcTSiZ/YpqaqaFTM18eenrnXkWIpOlUyVTmZqNJ1p0MnZL7alb8LNVeIBNT4nyN5X8F7H+72j7UHtM1sNk0zmD0KG6hLIgdjetT/f2HG2VxHiml8/4tqEG98T3qRbP+96j9njmt13qW/WXJDzX76pM9UuRyfIun51XMfSgvAPHuSDzvW9EZ+o5m8Un0E4C9hj5HBVHSubr5wUh+hQXLku6IIQZLXWUYy/lmM4kJRW041LfejTCx3qnH/cd8Hx+t8guRep3VNfVqwOu1JJUBx6pnlJmICb9b0CE9gd1Ff5e1WW/pAcrkub0DsoSnTrP6k+CnXnHhf2a8TLlwUymbq7bZRTV293D+kzsdiUXPvFejx/U4AeOlC16W68p7p6o+tzhrIbmTMvk7ueOlMl7sh4wmu0W46M+fp7X8JoH9P9OJfqOI+kuyBJTtj2i/bwJ0Uu1bnZIej5XWZ+3vV0jrflqk2nak5V2HJgzknUc8KuyLWH285dn9SsDfmHmp+PO9ScB+y7YE0kiPpkpZY+SAIn4jKh0fmXopSRbjHHA+YxuQG/lvob0VKIyEyWZBXwbPQ+QZR5A51iQ5likMBAl0RbrxaW1zeX/fWS1cHRtfXNjffPB9bUvb+r/meRj9XP1qboCq/Ef1ZcwIw/UIeUa/6L+qv62/Z+dX+xc3vk1N/3ogsb8TJX+7Wz8F/gjXQI=</latexit> <latexit sha1_base64="O+fT+UDZYhoqifeIw6Ke6DTBAFc=">AAA/fXiczVtbdxu3EUbSW6ze7PSxD91WUWPnuDqy4lM3J6d1bEmWFdOWbFGykzB2eVlRG1NcepfUxazyT/raPvQn9Jf0H9Q/oU/tzABYYEnsDqAm50Q4krAgvpnBAJgLsOyMBkk+Xln511tvf+/7P/jhj965tPDjn/z0Zz+/fOXd/TydZN14r5sO0uxZp53Hg2QY742T8SB+Nsri9lFnED/tvFzDz58ex1mepMPm+GwUf3nU7g+Tg6TbHkPTi8tXWkRjmsW986j3ovXs9MXlxZXlFfqJ5is3VGVRqJ+d9MqvPhAt0ROp6IqJOBKxGIox1AeiLXIoX4gbYkWMoO1LMYW2DGoJfR6Lc7EA2An0iqFHG1pfwt8+PH2hWofwjDRzQneBywB+M0BGYgkwKfTLoI7cIvp8QpSxtYr2lGiibGfwv6NoHUHrWBxCK4fTPf1xPWg9ANlQM/VjHkO/P9BYE+g9ohbUQldxm5D2cISRNfoxUBhBG9Z78HkG9S4h9XxEhMlJRzgHbfr839QTW/G5q/pOxBsazXdFf989vSwFlEhsiUdiTTTEnlgXG2KX5K0vC4Rbg3GMQMcZSN4HDaG0V0Gaa/B/FfbUirgFtU2QsUN9YhhLJHbg/xnJv6BkjcRDcUc0xX3ifRXqD6F2LWCeuJ56bec0G/7rZoFZZRnNyFmtBGMa/4QsQCZOa/vi2ump2Tyg9ZCrHVk/p1KDa+KJ2K6dP+Q8BPonZImOSIPIcQrtfZAJV+gA+KFNxLX8D/G1WIT61+Kfah1HIFemVvYh0ZNP/jT/DAVpvg/lXFwimnsg9UIxygie5Aykxepvi2PaGxFZ8gl8JvfSgNbekHrVje4RlHOq6VXTgTKl1vNa5BoUF3KNRW5CcSE3WWQDigvZYJE7UFzIHYWswz6G4sI+Zrk+geJCPmGRTSguZJNF7kNxIfdZ5OdQXMjPWeQ9KC7kPRb5AIoL+YBF7kFxIfdY5AYUF3JDIav3Gtq1lOgkzL66A/UyD/RTA2i5w8p3l2ysC3vXY1d2K7D8vlyH/27suodO4wrshsfqOajA8utnE6ycG8tbk/vkI13Y+yx2C1aAG7vFYj8VX1VgP/XYLy8rsPyOaZC/cWF5+/kQntzYhyz2EdTcWN7LbEOLG7vtYfNHFdgdFvtYvKrA+lj9rALL2/1disVc2F0PnzGuwPJeYw9iBzeWt6f7EIO4sbzPeQqtbuxTFvuMokYX9hmL/YyiUxf2Mw8/+boCqz2ljN77FAPGsGPrqLWLXYm1EVBrM/wHhW/BGvqoHovpF5g+YY5YxGaB2PRENApEw1uuvLCjOUWsPJfdArHriegUvglrY7Z/r+jfo9yMR6wXiPUZRF0WgHOtx3JM0YVu4ZDjwnNhzWdMaWG/sRar9VBveTViu4SQa/uQVv51ytUxk+lR3lpN7bDw8RIZ0XMd4oRyPT1KzYPHjQurYKNOWVTHgeqwqDMH6oxFTRyoCYs6dqCOWZTZ+Tau5bECjP5xLqb0pHN/7iylfHaxDR53A7wftmzDf5+zlPqsHE8E0FPq7NnY4gxqU8qkTWa3TjmyPGmIQTLZc1udMeETnk1O1a6Tdvi88OWR0Cee/nQSkqdf0MF4MaIdFUbnAbWcU3wna2H4+8XO17Uw/AZp/JzieFkLw4+V9OMLyN5U2OYFsLuwn0ZK+6YeSkOeoUgaus7Z5q3CbuJ55SntHNkWyn+NalIHph5GI7fGkJfGEELD6DK3dBlGBWMkGdvqWhQ8kqHKbk09VIaUfOVQyWGeQmcG+/TUzOh6GI0diKvWKLOeWvXQFToqRmPqYTT2hTxbP6d4XdfDaPTpWerD1MNo4JlKW2Xzph5qvVEDMkM2dR2zZBTF6BPnhLx3/VmKHZHP+xg8UXleRPD1lEzkWU2nU/iZeolmrUuIHOj9J1aEVKYxFats9iNlGJd87zwd439R8w3QYgS7Vp7rc2fSA5BQnxjEdEr+nKjVY8oj07hVFoeW5GAG1VKtYzaWM3zlmU657QW1clmTGa3RY4vsbE5rb0QRW4M0y+mhUTnDVRQ5DTVKGuLphejuNe3gdEb7KyxuNIMYFSutS7dD8pa6Pot0aX3X0vGSukUZQ5F3Kmb94lnwAeEyykhSsjYoSx1Pu58+5bHb0B9eF+YEWn4W0YyivTomq5HQjU/OxiH6LFdGylN6NrT36J6tfGsVKSojIW9U8YwbT7sjus+0bS3HG/Wlz89kPSera+7R62/HDLrvQIdmH2vgKx5BrQnR/B48NT3yD3PnlpK+M/G74v4zpfmrz7btm71WQUNam7hkH+sy4MMSlRNA41qQGbQ/jVk6Gt+ao8Rn5C55TF5ZtvtLdKev3xxp0wqvXsvVpyQ94rpKXCPaM/K+Xz7NcpASTJ2frFLUWT9K5BfCES0ox/W5xVnqZUjv0sSUW44onh3QXuP2Rrm3fXY0+4nmtCP0WxV4V5ySfYzI+kXgnVJakxH92m/l6HcrpD0YkIX0sTpJEdu4Ip2EXWMJ7XK5RuT7Qma9xWTJJsRf07V3V05rUcb50gucz6xtrZMGRYIxcc2UbTd7u973INK8CWGvEknRrJWrxP8a/dW/ep0szq0I1DDOQK4snWs+Uso0UEdt8vH1Nkj3taV8r5DhuZLaeD8j03slydYpT0J50Ff3gHOXniUvXCUZyZ3P9ZFetO6kFSmPZvSIo0Xv2lJWv6/8L8p9nXzkIu25ljBv2OjYX/flTnhn+dbzKlP3o51/K9SNrstaQ4qRMKerUkPc2XtMOZYt5YDeSZJv38SK0rzWs5le9XyGtBaPrL38F2j9NfzVcutnPzqdklW4S2tAUjBPRiOyJZrr4cfrbomXXpmalnk2/Mya1L3slotkxdK6mcz4OJjKDq2aU3XWoOs+42/SHZ7RgG7XVuTFTATdVHd+vtTDaPtTnrCU+dhJoxIPKe2cx49qj6XK5+Ia9ZqltcLSwrfx7BN1e3favvMexQ5dinBkdtCjXZBQTKNb6/MgSQF53VT2y95dLWrBvdQhC4WUy28V4tldV8h3SKWMv1WeIyU7anacfmfnRPXRNqxF9Q/nkEeUzea0dzTiJvWIlfy2HNHMjl+2fHpEZ95tilmkX6/PSO3eZhaikr822ZzcC4bXQLyvovEhzcFYvKnltjWXH25ZGWIk5H3foIjgcZbfBM0y5m1yZehc3R295TRL6Ekyyudl1NghGzV/yiBvsYagfb3ulknqqfijh3WQeaXZKfb6ws8mKivBsX0APVHzZuZdPXh+A2+OHL+L3Ge1yXMcqThwOvN8MVpt5UnKz3V6mMzwNfqYiKHKCXX0bjKpMqYlPvbmIiUK4yIxPlzCRhEif5jkITLLextfyrq3plzO5qWNOaSchHsPEhGuCOqqM2K6xoyjM0evQ1ibmmzhKOF5V6pycNva4snPpTlfJFsv1XqkgeWNqryFpm57DGPDpYWMyfoNBHcuInt3hXwftSqDsnODj6Hg30i48iftTXxO13YhisT36v2+FVF/k/9K1eWJX0QtuJN7M9lpW42z3KN+ll9Z1G36Phz8eSSga076hPxgqOySMi+5Td2f/gnt4UzErPSmZ/gYbC78SOY5hYwnIbvEjyYR+ntMoWPRHHxGUubiz0ee+3OjOBD6+3RhY9DU+RGUOYTw0PfzfnNueofzsjnV62ueiy8PacP1jYTG4c1YdbZh+vlYqMyakW+eA1qHgxrq2lv8v+PQfAyncF6+3HL6rtNXHrMu+8XqzBKj2fA9Y7j5rOZqjv4802J0JtZx85NRWxQ0U6k1mm+ePkaTZg1oXlMhTwp56STeXkVGXl8qeHLukiEV//GSQeKrZPClok/wqynpHjw1/U0/16j0Zz4yGTpVMpWpIT2ZabdoD8d0WmBudnr0XLxtSd9D/4h+Ilm5dVNVPrpRfA99f3X5xu+XP3x8c/GTu+ob6e+IX4rfQCR/Q9wSn4j7EGHugQwn4q/ib+Lvf/rv7aXb128vy65vv6UwvxCln9u3/gfA1CcO</latexit> dX Y <latexit sha1_base64="6tOGw6FSQVfHa06oZqSaTlaRZAo=">AABFdnictVxtc9u4EUaub9f0Ldd+7EyHPZ/bXCd17TSdduamM5fYjuOLkziR7CQXJRlRohUltKiIkvKi81/o1/bf9Hf0H7Sf+rUfuy8AAUogF3TTcGyDIJ7dxRJY7C7AxON0mE83N/9x4aNvffs73/3ex9+/+IMf/ujHP7n0yU+P82w26SVHvSzNJo/ibp6kw1FyNB1O0+TReJJ0T+M0eRi/2sbnD+fJJB9mo/b03Th5etodjIYnw153ilWdx++2n19a29zYpH/RamFLF9aU/neYffLphuqovspUT83UqUrUSE2hnKquyuF6orbUphpD3VO1gLoJlIb0PFFn6iJgZ9AqgRZdqH0Fvwdw90TXjuAeaeaE7gGXFH4mgIzUOmAyaDeBMnKL6PmMKGNtFe0F0UTZ3sHfWNM6hdqpegG1Es60DMVhX6bqRP2J+jCEPo2pBnvX01RmpBWUPHJ6NQUKY6jDch+eT6DcI6TRc0SYnPqOuu3S839SS6zF+55uO1P/IinX4YpUS/c+Kyh01ZzoR/Q2Z/CM5UmB8wAoJLqPWHpDuj6l3o+g/QLq78J1RiWjkxiuBdWe1SK34fIht0XkHlw+5J6IPIDLhzwQkYdw+ZCHGonYCencj2/B5cO3RM734fIh74vIB3D5kA9E5DFcPuSxiPwaLh/yaxF5Ey4f8qaIvA2XD3lbRLbh8iHbIvIILh/ySETuwuVD7mpk9UydwJURnaEwK69DucwDLUUKNddF+W6QdfRhbwTM6V4FVp7VO/DXj90J0GlSgd0NGHcnFVh55O2BjfRjZVt0i1YTH/aWiN2HEeDH7ovYr9TLCuxXATPtVQVWnmsH0M6Pla3vHbjzY++I2LtQ8mPlNeoe1Pix9wJWjHEF9lDE3levK7AhVn9SgZXtfgvsih8rr1NtaO/HhljTWQVWtqfH4MH4sfJq9RBq/diHIvaReluBfSRiH4N192MfB6yw7yuwZo29SCvIgPyRBGZsHbVuMSuxNAZqXYF/WqwtKfnGMdRLmEGBGRDmVETsFYi9QMRBgTgIlisv7GhO/q7MpVUgWoGIuFibsDQV2/eL9lhKAxA7BWJnCVHnkeK7Nn2Zk3dhaiTktFi5sBTSp6yw31hK9Hiot7wGca+E4LH9gkb+FYqWMIJCTdVRe1Gs8YyM6L4O8YaiN9NLw0PGTQur4KLeiqjYg4pF1DsP6p2ImnlQMxE196DmIsrOfBfXCRgBVv/4LhZ0xyOAfeTqKwKv4DqsOrdgjkYwfg7BC3xANffgb4tib+mqkwyjeVwnMcvxtGSJJ1BaqDWot1HhDsXXKc2wBCTjlvd0jI93mNtY6DnHVvisWMmjImMSTmdI8gwKOugtRjSfmtG5TTVn5N1xqRn+VjHvTakZfpc0fkZePJea4ada+uk5ZG9rbPsc2BbMprHWvi03pcH5F6Zhyhdp1UWLi2/1VI8ZpPe2If19/Wb2z/FetqnE+rHlZjRyp395qX9NaFg9546em1FB74m9XlOKGvdkpONeW24qQ0ar6EjLYe+avhls09dvxpSb0TgEj2ubYu6FU246esdFb2y5GY1jxXnPM/LkTbkZjQHdsz5suRkNzLZ0dZxvy00tO2qAY2dbbmrVR5QFxhwQj3musV7RhPykmaY2JP+gPlvj+vyr6xjmbJ4VMUI9JevbVtOJi7WsXiLjLyRg1aYN5UD/Yub4YGUaC3VVjK9YhmlpfV+lY9d41PwBaDGC2c97AFLOPAUJTU4CrXcKFLfEqKvcM4O7KuJwlJwsoTq6dip6i5YvZ43Kdc+pVorLbG+tHjtkr3Mae2PyCQ9Is5IeDirfcBVFSUMHJQ3J9Jro7r2er2Xtb4q48RJiXIy0Hu0I8U5afZzq03rL0fG63uWZwsV7Pnb8Yrb5RFsbjHkyskUoSx1Pt53JI7l1uK5eUTbHzc8ieqNor+ZkNYa0I5WLUajJFrM3vqB7S/uI9uSQB9PowXuMNJWx4l0zzKJjPj0ii+raW4k36stk6Lick9U19rgePXDQAw+6eYyzDSvGXSi1IWY4grt2QJRzsdBVRhqfqN8Wu6MZvcH6iD4tWUhDg+1NUrKQdVH2ixKVN4DG0cBRejiNZToG31mhJEf9Pnls7Fq2/Ou0c2v2t7s0xqtHc3Umpk9crxLXiGYN7+ry3TIHlmDhfXKV/Nf6XiK/JhzRhkpcnzmcWS8j2vFPKIIdk2ec0myTZke5tZufWn5iOB0qs3eOu9kZWciI7F8E61NGYzKiH/fsgNlBZ4uQko0MsTvDwrvx+TpDcYxZP26o+FSDHW8J2bIZ8Td03dmV01jkiIHXgbOlsW10ckC+YEJcJ9q627ldv/og0p6TcEcJU7Rj5TLx/5x+mx8zTtZWRgRqGN9Arm2d731kFLOgjrq0ytfbINPWlfKzQoZnWmq7/lmZPitJtkMRF8qDq3UfOPfonnnhKJmQ3PlKG15H67K5SHm8pEfs7QlF8Wz3B3oFRrmv0Cq5RnOuQ6NkAKNgWkQRpq2URV7mW8+rTD2Mdv5/oW51XdYaUoyUzeCyhqT8fkLRmitlCqOax+8rmk1+rU+WWtXzGdFYPHXm8jdQ+0v4beQ292F04pJVuEFjgCnYO6sRrolWWoTxulHiZUamoWXvLT87Jk0rt+Y88TVbNxtjzxtTOaRR81ZnLUz5PDReOjReBuqwTXuNVoum3lii52Js0da7laH8mnBrN6A8EynLHplBDQOkdGOpMKp9kaoc4xvUe5HWpkirC7PV3Q1w53wI0j/Xl2f3N8XqHqmb5Nv0yAPj+KVPs3RIPpeprY/UmAJyvqbtqzv7O1SD3GOyoEiZz3HijOFdpx5dZ4Wkv9IrW0Z23loEc27pjW5jbGyHyr9fQZ7SnMhpXhrENWqRaPldOaIli7Th+BwRZf675FOx31EfM7ut7TuJSv6EjTd5VlleHCmMSP9S5m1/JXrdd+LXiGLCmfauY6DV/A0jBcaYTILfs8zpDeEqxzsJ7NHGZD9X7RTv4o0ciTZI6oX6c4CN4ajXjnV3bJkem779Blqi1u1b97WQ+aXBHCV+59nR69Kqdqp91MXS/flodfUqV76v08Nsia/Vx4zauJGFjfLKmI76IpgLS9SMC2NCuDTrRRP5m0neRGbenQqlbFobyuVMA9uYFxQvSedAEeHz7i57vbnPhX7EK/RiwrrUuEaihNm4TOcHXEuLWaloKUJy66U1KXXWo6r1wvJwVw1rx9lSJmQFUyXlbri124dOKVqRszFMoaf4ZG9VnOjS/AIu/B0pX5RoOIbkEFvg515X22r3A5yKeK3LnNmMqAZtQn8pBu/qfpZb1OvotUPdpR/CIZzHEHQtST+kFbWp7ExZltylHk7/DVmDiUpE6W3L5n1wucg9WeXUpD9DsnByb4bKfJPTtC+GQ0hPylzC+fD+htSLE2W+bWrWB0Nd7kGZQxMe5jxD2Du3rZvzcjnV62uVSygPXgfMzovB4Q5gdcxi24VYqInzRj48B7QOJzXUzWrxv/bD8LGcmvMK5ZbTN2cvA946t0t0Zhb94uZzxnILGc3VHMN5ZkXvrNfk58f+X9ToTWVObz48ffRL7RgwvBaK86GydIx3R5GVN5QK7g/4ZMjUv9XfL8hfJbwuaFTJ0YSS2a+opmZayNTMl5e+3plnITJZOlUylanZeKJFJ2O31b66CT/bhQfY9JQof1PJfxHr/462D7UnZD1MNp0zCB2qSygLYnfT+nRvz9FWSYxnevmMbxtqcE/8gGrxvO9dao9nftulvlV/ScJz/Y7KVL8UmSzv8tl5FUMPyjtwnAsy3/tGdKaes1l8Au00YI+Rz1FxpGS+fl4Qok9x4bKkC0KY0VJHOfZSjulMUlJBOy71rUcjfKx3+nHfAc/nd4vsUqR+R3VdvTrgSi1JdeiR6gllBmLS/yZEaH9QV+DvFV32S3q4ImlO76As0VvnWf1JsDPvuLBfM65THsxk6ua6XUZRvd09rM/E7lRy4RPv9fhBDX7gSNmit/WK4u6Jqs8dzmpozrRM7n7uSJm8J+sBo9luMT7q4+d5Da95QP9vV6JvO5LugSwxZdsj2s+bEL1U62aXpOdzlfV521s10pqvNpmmPVlpx4E5I1nHAb8q2xZmP395Vr8y4BdmfjruXH8csO+CPZEk4pOZUvYoCZCIz4hK51eGXkqyxRgHnM/oBvRW7mtITyUqM1GSWcC30fMAWeYBdE4EaU5ECgNREm2xnl9a21r+30dWC8dXN7Y2N7buX1v78ob+n0k+Vj9Xn6rLsBr/UX0JM/JQHVGu8S/qr+pvO//Z/cXu+u6vuelHFzTmZ6r0b3fzv4JTXQQ=</latexit> <latexit sha1_base64="6tOGw6FSQVfHa06oZqSaTlaRZAo=">AABFdnictVxtc9u4EUaub9f0Ldd+7EyHPZ/bXCd17TSdduamM5fYjuOLkziR7CQXJRlRohUltKiIkvKi81/o1/bf9Hf0H7Sf+rUfuy8AAUogF3TTcGyDIJ7dxRJY7C7AxON0mE83N/9x4aNvffs73/3ex9+/+IMf/ujHP7n0yU+P82w26SVHvSzNJo/ibp6kw1FyNB1O0+TReJJ0T+M0eRi/2sbnD+fJJB9mo/b03Th5etodjIYnw153ilWdx++2n19a29zYpH/RamFLF9aU/neYffLphuqovspUT83UqUrUSE2hnKquyuF6orbUphpD3VO1gLoJlIb0PFFn6iJgZ9AqgRZdqH0Fvwdw90TXjuAeaeaE7gGXFH4mgIzUOmAyaDeBMnKL6PmMKGNtFe0F0UTZ3sHfWNM6hdqpegG1Es60DMVhX6bqRP2J+jCEPo2pBnvX01RmpBWUPHJ6NQUKY6jDch+eT6DcI6TRc0SYnPqOuu3S839SS6zF+55uO1P/IinX4YpUS/c+Kyh01ZzoR/Q2Z/CM5UmB8wAoJLqPWHpDuj6l3o+g/QLq78J1RiWjkxiuBdWe1SK34fIht0XkHlw+5J6IPIDLhzwQkYdw+ZCHGonYCencj2/B5cO3RM734fIh74vIB3D5kA9E5DFcPuSxiPwaLh/yaxF5Ey4f8qaIvA2XD3lbRLbh8iHbIvIILh/ySETuwuVD7mpk9UydwJURnaEwK69DucwDLUUKNddF+W6QdfRhbwTM6V4FVp7VO/DXj90J0GlSgd0NGHcnFVh55O2BjfRjZVt0i1YTH/aWiN2HEeDH7ovYr9TLCuxXATPtVQVWnmsH0M6Pla3vHbjzY++I2LtQ8mPlNeoe1Pix9wJWjHEF9lDE3levK7AhVn9SgZXtfgvsih8rr1NtaO/HhljTWQVWtqfH4MH4sfJq9RBq/diHIvaReluBfSRiH4N192MfB6yw7yuwZo29SCvIgPyRBGZsHbVuMSuxNAZqXYF/WqwtKfnGMdRLmEGBGRDmVETsFYi9QMRBgTgIlisv7GhO/q7MpVUgWoGIuFibsDQV2/eL9lhKAxA7BWJnCVHnkeK7Nn2Zk3dhaiTktFi5sBTSp6yw31hK9Hiot7wGca+E4LH9gkb+FYqWMIJCTdVRe1Gs8YyM6L4O8YaiN9NLw0PGTQur4KLeiqjYg4pF1DsP6p2ImnlQMxE196DmIsrOfBfXCRgBVv/4LhZ0xyOAfeTqKwKv4DqsOrdgjkYwfg7BC3xANffgb4tib+mqkwyjeVwnMcvxtGSJJ1BaqDWot1HhDsXXKc2wBCTjlvd0jI93mNtY6DnHVvisWMmjImMSTmdI8gwKOugtRjSfmtG5TTVn5N1xqRn+VjHvTakZfpc0fkZePJea4ada+uk5ZG9rbPsc2BbMprHWvi03pcH5F6Zhyhdp1UWLi2/1VI8ZpPe2If19/Wb2z/FetqnE+rHlZjRyp395qX9NaFg9546em1FB74m9XlOKGvdkpONeW24qQ0ar6EjLYe+avhls09dvxpSb0TgEj2ubYu6FU246esdFb2y5GY1jxXnPM/LkTbkZjQHdsz5suRkNzLZ0dZxvy00tO2qAY2dbbmrVR5QFxhwQj3musV7RhPykmaY2JP+gPlvj+vyr6xjmbJ4VMUI9JevbVtOJi7WsXiLjLyRg1aYN5UD/Yub4YGUaC3VVjK9YhmlpfV+lY9d41PwBaDGC2c97AFLOPAUJTU4CrXcKFLfEqKvcM4O7KuJwlJwsoTq6dip6i5YvZ43Kdc+pVorLbG+tHjtkr3Mae2PyCQ9Is5IeDirfcBVFSUMHJQ3J9Jro7r2er2Xtb4q48RJiXIy0Hu0I8U5afZzq03rL0fG63uWZwsV7Pnb8Yrb5RFsbjHkyskUoSx1Pt53JI7l1uK5eUTbHzc8ieqNor+ZkNYa0I5WLUajJFrM3vqB7S/uI9uSQB9PowXuMNJWx4l0zzKJjPj0ii+raW4k36stk6Lick9U19rgePXDQAw+6eYyzDSvGXSi1IWY4grt2QJRzsdBVRhqfqN8Wu6MZvcH6iD4tWUhDg+1NUrKQdVH2ixKVN4DG0cBRejiNZToG31mhJEf9Pnls7Fq2/Ou0c2v2t7s0xqtHc3Umpk9crxLXiGYN7+ry3TIHlmDhfXKV/Nf6XiK/JhzRhkpcnzmcWS8j2vFPKIIdk2ec0myTZke5tZufWn5iOB0qs3eOu9kZWciI7F8E61NGYzKiH/fsgNlBZ4uQko0MsTvDwrvx+TpDcYxZP26o+FSDHW8J2bIZ8Td03dmV01jkiIHXgbOlsW10ckC+YEJcJ9q627ldv/og0p6TcEcJU7Rj5TLx/5x+mx8zTtZWRgRqGN9Arm2d731kFLOgjrq0ytfbINPWlfKzQoZnWmq7/lmZPitJtkMRF8qDq3UfOPfonnnhKJmQ3PlKG15H67K5SHm8pEfs7QlF8Wz3B3oFRrmv0Cq5RnOuQ6NkAKNgWkQRpq2URV7mW8+rTD2Mdv5/oW51XdYaUoyUzeCyhqT8fkLRmitlCqOax+8rmk1+rU+WWtXzGdFYPHXm8jdQ+0v4beQ292F04pJVuEFjgCnYO6sRrolWWoTxulHiZUamoWXvLT87Jk0rt+Y88TVbNxtjzxtTOaRR81ZnLUz5PDReOjReBuqwTXuNVoum3lii52Js0da7laH8mnBrN6A8EynLHplBDQOkdGOpMKp9kaoc4xvUe5HWpkirC7PV3Q1w53wI0j/Xl2f3N8XqHqmb5Nv0yAPj+KVPs3RIPpeprY/UmAJyvqbtqzv7O1SD3GOyoEiZz3HijOFdpx5dZ4Wkv9IrW0Z23loEc27pjW5jbGyHyr9fQZ7SnMhpXhrENWqRaPldOaIli7Th+BwRZf675FOx31EfM7ut7TuJSv6EjTd5VlleHCmMSP9S5m1/JXrdd+LXiGLCmfauY6DV/A0jBcaYTILfs8zpDeEqxzsJ7NHGZD9X7RTv4o0ciTZI6oX6c4CN4ajXjnV3bJkem779Blqi1u1b97WQ+aXBHCV+59nR69Kqdqp91MXS/flodfUqV76v08Nsia/Vx4zauJGFjfLKmI76IpgLS9SMC2NCuDTrRRP5m0neRGbenQqlbFobyuVMA9uYFxQvSedAEeHz7i57vbnPhX7EK/RiwrrUuEaihNm4TOcHXEuLWaloKUJy66U1KXXWo6r1wvJwVw1rx9lSJmQFUyXlbri124dOKVqRszFMoaf4ZG9VnOjS/AIu/B0pX5RoOIbkEFvg515X22r3A5yKeK3LnNmMqAZtQn8pBu/qfpZb1OvotUPdpR/CIZzHEHQtST+kFbWp7ExZltylHk7/DVmDiUpE6W3L5n1wucg9WeXUpD9DsnByb4bKfJPTtC+GQ0hPylzC+fD+htSLE2W+bWrWB0Nd7kGZQxMe5jxD2Du3rZvzcjnV62uVSygPXgfMzovB4Q5gdcxi24VYqInzRj48B7QOJzXUzWrxv/bD8LGcmvMK5ZbTN2cvA946t0t0Zhb94uZzxnILGc3VHMN5ZkXvrNfk58f+X9ToTWVObz48ffRL7RgwvBaK86GydIx3R5GVN5QK7g/4ZMjUv9XfL8hfJbwuaFTJ0YSS2a+opmZayNTMl5e+3plnITJZOlUylanZeKJFJ2O31b66CT/bhQfY9JQof1PJfxHr/462D7UnZD1MNp0zCB2qSygLYnfT+nRvz9FWSYxnevmMbxtqcE/8gGrxvO9dao9nftulvlV/ScJz/Y7KVL8UmSzv8tl5FUMPyjtwnAsy3/tGdKaes1l8Au00YI+Rz1FxpGS+fl4Qok9x4bKkC0KY0VJHOfZSjulMUlJBOy71rUcjfKx3+nHfAc/nd4vsUqR+R3VdvTrgSi1JdeiR6gllBmLS/yZEaH9QV+DvFV32S3q4ImlO76As0VvnWf1JsDPvuLBfM65THsxk6ua6XUZRvd09rM/E7lRy4RPv9fhBDX7gSNmit/WK4u6Jqs8dzmpozrRM7n7uSJm8J+sBo9luMT7q4+d5Da95QP9vV6JvO5LugSwxZdsj2s+bEL1U62aXpOdzlfV521s10pqvNpmmPVlpx4E5I1nHAb8q2xZmP395Vr8y4BdmfjruXH8csO+CPZEk4pOZUvYoCZCIz4hK51eGXkqyxRgHnM/oBvRW7mtITyUqM1GSWcC30fMAWeYBdE4EaU5ECgNREm2xnl9a21r+30dWC8dXN7Y2N7buX1v78ob+n0k+Vj9Xn6rLsBr/UX0JM/JQHVGu8S/qr+pvO//Z/cXu+u6vuelHFzTmZ6r0b3fzv4JTXQQ=</latexit> <latexit sha1_base64="6tOGw6FSQVfHa06oZqSaTlaRZAo=">AABFdnictVxtc9u4EUaub9f0Ldd+7EyHPZ/bXCd17TSdduamM5fYjuOLkziR7CQXJRlRohUltKiIkvKi81/o1/bf9Hf0H7Sf+rUfuy8AAUogF3TTcGyDIJ7dxRJY7C7AxON0mE83N/9x4aNvffs73/3ex9+/+IMf/ujHP7n0yU+P82w26SVHvSzNJo/ibp6kw1FyNB1O0+TReJJ0T+M0eRi/2sbnD+fJJB9mo/b03Th5etodjIYnw153ilWdx++2n19a29zYpH/RamFLF9aU/neYffLphuqovspUT83UqUrUSE2hnKquyuF6orbUphpD3VO1gLoJlIb0PFFn6iJgZ9AqgRZdqH0Fvwdw90TXjuAeaeaE7gGXFH4mgIzUOmAyaDeBMnKL6PmMKGNtFe0F0UTZ3sHfWNM6hdqpegG1Es60DMVhX6bqRP2J+jCEPo2pBnvX01RmpBWUPHJ6NQUKY6jDch+eT6DcI6TRc0SYnPqOuu3S839SS6zF+55uO1P/IinX4YpUS/c+Kyh01ZzoR/Q2Z/CM5UmB8wAoJLqPWHpDuj6l3o+g/QLq78J1RiWjkxiuBdWe1SK34fIht0XkHlw+5J6IPIDLhzwQkYdw+ZCHGonYCencj2/B5cO3RM734fIh74vIB3D5kA9E5DFcPuSxiPwaLh/yaxF5Ey4f8qaIvA2XD3lbRLbh8iHbIvIILh/ySETuwuVD7mpk9UydwJURnaEwK69DucwDLUUKNddF+W6QdfRhbwTM6V4FVp7VO/DXj90J0GlSgd0NGHcnFVh55O2BjfRjZVt0i1YTH/aWiN2HEeDH7ovYr9TLCuxXATPtVQVWnmsH0M6Pla3vHbjzY++I2LtQ8mPlNeoe1Pix9wJWjHEF9lDE3levK7AhVn9SgZXtfgvsih8rr1NtaO/HhljTWQVWtqfH4MH4sfJq9RBq/diHIvaReluBfSRiH4N192MfB6yw7yuwZo29SCvIgPyRBGZsHbVuMSuxNAZqXYF/WqwtKfnGMdRLmEGBGRDmVETsFYi9QMRBgTgIlisv7GhO/q7MpVUgWoGIuFibsDQV2/eL9lhKAxA7BWJnCVHnkeK7Nn2Zk3dhaiTktFi5sBTSp6yw31hK9Hiot7wGca+E4LH9gkb+FYqWMIJCTdVRe1Gs8YyM6L4O8YaiN9NLw0PGTQur4KLeiqjYg4pF1DsP6p2ImnlQMxE196DmIsrOfBfXCRgBVv/4LhZ0xyOAfeTqKwKv4DqsOrdgjkYwfg7BC3xANffgb4tib+mqkwyjeVwnMcvxtGSJJ1BaqDWot1HhDsXXKc2wBCTjlvd0jI93mNtY6DnHVvisWMmjImMSTmdI8gwKOugtRjSfmtG5TTVn5N1xqRn+VjHvTakZfpc0fkZePJea4ada+uk5ZG9rbPsc2BbMprHWvi03pcH5F6Zhyhdp1UWLi2/1VI8ZpPe2If19/Wb2z/FetqnE+rHlZjRyp395qX9NaFg9546em1FB74m9XlOKGvdkpONeW24qQ0ar6EjLYe+avhls09dvxpSb0TgEj2ubYu6FU246esdFb2y5GY1jxXnPM/LkTbkZjQHdsz5suRkNzLZ0dZxvy00tO2qAY2dbbmrVR5QFxhwQj3musV7RhPykmaY2JP+gPlvj+vyr6xjmbJ4VMUI9JevbVtOJi7WsXiLjLyRg1aYN5UD/Yub4YGUaC3VVjK9YhmlpfV+lY9d41PwBaDGC2c97AFLOPAUJTU4CrXcKFLfEqKvcM4O7KuJwlJwsoTq6dip6i5YvZ43Kdc+pVorLbG+tHjtkr3Mae2PyCQ9Is5IeDirfcBVFSUMHJQ3J9Jro7r2er2Xtb4q48RJiXIy0Hu0I8U5afZzq03rL0fG63uWZwsV7Pnb8Yrb5RFsbjHkyskUoSx1Pt53JI7l1uK5eUTbHzc8ieqNor+ZkNYa0I5WLUajJFrM3vqB7S/uI9uSQB9PowXuMNJWx4l0zzKJjPj0ii+raW4k36stk6Lick9U19rgePXDQAw+6eYyzDSvGXSi1IWY4grt2QJRzsdBVRhqfqN8Wu6MZvcH6iD4tWUhDg+1NUrKQdVH2ixKVN4DG0cBRejiNZToG31mhJEf9Pnls7Fq2/Ou0c2v2t7s0xqtHc3Umpk9crxLXiGYN7+ry3TIHlmDhfXKV/Nf6XiK/JhzRhkpcnzmcWS8j2vFPKIIdk2ec0myTZke5tZufWn5iOB0qs3eOu9kZWciI7F8E61NGYzKiH/fsgNlBZ4uQko0MsTvDwrvx+TpDcYxZP26o+FSDHW8J2bIZ8Td03dmV01jkiIHXgbOlsW10ckC+YEJcJ9q627ldv/og0p6TcEcJU7Rj5TLx/5x+mx8zTtZWRgRqGN9Arm2d731kFLOgjrq0ytfbINPWlfKzQoZnWmq7/lmZPitJtkMRF8qDq3UfOPfonnnhKJmQ3PlKG15H67K5SHm8pEfs7QlF8Wz3B3oFRrmv0Cq5RnOuQ6NkAKNgWkQRpq2URV7mW8+rTD2Mdv5/oW51XdYaUoyUzeCyhqT8fkLRmitlCqOax+8rmk1+rU+WWtXzGdFYPHXm8jdQ+0v4beQ292F04pJVuEFjgCnYO6sRrolWWoTxulHiZUamoWXvLT87Jk0rt+Y88TVbNxtjzxtTOaRR81ZnLUz5PDReOjReBuqwTXuNVoum3lii52Js0da7laH8mnBrN6A8EynLHplBDQOkdGOpMKp9kaoc4xvUe5HWpkirC7PV3Q1w53wI0j/Xl2f3N8XqHqmb5Nv0yAPj+KVPs3RIPpeprY/UmAJyvqbtqzv7O1SD3GOyoEiZz3HijOFdpx5dZ4Wkv9IrW0Z23loEc27pjW5jbGyHyr9fQZ7SnMhpXhrENWqRaPldOaIli7Th+BwRZf675FOx31EfM7ut7TuJSv6EjTd5VlleHCmMSP9S5m1/JXrdd+LXiGLCmfauY6DV/A0jBcaYTILfs8zpDeEqxzsJ7NHGZD9X7RTv4o0ciTZI6oX6c4CN4ajXjnV3bJkem779Blqi1u1b97WQ+aXBHCV+59nR69Kqdqp91MXS/flodfUqV76v08Nsia/Vx4zauJGFjfLKmI76IpgLS9SMC2NCuDTrRRP5m0neRGbenQqlbFobyuVMA9uYFxQvSedAEeHz7i57vbnPhX7EK/RiwrrUuEaihNm4TOcHXEuLWaloKUJy66U1KXXWo6r1wvJwVw1rx9lSJmQFUyXlbri124dOKVqRszFMoaf4ZG9VnOjS/AIu/B0pX5RoOIbkEFvg515X22r3A5yKeK3LnNmMqAZtQn8pBu/qfpZb1OvotUPdpR/CIZzHEHQtST+kFbWp7ExZltylHk7/DVmDiUpE6W3L5n1wucg9WeXUpD9DsnByb4bKfJPTtC+GQ0hPylzC+fD+htSLE2W+bWrWB0Nd7kGZQxMe5jxD2Du3rZvzcjnV62uVSygPXgfMzovB4Q5gdcxi24VYqInzRj48B7QOJzXUzWrxv/bD8LGcmvMK5ZbTN2cvA946t0t0Zhb94uZzxnILGc3VHMN5ZkXvrNfk58f+X9ToTWVObz48ffRL7RgwvBaK86GydIx3R5GVN5QK7g/4ZMjUv9XfL8hfJbwuaFTJ0YSS2a+opmZayNTMl5e+3plnITJZOlUylanZeKJFJ2O31b66CT/bhQfY9JQof1PJfxHr/462D7UnZD1MNp0zCB2qSygLYnfT+nRvz9FWSYxnevmMbxtqcE/8gGrxvO9dao9nftulvlV/ScJz/Y7KVL8UmSzv8tl5FUMPyjtwnAsy3/tGdKaes1l8Au00YI+Rz1FxpGS+fl4Qok9x4bKkC0KY0VJHOfZSjulMUlJBOy71rUcjfKx3+nHfAc/nd4vsUqR+R3VdvTrgSi1JdeiR6gllBmLS/yZEaH9QV+DvFV32S3q4ImlO76As0VvnWf1JsDPvuLBfM65THsxk6ua6XUZRvd09rM/E7lRy4RPv9fhBDX7gSNmit/WK4u6Jqs8dzmpozrRM7n7uSJm8J+sBo9luMT7q4+d5Da95QP9vV6JvO5LugSwxZdsj2s+bEL1U62aXpOdzlfV521s10pqvNpmmPVlpx4E5I1nHAb8q2xZmP395Vr8y4BdmfjruXH8csO+CPZEk4pOZUvYoCZCIz4hK51eGXkqyxRgHnM/oBvRW7mtITyUqM1GSWcC30fMAWeYBdE4EaU5ECgNREm2xnl9a21r+30dWC8dXN7Y2N7buX1v78ob+n0k+Vj9Xn6rLsBr/UX0JM/JQHVGu8S/qr+pvO//Z/cXu+u6vuelHFzTmZ6r0b3fzv4JTXQQ=</latexit> <latexit sha1_base64="6tOGw6FSQVfHa06oZqSaTlaRZAo=">AABFdnictVxtc9u4EUaub9f0Ldd+7EyHPZ/bXCd17TSdduamM5fYjuOLkziR7CQXJRlRohUltKiIkvKi81/o1/bf9Hf0H7Sf+rUfuy8AAUogF3TTcGyDIJ7dxRJY7C7AxON0mE83N/9x4aNvffs73/3ex9+/+IMf/ujHP7n0yU+P82w26SVHvSzNJo/ibp6kw1FyNB1O0+TReJJ0T+M0eRi/2sbnD+fJJB9mo/b03Th5etodjIYnw153ilWdx++2n19a29zYpH/RamFLF9aU/neYffLphuqovspUT83UqUrUSE2hnKquyuF6orbUphpD3VO1gLoJlIb0PFFn6iJgZ9AqgRZdqH0Fvwdw90TXjuAeaeaE7gGXFH4mgIzUOmAyaDeBMnKL6PmMKGNtFe0F0UTZ3sHfWNM6hdqpegG1Es60DMVhX6bqRP2J+jCEPo2pBnvX01RmpBWUPHJ6NQUKY6jDch+eT6DcI6TRc0SYnPqOuu3S839SS6zF+55uO1P/IinX4YpUS/c+Kyh01ZzoR/Q2Z/CM5UmB8wAoJLqPWHpDuj6l3o+g/QLq78J1RiWjkxiuBdWe1SK34fIht0XkHlw+5J6IPIDLhzwQkYdw+ZCHGonYCencj2/B5cO3RM734fIh74vIB3D5kA9E5DFcPuSxiPwaLh/yaxF5Ey4f8qaIvA2XD3lbRLbh8iHbIvIILh/ySETuwuVD7mpk9UydwJURnaEwK69DucwDLUUKNddF+W6QdfRhbwTM6V4FVp7VO/DXj90J0GlSgd0NGHcnFVh55O2BjfRjZVt0i1YTH/aWiN2HEeDH7ovYr9TLCuxXATPtVQVWnmsH0M6Pla3vHbjzY++I2LtQ8mPlNeoe1Pix9wJWjHEF9lDE3levK7AhVn9SgZXtfgvsih8rr1NtaO/HhljTWQVWtqfH4MH4sfJq9RBq/diHIvaReluBfSRiH4N192MfB6yw7yuwZo29SCvIgPyRBGZsHbVuMSuxNAZqXYF/WqwtKfnGMdRLmEGBGRDmVETsFYi9QMRBgTgIlisv7GhO/q7MpVUgWoGIuFibsDQV2/eL9lhKAxA7BWJnCVHnkeK7Nn2Zk3dhaiTktFi5sBTSp6yw31hK9Hiot7wGca+E4LH9gkb+FYqWMIJCTdVRe1Gs8YyM6L4O8YaiN9NLw0PGTQur4KLeiqjYg4pF1DsP6p2ImnlQMxE196DmIsrOfBfXCRgBVv/4LhZ0xyOAfeTqKwKv4DqsOrdgjkYwfg7BC3xANffgb4tib+mqkwyjeVwnMcvxtGSJJ1BaqDWot1HhDsXXKc2wBCTjlvd0jI93mNtY6DnHVvisWMmjImMSTmdI8gwKOugtRjSfmtG5TTVn5N1xqRn+VjHvTakZfpc0fkZePJea4ada+uk5ZG9rbPsc2BbMprHWvi03pcH5F6Zhyhdp1UWLi2/1VI8ZpPe2If19/Wb2z/FetqnE+rHlZjRyp395qX9NaFg9546em1FB74m9XlOKGvdkpONeW24qQ0ar6EjLYe+avhls09dvxpSb0TgEj2ubYu6FU246esdFb2y5GY1jxXnPM/LkTbkZjQHdsz5suRkNzLZ0dZxvy00tO2qAY2dbbmrVR5QFxhwQj3musV7RhPykmaY2JP+gPlvj+vyr6xjmbJ4VMUI9JevbVtOJi7WsXiLjLyRg1aYN5UD/Yub4YGUaC3VVjK9YhmlpfV+lY9d41PwBaDGC2c97AFLOPAUJTU4CrXcKFLfEqKvcM4O7KuJwlJwsoTq6dip6i5YvZ43Kdc+pVorLbG+tHjtkr3Mae2PyCQ9Is5IeDirfcBVFSUMHJQ3J9Jro7r2er2Xtb4q48RJiXIy0Hu0I8U5afZzq03rL0fG63uWZwsV7Pnb8Yrb5RFsbjHkyskUoSx1Pt53JI7l1uK5eUTbHzc8ieqNor+ZkNYa0I5WLUajJFrM3vqB7S/uI9uSQB9PowXuMNJWx4l0zzKJjPj0ii+raW4k36stk6Lick9U19rgePXDQAw+6eYyzDSvGXSi1IWY4grt2QJRzsdBVRhqfqN8Wu6MZvcH6iD4tWUhDg+1NUrKQdVH2ixKVN4DG0cBRejiNZToG31mhJEf9Pnls7Fq2/Ou0c2v2t7s0xqtHc3Umpk9crxLXiGYN7+ry3TIHlmDhfXKV/Nf6XiK/JhzRhkpcnzmcWS8j2vFPKIIdk2ec0myTZke5tZufWn5iOB0qs3eOu9kZWciI7F8E61NGYzKiH/fsgNlBZ4uQko0MsTvDwrvx+TpDcYxZP26o+FSDHW8J2bIZ8Td03dmV01jkiIHXgbOlsW10ckC+YEJcJ9q627ldv/og0p6TcEcJU7Rj5TLx/5x+mx8zTtZWRgRqGN9Arm2d731kFLOgjrq0ytfbINPWlfKzQoZnWmq7/lmZPitJtkMRF8qDq3UfOPfonnnhKJmQ3PlKG15H67K5SHm8pEfs7QlF8Wz3B3oFRrmv0Cq5RnOuQ6NkAKNgWkQRpq2URV7mW8+rTD2Mdv5/oW51XdYaUoyUzeCyhqT8fkLRmitlCqOax+8rmk1+rU+WWtXzGdFYPHXm8jdQ+0v4beQ292F04pJVuEFjgCnYO6sRrolWWoTxulHiZUamoWXvLT87Jk0rt+Y88TVbNxtjzxtTOaRR81ZnLUz5PDReOjReBuqwTXuNVoum3lii52Js0da7laH8mnBrN6A8EynLHplBDQOkdGOpMKp9kaoc4xvUe5HWpkirC7PV3Q1w53wI0j/Xl2f3N8XqHqmb5Nv0yAPj+KVPs3RIPpeprY/UmAJyvqbtqzv7O1SD3GOyoEiZz3HijOFdpx5dZ4Wkv9IrW0Z23loEc27pjW5jbGyHyr9fQZ7SnMhpXhrENWqRaPldOaIli7Th+BwRZf675FOx31EfM7ut7TuJSv6EjTd5VlleHCmMSP9S5m1/JXrdd+LXiGLCmfauY6DV/A0jBcaYTILfs8zpDeEqxzsJ7NHGZD9X7RTv4o0ciTZI6oX6c4CN4ajXjnV3bJkem779Blqi1u1b97WQ+aXBHCV+59nR69Kqdqp91MXS/flodfUqV76v08Nsia/Vx4zauJGFjfLKmI76IpgLS9SMC2NCuDTrRRP5m0neRGbenQqlbFobyuVMA9uYFxQvSedAEeHz7i57vbnPhX7EK/RiwrrUuEaihNm4TOcHXEuLWaloKUJy66U1KXXWo6r1wvJwVw1rx9lSJmQFUyXlbri124dOKVqRszFMoaf4ZG9VnOjS/AIu/B0pX5RoOIbkEFvg515X22r3A5yKeK3LnNmMqAZtQn8pBu/qfpZb1OvotUPdpR/CIZzHEHQtST+kFbWp7ExZltylHk7/DVmDiUpE6W3L5n1wucg9WeXUpD9DsnByb4bKfJPTtC+GQ0hPylzC+fD+htSLE2W+bWrWB0Nd7kGZQxMe5jxD2Du3rZvzcjnV62uVSygPXgfMzovB4Q5gdcxi24VYqInzRj48B7QOJzXUzWrxv/bD8LGcmvMK5ZbTN2cvA946t0t0Zhb94uZzxnILGc3VHMN5ZkXvrNfk58f+X9ToTWVObz48ffRL7RgwvBaK86GydIx3R5GVN5QK7g/4ZMjUv9XfL8hfJbwuaFTJ0YSS2a+opmZayNTMl5e+3plnITJZOlUylanZeKJFJ2O31b66CT/bhQfY9JQof1PJfxHr/462D7UnZD1MNp0zCB2qSygLYnfT+nRvz9FWSYxnevmMbxtqcE/8gGrxvO9dao9nftulvlV/ScJz/Y7KVL8UmSzv8tl5FUMPyjtwnAsy3/tGdKaes1l8Au00YI+Rz1FxpGS+fl4Qok9x4bKkC0KY0VJHOfZSjulMUlJBOy71rUcjfKx3+nHfAc/nd4vsUqR+R3VdvTrgSi1JdeiR6gllBmLS/yZEaH9QV+DvFV32S3q4ImlO76As0VvnWf1JsDPvuLBfM65THsxk6ua6XUZRvd09rM/E7lRy4RPv9fhBDX7gSNmit/WK4u6Jqs8dzmpozrRM7n7uSJm8J+sBo9luMT7q4+d5Da95QP9vV6JvO5LugSwxZdsj2s+bEL1U62aXpOdzlfV521s10pqvNpmmPVlpx4E5I1nHAb8q2xZmP395Vr8y4BdmfjruXH8csO+CPZEk4pOZUvYoCZCIz4hK51eGXkqyxRgHnM/oBvRW7mtITyUqM1GSWcC30fMAWeYBdE4EaU5ECgNREm2xnl9a21r+30dWC8dXN7Y2N7buX1v78ob+n0k+Vj9Xn6rLsBr/UX0JM/JQHVGu8S/qr+pvO//Z/cXu+u6vuelHFzTmZ6r0b3fzv4JTXQQ=</latexit> <latexit sha1_base64="6tOGw6FSQVfHa06oZqSaTlaRZAo=">AABFdnictVxtc9u4EUaub9f0Ldd+7EyHPZ/bXCd17TSdduamM5fYjuOLkziR7CQXJRlRohUltKiIkvKi81/o1/bf9Hf0H7Sf+rUfuy8AAUogF3TTcGyDIJ7dxRJY7C7AxON0mE83N/9x4aNvffs73/3ex9+/+IMf/ujHP7n0yU+P82w26SVHvSzNJo/ibp6kw1FyNB1O0+TReJJ0T+M0eRi/2sbnD+fJJB9mo/b03Th5etodjIYnw153ilWdx++2n19a29zYpH/RamFLF9aU/neYffLphuqovspUT83UqUrUSE2hnKquyuF6orbUphpD3VO1gLoJlIb0PFFn6iJgZ9AqgRZdqH0Fvwdw90TXjuAeaeaE7gGXFH4mgIzUOmAyaDeBMnKL6PmMKGNtFe0F0UTZ3sHfWNM6hdqpegG1Es60DMVhX6bqRP2J+jCEPo2pBnvX01RmpBWUPHJ6NQUKY6jDch+eT6DcI6TRc0SYnPqOuu3S839SS6zF+55uO1P/IinX4YpUS/c+Kyh01ZzoR/Q2Z/CM5UmB8wAoJLqPWHpDuj6l3o+g/QLq78J1RiWjkxiuBdWe1SK34fIht0XkHlw+5J6IPIDLhzwQkYdw+ZCHGonYCencj2/B5cO3RM734fIh74vIB3D5kA9E5DFcPuSxiPwaLh/yaxF5Ey4f8qaIvA2XD3lbRLbh8iHbIvIILh/ySETuwuVD7mpk9UydwJURnaEwK69DucwDLUUKNddF+W6QdfRhbwTM6V4FVp7VO/DXj90J0GlSgd0NGHcnFVh55O2BjfRjZVt0i1YTH/aWiN2HEeDH7ovYr9TLCuxXATPtVQVWnmsH0M6Pla3vHbjzY++I2LtQ8mPlNeoe1Pix9wJWjHEF9lDE3levK7AhVn9SgZXtfgvsih8rr1NtaO/HhljTWQVWtqfH4MH4sfJq9RBq/diHIvaReluBfSRiH4N192MfB6yw7yuwZo29SCvIgPyRBGZsHbVuMSuxNAZqXYF/WqwtKfnGMdRLmEGBGRDmVETsFYi9QMRBgTgIlisv7GhO/q7MpVUgWoGIuFibsDQV2/eL9lhKAxA7BWJnCVHnkeK7Nn2Zk3dhaiTktFi5sBTSp6yw31hK9Hiot7wGca+E4LH9gkb+FYqWMIJCTdVRe1Gs8YyM6L4O8YaiN9NLw0PGTQur4KLeiqjYg4pF1DsP6p2ImnlQMxE196DmIsrOfBfXCRgBVv/4LhZ0xyOAfeTqKwKv4DqsOrdgjkYwfg7BC3xANffgb4tib+mqkwyjeVwnMcvxtGSJJ1BaqDWot1HhDsXXKc2wBCTjlvd0jI93mNtY6DnHVvisWMmjImMSTmdI8gwKOugtRjSfmtG5TTVn5N1xqRn+VjHvTakZfpc0fkZePJea4ada+uk5ZG9rbPsc2BbMprHWvi03pcH5F6Zhyhdp1UWLi2/1VI8ZpPe2If19/Wb2z/FetqnE+rHlZjRyp395qX9NaFg9546em1FB74m9XlOKGvdkpONeW24qQ0ar6EjLYe+avhls09dvxpSb0TgEj2ubYu6FU246esdFb2y5GY1jxXnPM/LkTbkZjQHdsz5suRkNzLZ0dZxvy00tO2qAY2dbbmrVR5QFxhwQj3musV7RhPykmaY2JP+gPlvj+vyr6xjmbJ4VMUI9JevbVtOJi7WsXiLjLyRg1aYN5UD/Yub4YGUaC3VVjK9YhmlpfV+lY9d41PwBaDGC2c97AFLOPAUJTU4CrXcKFLfEqKvcM4O7KuJwlJwsoTq6dip6i5YvZ43Kdc+pVorLbG+tHjtkr3Mae2PyCQ9Is5IeDirfcBVFSUMHJQ3J9Jro7r2er2Xtb4q48RJiXIy0Hu0I8U5afZzq03rL0fG63uWZwsV7Pnb8Yrb5RFsbjHkyskUoSx1Pt53JI7l1uK5eUTbHzc8ieqNor+ZkNYa0I5WLUajJFrM3vqB7S/uI9uSQB9PowXuMNJWx4l0zzKJjPj0ii+raW4k36stk6Lick9U19rgePXDQAw+6eYyzDSvGXSi1IWY4grt2QJRzsdBVRhqfqN8Wu6MZvcH6iD4tWUhDg+1NUrKQdVH2ixKVN4DG0cBRejiNZToG31mhJEf9Pnls7Fq2/Ou0c2v2t7s0xqtHc3Umpk9crxLXiGYN7+ry3TIHlmDhfXKV/Nf6XiK/JhzRhkpcnzmcWS8j2vFPKIIdk2ec0myTZke5tZufWn5iOB0qs3eOu9kZWciI7F8E61NGYzKiH/fsgNlBZ4uQko0MsTvDwrvx+TpDcYxZP26o+FSDHW8J2bIZ8Td03dmV01jkiIHXgbOlsW10ckC+YEJcJ9q627ldv/og0p6TcEcJU7Rj5TLx/5x+mx8zTtZWRgRqGN9Arm2d731kFLOgjrq0ytfbINPWlfKzQoZnWmq7/lmZPitJtkMRF8qDq3UfOPfonnnhKJmQ3PlKG15H67K5SHm8pEfs7QlF8Wz3B3oFRrmv0Cq5RnOuQ6NkAKNgWkQRpq2URV7mW8+rTD2Mdv5/oW51XdYaUoyUzeCyhqT8fkLRmitlCqOax+8rmk1+rU+WWtXzGdFYPHXm8jdQ+0v4beQ292F04pJVuEFjgCnYO6sRrolWWoTxulHiZUamoWXvLT87Jk0rt+Y88TVbNxtjzxtTOaRR81ZnLUz5PDReOjReBuqwTXuNVoum3lii52Js0da7laH8mnBrN6A8EynLHplBDQOkdGOpMKp9kaoc4xvUe5HWpkirC7PV3Q1w53wI0j/Xl2f3N8XqHqmb5Nv0yAPj+KVPs3RIPpeprY/UmAJyvqbtqzv7O1SD3GOyoEiZz3HijOFdpx5dZ4Wkv9IrW0Z23loEc27pjW5jbGyHyr9fQZ7SnMhpXhrENWqRaPldOaIli7Th+BwRZf675FOx31EfM7ut7TuJSv6EjTd5VlleHCmMSP9S5m1/JXrdd+LXiGLCmfauY6DV/A0jBcaYTILfs8zpDeEqxzsJ7NHGZD9X7RTv4o0ciTZI6oX6c4CN4ajXjnV3bJkem779Blqi1u1b97WQ+aXBHCV+59nR69Kqdqp91MXS/flodfUqV76v08Nsia/Vx4zauJGFjfLKmI76IpgLS9SMC2NCuDTrRRP5m0neRGbenQqlbFobyuVMA9uYFxQvSedAEeHz7i57vbnPhX7EK/RiwrrUuEaihNm4TOcHXEuLWaloKUJy66U1KXXWo6r1wvJwVw1rx9lSJmQFUyXlbri124dOKVqRszFMoaf4ZG9VnOjS/AIu/B0pX5RoOIbkEFvg515X22r3A5yKeK3LnNmMqAZtQn8pBu/qfpZb1OvotUPdpR/CIZzHEHQtST+kFbWp7ExZltylHk7/DVmDiUpE6W3L5n1wucg9WeXUpD9DsnByb4bKfJPTtC+GQ0hPylzC+fD+htSLE2W+bWrWB0Nd7kGZQxMe5jxD2Du3rZvzcjnV62uVSygPXgfMzovB4Q5gdcxi24VYqInzRj48B7QOJzXUzWrxv/bD8LGcmvMK5ZbTN2cvA946t0t0Zhb94uZzxnILGc3VHMN5ZkXvrNfk58f+X9ToTWVObz48ffRL7RgwvBaK86GydIx3R5GVN5QK7g/4ZMjUv9XfL8hfJbwuaFTJ0YSS2a+opmZayNTMl5e+3plnITJZOlUylanZeKJFJ2O31b66CT/bhQfY9JQof1PJfxHr/462D7UnZD1MNp0zCB2qSygLYnfT+nRvz9FWSYxnevmMbxtqcE/8gGrxvO9dao9nftulvlV/ScJz/Y7KVL8UmSzv8tl5FUMPyjtwnAsy3/tGdKaes1l8Au00YI+Rz1FxpGS+fl4Qok9x4bKkC0KY0VJHOfZSjulMUlJBOy71rUcjfKx3+nHfAc/nd4vsUqR+R3VdvTrgSi1JdeiR6gllBmLS/yZEaH9QV+DvFV32S3q4ImlO76As0VvnWf1JsDPvuLBfM65THsxk6ua6XUZRvd09rM/E7lRy4RPv9fhBDX7gSNmit/WK4u6Jqs8dzmpozrRM7n7uSJm8J+sBo9luMT7q4+d5Da95QP9vV6JvO5LugSwxZdsj2s+bEL1U62aXpOdzlfV521s10pqvNpmmPVlpx4E5I1nHAb8q2xZmP395Vr8y4BdmfjruXH8csO+CPZEk4pOZUvYoCZCIz4hK51eGXkqyxRgHnM/oBvRW7mtITyUqM1GSWcC30fMAWeYBdE4EaU5ECgNREm2xnl9a21r+30dWC8dXN7Y2N7buX1v78ob+n0k+Vj9Xn6rLsBr/UX0JM/JQHVGu8S/qr+pvO//Z/cXu+u6vuelHFzTmZ6r0b3fzv4JTXQQ=</latexit> <latexit sha1_base64="kVF27gTIsbauBCqg40Iqh1v4D6s=">AAA/fniczVvbchy3EYXtXCzmYtl5zEMmoWVLLlmhaFVklytFSyRF0VqJlHiRZK9F72W4HGu4s5rZpURt6E/Ja1KVT8iX5A+iT8hbuhvAALOLmQYUp8pEkcRgcbobDaAvwGx3lCbFeGnpX2+8+dZPfvqzn799buEXv/zVr985/+57+0U2yXvxXi9Ls/xRt1PEaTKM98bJOI0fjfK4c9xN44fdp6v4+cOTOC+SbLg7Ph3F3xx3BsPkMOl1xtB0cP69NtGYdtNJfBb1D9qPTw/OLy5dWaKfaL5yVVUWhfrZzt793UeiLfoiEz0xEcciFkMxhnoqOqKA8rW4KpbECNq+EVNoy6GW0OexOBMLgJ1Arxh6dKD1KfwdwNPXqnUIz0izIHQPuKTwmwMyEhcAk0G/HOrILaLPJ0QZW+toT4kmynYK/7uK1jG0jsURtHI43dMf14fWQ5ANNdM85jH0+5TGmkDvEbWgFnqK24S0hyOMrNGPgcII2rDeh89zqPcIqecjIkxBOsI56NDn/6ae2IrPPdV3Il7RaH4s+vvx6eVCQInEprgnVkVL7Ik1sS52SN7mskC4VRjHCHScg+QD0BBKexGkuQT/l2FPLYnrUNsAGbvUJ4axRGIb/p+S/AtK1kjcFTfErrhNvC9C/S7ULgXME9dTr+2CZsN/3SwwqyynGTltlGBM45+QBcjFi8a+uHb6ajYPaT0Uakc2z6nU4Kp4ILYa5w85D4H+c7JEx6RB5DiF9gHIhCs0BX5oE3Et/0N8Lxah/r34p1rHEciVq5V9RPTkkz/Nb6EgzQ+hnIlzRHMPpF4oRxnBk5yBrFz9HXFCeyMiSz6Bz+ReSmntDalX0+juQTmjml41XShTaj1rRK5CcSFXWeQGFBdyg0W2oLiQLRa5DcWF3FbIJux9KC7sfZbrAygu5AMWuQvFhdxlkftQXMh9FvkVFBfyKxZ5C4oLeYtF3oHiQt5hkXtQXMg9FrkOxYVcV8j6vYZ2LSM6CbOvbkC9ygP9VAotN1j5bpKNdWFveuzKXg2W35dr8N+NXfPQaVyDXfdYPYc1WH79bICVc2N5a3KbfKQLe5vFbsIKcGM3WeyX4rsa7Jce++VpDZbfMS3yNy4sbz/vwpMbe5fF3oOaG8t7mS1ocWO3PGz+qAa7zWLvi2c1WB+rn9dgebu/Q7GYC7vj4TPGNVjea+xB7ODG8vZ0H2IQN5b3OQ+h1Y19yGIfUdTowj5isY8pOnVhH3v4yZc1WO0pZfQ+oBgwhh3bRK1T7kqsjYBah+Gflr4Fa+ij+ixmUGIGhDlmERslYsMT0SoRLW+5itKOFhSx8lx2SsSOJ6Jb+iasjdn+/bJ/n3IzHrFWItZmEE1ZAM61HssJRRe6hUOOS8+FNZ8xZaX9xlqs1kOz5dWIrQpCru0jWvmXKVfHTKZPeWs9taPSx0tkRM9NiOeU6+lRah48blxaBRv1gkV1Haguizp1oE5Z1MSBmrCoEwfqhEWZnW/j2h4rwOgf52JKTzr3585SqmcXW+Bx18H7YcsW/Pc5S2nOyvFEAD2lzp6NLc6hNqVM2mR2a5Qjy5OGGCSTPbfUGRM+4dnkVO06aYfPSl8eCX3i6U8nIXkGJR2MFyPaUWF07lDLGcV3shaGv13ufF0Lw6+Txs8ojpe1MPxYST9+Ddl3FXb3NbA7sJ9GSvumHkpDnqFIGrrO2ebN0m7ieeUL2jmyLZT/KtWkDkw9jEZhjaGojCGEhtFlYekyjArGSDK21bUoeCRDld2aeqgMGfnKoZLDPIXODPbpq5nR9TAa2xBXrVJmPbXqoSt0VI7G1MNo7At5tn5G8bquh9EY0LPUh6mH0cAzlY7K5k091HqjBmSGbOo6ZskpitEnzgl57+azFDsin/cxeKLypIzgmymZyLOeTrf0M80SzVqXEDnQ+0+sCKlKYyqW2exHyjCu+N55Osb/ouZboMUIdq081+fOpFOQUJ8YxHRK/oSoNWOqI9O4ZRaHluRwBtVWrWM2ljN85ZlOte2AWrmsyYzW6LFNdragtTeiiK1FmuX00Kqd4TqKnIZaFQ3x9EJ095J2cDaj/SUWN5pBjMqV1qPbIXlL3ZxFurS+Y+n4grpFGUORdypm/eJZ8CHhcspIMrI2KEsTT7ufPuWx29AfXhbmBFp+FtGMor06IauR0I1PwcYh+ixXRspTeja09+ierXprFSkqIyFvVPGMG0+7I7rPtG0txxv1pc/PZL0gq2vu0Ztvxwx64ECHZh+r4CvuQW0Xovk9eNr1yD/MnVtG+s7Fx+X9Z0bz15xt2zd77ZKGtDZxxT42ZcBHFSrPAY1rQWbQ/jRm6Wh8e44Sn5G75DF5ZdXuX6A7ff3mSIdWeP1arj8l6RPXZeIa0Z6R9/3yaZaDlGDq/GSZos7mUSK/EI5oQTmuTyzOUi9DepcmptxyRPFsSnuN2xvV3vbZ0ewnmtO20G9V4F1xRvYxIusXgXfKaE1G9Gu/laPfrZD2ICUL6WN1kjK2cUU6CbvGEtrlco3I94XMeovJkk2Iv6Zr766C1qKM86UXOJtZ21onLYoEY+KaK9tu9naz70GkeRPCXiWSolkrF4n/Jfqrf/U6WZxbEahhnIFCWTrXfGSUaaCOOuTjm22Q7mtL+X4pwxMltfF+Rqb3K5KtUZ6E8qCv7gPnHj1LXrhKcpK7mOsjvWjTSStSHs3oEUeL3rWtrP5A+V+U+zL5yEXac21h3rDRsb/uy53wzvJt5lWl7ke7+L9QN7quag0pRsKcrkoNcWfvMeVYtpQpvZMk376JFaV5reczvZr5DGktHlt7+S/Q+nv4q+XWz350uhWrcJPWgKRgnoxGZEs018OP180KL70yNS3zbPiZNal72S2vkxVL62Yy45NgKtu0al6oswZd9xn/Lt3hGQ3odm1FDmYi6F115+dLPYy2P+UJS5mPnTQq8ZDSznn8qPZZqnwurlEvWVpLLC18G88+Ubd3p+07b1Hs0KMIR2YHfdoFCcU0urU5D5IUkNc1Zb/s3dWmFtxLXbJQSLn6ViGe3fWEfIdUyviB8hwZ2VGz4/Q7O89VH23D2lT/ZA55TNlsQXtHI65Rj1jJb8sRzez4K5ZPj+jMu0Mxi/TrzRmp3dvMQlTx1yabk3vB8ErFhyoaH9IcjMWrRm6bc/nhppUhRkLe96VlBI+z/CpoljFvkytD5+ru6K2gWUJPklM+L6PGLtmo+VMGeYs1BO3rdXeFpJ6KP3tYB5lXmp1iry/8bKKyEhzbR9ATNW9m3tWD55d6c+T4vc59Voc8x7GKA6czz69Hq6M8SfW5SQ+TGb5GHxMxVDmhjt5NJlXFtMXn3lykRGFcJMaHS9goQuQPkzxEZnlv40tZ99aUq9m8tDFHlJNw70EiwhVBXXRGTJeYcXTn6HUJa1OTLRwlPO/KVA5uW1s8+Tk354tk67lGj5Ra3qjOW2jqtscwNlxayJisXyq4cxHZuyfk+6h1GZSdG3wOBf9GwpU/aW/ic7q2A1Ekvlfv962I5pv8Z6ouT/wiasGd3J/JTjtqnNUezbP8zKJu0/fh4M8jAV1z0ifkB0Nll5R5yW3q/vSf0x7ORcxKb3qGj8Hmwo9knlPIeBKyS/xoEqG/xxQ6Fs3BZyRVLv585Lk/N4pDob9PFzYGTZ0fQZVDCA99P+8356Z3OC+bU7O+5rn48pA2XN9IaBzejNVnG6afj4XKrRn54TmgdThsoK69xf86Ds3HcArn5cutoO86fecx67JfrM4sMZoN3zOGm89qrufozzMrR2diHTc/GbVFQTOVWaP54eljNGnWgOY1FfKkkJdO4u1VZOT1pYIn5y4ZMvEfLxkkvk4GXyr6BL+eku7BU9Pf9HONSn/mI5OhUydTlRrSk5l2m/ZwTKcF5manT8/l25b0PfTP6CeSlevXVOWzq+X30PeXr1z905VP7l9b/OKm+kb62+K34g8QyV8V18UX4jZEmHsgwwvxV/E38fcVsfLByscrf5Rd33xDYX4jKj8rn/4XWWsmiA==</latexit> dY <latexit sha1_base64="Uu/jGzHimifAQUBslloJGY6wA84=">AABFdnictVzbchy3EYWcm6Pc7OQxVamJaSayS2EoWYnjcqXKEklRtCiJ0i4pyVpJtbM7XI003FntTZc1fyGvyd/kO/IHyVNe85i+AAPMLmYawyicIheDxelu9ACN7gaG8ShLJ9PNzX+ce+873/3e93/w/g/P/+jHP/npzz748OdHk3w27iWHvTzLxw/i7iTJ0mFyOE2nWfJgNE66J3GW3I9fbOH39+fJeJLmw/b0zSh5fNIdDNPjtNedYlVnlG49/WBtc2OTfqLVwiVdWFP65yD/8KMN1VF9lauemqkTlaihmkI5U101geuRuqQ21QjqHqsF1I2hlNL3iTpV5wE7g1YJtOhC7Qv4O4C7R7p2CPdIc0LoHnDJ4HcMyEitAyaHdmMoI7eIvp8RZaytor0gmijbG/iMNa0TqJ2qZ1Ar4UzLUBz2ZaqO1Z+oDyn0aUQ12LuepjIjraDkkdOrKVAYQR2W+/D9GMo9Qho9R4SZUN9Rt136/p/UEmvxvqfbztS/SMp1uCLV0r3PCwpdNSf6ET3NGXzH8mTAeQAUEt1HLL0iXZ9Q74fQfgH1t+E6pZLRSQzXgmpPa5FbcPmQWyJyFy4fcldE7sPlQ+6LyAO4fMgDjUTsmHTux7fg8uFbIue7cPmQd0XkPbh8yHsi8gguH/JIRH4Dlw/5jYi8DpcPeV1E3oTLh7wpIttw+ZBtEXkIlw95KCJ34PIhdzSyeqaO4cqJTirMyqtQLvNAS5FBzVVRvmtkHX3YawFzuleBlWf1Nnz6sdsBOk0qsDsB4+64AiuPvF2wkX6sbItu0Griw94QsXswAvzYPRH7tXpegf06YKa9qMDKc20f2vmxsvW9BXd+7C0RextKfqy8Rt2BGj/2TsCKMarAHojYu+plBTbE6o8rsLLdb4Fd8WPldaoN7f3YEGs6q8DK9vQIPBg/Vl6t7kOtH3tfxD5QryuwD0TsQ7DufuzDgBX2bQXWrLHnaQUZkD+SwIyto9YtZiWWRkCtK/DPirUlI984hnoJMygwA8KciIjdArEbiNgvEPvBck0KOzohf1fm0ioQrUBEXKxNWJqK7ftFeyxlAYjtArG9hKjzSPFZm77MybswNRJyWqxcWArpU17YbywlejzUW16DuFNC8Nh+RiP/IkVLGEGhpuqoPSvWeEZGdF+HeEXRm+ml4SHjpoVVcFGvRVTsQcUi6o0H9UZEzTyomYiae1BzEWVnvovrBIwAq398Fgu64xHAPnL1FYFXcBVWnRswRyMYPwfgBd6jmjvw2aLYW7rqJMNoHtdJzHI8LlniMZQWag3qbVS4TfF1RjMsAcm45R0d4+Md5jYWes6xFT4tVvKoyJiE00lJnkFBB73FiOZTMzo3qeaUvDsuNcPfKOa9KTXD75DGT8mL51Iz/FRLPz2D7G2NbZ8B24LZNNLat+WmNDj/wjRM+Tytumhx8ame6DGD9F43pL+nn8zeGZ7LFpVYP7bcjMbE6d+k1L8mNKyeJ46em1FB74m9XlOKGvdkqONeW24qQ06r6FDLYe+aPhls09dPxpSb0TgAj2uLYu6FU246ekdFb2y5GY0jxXnPU/LkTbkZjQHdsz5suRkNzLZ0dZxvy00tO2qAY2dbbmrVh5QFxhwQj3musV7RmPykmaaWkn9Qn61xff7VdQxzNk+KGKGekvVtq+nExVpWL5HxFxKwatOGcqB/MXN8sDKNhbosxlcsw7S0vq/SsWs8an4ftBjB7Oc9AClnnoGEJieB1jsDipfEqKvcM4O7LOJwlBwvoTq6dip6i5YvZ43KdU+pVorLbG+tHjtkryc09kbkE+6TZiU97Fc+4SqKkob2SxqS6TXR3Vs9X8va3xRxoyXEqBhpPdoR4p20+jjVp/WWo+N1vcszhYv3fOz4xWzzsbY2GPPkZItQljqebjuTR3LrcF29qGyOm7+L6ImivZqT1UhpR2oiRqEmW8ze+ILuLe1D2pNDHkyjB88x0lRGinfNMIuO+fSILKprbyXeqC+ToePyhKyuscf16IGDHnjQzWOcLVgxbkOpDTHDIdy1A6Kc84WuctL4WP2u2B3N6QnWR/RZyUIaGmxvkpKFrIuyn5WovAI0jgaO0sNpLNMx+M4KJTnq98ljY9ey5V+nnVuzv92lMV49mqszMX3iepm4RjRreFeX75Y5sAQL7zeXyX+t7yXya8IRbajE9YnDmfUypB3/hCLYEXnGGc02aXaUW7v5qeVvDKcDZfbOcTc7JwsZkf2LYH3KaUxG9OueHTA76GwRMrKRIXYnLbwbn6+TimPM+nGp4lMNdrwlZMtmxN/QdWfXhMYiRwy8DpwujW2jk33yBRPiOtbW3c7t+tUHkfachDtKmKIdKxeI/yf01/yacbK2MiJQw/gEJtrW+Z5HTjEL6qhLq3y9DTJtXSk/LmR4oqW265+V6eOSZNsUcaE8uFr3gXOP7pkXjpIxyT1ZacPraF02FymPlvSIvT2mKJ7t/kCvwCj3RVol12jOdWiUDGAUTIsowrSVssjLfOt5lamH0Z78X6hbXZe1hhQjZTO4rCEpv59QtOZKmcGo5vH7gmaTX+vjpVb1fIY0Fk+cufwt1P4a/hq5zX0YnbhkFa7RGGAK9s5qhGuilRZhvK6VeJmRaWjZe8vPjknTyq05S3zN1s3G2PPGVA5o1LzWWQtTPguN5w6N54E6bNNeo9WiqTeW6KkYW7T1bmUovybc2g0oz0TKskdmUGmAlG4sFUa1L1KVY3yDeivS2hRpdWG2ursB7pwPQfrn+vLs/rZY3SN1nXybHnlgHL/0aZam5HOZ2vpIjSkg5yvavrqzv0M1yD0mC4qU+RwnzhjederRdVpI+hu9suVk561FMOeWXuk2xsZ2qPzZCvKE5sSE5qVBXKEWiZbflSNaskgbjs8RUea/Sz4V+x31MbPb2j6TqORP2HiTZ5XlxZHCkPQvZd72VqLXPSd+jSgmnGnvOgZazZ8wUmCMyST4PcsJPSFc5XgngT3amOznqp3iXbyhI9EGSb1Qfw6wMRz12rHuji3TY9O3T6Elat0+dV8LmV8WzFHid5YdvS6taifaR10s3Z+NVlevcuX7Oj3MlvhafcyojRtZ2CivjOmoL4O5sETNuDAmhEuzXjSRv5nkTWTm3alQyqa1oVzONLCNeUbxknQOFBE+7+6C15v7ROhHvEIvJqxLjWskSpiNy3V+wLW0mJWKliIkt15akzJnPapaLywPd9WwdpwtZUJWMFNS7oZbu33olKIVORvDFHqKT/ZWxYkuzS/hwr+R8kWJhmNIDrEFfu5VtaV23sGpiJe6zJnNiGrQJvSXYvCu7me5Rb2OXjrUXfohHMJ5pKBrSfqUVtSmsjNlWXKXejj9V2QNxioRpbctm/fB5SL3ZJVTk/6kZOHk3qTKvJPTtC+GQ0hPylzC+fD+htSLY2XebWrWB0Nd7kGZQxMe5jxD2DO3rZvzcjnV62uVSygPXgfMzovB4Q5gdcxi24VYqLHzRN49B7QOxzXUzWrxv/bD8LGcmvMK5Tahd86eBzx1bpfozCz6xc3njOUWMpqrOYbzzIveWa/Jz4/9v6jRk8qd3rx7+uiX2jFgeC0U50Nl6RjvjiIrbygV3B/wyZCrf6u/n5PfSnhZ0KiSowkls19RTc20kKmZNy99vTPfhchk6VTJVKZm44kWnYzdUnvqOvxuFR5g01Oi/E4lfyLW/x5tH2qPyXqYbDpnEDpUl1AWxO6m9enenqOtkhjP9PIZ3zbU4J74PtXied/b1B7P/LZLfat+k4Tn+i2Vq34pMlne5bPzKoYelHfgOBdk3veN6Ew9Z7P4BNpJwB4jn6PiSMm8/bwgRJ/iwmVJF4Qwo6WOcuylHNOZpKSCdlzqW49G+Ejv9OO+A57P7xbZpUj9nuq6enXAlVqS6sAj1SPKDMSk/02I0P6gLsLnRV32S3qwIumEnkFZotfOd/UnwU6948K+zbhOeTCTqZvrdjlF9Xb3sD4Tu13JhU+81+MHNfiBI2WLntYLirvHqj53OKuhOdMyufu5Q2XynqwHjGa7xfioj5/nNbzmAf2/WYm+6Ui6C7LElG2PaD9vTPQyrZsdkp7PVdbnbW/USGve2mSa9mSlHQfmjGQdB3yrbEuY/fzmWf3KgG+Y+em4c/1hwL4L9kSSiE9mStmjJEAiPiMqnV9JvZRkizEKOJ/RDeit3NeQnkpUZqIks4B3o+cBsswD6BwL0hyLFAaiJNpi0f8j+YJ+Ii58fkUXvrhU/D+So8sbl/648dndK2tfXdP/meR99Uv1kboAq/Hn6iuYkQfqkHKNf1F/VX/b/s/Or3bWd37LTd87pzG/UKWfnc3/AqaKXaM=</latexit> ⇡ <latexit sha1_base64="Ov2LTKTmb98Skpojd3G2ltsOy/U=">AAA/eHiczVvbchy3EYWdm8Xc7OQxD5mEViS6FBZFq6K4XIkskRRJayVS4kWyvZayl+FyrOHOamaXErWhvyOvyWs+IV+SP4g+IXlKdwMYYHYx0wDjVJkokhgsTnfj1jfMdkdpUoxXVv751tvf+e73vv+Ddy4t/PBHP/7JT99972eHRTbJe/FBL0uz/Em3U8RpMowPxsk4jZ+M8rhz0k3jx93na/j549M4L5JsuD8+G8VfnnQGw+Qo6XXG0PS0TRSm3XQSn0dnz95dXFleoZ9ovnJdVRaF+tnN3vvlB6It+iITPTERJyIWQzGGeio6ooDyhbguVsQI2r4UU2jLoZbQ57E4FwuAnUCvGHp0oPU5/B3A0xeqdQjPSLMgdA+4pPCbAzISlwGTQb8c6sgtos8nRBlb62hPiSbKdgb/u4rWCbSOxTG0cjjd0x/Xh9YjkA1npnnMY+j3exprAr1H1IKz0FPcJjR7OMLIGv0YKIygDet9+DyHeo+Qej0iwhQ0R7gGHfr8X9QTW/G5p/pOxBsazbdl/r5983I5oERiWzwQa6IlDsS62BB7JG9zWSDcGoxjBHOcg+QDmCGU9ipIswT/V+FMrYibUNsEGbvUJ4axRGIX/p+R/AtK1kjcF7fFvtgi3lehfh9qSwHrxPXUe7ug1fDfNwvMLstpRc4aJRjT+CekAXLxqrEv7p2+Ws0j2g+FOpHNaypncE08EjuN64ech0D/JWmiE5pB5DiF9gHIhDs0BX6oE3Ev/118LRah/rX4h9rHEciVq519TPTkkz/NP0FBmlegnItLRPMApF4oRxnBk1yBrNz9HXFKZyMiTT6Bz+RZSmnvDalX0+geQDmnmt41XShTaj1vRK5BcSHXWOQmFBdyk0W2oLiQLRa5C8WF3FXIJuxDKC7sQ5brIygu5CMWuQ/FhdxnkYdQXMhDFvk5FBfycxZ5F4oLeZdF3oPiQt5jkQdQXMgDFrkBxYXcUMj6s4Z6LSM6CXOubkO9ygPtVAott1n57pCOdWHveJzKXg2WP5fr8N+NXfeY07gGu+Gxe45qsPz+2QQt58by2mSLbKQLu8Vit2EHuLHbLPZT8VUN9lOP8/K8BsufmBbZGxeW15/34cmNvc9iH0DNjeWtzA60uLE7Hjp/VIPdZbEPxYsarI/Wz2uwvN7fI1/Mhd3zsBnjGixvNQ7Ad3BjeX16CD6IG8vbnMfQ6sY+ZrFPyGt0YZ+w2M/IO3VhP/Owk69rsNpSSu99QD5gDCe2iVqnPJVYGwG1DsM/LW0L1tBG9VnMoMQMCHPCIjZLxKYnolUiWt5yFaUeLchj5bnslYg9T0S3tE1YG7P9+2X/PsVmPGK9RKzPIJqiAFxrPZZT8i50C4ccl5YLaz5jykr9jbVY7YdmzasROxWE3NvHtPOvUayOkUyf4tZ6aseljZfIiJ6bEC8p1tOj1Dx43LjUCjbqFYvqOlBdFnXmQJ2xqIkDNWFRpw7UKYsyJ9/GtT12gJl/XIspPenYn8ulVHMXO2BxN8D6YcsO/PfJpTRH5ZgRQEupo2eji3OoTSmSNpHdOsXIMtMQg2Sy547KMeET5ian6tRJPXxe2vJI6IynP52E5BmUdNBfjOhEhdG5Ry3n5N/JWhh+qzz5uhaG36AZPyc/XtbC8GMl/fgCsu8r7P4FsHtwnkZq9k09lIbMoUgaus7p5u1Sb2K+8hWdHNkWyn+NanIOTD2MRmGNoaiMIYSGmcvCmsswKugjSd9W16LgkQxVdGvqoTJkZCuHSg7zFLoy2KevVkbXw2jsgl+1RpH11KqH7tBRORpTD6NxKGRu/Zz8dV0PozGgZzkfph5GA3MqHRXNm3qo9sYZkBGyqWufJScvRmecE7LezbkU2yOftzGYUXlaevDNlIznWU+nW9qZZolmtUuIHGj9J5aHVKUxFats9CNlGFds7zwdY39x5lswixGcWpnX53LSKUioMwYxZcmfErVmTHVkGrfK4lCTHM2g2qp1zPpyhq/M6VTbnlErFzWZ0Zp5bJOeLWjvjchja9HMcvPQql3hOorcDLUqM8TTC5m713SCs5nZX2FxoxnEqNxpPbodkrfUzVGka9b3rDm+rG5RxlDknYrZv5gLPiJcThFJRtoGZWniaffTWR67De3hNWEy0PKziFYU9dUpaY2EbnwK1g/RuVzpKU/p2dA+oHu26q1VpKiMhLxRxRw3Zrsjus+0dS3HG+dL589kvSCta+7Rm2/HDHrgQIdGH2tgKx5AbR+8+QN42veIP8ydW0bznYvflvefGa1fc7Rt3+y1SxpS28QV/dgUAR9XqLwENO4FGUH705ilo/HtOUp8RO6Sx8SVVb1/me709ZsjHdrh9Xu5PkvSJ66rxDWiMyPv++XTLAcpwdT5ySp5nc2jRH4hHFGDclyfWpzlvAzpXZqYYssR+bMpnTXubFR727mj2U80p12h36rAu+KM9GNE2i8C65TRnozo134rR79bIfVBShrSR+skpW/j8nQSdo8ldMrlHpHvC5n9FpMmmxB/Tdc+XQXtRennSytwPrO39Zy0yBOMiWuudLs52822B5HmTQh7l0iKZq9cJf5L9Ff/6n2yOLcjcIZxBQql6VzrkVGkgXPUIRvfrIN0X1vK90sZniqpjfUzMr1fkWyd4iSUB211Hzj36Fnywl2Sk9zFXB9pRZsyrUh5NDOPOFq0rm2l9QfK/qLc18hGLtKZawvzho32/XVfLsM7y7eZV5W6H+3i/0LdzHV11pBiJEx2Vc4Ql3uPKcaypUzpnST59k2sKM3Pej7Tq5nPkPbiiXWW/wytv4K/Wm797EenW9EKd2gPSArmycyIbInmevjxulPhpXempmWeDT+zJ3Uvu+UiUbHUbiYyPg2msku75pXKNei6z/j36Q7PzIBu11rk2YwHva/u/Hyph9H2pzxhKfO+k0YlHlLaMY8f1T5LlY/FNeo1S2uFpYVv49kZdft02rbzLvkOPfJwZHTQp1OQkE+jW5vjIEkBed1Q+ss+XW1qwbPUJQ2FlKtvFWLurifkO6RSxt8oy5GRHjUnTr+z81L10TqsTfUP55AnFM0WdHY04gb1iJX8thzRzIlftmx6RDnvDvks0q43R6R2b7MKUcVem2hOngXDKxVXlDc+pDUYizeN3Lbn4sNtK0KMhLzvS0sPHlf5TdAqY9wmd4aO1d3eW0GrhJYkp3heeo1d0lHzWQZ5izWE2df7bpmknoo/eGgHGVeak2LvL/xsoqISHNsH0BNn3qy8qwfPL/XmyPG7yH1WhyzHifIDpzPPF6PVUZak+tw0D5MZvmY+JmKoYkLtvZtIqoppi4+9uUiJwrhIjA+XsFGEyB8meYjM8t7Gl7LurSlXo3mpY44pJuHeg0SEy4O66vSYlphxdOfodQlrU5MtHCXMd2UqBre1LWZ+Ls3ZItl6qdEipZY1qrMWmrptMYwOlxoyJu2XCi4vInv3hHwftS6CsmODj6Hg30i44idtTXyya3vgReJ79X7fimi+yX+h6jLjF1ELnuT+THTaUeOs9mhe5RcWdZu+Dwd/HgnMNSd9QnYwVHZJmZfcpu5P/yWd4VzErPSmZ/gYbC78SOY5hYwnIb3EjyYR+ntMoWPRHHxGUuXiz0fm/blRHAn9fbqwMWjq/AiqHEJ46Pt5vzU3vcN52Zya52ueiy8PqcP1jYTG4c1YfbRh+vloqNxakW+eA2qHowbq2lr8r+PQfAyncF6+3Ar6rtNXHqsu+8UqZ4nebPiZMdx8dnM9R3+eWTk64+u4+UmvLQpaqcwazTdPH71Jswc0r6mQmUJeOom3d5GR15cKZs5dMmTi314ySHydDL5UdAa/npLuwVPT3/RzjUp/5iOToVMnU5Ua0pORdpvOcEzZAnOz06fn8m1L+h76R/QTycrNG6ry0fXye+iHq8vXf7f84cMbi5/cUd9If0f8QvwaPPnr4qb4RGyBh3lA2e6/iL+Kv/3xP7eiW1duLcmub7+lMD8XlZ9bq/8FWlgltg==</latexit> y <latexit sha1_base64="LvFcuviAqZAdjSTE/PqtKDzG1pU=">AAA/e3iczVvbchy3EYXtXCzmYtl5zEMmoRVdSmGRtBLF5UpkiaQoWiuREi+S7bWUvQyXYw13VjO7lKgN/SN5TZ7yCfmS/EH0CXlIVbobwACzi5kGFKfKRJHEYHG6Gw2gL8Bsd5QmxXh5+Z9vvf3O977/gx++e27hRz/+yU/fO//+BwdFNsl78X4vS7P8cbdTxGkyjPfHyTiNH4/yuHPcTeNH3Wdr+Pmjkzgvkmy4Nz4dxV8ddwbD5DDpdcbQ9PT8e22iMe2mk/gsOr349Pzi8tIy/UTzlRVVWRTqZyd7/xdXRFv0RSZ6YiKORSyGYgz1VHREAeVLsSKWxQjavhJTaMuhltDnsTgTC4CdQK8YenSg9Rn8HcDTl6p1CM9IsyB0D7ik8JsDMhIXAJNBvxzqyC2izydEGVvraE+JJsp2Cv+7itYxtI7FEbRyON3TH9eH1kOQDTXTPOYx9Ps9jTWB3iNqQS30FLcJaQ9HGFmjHwOFEbRhvQ+f51DvEVLPR0SYgnSEc9Chz/9FPbEVn3uq70S8ptF8V/T33dPLhYASiS1xX6yJltgX62JD7JK8zWWBcGswjhHoOAfJB6AhlPYSSHMZ/q/CnloW16G2CTJ2qU8MY4nEDvw/JfkXlKyRuCduij1xh3hfgvo9qF0OmCeup17bBc2G/7pZYFZZTjNy2ijBmMY/IQuQi5eNfXHt9NVsHtJ6KNSObJ5TqcE18VBsN84fch4C/RdkiY5Jg8hxCu0DkAlXaAr80CbiWv67+EYsQv0b8Q+1jiOQK1cr+4joySd/mn+CgjQvQjkT54jmPki9UI4ygic5A1m5+jvihPZGRJZ8Ap/JvZTS2htSr6bR3YdyRjW9arpQptR61ohcg+JCrrHITSgu5CaLbEFxIVsscgeKC7mjkE3YB1Bc2Acs14dQXMiHLHIPigu5xyIPoLiQByzyCygu5Bcs8jYUF/I2i7wLxYW8yyL3obiQ+yxyA4oLuaGQ9XsN7VpGdBJmX92EepUH+qkUWm6y8t0iG+vC3vLYlb0aLL8v1+G/G7vuodO4BrvhsXoOa7D8+tkEK+fG8tbkDvlIF/YOi92CFeDGbrHYz8TXNdjPPPbLsxosv2Na5G9cWN5+3oMnN/Yei70PNTeW9zLb0OLGbnvY/FENdofFPhDPa7A+Vj+vwfJ2f5diMRd218NnjGuwvNfYh9jBjeXt6QHEIG4s73MeQasb+4jFPqao0YV9zGI/p+jUhf3cw0++qsFqTymj9wHFgDHs2CZqnXJXYm0E1DoM/7T0LVhDH9VnMYMSMyDMMYvYLBGbnohWiWh5y1WUdrSgiJXnslsidj0R3dI3YW3M9u+X/fuUm/GI9RKxPoNoygJwrvVYTii60C0cclx6Lqz5jCkr7TfWYrUemi2vRmxXEHJtH9HKv0q5OmYyfcpb66kdlT5eIiN6bkK8oFxPj1Lz4HHj0irYqJcsqutAdVnUqQN1yqImDtSERZ04UCcsyux8G9f2WAFG/zgXU3rSuT93llI9u9gGj7sB3g9btuG/z1lKc1aOJwLoKXX2bGxxDrUpZdIms1unHFmeNMQgmey5rc6Y8AnPJqdq10k7fFb68kjoE09/OgnJMyjpYLwY0Y4Ko3OXWs4ovpO1MPydcufrWhh+gzR+RnG8rIXhx0r68RvIvqewe2+A3YX9NFLaN/VQGvIMRdLQdc42b5V2E88rX9LOkW2h/NeoJnVg6mE0CmsMRWUMITSMLgtLl2FUMEaSsa2uRcEjGars1tRDZcjIVw6VHOYpdGawT1/NjK6H0diBuGqNMuupVQ9doaNyNKYeRuNAyLP1M4rXdT2MxoCepT5MPYwGnql0VDZv6qHWGzUgM2RT1zFLTlGMPnFOyHs3n6XYEfm8j8ETlSdlBN9MyUSe9XS6pZ9plmjWuoTIgd5/YkVIVRpTscpmP1KGccX3ztMx/hc13wItRrBr5bk+dyadgoT6xCCmU/InRK0ZUx2Zxq2yOLQkhzOotmods7Gc4SvPdKptT6mVy5rMaI0e22RnC1p7I4rYWqRZTg+t2hmuo8hpqFXREE8vRHevaAdnM9pfZnGjGcSoXGk9uh2St9TNWaRL67uWji+oW5QxFHmnYtYvngUfEi6njCQja4OyNPG0++lTHrsN/eFVYU6g5WcRzSjaqxOyGgnd+BRsHKLPcmWkPKVnQ3uf7tmqt1aRojIS8kYVz7jxtDui+0zb1nK8UV/6/EzWC7K65h69+XbMoAcOdGj2sQa+4j7U9iCa34enPY/8w9y5ZaTvXPymvP/MaP6as237Zq9d0pDWJq7Yx6YM+KhC5QWgcS3IDNqfxiwdjW/PUeIzcpc8Jq+s2v0LdKev3xzp0AqvX8v1pyR94rpKXCPaM/K+Xz7NcpASTJ2frFLU2TxK5BfCES0ox/WJxVnqZUjv0sSUW44onk1pr3F7o9rbPjua/URz2hH6rQq8K87IPkZk/SLwThmtyYh+7bdy9LsV0h6kZCF9rE5SxjauSCdh11hCu1yuEfm+kFlvMVmyCfHXdO3dVdBalHG+9AJnM2tb66RFkWBMXHNl283ebvY9iDRvQtirRFI0a+US8b9Mf/WvXieLcysCNYwzUChL55qPjDIN1FGHfHyzDdJ9bSk/LGV4oqQ23s/I9GFFsnXKk1Ae9NV94NyjZ8kLV0lOchdzfaQXbTppRcqjGT3iaNG7tpXVHyj/i3JfJR+5SHuuLcwbNjr21325E95Zvs28qtT9aBf/F+pG11WtIcVImNNVqSHu7D2mHMuWMqV3kuTbN7GiNK/1fKZXM58hrcVjay//GVp/CX+13PrZj063YhVu0RqQFMyT0YhsieZ6+PG6VeGlV6amZZ4NP7MmdS+75U2yYmndTGZ8Ekxlh1bNS3XWoOs+49+jOzyjAd2urcjTmQh6T935+VIPo+1PecJS5mMnjUo8pLRzHj+qfZYqn4tr1CuW1jJLC9/Gs0/U7d1p+87bFDv0KMKR2UGfdkFCMY1ubc6DJAXkdU3ZL3t3takF91KXLBRSrr5ViGd3PSHfIZUy/lp5jozsqNlx+p2dF6qPtmFtqn80hzymbLagvaMR16hHrOS35YhmdvyS5dMjOvPuUMwi/XpzRmr3NrMQVfy1yebkXjC8UnFRReNDmoOxeN3IbWsuP9yyMsRIyPu+tIzgcZZfB80y5m1yZehc3R29FTRL6Elyyudl1NglGzV/yiBvsYagfb3ulkjqqfiDh3WQeaXZKfb6ws8mKivBsV2Bnqh5M/OuHjy/1Jsjx+9N7rM65DmOVRw4nXl+M1od5Umqz016mMzwNfqYiKHKCXX0bjKpKqYtPvHmIiUK4yIxPlzCRhEif5jkITLLextfyrq3plzN5qWNOaKchHsPEhGuCOqSM2K6zIyjO0evS1ibmmzhKOF5V6ZycNva4snPuTlfJFvPNXqk1PJGdd5CU7c9hrHh0kLGZP1SwZ2LyN49Id9Hrcug7NzgEyj4NxKu/El7E5/TtV2IIvG9er9vRTTf5D9XdXniF1EL7uT+THbaUeOs9mie5ecWdZu+Dwd/HgnompM+IT8YKrukzEtuU/en/4L2cC5iVnrTM3wMNhd+JPOcQsaTkF3iR5MI/T2m0LFoDj4jqXLx5yPP/blRHAr9fbqwMWjq/AiqHEJ46Pt5vzk3vcN52Zya9TXPxZeHtOH6RkLj8GasPtsw/XwsVG7NyLfPAa3DYQN17S3+13FoPoZTOC9fbgV91+lrj1mX/WJ1ZonRbPieMdx8VnM9R3+eWTk6E+u4+cmoLQqaqcwazbdPH6NJswY0r6mQJ4W8dBJvryIjry8VPDl3yZCJf3vJIPF1MvhS0Sf49ZR0D56a/qafa1T6Mx+ZDJ06marUkJ7MtNu0h2M6LTA3O316Lt+2pO+hf0w/kaxcv6YqH6+U30M/WF1a+d3SRw+uLX56S30j/V3xc/EriORXxHXxqbgDEea+wG+m/0X8Vfztj/+5sXjjyo2rsuvbbynMz0Tl58Zv/wtIPiYY</latexit> y0 <latexit sha1_base64="P6ma5GbrGzlp3Azs8/N4GutUeUg=">AAA/d3iczVtZcxy3EYady2Iu23nMgyehZUsuhUXSqiguVyKLh0haK5ESD8n2Ssoew+VYy53VzC4Pbei/kdfkOT8hvyT/IPoJfkt3AxhgdjHTAGNXmSiSGCy+7kYD6AOYbQ/7ST5aXPzPG2/+6Mc/+enP3roy9/Nf/PJXv377nXcP8nScdeL9TtpPsyftVh73k0G8P0pG/fjJMItbx+1+/Lj9YhU/f3wSZ3mSDvZG58P46XGrN0gOk05rBE1Pm0RhksXdi+js+dvziwuL9BPNVpZUZV6on530nfc+Ek3RFanoiLE4FrEYiBHU+6IlcihfiSWxKIbQ9lRMoC2DWkKfx+JCzAF2DL1i6NGC1hfwtwdPX6nWATwjzZzQHeDSh98MkJG4CpgU+mVQR24RfT4mythaRXtCNFG2c/jfVrSOoXUkjqCVw+me/rgutB6CbKiZ+jGPoN+faKwJ9B5SC2qho7iNSXs4wsga/QgoDKEN6134PIN6h5B6PiLC5KQjnIMWff5f6omt+NxRfcfiNY3mh6K/H55ergaUSGyJB2JVNMS+WBPrYpfkrS9zhFuFcQxBxxlI3gMNobTXQJrr8H8Z9tSiuAW1DZCxTX1iGEskduD/Ock/p2SNxH1xR+yJTeJ9Der3oXY9YJ64nnpt5zQb/utmjlllGc3Iea0EIxr/mCxAJs5q++La6arZPKT1kKsdWT+nUoOr4pHYrp0/5DwA+qdkiY5Jg8hxAu09kAlXaB/4oU3Etfwv8Y2Yh/o34t9qHUcgV6ZW9hHRk0/+NP8KBWl+COVCXCGa+yD1XDHKCJ7kDKTF6m+JE9obEVnyMXwm91Kf1t6AetWN7gGUC6rpVdOGMqHWi1rkKhQXcpVFbkBxITdYZAOKC9lgkTtQXMgdhazDPoTiwj5kuT6C4kI+YpF7UFzIPRZ5AMWFPGCRX0JxIb9kkXehuJB3WeQ9KC7kPRa5D8WF3GeR61BcyHWFrN5raNdSopMw++oO1Ms80E/1oeUOK98K2VgXdsVjV3YqsPy+XIP/buyah07jCuy6x+o5rMDy62cDrJwby1uTTfKRLuwmi92CFeDGbrHYz8XXFdjPPfbLiwosv2Ma5G9cWN5+3ocnN/Y+i30ANTeW9zLb0OLGbnvY/GEFdofFPhQvK7A+Vj+rwPJ2f5diMRd218NnjCqwvNfYh9jBjeXt6QHEIG4s73MeQ6sb+5jFPqGo0YV9wmK/oOjUhf3Cw0++qsBqTymj9x7FgDHs2DpqrWJXYm0I1FoM/37hW7CGPqrLYnoFpkeYYxaxUSA2PBGNAtHwlisv7GhOESvPZbdA7Hoi2oVvwtqI7d8t+ncpN+MRawVibQpRlwXgXOuxnFB0oVs45KjwXFjzGVNa2G+sxWo91FtejdguIeTaPqKVf4NydcxkupS3VlM7Kny8REb0XIc4pVxPj1Lz4HGjwirYqDMW1Xag2izq3IE6Z1FjB2rMok4cqBMWZXa+jWt6rACjf5yLCT3p3J87SymfXWyDx10H74ct2/Df5yylPivHEwH0lDp7NrY4g9qEMmmT2a1RjixPGmKQTPbcVmdM+IRnkxO166Qdvih8eST0iac/nYTk6RV0MF6MaEeF0blHLRcU38laGH6z2Pm6FoZfJ41fUBwva2H4kZJ+dAnZ9xR27xLYXdhPQ6V9Uw+lIc9QJA1d52zzVmE38bzyjHaObAvlv0o1qQNTD6ORW2PIS2MIoWF0mVu6DKOCMZKMbXUtCh7JQGW3ph4qQ0q+cqDkME+hM4N9umpmdD2Mxg7EVauUWU+seugKHRajMfUwGgdCnq1fULyu62E0evQs9WHqYTTwTKWlsnlTD7XeqAGZIZu6jlkyimL0iXNC3rv+LMWOyGd9DJ6oPCsi+HpKJvKsptMu/Ey9RNPWJUQO9P5jK0Iq05iIZTb7kTKMSr53lo7xv6j5Bmgxgl0rz/W5M+k+SKhPDGI6JX9G1Oox5ZFp3DKLQ0tyOIVqqtYRG8sZvvJMp9z2nFq5rMmM1uixSXY2p7U3pIitQZrl9NConOEqipyGGiUN8fRCdPeKdnA6pf1FFjecQgyLldah2yF5S12fRbq0vmvp+Kq6RRlBkXcqZv3iWfAh4TLKSFKyNihLHU+7nz7lsdvQH94Q5gRafhbRjKK9OiGrkdCNT87GIfosV0bKE3o2tPfpnq18axUpKkMhb1TxjBtPuyO6z7RtLccb9aXPz2Q9J6tr7tHrb8cMuudAh2Yfq+ArHkBtD6L5fXja88g/zJ1bSvrOxB+K+8+U5q8+27Zv9poFDWlt4pJ9rMuAj0pUTgGNa0Fm0P40pulofHOGEp+Ru+QxeWXZ7l+lO3395kiLVnj1Wq4+JekS12XiGtGekff98mmag5Rg4vxkmaLO+lEivxCOaEE5rs8szlIvA3qXJqbcckjxbJ/2Grc3yr3ts6PpTzSnHaHfqsC74pTsY0TWLwLvlNKajOjXfitHv1sh7UGfLKSP1UmK2MYV6STsGktol8s1It8XMustJks2Jv6arr27clqLMs6XXuBiam1rnTQoEoyJa6Zsu9nb9b4HkeZNCHuVSIpmrVwj/tfpr/7V62R+ZkWghnEGcmXpXPORUqaBOmqRj6+3QbqvLeX7hQzPlNTG+xmZ3i9JtkZ5EsqDvroLnDv0LHnhKslI7nymj/SidSetSHk4pUccLXrXprL6PeV/Ue4b5CPnac81hXnDRsf+ui93wjvNt55Xmbof7fx7oW50XdYaUoyEOV2VGuLO3mPKsWwp+/ROknz7JlaUZrWeTfWq5zOgtXhs7eW/Qevv4K+WWz/70WmXrMIKrQFJwTwZjciWaKaHH6+VEi+9MjUt82z4mTWpe9ktl8mKpXUzmfFJMJUdWjVn6qxB133Gv0d3eEYDul1bkedTEfSeuvPzpR5G25/ymKXMx04alXhIaec8flS7LFU+F9eoVyytRZYWvo1nn6jbu9P2nXcpduhQhCOzgy7tgoRiGt1anwdJCsjrprJf9u5qUgvupTZZKKRcfqsQz+46Qr5DKmX8QHmOlOyo2XH6nZ1T1UfbsCbVP55BHlM2m9Pe0Yib1CNW8ttyRFM7fsHy6RGdebcoZpF+vT4jtXubWYhK/tpkc3IvGF598aGKxgc0ByPxupbb1kx+uGVliJGQ9339IoLHWX4dNMuYt8mVoXN1d/SW0yyhJ8kon5dRY5ts1Owpg7zFGoD29bpbIKkn4s8e1kHmlWan2OsLPxurrATH9hH0RM2bmXf14Pn1vTly/C5zn9Uiz3Gs4sDJ1PPlaLWUJyk/1+lhPMXX6GMsBion1NG7yaTKmKb41JuLlCiMi8T4cAkbRYj8YZKHyCzvbXwp696acjmblzbmiHIS7j1IRLgiqGvOiOk6M472DL02YW1qsoWjhOddqcrBbWuLJz9XZnyRbL1S65H6ljeq8haauu0xjA2XFjIm69cX3LmI7N0R8n3UqgzKzg0+hYJ/I+HKn7Q38Tld24UoEt+r9/tWRP1N/ktVlyd+EbXgTu5OZactNc5yj/pZfmlRt+n7cPDnkYCuOekT8oOhskvKvOQ2dX/6p7SHMxGz0pue4WOwufAjmeUUMp6E7BI/mkTo7zGFjkVz8BlJmYs/H3nuz43iUOjv04WNQVPnR1DmEMJD38/7zbnpHc7L5lSvr1kuvjykDdc3EhqHN2PV2Ybp52OhMmtGvnsOaB0Oa6hrb/H/jkPzMZzCeflyy+m7Tl97zLrsF6szS4xmw/eM4eazmqs5+vNMi9GZWMfNT0ZtUdBMpdZovnv6GE2aNaB5TYQ8KeSlk3h7FRl5fangyblLhlR86yWDxFfJ4EtFn+BXU9I9eGr6m36uUenPfGQydKpkKlNDejLTbtIejum0wNzsdOm5eNuSvof+Cf1EsnLrpqp8slR8D/1geWHpjwsfP7w5/9mK+kb6W+K34vcQyS+JW+IzsQkR5j5J+XfxD/HPv3x7+73bH9y+Jru++YbC/EaUfm4v/Q/bzCU+</latexit> x <latexit sha1_base64="lu4TI7OEyJXvtBBsg9Av3iRYKnI=">AAA/eHiczVtZcxy3EYady2IuO3nMQyahFYkuhUXSqiguVyKLhyhaK5ESD8n2msoew+VYy53VzC4PbejfkdfkNT8hvyT/IPoJyVO6G8AAs4uZBhinykSRxGDxdTeuvjDbHvaTfLS09M+33v7Od7/3/R+8c23uhz/68U9++u57PzvI03HWifc7aT/NnrdbedxPBvH+KBn14+fDLG6dtPvxs/bLNfz82Wmc5Uk62BtdDOMvT1q9QXKUdFojaDpsEoVJFncvo/MbL96dX1pcop9otrKsKvNC/eyk7/3yA9EUXZGKjhiLExGLgRhBvS9aIofyhVgWS2IIbV+KCbRlUEvo81hcijnAjqFXDD1a0PoS/vbg6QvVOoBnpJkTugNc+vCbATIS1wGTQr8M6sgtos/HRBlbq2hPiCbKdgH/24rWCbSOxDG0cjjd0x/XhdYjkA1npn7MI+j3exprAr2H1IKz0FHcxjR7OMLIGv0IKAyhDetd+DyDeoeQej0iwuQ0R7gGLfr8X9QTW/G5o/qOxRsazbdl/r5983I9oERiSzwWa6Ih9sW62BC7JG99mSPcGoxjCHOcgeQ9mCGU9iZIswD/V+BMLYk7UNsEGdvUJ4axRGIH/l+Q/HNK1kg8EvfEnnhAvG9C/RHUFgLWieup93ZOq+G/b+aYXZbRilzUSjCi8Y9JA2TivLYv7p2uWs0j2g+5OpH1aypncE08Fdu164ecB0D/jDTRCc0gcpxAew9kwh3aB36oE3Ev/118Leah/rX4h9rHEciVqZ19TPTkkz/NP0FBmjegXIprRHMfpJ4rRhnBk1yBtNj9LXFKZyMiTT6Gz+RZ6tPeG1CvutE9hnJJNb1r2lAm1HpZi1yD4kKuschNKC7kJotsQHEhGyxyB4oLuaOQddgnUFzYJyzXp1BcyKcscg+KC7nHIg+guJAHLPJzKC7k5yzyPhQX8j6LfAjFhXzIIvehuJD7LHIDigu5oZDVZw31Wkp0EuZc3YN6mQfaqT603GPlWyUd68KuepzKTgWWP5fr8N+NXfeY07gCu+Gxe44qsPz+2QQt58by2uQB2UgX9gGL3YId4MZusdhPxVcV2E89zsvLCix/Yhpkb1xYXn8+gic39hGLfQw1N5a3MtvQ4sZue+j8YQV2h8U+Ea8qsD5aP6vA8np/l3wxF3bXw2aMKrC81dgH38GN5fXpAfggbixvc55Bqxv7jMU+J6/RhX3OYj8j79SF/czDTr6uwGpLKb33HvmAMZzYOmqt4lRibQjUWgz/fmFbsIY2qstiegWmR5gTFrFZIDY9EY0C0fCWKy/0aE4eK89lt0DseiLahW3C2ojt3y36dyk24xHrBWJ9ClEXBeBa67GcknehWzjkqLBcWPMZU1rob6zFaj/Ua16N2C4h5N4+pp1/i2J1jGS6FLdWUzsubLxERvRchzijWE+PUvPgcaNCK9iocxbVdqDaLOrCgbpgUWMHasyiTh2oUxZlTr6Na3rsADP/uBYTetKxP5dLKecutsHiboD1w5Zt+O+TS6mPyjEjgJZSR89GF2dQm1AkbSK7dYqRZaYhBslkz22VY8InzE1O1KmTeviysOWR0BlPfzoJydMr6KC/GNGJCqPzkFouyb+TtTD8g+Lk61oYfoNm/JL8eFkLw4+U9KMryL6nsHtXwO7CeRqq2Tf1UBoyhyJp6Dqnm7cKvYn5ynM6ObItlP8a1eQcmHoYjdwaQ14aQwgNM5e5NZdhVNBHkr6trkXBIxmo6NbUQ2VIyVYOlBzmKXRlsE9XrYyuh9HYAb9qjSLriVUP3aHDYjSmHkbjQMjc+iX567oeRqNHz3I+TD2MBuZUWiqaN/VQ7Y0zICNkU9c+S0ZejM44J2S963Mptkc+a2Mwo3JYePD1lIznWU2nXdiZeommtUuIHGj9x5aHVKYxESts9CNlGJVs7ywdY39x5hswixGcWpnX53LSfZBQZwxiypIfErV6THlkGrfC4lCTHE2hmqp1xPpyhq/M6ZTbXlArFzWZ0Zp5bJKezWnvDclja9DMcvPQqFzhKorcDDVKM8TTC5m713SC06nZX2JxwynEsNhpHbodkrfU9VGka9Z3rTm+rm5RRlDknYrZv5gLPiJcRhFJStoGZanjaffTWR67De3hLWEy0PKziFYU9dUpaY2Ebnxy1g/RuVzpKU/o2dDep3u28q1VpKgMhbxRxRw3Zrsjus+0dS3HG+dL589kPSeta+7R62/HDLrnQIdGH2tgKx5DbQ+8+X142vOIP8ydW0rznYnfFvefKa1ffbRt3+w1CxpS28Ql/VgXAR+XqJwBGveCjKD9aUzT0fjmDCU+InfJY+LKst6/Tnf6+s2RFu3w6r1cnSXpEtcV4hrRmZH3/fJpmoOUYOL8ZIW8zvpRIr8QjqhBOa6HFmc5LwN6lyam2HJI/myfzhp3Nsq97dzR9Cea047Qb1XgXXFK+jEi7ReBdUppT0b0a7+Vo9+tkPqgTxrSR+skhW/j8nQSdo8ldMrlHpHvC5n9FpMmGxN/Tdc+XTntRennSytwObW39Zw0yBOMiWumdLs52/W2B5HmTQh7l0iKZq/cJP4L9Ff/6n0yP7MjcIZxBXKl6VzrkVKkgXPUIhtfr4N0X1vK9wsZDpXUxvoZmd4vSbZOcRLKg7a6C5w79Cx54S7JSO58po+0onWZVqQ8nJpHHC1a16bS+j1lf1HuW2Qj5+nMNYV5w0b7/rovl+Gd5lvPq0zdj3b+f6Fu5ro8a0gxEia7KmeIy73HFGPZUvbpnST59k2sKM3OejbVq57PgPbiiXWW/wytv4K/Wm797EenXdIKq7QHJAXzZGZEtkQzPfx4rZZ46Z2paZlnw8/sSd3LbrlKVCy1m4mMT4Op7NCuOVe5Bl33Gf8e3eGZGdDtWou8mPKg99Sdny/1MNr+lMcsZd530qjEQ0o75vGj2mWp8rG4Rr1maS2xtPBtPDujbp9O23beJ9+hQx6OjA66dAoS8ml0a30cJCkgr9tKf9mnq0kteJbapKGQcvmtQszddYR8h1TK+BtlOVLSo+bE6Xd2zlQfrcOaVP9wBnlC0WxOZ0cjblOPWMlvyxFNnfhFy6ZHlPNukc8i7Xp9RGr3NqsQley1iebkWTC8+uKG8sYHtAYj8aaW29ZMfLhlRYiRkPd9/cKDx1V+E7TKGLfJnaFjdbf3ltMqoSXJKJ6XXmObdNRslkHeYg1g9vW+WySpJ+IPHtpBxpXmpNj7Cz8bq6gEx/YB9MSZNyvv6sHz63tz5Phd5T6rRZbjRPmBk6nnq9FqKUtSfq6bh/EUXzMfYzFQMaH23k0kVcY0xcfeXKREYVwkxodL2ChC5A+TPERmeW/jS1n31pTL0bzUMccUk3DvQSLC5UHddHpMC8w42jP02oS1qckWjhLmu1IVg9vaFjM/12ZskWy9VmuR+pY1qrIWmrptMYwOlxoyJu3XF1xeRPbuCPk+alUEZccGH0PBv5FwxU/amvhk13bBi8T36v2+FVF/k/9K1WXGL6IWPMndqei0pcZZ7lG/yq8s6jZ9Hw7+PBKYa076hOxgqOySMi+5Td2f/hmd4UzErPSmZ/gYbC78SGY5hYwnIb3EjyYR+ntMoWPRHHxGUubiz0fm/blRHAn9fbqwMWjq/AjKHEJ46Pt5vzU3vcN52Zzq52uWiy8PqcP1jYTG4c1YdbRh+vloqMxakW+eA2qHoxrq2lr8r+PQfAyncF6+3HL6rtNXHqsu+8UqZ4nebPiZMdx8dnM1R3+eaTE64+u4+UmvLQpaqdQazTdPH71Jswc0r4mQmUJeOom3d5GR15cKZs5dMqTi314ySHyVDL5UdAa/mpLuwVPT3/RzjUp/5iOToVMlU5ka0pORdpPOcEzZAnOz06Xn4m1L+h76R/QTycqd26ry0XLxPfSDlcXl3y1++OT2/Cer6hvp74hfiF+DJ78s7ohPxAPwMPcp2/0X8Vfxtz/+525098bdBdn17bcU5uei9HN35b/eOCVv</latexit> x0 Facundo Memoli Karl-Theodor Sturm
  21. Gromov-Wasserstein ↵ 2 M1 + (X) and dX distance on

    X. <latexit sha1_base64="1+NKKLxN5DihfabBzQ+RV5f3JvI=">AABFuXictVzvctu4EUeu/67uv1z7sV/Ys9NJeqlru9dpZzKduURWHF+cxIlkJ7ko8VASJSuhREWUFCc6PVEfos/Qj21foP3UV+juAiBACeSCbhqObRDEb3exBBa7CzDtcTxIpzs7f7/yyXe++73v/+DTH2786Mc/+enPrn7289M0mU060UkniZPJs3aYRvFgFJ1MB9M4ejaeROGwHUdP229q+PzpPJqkg2TUnL4fRy+HYX806A064RSqzq7Wt1phXAtag1HQejA8++LV7vXWs4vaja2NcNTd2Fq0iMViEnWX3TN4stwKuiBVOOpEQTIKtrDx1vbZ1c2d7R36F6wXdlVhU6h/x8lnn2+LluiKRHTETAxFJEZiCuVYhCKF64XYFTtiDHUvxQLqJlAa0PNILMUGYGfQKoIWIdS+gd99uHuhakdwjzRTQneASww/E0AG4hpgEmg3gTJyC+j5jChjbRHtBdFE2d7D37aiNYTaqTiHWg6nW/risC9T0RN/oj4MoE9jqsHedRSVGWkFJQ+sXk2BwhjqsNyF5xModwip9RwQJqW+o25Dev4vaom1eN9RbWfi3yTlNbgC0VC9TzIKoZgT/YDe5gyeSXli4NwHCpHqI5beka6H1PsRtF9A/UO4llTSOmnDtaDaZSmyBpcLWWORB3C5kAcs8gguF/KIRR7D5UIeKyRiJ6RzN74BlwvfYDk/hsuFfMwin8DlQj5hkadwuZCnLPIbuFzIb1jkXbhcyLss8j5cLuR9FtmEy4VsssgTuFzIExZZh8uFrCtk8UydwJUQnQEzK29DOc8DLUUMNbdZ+e6QdXRh73jM6U4Blp/V+/DXjd330GlUgK17jLteAZYfeQdgI91Y3hbdo9XEhb3HYg9hBLixhyz2a/G6APu1x0x7U4Dl59oRtHNjeev7AO7c2Acs9iGU3Fh+jXoENW7sI48VY1yAPWaxj8XbAqyP1Z8UYHm73wC74sby61QT2ruxPtZ0VoDl7ekpeDBuLL9aPYVaN/Ypi30mLgqwz1jsc7DubuxzjxX2QwFWr7EbtIL0yR+JYMaWUQuzWYmlMVALGf5xtrbE5Bu3oZ7D9DNMnzBDFnGQIQ48EUcZ4shbrjSzoyn5uzyXRoZoeCLa2dqEpSnbvpu1x1LsgdjPEPsriDKPFN+17sucvAtdwyGn2cqFJZ8+JZn9xlKkxkO55dWIRzmEHNvnNPJvUrSEERRqqozaebbGS2RA92WIdxS96V5qHjxumlkFG3XBotoOVJtFvXeg3rOomQM1Y1FzB2rOoszMt3EtjxFg9I/vYkF3cgRIH7n4CsAruA2rzj2YowGMn2PwAp9QzSP426DYm7vKJMNoHtdJzHK8zFniCZQWYhPqTVS4T/F1TDMsAslky0cqxsc7zG0s1JyTVniZreRBljHxpzMgefoZHfQWA5pP1ejcp5oleXeyVA1/L5v3ulQNXyeNL8mLl6Vq+KmSfnoJ2ZsK27wEtgGzaay0b8pVacj8i6Shyxu06qLFxbc6VGMG6V1UpH+o3szhJd5LjUpSP6ZcjUZq9S/N9a8KDaPn1NJzNSroPUmvV5eCyj0ZqbjXlKvKkNAqOlJymLuqbwbbdNWb0eVqNI7B46pRzL2wylVH7zjrjSlXo3EqZN5zSZ68Llej0ad7qQ9TrkYDsy2hivNNuaplRw3I2NmUq1r1EWWBMQckx7ysMV7RhPykmaI2IP+gPFtj+/zr6xjmbF5lMUI5JePbFtNpZ2tZuUTaX4jAqk0ryoH+xczywfI0FmKPja+kDNPc+r5Ox6zxqPkj0GIAs1/uAXA58xgk1DkJtN4xUNxlo658zzRuj8XhKOmtoFqqdsp6i4avzBrl686olovLTG+NHltkr1Mae2PyCY9Is5wejgrfcBFFTkNHOQ3x9Kro7oOar3nt77C48QpinI20Du0IyZ208jjVpfWGpeNrapdnCpfc8zHjF7PNPWVtMOZJyBahLGU87XY6j2TX4bp6U5gct3wW0BtFezUnqzGgHamUjUJ1tlh64wu6N7RPaE8OeUgaHXiPgaIyFnLXDLPomE8PyKLa9pbjjfrSGTpZTsnqantcju5b6L4DXT3GqcGK8RBKTYgZTuCu6RHlbGS6SkjjE/HbbHc0oTdYHtHHOQupaUh7E+UsZFmUfZ6j8g7QOBpklO5PY5WOxrfWKPFRv0seE7vmLf812rnV+9shjfHi0VyciekS1z3iGtCskbu68m6Vg5Rg4XyyR/5reS+RXxWOaEM5rq8szlIvI9rxjyiCHZNnHNNs42ZHvrWdn1p9ojkdC713jrvZCVnIgOxfAOtTQmMyoB/77IDeQZcWISYb6WN3Bpl34/J1BuwYM37cQMhTDWa8RWTLZsRf07VnV0pjUUYMch1YroxtrZMj8gUj4jpR1t3M7fLVB5HmnIQ9SiRFM1auE/8b9Fv/6HGyuTYiUMP4BlJl61zvI6GYBXUU0ipfboN0W1vKrUyGV0pqs/4ZmbZyku1TxIXy4GrdBc4dupe8cJRMSO50rY1cR8uyuUh5vKJH7G2Ponhp9/tqBUa5b9IquUlzrkWjpA+jYJpFEbotl0Ve5VvOK0/dj3b6f6FudJ3XGlIMhMngSg1x+f2IojVbyhhGtRy/b2g2ubU+WWlVzmdEY3FozeVvofZX8FvLre/96LRzVuEOjQFJwdwZjciaYK2FH687OV56ZGpa5t7wM2NSt7JrLhNfS+tmYux5ZSrHNGouVNZCly9D47VF47WnDpu012i0qOu1JTpjY4um2q305VeFW7MC5RlLmffINGrgIaUdS/lR7bJU+Rhfoz6wtHZYWiHMVns3wJ7zPkj3XF+d3d9mq3sg7pJv0yEPTMYvXZqlA/K5dG15pCYpIOcvlX21Z3+LapB7mywoUpbnOHHGyF2nDl3LTNJfq5UtITtvLII+t/ROtdE2tkXl368hhzQnUpqXGvEltYiU/LYcwYpF2rZ8joAy/yH5VNLvKI+Z7dbmnQQ5f8LEm3JWGV4yUhiR/rnM2+Fa9Hpoxa8BxYQz5V23gVb1N4wUJEZnEtyeZUpvCFc5uZMgPdo22c91OyV38UaWRNsk9UL82cPGyKjXjHV7bOke6779Blqi1s1bd7Xg+cXeHDl+l9nRC2lVGyofdbFyfzlaoVrl8vdlepit8DX6mFEbO7IwUV4e0xK3vLlIiapxkRgfLtV6UUX+apJXkVnuTvlS1q015XymQdqYc4qXuHOgiHB5d9ed3twNph/tNXptwtrUZA1HCbNxicoP2JYWs1LBSoRk13NrUmytR0XrheFhrxrGjktLGZEVjAWXu5Gt7T60ctEKn42RFDpCnuwtihNtmrfgwt+BcEWJmqNPDrEBfu5tURP1j3Aq4q0qy8xmQDVoE7orMXio+plvUa6jtxZ1m74PB38eA9A1J/2AVtSqskvKvOQ2dX/678gaTETESm9aVu+DzYXvyTqnKv0ZkIXjezMQ+pucqn3RHHx6kufiz0fub3C96An9bVO1PmjqfA/yHKrw0OcZ/N65aV2dl82pXF/rXHx5yHVA77xoHO4AFscspp2PhZpYb+Tjc0Dr0CuhrleL/7Ufmo/hVJ2XL7eUvjl77fHWZbtIZWbRL64+Zww3n9FczNGfZ5L1znhNbn7S/wsqvanE6s3Hp49+qRkDmtdCyHwoL53E26PIyOtLBfcHXDIk4j/ir1f4rxLeZjSK5KhCSe9XFFPTLXhq+stLV+/0Mx+ZDJ0imfLUTDzRoJOxNXEo7sJPLfMAq54Sld9Uyr+IdX9H24XaHlkPnU2XGYQW1UWUBTG7aV26N+doiyTGM73yjG8TanBP/Ihq8bzvQ2qPZ36bub4Vf0ki5/oDkYhuLjJZ3eUz86oNPcjvwMlckP7eN6Az9TKbJU+gDT32GOU5Khkp6a+fF4ToUly4KumCEHq0lFFuOym36UxSVEC7netbh0b4WO30474Dns8Ps+xSIH5HdaFaHXCl5qQ6dkj1gjIDbdL/DkRofxA34e9NVXZLerwmaUrvIC/RhfWs/CTY0jkuzNeM1ygPpjN1c9Uuoaje7B6WZ2L3C7nIE+/l+H4Jvm9J2aC39Ybi7okozx3OSmjOlEz2fu5I6Lyn1ANGs2E2Psrj53kJr7lH/+8Xou9bkh6ALG3Ktge0nzcherHSTZ2kl+cqy/O290qk1V9tSprmZKUZB/qMZBkH/Kqsxsx++eVZ+cqAX5i56dhz/bnHvgv2hJNInszkskeRh0TyjCh3fmXgpMRbjLHH+YzQo7d8X316ylGZsZLMPL6NnnvIMveg02Ok6bEU+qwkymKdXd3cXf3fR9YLp3vbuzvbu4/3Nr+6o/5nkk/FL8Xn4jqsxn8UX8GMPBYnwOkv4m/iH+Kf9Vv1sH5efy2bfnJFYX4hcv/q6X8Bsadz9A==</latexit> <latexit sha1_base64="1+NKKLxN5DihfabBzQ+RV5f3JvI=">AABFuXictVzvctu4EUeu/67uv1z7sV/Ys9NJeqlru9dpZzKduURWHF+cxIlkJ7ko8VASJSuhREWUFCc6PVEfos/Qj21foP3UV+juAiBACeSCbhqObRDEb3exBBa7CzDtcTxIpzs7f7/yyXe++73v/+DTH2786Mc/+enPrn7289M0mU060UkniZPJs3aYRvFgFJ1MB9M4ejaeROGwHUdP229q+PzpPJqkg2TUnL4fRy+HYX806A064RSqzq7Wt1phXAtag1HQejA8++LV7vXWs4vaja2NcNTd2Fq0iMViEnWX3TN4stwKuiBVOOpEQTIKtrDx1vbZ1c2d7R36F6wXdlVhU6h/x8lnn2+LluiKRHTETAxFJEZiCuVYhCKF64XYFTtiDHUvxQLqJlAa0PNILMUGYGfQKoIWIdS+gd99uHuhakdwjzRTQneASww/E0AG4hpgEmg3gTJyC+j5jChjbRHtBdFE2d7D37aiNYTaqTiHWg6nW/risC9T0RN/oj4MoE9jqsHedRSVGWkFJQ+sXk2BwhjqsNyF5xModwip9RwQJqW+o25Dev4vaom1eN9RbWfi3yTlNbgC0VC9TzIKoZgT/YDe5gyeSXli4NwHCpHqI5beka6H1PsRtF9A/UO4llTSOmnDtaDaZSmyBpcLWWORB3C5kAcs8gguF/KIRR7D5UIeKyRiJ6RzN74BlwvfYDk/hsuFfMwin8DlQj5hkadwuZCnLPIbuFzIb1jkXbhcyLss8j5cLuR9FtmEy4VsssgTuFzIExZZh8uFrCtk8UydwJUQnQEzK29DOc8DLUUMNbdZ+e6QdXRh73jM6U4Blp/V+/DXjd330GlUgK17jLteAZYfeQdgI91Y3hbdo9XEhb3HYg9hBLixhyz2a/G6APu1x0x7U4Dl59oRtHNjeev7AO7c2Acs9iGU3Fh+jXoENW7sI48VY1yAPWaxj8XbAqyP1Z8UYHm73wC74sby61QT2ruxPtZ0VoDl7ekpeDBuLL9aPYVaN/Ypi30mLgqwz1jsc7DubuxzjxX2QwFWr7EbtIL0yR+JYMaWUQuzWYmlMVALGf5xtrbE5Bu3oZ7D9DNMnzBDFnGQIQ48EUcZ4shbrjSzoyn5uzyXRoZoeCLa2dqEpSnbvpu1x1LsgdjPEPsriDKPFN+17sucvAtdwyGn2cqFJZ8+JZn9xlKkxkO55dWIRzmEHNvnNPJvUrSEERRqqozaebbGS2RA92WIdxS96V5qHjxumlkFG3XBotoOVJtFvXeg3rOomQM1Y1FzB2rOoszMt3EtjxFg9I/vYkF3cgRIH7n4CsAruA2rzj2YowGMn2PwAp9QzSP426DYm7vKJMNoHtdJzHK8zFniCZQWYhPqTVS4T/F1TDMsAslky0cqxsc7zG0s1JyTVniZreRBljHxpzMgefoZHfQWA5pP1ejcp5oleXeyVA1/L5v3ulQNXyeNL8mLl6Vq+KmSfnoJ2ZsK27wEtgGzaay0b8pVacj8i6Shyxu06qLFxbc6VGMG6V1UpH+o3szhJd5LjUpSP6ZcjUZq9S/N9a8KDaPn1NJzNSroPUmvV5eCyj0ZqbjXlKvKkNAqOlJymLuqbwbbdNWb0eVqNI7B46pRzL2wylVH7zjrjSlXo3EqZN5zSZ68Llej0ad7qQ9TrkYDsy2hivNNuaplRw3I2NmUq1r1EWWBMQckx7ysMV7RhPykmaI2IP+gPFtj+/zr6xjmbF5lMUI5JePbFtNpZ2tZuUTaX4jAqk0ryoH+xczywfI0FmKPja+kDNPc+r5Ox6zxqPkj0GIAs1/uAXA58xgk1DkJtN4xUNxlo658zzRuj8XhKOmtoFqqdsp6i4avzBrl686olovLTG+NHltkr1Mae2PyCY9Is5wejgrfcBFFTkNHOQ3x9Kro7oOar3nt77C48QpinI20Du0IyZ208jjVpfWGpeNrapdnCpfc8zHjF7PNPWVtMOZJyBahLGU87XY6j2TX4bp6U5gct3wW0BtFezUnqzGgHamUjUJ1tlh64wu6N7RPaE8OeUgaHXiPgaIyFnLXDLPomE8PyKLa9pbjjfrSGTpZTsnqantcju5b6L4DXT3GqcGK8RBKTYgZTuCu6RHlbGS6SkjjE/HbbHc0oTdYHtHHOQupaUh7E+UsZFmUfZ6j8g7QOBpklO5PY5WOxrfWKPFRv0seE7vmLf812rnV+9shjfHi0VyciekS1z3iGtCskbu68m6Vg5Rg4XyyR/5reS+RXxWOaEM5rq8szlIvI9rxjyiCHZNnHNNs42ZHvrWdn1p9ojkdC713jrvZCVnIgOxfAOtTQmMyoB/77IDeQZcWISYb6WN3Bpl34/J1BuwYM37cQMhTDWa8RWTLZsRf07VnV0pjUUYMch1YroxtrZMj8gUj4jpR1t3M7fLVB5HmnIQ9SiRFM1auE/8b9Fv/6HGyuTYiUMP4BlJl61zvI6GYBXUU0ipfboN0W1vKrUyGV0pqs/4ZmbZyku1TxIXy4GrdBc4dupe8cJRMSO50rY1cR8uyuUh5vKJH7G2Ponhp9/tqBUa5b9IquUlzrkWjpA+jYJpFEbotl0Ve5VvOK0/dj3b6f6FudJ3XGlIMhMngSg1x+f2IojVbyhhGtRy/b2g2ubU+WWlVzmdEY3FozeVvofZX8FvLre/96LRzVuEOjQFJwdwZjciaYK2FH687OV56ZGpa5t7wM2NSt7JrLhNfS+tmYux5ZSrHNGouVNZCly9D47VF47WnDpu012i0qOu1JTpjY4um2q305VeFW7MC5RlLmffINGrgIaUdS/lR7bJU+Rhfoz6wtHZYWiHMVns3wJ7zPkj3XF+d3d9mq3sg7pJv0yEPTMYvXZqlA/K5dG15pCYpIOcvlX21Z3+LapB7mywoUpbnOHHGyF2nDl3LTNJfq5UtITtvLII+t/ROtdE2tkXl368hhzQnUpqXGvEltYiU/LYcwYpF2rZ8joAy/yH5VNLvKI+Z7dbmnQQ5f8LEm3JWGV4yUhiR/rnM2+Fa9Hpoxa8BxYQz5V23gVb1N4wUJEZnEtyeZUpvCFc5uZMgPdo22c91OyV38UaWRNsk9UL82cPGyKjXjHV7bOke6779Blqi1s1bd7Xg+cXeHDl+l9nRC2lVGyofdbFyfzlaoVrl8vdlepit8DX6mFEbO7IwUV4e0xK3vLlIiapxkRgfLtV6UUX+apJXkVnuTvlS1q015XymQdqYc4qXuHOgiHB5d9ed3twNph/tNXptwtrUZA1HCbNxicoP2JYWs1LBSoRk13NrUmytR0XrheFhrxrGjktLGZEVjAWXu5Gt7T60ctEKn42RFDpCnuwtihNtmrfgwt+BcEWJmqNPDrEBfu5tURP1j3Aq4q0qy8xmQDVoE7orMXio+plvUa6jtxZ1m74PB38eA9A1J/2AVtSqskvKvOQ2dX/678gaTETESm9aVu+DzYXvyTqnKv0ZkIXjezMQ+pucqn3RHHx6kufiz0fub3C96An9bVO1PmjqfA/yHKrw0OcZ/N65aV2dl82pXF/rXHx5yHVA77xoHO4AFscspp2PhZpYb+Tjc0Dr0CuhrleL/7Ufmo/hVJ2XL7eUvjl77fHWZbtIZWbRL64+Zww3n9FczNGfZ5L1znhNbn7S/wsqvanE6s3Hp49+qRkDmtdCyHwoL53E26PIyOtLBfcHXDIk4j/ir1f4rxLeZjSK5KhCSe9XFFPTLXhq+stLV+/0Mx+ZDJ0imfLUTDzRoJOxNXEo7sJPLfMAq54Sld9Uyr+IdX9H24XaHlkPnU2XGYQW1UWUBTG7aV26N+doiyTGM73yjG8TanBP/Ihq8bzvQ2qPZ36bub4Vf0ki5/oDkYhuLjJZ3eUz86oNPcjvwMlckP7eN6Az9TKbJU+gDT32GOU5Khkp6a+fF4ToUly4KumCEHq0lFFuOym36UxSVEC7netbh0b4WO30474Dns8Ps+xSIH5HdaFaHXCl5qQ6dkj1gjIDbdL/DkRofxA34e9NVXZLerwmaUrvIC/RhfWs/CTY0jkuzNeM1ygPpjN1c9Uuoaje7B6WZ2L3C7nIE+/l+H4Jvm9J2aC39Ybi7okozx3OSmjOlEz2fu5I6Lyn1ANGs2E2Psrj53kJr7lH/+8Xou9bkh6ALG3Ktge0nzcherHSTZ2kl+cqy/O290qk1V9tSprmZKUZB/qMZBkH/Kqsxsx++eVZ+cqAX5i56dhz/bnHvgv2hJNInszkskeRh0TyjCh3fmXgpMRbjLHH+YzQo7d8X316ylGZsZLMPL6NnnvIMveg02Ok6bEU+qwkymKdXd3cXf3fR9YLp3vbuzvbu4/3Nr+6o/5nkk/FL8Xn4jqsxn8UX8GMPBYnwOkv4m/iH+Kf9Vv1sH5efy2bfnJFYX4hcv/q6X8Bsadz9A==</latexit> <latexit sha1_base64="1+NKKLxN5DihfabBzQ+RV5f3JvI=">AABFuXictVzvctu4EUeu/67uv1z7sV/Ys9NJeqlru9dpZzKduURWHF+cxIlkJ7ko8VASJSuhREWUFCc6PVEfos/Qj21foP3UV+juAiBACeSCbhqObRDEb3exBBa7CzDtcTxIpzs7f7/yyXe++73v/+DTH2786Mc/+enPrn7289M0mU060UkniZPJs3aYRvFgFJ1MB9M4ejaeROGwHUdP229q+PzpPJqkg2TUnL4fRy+HYX806A064RSqzq7Wt1phXAtag1HQejA8++LV7vXWs4vaja2NcNTd2Fq0iMViEnWX3TN4stwKuiBVOOpEQTIKtrDx1vbZ1c2d7R36F6wXdlVhU6h/x8lnn2+LluiKRHTETAxFJEZiCuVYhCKF64XYFTtiDHUvxQLqJlAa0PNILMUGYGfQKoIWIdS+gd99uHuhakdwjzRTQneASww/E0AG4hpgEmg3gTJyC+j5jChjbRHtBdFE2d7D37aiNYTaqTiHWg6nW/risC9T0RN/oj4MoE9jqsHedRSVGWkFJQ+sXk2BwhjqsNyF5xModwip9RwQJqW+o25Dev4vaom1eN9RbWfi3yTlNbgC0VC9TzIKoZgT/YDe5gyeSXli4NwHCpHqI5beka6H1PsRtF9A/UO4llTSOmnDtaDaZSmyBpcLWWORB3C5kAcs8gguF/KIRR7D5UIeKyRiJ6RzN74BlwvfYDk/hsuFfMwin8DlQj5hkadwuZCnLPIbuFzIb1jkXbhcyLss8j5cLuR9FtmEy4VsssgTuFzIExZZh8uFrCtk8UydwJUQnQEzK29DOc8DLUUMNbdZ+e6QdXRh73jM6U4Blp/V+/DXjd330GlUgK17jLteAZYfeQdgI91Y3hbdo9XEhb3HYg9hBLixhyz2a/G6APu1x0x7U4Dl59oRtHNjeev7AO7c2Acs9iGU3Fh+jXoENW7sI48VY1yAPWaxj8XbAqyP1Z8UYHm73wC74sby61QT2ruxPtZ0VoDl7ekpeDBuLL9aPYVaN/Ypi30mLgqwz1jsc7DubuxzjxX2QwFWr7EbtIL0yR+JYMaWUQuzWYmlMVALGf5xtrbE5Bu3oZ7D9DNMnzBDFnGQIQ48EUcZ4shbrjSzoyn5uzyXRoZoeCLa2dqEpSnbvpu1x1LsgdjPEPsriDKPFN+17sucvAtdwyGn2cqFJZ8+JZn9xlKkxkO55dWIRzmEHNvnNPJvUrSEERRqqozaebbGS2RA92WIdxS96V5qHjxumlkFG3XBotoOVJtFvXeg3rOomQM1Y1FzB2rOoszMt3EtjxFg9I/vYkF3cgRIH7n4CsAruA2rzj2YowGMn2PwAp9QzSP426DYm7vKJMNoHtdJzHK8zFniCZQWYhPqTVS4T/F1TDMsAslky0cqxsc7zG0s1JyTVniZreRBljHxpzMgefoZHfQWA5pP1ejcp5oleXeyVA1/L5v3ulQNXyeNL8mLl6Vq+KmSfnoJ2ZsK27wEtgGzaay0b8pVacj8i6Shyxu06qLFxbc6VGMG6V1UpH+o3szhJd5LjUpSP6ZcjUZq9S/N9a8KDaPn1NJzNSroPUmvV5eCyj0ZqbjXlKvKkNAqOlJymLuqbwbbdNWb0eVqNI7B46pRzL2wylVH7zjrjSlXo3EqZN5zSZ68Llej0ad7qQ9TrkYDsy2hivNNuaplRw3I2NmUq1r1EWWBMQckx7ysMV7RhPykmaI2IP+gPFtj+/zr6xjmbF5lMUI5JePbFtNpZ2tZuUTaX4jAqk0ryoH+xczywfI0FmKPja+kDNPc+r5Ox6zxqPkj0GIAs1/uAXA58xgk1DkJtN4xUNxlo658zzRuj8XhKOmtoFqqdsp6i4avzBrl686olovLTG+NHltkr1Mae2PyCY9Is5wejgrfcBFFTkNHOQ3x9Kro7oOar3nt77C48QpinI20Du0IyZ208jjVpfWGpeNrapdnCpfc8zHjF7PNPWVtMOZJyBahLGU87XY6j2TX4bp6U5gct3wW0BtFezUnqzGgHamUjUJ1tlh64wu6N7RPaE8OeUgaHXiPgaIyFnLXDLPomE8PyKLa9pbjjfrSGTpZTsnqantcju5b6L4DXT3GqcGK8RBKTYgZTuCu6RHlbGS6SkjjE/HbbHc0oTdYHtHHOQupaUh7E+UsZFmUfZ6j8g7QOBpklO5PY5WOxrfWKPFRv0seE7vmLf812rnV+9shjfHi0VyciekS1z3iGtCskbu68m6Vg5Rg4XyyR/5reS+RXxWOaEM5rq8szlIvI9rxjyiCHZNnHNNs42ZHvrWdn1p9ojkdC713jrvZCVnIgOxfAOtTQmMyoB/77IDeQZcWISYb6WN3Bpl34/J1BuwYM37cQMhTDWa8RWTLZsRf07VnV0pjUUYMch1YroxtrZMj8gUj4jpR1t3M7fLVB5HmnIQ9SiRFM1auE/8b9Fv/6HGyuTYiUMP4BlJl61zvI6GYBXUU0ipfboN0W1vKrUyGV0pqs/4ZmbZyku1TxIXy4GrdBc4dupe8cJRMSO50rY1cR8uyuUh5vKJH7G2Ponhp9/tqBUa5b9IquUlzrkWjpA+jYJpFEbotl0Ve5VvOK0/dj3b6f6FudJ3XGlIMhMngSg1x+f2IojVbyhhGtRy/b2g2ubU+WWlVzmdEY3FozeVvofZX8FvLre/96LRzVuEOjQFJwdwZjciaYK2FH687OV56ZGpa5t7wM2NSt7JrLhNfS+tmYux5ZSrHNGouVNZCly9D47VF47WnDpu012i0qOu1JTpjY4um2q305VeFW7MC5RlLmffINGrgIaUdS/lR7bJU+Rhfoz6wtHZYWiHMVns3wJ7zPkj3XF+d3d9mq3sg7pJv0yEPTMYvXZqlA/K5dG15pCYpIOcvlX21Z3+LapB7mywoUpbnOHHGyF2nDl3LTNJfq5UtITtvLII+t/ROtdE2tkXl368hhzQnUpqXGvEltYiU/LYcwYpF2rZ8joAy/yH5VNLvKI+Z7dbmnQQ5f8LEm3JWGV4yUhiR/rnM2+Fa9Hpoxa8BxYQz5V23gVb1N4wUJEZnEtyeZUpvCFc5uZMgPdo22c91OyV38UaWRNsk9UL82cPGyKjXjHV7bOke6779Blqi1s1bd7Xg+cXeHDl+l9nRC2lVGyofdbFyfzlaoVrl8vdlepit8DX6mFEbO7IwUV4e0xK3vLlIiapxkRgfLtV6UUX+apJXkVnuTvlS1q015XymQdqYc4qXuHOgiHB5d9ed3twNph/tNXptwtrUZA1HCbNxicoP2JYWs1LBSoRk13NrUmytR0XrheFhrxrGjktLGZEVjAWXu5Gt7T60ctEKn42RFDpCnuwtihNtmrfgwt+BcEWJmqNPDrEBfu5tURP1j3Aq4q0qy8xmQDVoE7orMXio+plvUa6jtxZ1m74PB38eA9A1J/2AVtSqskvKvOQ2dX/678gaTETESm9aVu+DzYXvyTqnKv0ZkIXjezMQ+pucqn3RHHx6kufiz0fub3C96An9bVO1PmjqfA/yHKrw0OcZ/N65aV2dl82pXF/rXHx5yHVA77xoHO4AFscspp2PhZpYb+Tjc0Dr0CuhrleL/7Ufmo/hVJ2XL7eUvjl77fHWZbtIZWbRL64+Zww3n9FczNGfZ5L1znhNbn7S/wsqvanE6s3Hp49+qRkDmtdCyHwoL53E26PIyOtLBfcHXDIk4j/ir1f4rxLeZjSK5KhCSe9XFFPTLXhq+stLV+/0Mx+ZDJ0imfLUTDzRoJOxNXEo7sJPLfMAq54Sld9Uyr+IdX9H24XaHlkPnU2XGYQW1UWUBTG7aV26N+doiyTGM73yjG8TanBP/Ihq8bzvQ2qPZ36bub4Vf0ki5/oDkYhuLjJZ3eUz86oNPcjvwMlckP7eN6Az9TKbJU+gDT32GOU5Khkp6a+fF4ToUly4KumCEHq0lFFuOym36UxSVEC7netbh0b4WO30474Dns8Ps+xSIH5HdaFaHXCl5qQ6dkj1gjIDbdL/DkRofxA34e9NVXZLerwmaUrvIC/RhfWs/CTY0jkuzNeM1ygPpjN1c9Uuoaje7B6WZ2L3C7nIE+/l+H4Jvm9J2aC39Ybi7okozx3OSmjOlEz2fu5I6Lyn1ANGs2E2Psrj53kJr7lH/+8Xou9bkh6ALG3Ktge0nzcherHSTZ2kl+cqy/O290qk1V9tSprmZKUZB/qMZBkH/Kqsxsx++eVZ+cqAX5i56dhz/bnHvgv2hJNInszkskeRh0TyjCh3fmXgpMRbjLHH+YzQo7d8X316ylGZsZLMPL6NnnvIMveg02Ok6bEU+qwkymKdXd3cXf3fR9YLp3vbuzvbu4/3Nr+6o/5nkk/FL8Xn4jqsxn8UX8GMPBYnwOkv4m/iH+Kf9Vv1sH5efy2bfnJFYX4hcv/q6X8Bsadz9A==</latexit> <latexit sha1_base64="1+NKKLxN5DihfabBzQ+RV5f3JvI=">AABFuXictVzvctu4EUeu/67uv1z7sV/Ys9NJeqlru9dpZzKduURWHF+cxIlkJ7ko8VASJSuhREWUFCc6PVEfos/Qj21foP3UV+juAiBACeSCbhqObRDEb3exBBa7CzDtcTxIpzs7f7/yyXe++73v/+DTH2786Mc/+enPrn7289M0mU060UkniZPJs3aYRvFgFJ1MB9M4ejaeROGwHUdP229q+PzpPJqkg2TUnL4fRy+HYX806A064RSqzq7Wt1phXAtag1HQejA8++LV7vXWs4vaja2NcNTd2Fq0iMViEnWX3TN4stwKuiBVOOpEQTIKtrDx1vbZ1c2d7R36F6wXdlVhU6h/x8lnn2+LluiKRHTETAxFJEZiCuVYhCKF64XYFTtiDHUvxQLqJlAa0PNILMUGYGfQKoIWIdS+gd99uHuhakdwjzRTQneASww/E0AG4hpgEmg3gTJyC+j5jChjbRHtBdFE2d7D37aiNYTaqTiHWg6nW/risC9T0RN/oj4MoE9jqsHedRSVGWkFJQ+sXk2BwhjqsNyF5xModwip9RwQJqW+o25Dev4vaom1eN9RbWfi3yTlNbgC0VC9TzIKoZgT/YDe5gyeSXli4NwHCpHqI5beka6H1PsRtF9A/UO4llTSOmnDtaDaZSmyBpcLWWORB3C5kAcs8gguF/KIRR7D5UIeKyRiJ6RzN74BlwvfYDk/hsuFfMwin8DlQj5hkadwuZCnLPIbuFzIb1jkXbhcyLss8j5cLuR9FtmEy4VsssgTuFzIExZZh8uFrCtk8UydwJUQnQEzK29DOc8DLUUMNbdZ+e6QdXRh73jM6U4Blp/V+/DXjd330GlUgK17jLteAZYfeQdgI91Y3hbdo9XEhb3HYg9hBLixhyz2a/G6APu1x0x7U4Dl59oRtHNjeev7AO7c2Acs9iGU3Fh+jXoENW7sI48VY1yAPWaxj8XbAqyP1Z8UYHm73wC74sby61QT2ruxPtZ0VoDl7ekpeDBuLL9aPYVaN/Ypi30mLgqwz1jsc7DubuxzjxX2QwFWr7EbtIL0yR+JYMaWUQuzWYmlMVALGf5xtrbE5Bu3oZ7D9DNMnzBDFnGQIQ48EUcZ4shbrjSzoyn5uzyXRoZoeCLa2dqEpSnbvpu1x1LsgdjPEPsriDKPFN+17sucvAtdwyGn2cqFJZ8+JZn9xlKkxkO55dWIRzmEHNvnNPJvUrSEERRqqozaebbGS2RA92WIdxS96V5qHjxumlkFG3XBotoOVJtFvXeg3rOomQM1Y1FzB2rOoszMt3EtjxFg9I/vYkF3cgRIH7n4CsAruA2rzj2YowGMn2PwAp9QzSP426DYm7vKJMNoHtdJzHK8zFniCZQWYhPqTVS4T/F1TDMsAslky0cqxsc7zG0s1JyTVniZreRBljHxpzMgefoZHfQWA5pP1ejcp5oleXeyVA1/L5v3ulQNXyeNL8mLl6Vq+KmSfnoJ2ZsK27wEtgGzaay0b8pVacj8i6Shyxu06qLFxbc6VGMG6V1UpH+o3szhJd5LjUpSP6ZcjUZq9S/N9a8KDaPn1NJzNSroPUmvV5eCyj0ZqbjXlKvKkNAqOlJymLuqbwbbdNWb0eVqNI7B46pRzL2wylVH7zjrjSlXo3EqZN5zSZ68Llej0ad7qQ9TrkYDsy2hivNNuaplRw3I2NmUq1r1EWWBMQckx7ysMV7RhPykmaI2IP+gPFtj+/zr6xjmbF5lMUI5JePbFtNpZ2tZuUTaX4jAqk0ryoH+xczywfI0FmKPja+kDNPc+r5Ox6zxqPkj0GIAs1/uAXA58xgk1DkJtN4xUNxlo658zzRuj8XhKOmtoFqqdsp6i4avzBrl686olovLTG+NHltkr1Mae2PyCY9Is5wejgrfcBFFTkNHOQ3x9Kro7oOar3nt77C48QpinI20Du0IyZ208jjVpfWGpeNrapdnCpfc8zHjF7PNPWVtMOZJyBahLGU87XY6j2TX4bp6U5gct3wW0BtFezUnqzGgHamUjUJ1tlh64wu6N7RPaE8OeUgaHXiPgaIyFnLXDLPomE8PyKLa9pbjjfrSGTpZTsnqantcju5b6L4DXT3GqcGK8RBKTYgZTuCu6RHlbGS6SkjjE/HbbHc0oTdYHtHHOQupaUh7E+UsZFmUfZ6j8g7QOBpklO5PY5WOxrfWKPFRv0seE7vmLf812rnV+9shjfHi0VyciekS1z3iGtCskbu68m6Vg5Rg4XyyR/5reS+RXxWOaEM5rq8szlIvI9rxjyiCHZNnHNNs42ZHvrWdn1p9ojkdC713jrvZCVnIgOxfAOtTQmMyoB/77IDeQZcWISYb6WN3Bpl34/J1BuwYM37cQMhTDWa8RWTLZsRf07VnV0pjUUYMch1YroxtrZMj8gUj4jpR1t3M7fLVB5HmnIQ9SiRFM1auE/8b9Fv/6HGyuTYiUMP4BlJl61zvI6GYBXUU0ipfboN0W1vKrUyGV0pqs/4ZmbZyku1TxIXy4GrdBc4dupe8cJRMSO50rY1cR8uyuUh5vKJH7G2Ponhp9/tqBUa5b9IquUlzrkWjpA+jYJpFEbotl0Ve5VvOK0/dj3b6f6FudJ3XGlIMhMngSg1x+f2IojVbyhhGtRy/b2g2ubU+WWlVzmdEY3FozeVvofZX8FvLre/96LRzVuEOjQFJwdwZjciaYK2FH687OV56ZGpa5t7wM2NSt7JrLhNfS+tmYux5ZSrHNGouVNZCly9D47VF47WnDpu012i0qOu1JTpjY4um2q305VeFW7MC5RlLmffINGrgIaUdS/lR7bJU+Rhfoz6wtHZYWiHMVns3wJ7zPkj3XF+d3d9mq3sg7pJv0yEPTMYvXZqlA/K5dG15pCYpIOcvlX21Z3+LapB7mywoUpbnOHHGyF2nDl3LTNJfq5UtITtvLII+t/ROtdE2tkXl368hhzQnUpqXGvEltYiU/LYcwYpF2rZ8joAy/yH5VNLvKI+Z7dbmnQQ5f8LEm3JWGV4yUhiR/rnM2+Fa9Hpoxa8BxYQz5V23gVb1N4wUJEZnEtyeZUpvCFc5uZMgPdo22c91OyV38UaWRNsk9UL82cPGyKjXjHV7bOke6779Blqi1s1bd7Xg+cXeHDl+l9nRC2lVGyofdbFyfzlaoVrl8vdlepit8DX6mFEbO7IwUV4e0xK3vLlIiapxkRgfLtV6UUX+apJXkVnuTvlS1q015XymQdqYc4qXuHOgiHB5d9ed3twNph/tNXptwtrUZA1HCbNxicoP2JYWs1LBSoRk13NrUmytR0XrheFhrxrGjktLGZEVjAWXu5Gt7T60ctEKn42RFDpCnuwtihNtmrfgwt+BcEWJmqNPDrEBfu5tURP1j3Aq4q0qy8xmQDVoE7orMXio+plvUa6jtxZ1m74PB38eA9A1J/2AVtSqskvKvOQ2dX/678gaTETESm9aVu+DzYXvyTqnKv0ZkIXjezMQ+pucqn3RHHx6kufiz0fub3C96An9bVO1PmjqfA/yHKrw0OcZ/N65aV2dl82pXF/rXHx5yHVA77xoHO4AFscspp2PhZpYb+Tjc0Dr0CuhrleL/7Ufmo/hVJ2XL7eUvjl77fHWZbtIZWbRL64+Zww3n9FczNGfZ5L1znhNbn7S/wsqvanE6s3Hp49+qRkDmtdCyHwoL53E26PIyOtLBfcHXDIk4j/ir1f4rxLeZjSK5KhCSe9XFFPTLXhq+stLV+/0Mx+ZDJ0imfLUTDzRoJOxNXEo7sJPLfMAq54Sld9Uyr+IdX9H24XaHlkPnU2XGYQW1UWUBTG7aV26N+doiyTGM73yjG8TanBP/Ihq8bzvQ2qPZ36bub4Vf0ki5/oDkYhuLjJZ3eUz86oNPcjvwMlckP7eN6Az9TKbJU+gDT32GOU5Khkp6a+fF4ToUly4KumCEHq0lFFuOym36UxSVEC7netbh0b4WO30474Dns8Ps+xSIH5HdaFaHXCl5qQ6dkj1gjIDbdL/DkRofxA34e9NVXZLerwmaUrvIC/RhfWs/CTY0jkuzNeM1ygPpjN1c9Uuoaje7B6WZ2L3C7nIE+/l+H4Jvm9J2aC39Ybi7okozx3OSmjOlEz2fu5I6Lyn1ANGs2E2Psrj53kJr7lH/+8Xou9bkh6ALG3Ktge0nzcherHSTZ2kl+cqy/O290qk1V9tSprmZKUZB/qMZBkH/Kqsxsx++eVZ+cqAX5i56dhz/bnHvgv2hJNInszkskeRh0TyjCh3fmXgpMRbjLHH+YzQo7d8X316ylGZsZLMPL6NnnvIMveg02Ok6bEU+qwkymKdXd3cXf3fR9YLp3vbuzvbu4/3Nr+6o/5nkk/FL8Xn4jqsxn8UX8GMPBYnwOkv4m/iH+Kf9Vv1sH5efy2bfnJFYX4hcv/q6X8Bsadz9A==</latexit> <latexit sha1_base64="1+NKKLxN5DihfabBzQ+RV5f3JvI=">AABFuXictVzvctu4EUeu/67uv1z7sV/Ys9NJeqlru9dpZzKduURWHF+cxIlkJ7ko8VASJSuhREWUFCc6PVEfos/Qj21foP3UV+juAiBACeSCbhqObRDEb3exBBa7CzDtcTxIpzs7f7/yyXe++73v/+DTH2786Mc/+enPrn7289M0mU060UkniZPJs3aYRvFgFJ1MB9M4ejaeROGwHUdP229q+PzpPJqkg2TUnL4fRy+HYX806A064RSqzq7Wt1phXAtag1HQejA8++LV7vXWs4vaja2NcNTd2Fq0iMViEnWX3TN4stwKuiBVOOpEQTIKtrDx1vbZ1c2d7R36F6wXdlVhU6h/x8lnn2+LluiKRHTETAxFJEZiCuVYhCKF64XYFTtiDHUvxQLqJlAa0PNILMUGYGfQKoIWIdS+gd99uHuhakdwjzRTQneASww/E0AG4hpgEmg3gTJyC+j5jChjbRHtBdFE2d7D37aiNYTaqTiHWg6nW/risC9T0RN/oj4MoE9jqsHedRSVGWkFJQ+sXk2BwhjqsNyF5xModwip9RwQJqW+o25Dev4vaom1eN9RbWfi3yTlNbgC0VC9TzIKoZgT/YDe5gyeSXli4NwHCpHqI5beka6H1PsRtF9A/UO4llTSOmnDtaDaZSmyBpcLWWORB3C5kAcs8gguF/KIRR7D5UIeKyRiJ6RzN74BlwvfYDk/hsuFfMwin8DlQj5hkadwuZCnLPIbuFzIb1jkXbhcyLss8j5cLuR9FtmEy4VsssgTuFzIExZZh8uFrCtk8UydwJUQnQEzK29DOc8DLUUMNbdZ+e6QdXRh73jM6U4Blp/V+/DXjd330GlUgK17jLteAZYfeQdgI91Y3hbdo9XEhb3HYg9hBLixhyz2a/G6APu1x0x7U4Dl59oRtHNjeev7AO7c2Acs9iGU3Fh+jXoENW7sI48VY1yAPWaxj8XbAqyP1Z8UYHm73wC74sby61QT2ruxPtZ0VoDl7ekpeDBuLL9aPYVaN/Ypi30mLgqwz1jsc7DubuxzjxX2QwFWr7EbtIL0yR+JYMaWUQuzWYmlMVALGf5xtrbE5Bu3oZ7D9DNMnzBDFnGQIQ48EUcZ4shbrjSzoyn5uzyXRoZoeCLa2dqEpSnbvpu1x1LsgdjPEPsriDKPFN+17sucvAtdwyGn2cqFJZ8+JZn9xlKkxkO55dWIRzmEHNvnNPJvUrSEERRqqozaebbGS2RA92WIdxS96V5qHjxumlkFG3XBotoOVJtFvXeg3rOomQM1Y1FzB2rOoszMt3EtjxFg9I/vYkF3cgRIH7n4CsAruA2rzj2YowGMn2PwAp9QzSP426DYm7vKJMNoHtdJzHK8zFniCZQWYhPqTVS4T/F1TDMsAslky0cqxsc7zG0s1JyTVniZreRBljHxpzMgefoZHfQWA5pP1ejcp5oleXeyVA1/L5v3ulQNXyeNL8mLl6Vq+KmSfnoJ2ZsK27wEtgGzaay0b8pVacj8i6Shyxu06qLFxbc6VGMG6V1UpH+o3szhJd5LjUpSP6ZcjUZq9S/N9a8KDaPn1NJzNSroPUmvV5eCyj0ZqbjXlKvKkNAqOlJymLuqbwbbdNWb0eVqNI7B46pRzL2wylVH7zjrjSlXo3EqZN5zSZ68Llej0ad7qQ9TrkYDsy2hivNNuaplRw3I2NmUq1r1EWWBMQckx7ysMV7RhPykmaI2IP+gPFtj+/zr6xjmbF5lMUI5JePbFtNpZ2tZuUTaX4jAqk0ryoH+xczywfI0FmKPja+kDNPc+r5Ox6zxqPkj0GIAs1/uAXA58xgk1DkJtN4xUNxlo658zzRuj8XhKOmtoFqqdsp6i4avzBrl686olovLTG+NHltkr1Mae2PyCY9Is5wejgrfcBFFTkNHOQ3x9Kro7oOar3nt77C48QpinI20Du0IyZ208jjVpfWGpeNrapdnCpfc8zHjF7PNPWVtMOZJyBahLGU87XY6j2TX4bp6U5gct3wW0BtFezUnqzGgHamUjUJ1tlh64wu6N7RPaE8OeUgaHXiPgaIyFnLXDLPomE8PyKLa9pbjjfrSGTpZTsnqantcju5b6L4DXT3GqcGK8RBKTYgZTuCu6RHlbGS6SkjjE/HbbHc0oTdYHtHHOQupaUh7E+UsZFmUfZ6j8g7QOBpklO5PY5WOxrfWKPFRv0seE7vmLf812rnV+9shjfHi0VyciekS1z3iGtCskbu68m6Vg5Rg4XyyR/5reS+RXxWOaEM5rq8szlIvI9rxjyiCHZNnHNNs42ZHvrWdn1p9ojkdC713jrvZCVnIgOxfAOtTQmMyoB/77IDeQZcWISYb6WN3Bpl34/J1BuwYM37cQMhTDWa8RWTLZsRf07VnV0pjUUYMch1YroxtrZMj8gUj4jpR1t3M7fLVB5HmnIQ9SiRFM1auE/8b9Fv/6HGyuTYiUMP4BlJl61zvI6GYBXUU0ipfboN0W1vKrUyGV0pqs/4ZmbZyku1TxIXy4GrdBc4dupe8cJRMSO50rY1cR8uyuUh5vKJH7G2Ponhp9/tqBUa5b9IquUlzrkWjpA+jYJpFEbotl0Ve5VvOK0/dj3b6f6FudJ3XGlIMhMngSg1x+f2IojVbyhhGtRy/b2g2ubU+WWlVzmdEY3FozeVvofZX8FvLre/96LRzVuEOjQFJwdwZjciaYK2FH687OV56ZGpa5t7wM2NSt7JrLhNfS+tmYux5ZSrHNGouVNZCly9D47VF47WnDpu012i0qOu1JTpjY4um2q305VeFW7MC5RlLmffINGrgIaUdS/lR7bJU+Rhfoz6wtHZYWiHMVns3wJ7zPkj3XF+d3d9mq3sg7pJv0yEPTMYvXZqlA/K5dG15pCYpIOcvlX21Z3+LapB7mywoUpbnOHHGyF2nDl3LTNJfq5UtITtvLII+t/ROtdE2tkXl368hhzQnUpqXGvEltYiU/LYcwYpF2rZ8joAy/yH5VNLvKI+Z7dbmnQQ5f8LEm3JWGV4yUhiR/rnM2+Fa9Hpoxa8BxYQz5V23gVb1N4wUJEZnEtyeZUpvCFc5uZMgPdo22c91OyV38UaWRNsk9UL82cPGyKjXjHV7bOke6779Blqi1s1bd7Xg+cXeHDl+l9nRC2lVGyofdbFyfzlaoVrl8vdlepit8DX6mFEbO7IwUV4e0xK3vLlIiapxkRgfLtV6UUX+apJXkVnuTvlS1q015XymQdqYc4qXuHOgiHB5d9ed3twNph/tNXptwtrUZA1HCbNxicoP2JYWs1LBSoRk13NrUmytR0XrheFhrxrGjktLGZEVjAWXu5Gt7T60ctEKn42RFDpCnuwtihNtmrfgwt+BcEWJmqNPDrEBfu5tURP1j3Aq4q0qy8xmQDVoE7orMXio+plvUa6jtxZ1m74PB38eA9A1J/2AVtSqskvKvOQ2dX/678gaTETESm9aVu+DzYXvyTqnKv0ZkIXjezMQ+pucqn3RHHx6kufiz0fub3C96An9bVO1PmjqfA/yHKrw0OcZ/N65aV2dl82pXF/rXHx5yHVA77xoHO4AFscspp2PhZpYb+Tjc0Dr0CuhrleL/7Ufmo/hVJ2XL7eUvjl77fHWZbtIZWbRL64+Zww3n9FczNGfZ5L1znhNbn7S/wsqvanE6s3Hp49+qRkDmtdCyHwoL53E26PIyOtLBfcHXDIk4j/ir1f4rxLeZjSK5KhCSe9XFFPTLXhq+stLV+/0Mx+ZDJ0imfLUTDzRoJOxNXEo7sJPLfMAq54Sld9Uyr+IdX9H24XaHlkPnU2XGYQW1UWUBTG7aV26N+doiyTGM73yjG8TanBP/Ihq8bzvQ2qPZ36bub4Vf0ki5/oDkYhuLjJZ3eUz86oNPcjvwMlckP7eN6Az9TKbJU+gDT32GOU5Khkp6a+fF4ToUly4KumCEHq0lFFuOym36UxSVEC7netbh0b4WO30474Dns8Ps+xSIH5HdaFaHXCl5qQ6dkj1gjIDbdL/DkRofxA34e9NVXZLerwmaUrvIC/RhfWs/CTY0jkuzNeM1ygPpjN1c9Uuoaje7B6WZ2L3C7nIE+/l+H4Jvm9J2aC39Ybi7okozx3OSmjOlEz2fu5I6Lyn1ANGs2E2Psrj53kJr7lH/+8Xou9bkh6ALG3Ktge0nzcherHSTZ2kl+cqy/O290qk1V9tSprmZKUZB/qMZBkH/Kqsxsx++eVZ+cqAX5i56dhz/bnHvgv2hJNInszkskeRh0TyjCh3fmXgpMRbjLHH+YzQo7d8X316ylGZsZLMPL6NnnvIMveg02Ok6bEU+qwkymKdXd3cXf3fR9YLp3vbuzvbu4/3Nr+6o/5nkk/FL8Xn4jqsxn8UX8GMPBYnwOkv4m/iH+Kf9Vv1sH5efy2bfnJFYX4hcv/q6X8Bsadz9A==</latexit> <latexit sha1_base64="/09Fxh2iHCiO5W2dT6pd82MVNIo=">AABF1nictVzdc9u4EUeuX9f0K9c+9oU9J52k47qOL+31etOZS2TH8cVJnEh2nIuSDCnRshLqI6SkONGpb52+9j/qa/+F/gftS/vYPnZ3ARCgBHJBNzXHFgjht7tYAovdBehonPSzyebm3y588I1vfuvb3/nwuxe/9/0f/PBHlz768VE2mqad+LAzSkbpcRRmcdIfxoeT/iSJj8dpHA6iJH4cvWrg949ncZr1R8PW5O04fjYIe8P+Sb8TTqDqxaWoPYnPADe/F0/SficYxGE2TeMgG4edOLg8bxOLeRp3F+1BODmNovnxYhG0oXE47CXx6+Bq+/issd4Ok8a63br7AuoX1y7/bvHi0trmxib9BKuF66qwJtTPweijjzdEW3TFSHTEVAxELIZiAuVEhCKD66m4LjbFGOqeiTnUpVDq0/exWIiLgJ1CqxhahFD7Cv724O6pqh3CPdLMCN0BLgn8poAMxBXAjKBdCmXkFtD3U6KMtWW050QTZXsLn5GiNYDaiTiFWg6nW/risC8TcSJ+S33oQ5/GVIO96ygqU9IKSh5YvZoAhTHUYbkL36dQ7hBS6zkgTEZ9R92G9P3fqSXW4n1HtZ2Kf5CUV+AKRFP1fpRTCMWM6Af0NKfwnZQnAc49oBCrPmLpDel6QL0fQvs51N+Ha0ElrZMIrjnVLiqRDbhcyAaL3IXLhdxlkftwuZD7LPIALhfyQCERm5LO3fgmXC58k+X8EC4X8iGLfASXC/mIRR7B5UIesciv4HIhv2KRt+FyIW+zyLtwuZB3WWQLLheyxSIP4XIhD1nkDlwu5I5Cls/UFK4R0ekzs/ImlIs80FIkUHOTle8WWUcX9pbHnO6UYPlZvQ2fbuy2h07jEuyOx7g7KcHyI28XbKQby9uiO7SauLB3WOwejAA3do/FfilelmC/9Jhpr0qw/Fzbh3ZuLG9978GdG3uPxd6HkhvLr1EPoMaNfeCxYoxLsAcs9qF4XYL1sfppCZa3+02wK24sv061oL0b62NNpyVY3p4egQfjxvKr1WOodWMfs9hjcVaCPWaxT8C6u7FPPFbYdyVYvcZepBWkR/5IDDO2ilqYz0osjYFayPBP8rUlId84gnoO08sxPcIMWMRujtj1ROzniH1vubLcjmbk7/Jcmjmi6YmI8rUJSxO2fTdvj6XEA7GdI7aXEFUeKT5r3ZcZeRe6hkNO8pULSz59GuX2G0uxGg/VllcjHhQQcmyf0shfp2gJIyjUVBW103yNl8iA7qsQbyh6073UPHjcJLcKNuqMRUUOVMSi3jpQb1nU1IGasqiZAzVjUWbm27i2xwgw+sdnMac7OQKkj1x+BeAV3IRV5w7M0QDGzwF4gY+o5gF8Nin25q4qyTCax3USsxzPCpY4hdJcrEG9iQq3Kb5OaIbFIJls+UDF+HiHuY25mnPSCi/ylTzIMyb+dPokTy+ng95iQPOpHp27VLMg706W6uHv5PNel+rhd0jjC/LiZakefqKkn5xD9pbCts6BbcJsGivtm3JdGjL/Imno8kVaddHi4lMdqDGD9M5q0t9TT2bvHM+lQSWpH1OuRyOz+pcV+leHhtFzZum5HhX0nqTXq0tB7Z4MVdxrynVlGNEqOlRymLu6TwbbdNWT0eV6NA7A42pQzD23ynVH7zjvjSnXo3EkZN5zQZ68Ltej0aN7qQ9TrkcDsy2hivNNua5lRw3I2NmU61r1IWWBMQckx7ysMV5RSn7SVFHrk39Qna2xff7VdQxzNs/zGKGakvFty+lE+VpWLZH2F2KwapOacqB/MbV8sCKNudhi4yspw6Swvq/SMWs8an4ftBjA7Jd7AFzOPAEJdU4CrXcCFK+zUVexZxq3xeJwlJwsodqqdsJ6i4avzBoV615QLReXmd4aPbbJXmc09sbkE+6TZjk97Jc+4TKKnIb2Cxri6dXR3Ts1X4va32Rx4yXEOB9pHdoRkjtp1XGqS+tNS8dX1C7PBC6552PGL2abT5S1wZhnRLYIZaniabfTeSS7DtfVdWFy3PK7gJ4o2qsZWY0+7UhlbBSqs8XSG5/TvaF9SHtyyEPS6MBzDBSVsZC7ZphFx3x6QBbVtrccb9SXztDJckZWV9vjanTPQvcc6PoxTgNWjPtQakHMcAh3LY8o52KuqxFpPBW/zHdHR/QEqyP6pGAhNQ1pb+KChayKsk8LVN4AGkeDjNL9aSzT0fj2CiU+6nfJY2LXouW/Qju3en87pDFePprLMzFd4rpFXAOaNXJXV94tc5ASzJ3fbJH/Wt1L5FeHI9pQjutzi7PUy5B2/GOKYMfkGSc027jZUWxt56eWv9GcDoTeO8fd7BFZyIDsXwDr04jGZEC/9tkBvYMuLUJCNtLH7vRz78bl6/TZMWb8uL6QpxrMeIvJlk2Jv6Zrz66MxqKMGOQ6sFga21on++QLxsQ1VdbdzO3q1QeR5pyEPUokRTNWrhL/a/RX/+pxsrYyIlDD+AQyZetcz2NEMQvqKKRVvtoG6ba2lJdzGZ4rqc36Z2S6XJBsmyIulAdX6y5w7tC95IWjJCW5s5U2ch2tyuYi5fGSHrG3JxTFS7vfUyswyr1Oq+Qazbk2jZIejIJJHkXotlwWeZlvNa8idT/a2f+FutF1UWtIMRAmgys1xOX3Y4rWbCkTGNVy/L6i2eTWerrUqprPkMbiwJrLX0Ptz+Cvllvf+9GJClbhFo0BScHcGY3ImmClhR+vWwVeemRqWube8DNjUreya84TX0vrZmLsWW0qBzRqzlTWQpfPQ+OlReOlpw5btNdotKjrtSV6wcYWLbVb6cuvDrdWDcpTljLvkWlU30NKO5byo9plqfIxvka9Y2ltsrRCmK32boA9532Q7rm+PLu/zlf3QNwm36ZDHpiMX7o0S/vkc+na6khNUkDON5R9tWd/m2qQe0QWFCnLc5w4Y+SuU4euRS7pz9XKNiI7byyCPrf0RrXRNrZN5U9WkAOaExnNS424QS1iJb8tR7BkkTYsnyOgzH9IPpX0O6pjZru1eSZBwZ8w8aacVYaXjBSGpH8u87a3Er3uWfFrQDHhVHnXEdCq/4SRgsToTILbs8zoCeEqJ3cSpEcbkf1ctVNyF29oSbRBUs/F7z1sjIx6zVi3x5buse7bL6Alat08dVcLnl/izZHjd54dvZBWtYHyUedL9+ejFapVrnhfpYfpEl+jjym1sSMLE+UVMW3xuTcXKVE9LhLjw6VeL+rIX0/yOjLL3Slfyrq1plzMNEgbc0rxEncOFBEu7+6q05u7xvQjWqEXEdamJms4SpiNG6n8gG1pMSsVLEVIdj23JiXWelS2Xhge9qph7Li0lDFZwURwuRvZ2u5DuxCt8NkYSaEj5MnesjjRpvk5XPg3EK4oUXP0ySE2wc+9KRpi5z2cinityjKzGVAN2oTuUgweqn4WW1Tr6LVF3abvw8GfRx90zUnfpxW1ruySMi+5Td2f/huyBqmIWelNy/p9sLnwPVnlVKc/fbJwfG/6Qr+TU7cvmoNPT4pc/PnI/Q2uFydCv9tUrw+aOt+DIoc6PPR5Br9nblrX52VzqtbXKhdfHnId0DsvGoc7gOUxi2nnY6FS64m8fw5oHU4qqOvV4n/th+ZjONXn5csto3fOXno8ddkuVplZ9IvrzxnDzWc0l3P05znKe2e8Jjc/6f8FtZ7UyOrN+6ePfqkZA5rXXMh8KC+dxNujyMjrSwX3B1wyjMS/xF8u8G8lvM5plMlRh5Leryinplvw1PSbl67e6e98ZDJ0ymQqUjPxRJNOxjbEnrgNv43cA6x7SlS+Uyk/Eet+j7YLtSdkPXQ2XWYQ2lQXUxbE7KZ16d6coy2TGM/0yjO+LajBPfF9qsXzvvepPZ75bRX6Vv4miZzr98RIdAuRyfIun5lXEfSguAMnc0H6fd+AztTLbJY8gTbw2GOU56hkpKTffp4Toktx4bKkc0Lo0VJFOXJSjuhMUlxCOyr0rUMjfKx2+nHfAc/nh3l2KRC/orpQrQ64UnNSHTikekqZgYj0vwkR2q/FOnyuq7Jb0oMVSTN6BkWJzqzvqk+CLZzjwrzNeIXyYDpTN1PtRhTVm93D6kzsdikXeeK9Gt+rwPcsKZv0tF5R3J2K6tzhtILmVMlk7+cOhc57Sj1gNBvm46M6fp5V8Jp59P9uKfquJekuyBJRtj2g/byU6CVKNzskvTxXWZ23vVMhrX5rU9I0JyvNONBnJKs44FtlDWb2yzfPqlcGfMPMTcee60889l2wJ5xE8mQmlz2KPSSSZ0S58yt9JyXeYow9zmeEHr3l++rTU47KlJVk6vFu9MxDlpkHnRNGmhOWQo+VRFks+n8kn9FPIAuf3lCFz67n/4/kaGvj+m82Pnm4tfbFLfWfST4UPxUfi6uwGn8qvoAZeSAOgdNfxT/Fv8V/do53/rDzx50/yaYfXFCYn4jCz86f/wsKQ4R9</latexit> Metric measure space X , (X, ↵, dX ): X <latexit sha1_base64="/59ZCDJZPBrZfCS8zgReJB0hTeY=">AABFdnictVxfcxPJER8u/y7kH5c8piq1OR8JlyKOTUglVVepOrCN8WHAINnAIaC00loI1lqhlYRB56+Q1+Tb5HPkGyRPec1j+s/Mzqw0uz3rELZsz87Or7und6anu2eWeJwO8+nGxj8ufPStb3/nu9/7+PsXf/DDH/34J5c++elRns0mveSwl6XZ5HHczZN0OEoOp8NpmjweT5LuSZwmj+LXW/j80TyZ5MNs1J6+GyfPTrqD0fB42OtOsarz+HTrxaW1jfUN+hetFjZ1YU3pfwfZJ5+uq47qq0z11EydqESN1BTKqeqqHK6nalNtqDHUPVMLqJtAaUjPE3WmLgJ2Bq0SaNGF2tfwewB3T3XtCO6RZk7oHnBJ4WcCyEhdBkwG7SZQRm4RPZ8RZaytor0gmijbO/gba1onUDtVL6FWwpmWoTjsy1Qdqz9RH4bQpzHVYO96msqMtIKSR06vpkBhDHVY7sPzCZR7hDR6jgiTU99Rt116/k9qibV439NtZ+pfJOVluCLV0r3PCgpdNSf6Eb3NGTxjeVLgPAAKie4jlt6Srk+o9yNov4D6e3CdUcnoJIZrQbVntcgtuHzILRG5C5cPuSsi9+HyIfdF5AFcPuSBRiJ2Qjr341tw+fAtkfMDuHzIByLyIVw+5EMReQSXD3kkIr+Gy4f8WkTegsuHvCUi78DlQ94RkW24fMi2iDyEy4c8FJE7cPmQOxpZPVMncGVEZyjMyhtQLvNAS5FCzQ1RvptkHX3YmwFzuleBlWf1Nvz1Y7cDdJpUYHcCxt1xBVYeebtgI/1Y2RbdptXEh70tYvdgBPixeyL2K/WqAvtVwEx7XYGV59o+tPNjZet7F+782Lsi9h6U/Fh5jboPNX7s/YAVY1yBPRCxD9SbCmyI1Z9UYGW73wK74sfK61Qb2vuxIdZ0VoGV7ekReDB+rLxaPYJaP/aRiH2sTiuwj0XsE7DufuyTgBX2fQXWrLEXaQUZkD+SwIyto9YtZiWWxkCtK/BPi7UlJd84hnoJMygwA8KciIjdArEbiNgvEPvBcuWFHc3J35W5tApEKxARF2sTlqZi+37RHktpAGK7QGwvIeo8UnzXpi9z8i5MjYScFisXlkL6lBX2G0uJHg/1ltcg7pcQPLZf0si/StESRlCoqTpqL4s1npER3dch3lL0ZnppeMi4aWEVXNSpiIo9qFhEvfOg3omomQc1E1FzD2ououzMd3GdgBFg9Y/vYkF3PALYR66+IvAKbsCqcxvmaATj5wC8wIdUcx/+tij2lq46yTCax3USsxzPSpZ4AqWFWoN6GxVuU3yd0gxLQDJueV/H+HiHuY2FnnNshc+KlTwqMibhdIYkz6Cgg95iRPOpGZ07VHNG3h2XmuFvF/PelJrhd0jjZ+TFc6kZfqqln55D9rbGts+BbcFsGmvt23JTGpx/YRqmfJFWXbS4+FZP9JhBeqcN6e/pN7N3jveyRSXWjy03o5E7/ctL/WtCw+o5d/TcjAp6T+z1mlLUuCcjHffaclMZMlpFR1oOe9f0zWCbvn4zptyMxgF4XFsUcy+cctPROy56Y8vNaBwpznuekSdvys1oDOie9WHLzWhgtqWr43xbbmrZUQMcO9tyU6s+oiww5oB4zHON9Yom5CfNNLUh+Qf12RrX519dxzBn87yIEeopWd+2mk5crGX1Ehl/IQGrNm0oB/oXM8cHK9NYqGtifMUyTEvr+yodu8aj5vdBixHMft4DkHLmKUhochJovVOguClGXeWeGdw1EYej5HgJ1dG1U9FbtHw5a1Sue0G1Ulxme2v12CF7ndPYG5NPuE+alfSwX/mGqyhKGtovaUim10R37/V8LWt/Q8SNlxDjYqT1aEeId9Lq41Sf1luOji/rXZ4pXLznY8cvZpuPtbXBmCcjW4Sy1PF025k8kluH6+pVZXPc/CyiN4r2ak5WY0g7UrkYhZpsMXvjC7q3tA9pTw55MI0evMdIUxkr3jXDLDrm0yOyqK69lXijvkyGjss5WV1jj+vRAwc98KCbxzhbsGLcg1IbYoZDuGsHRDkXC11lpPGJ+m2xO5rRG6yP6NOShTQ02N4kJQtZF2W/LFF5C2gcDRylh9NYpmPwnRVKctTvk8fGrmXLf5l2bs3+dpfGePVors7E9InrNeIa0azhXV2+W+bAEiy8T66R/1rfS+TXhCPaUInrc4cz62VEO/4JRbBj8oxTmm3S7Ci3dvNTy08MpwNl9s5xNzsjCxmR/YtgfcpoTEb0454dMDvobBFSspEhdmdYeDc+X2cojjHrxw0Vn2qw4y0hWzYj/oauO7tyGoscMfA6cLY0to1O9skXTIjrRFt3O7frVx9E2nMS7ihhinasXCH+n9Nv82PGydrKiEAN4xvIta3zvY+MYhbUUZdW+XobZNq6Un5WyPBcS23XPyvTZyXJtiniQnlwte4D5x7dMy8cJROSO19pw+toXTYXKY+X9Ii9PaYonu3+QK/AKPdVWiXXaM51aJQMYBRMiyjCtJWyyMt863mVqYfRzv8v1K2uy1pDipGyGVzWkJTfTyhac6VMYVTz+H1Ns8mv9clSq3o+IxqLJ85c/gZqfwm/jdzmPoxOXLIKN2kMMAV7ZzXCNdFKizBeN0u8zMg0tOy95WfHpGnl1pwnvmbrZmPseWMqBzRqTnXWwpTPQ+OVQ+NVoA7btNdotWjqjSV6IcYWbb1bGcqvCbd2A8ozkbLskRnUMEBKN5YKo9oXqcoxvkG9F2ltiLS6MFvd3QB3zocg/XN9eXZ/U6zukbpFvk2PPDCOX/o0S4fkc5na+kiNKSDn69q+urO/QzXIPSYLipT5HCfOGN516tF1Vkj6K72yZWTnrUUw55be6jbGxnao/PsV5AnNiZzmpUFcpxaJlt+VI1qySOuOzxFR5r9LPhX7HfUxs9vavpOo5E/YeJNnleXFkcKI9C9l3vZWotc9J36NKCacae86BlrN3zBSYIzJJPg9y5zeEK5yvJPAHm1M9nPVTvEu3siRaJ2kXqg/B9gYjnrtWHfHlumx6dtvoCVq3b51XwuZXxrMUeJ3nh29Lq1qJ9pHXSzdn49WV69y5fs6PcyW+Fp9zKiNG1nYKK+M6agvgrmwRM24MCaES7NeNJG/meRNZObdqVDKprWhXM40sI15SfGSdA4UET7v7orXm/tc6Ee8Qi8mrEuNayRKmI3LdH7AtbSYlYqWIiS3XlqTUmc9qlovLA931bB2nC1lQlYwVVLuhlu7feiUohU5G8MUeopP9lbFiS7NL+DC35HyRYmGY0gOsQV+7g21pXY+wKmIN7rMmc2IatAm9Jdi8K7uZ7lFvY7eONRd+iEcwnkMQdeS9ENaUZvKzpRlyV3q4fTfkjWYqESU3rZs3geXi9yTVU5N+jMkCyf3ZqjMNzlN+2I4hPSkzCWcD+9vSL04VubbpmZ9MNTlHpQ5NOFhzjOEvXPbujkvl1O9vla5hPLgdcDsvBgc7gBWxyy2XYiFmjhv5MNzQOtwXEPdrBb/az8MH8upOa9Qbjl9c/Yq4K1zu0RnZtEvbj5nLLeQ0VzNMZxnVvTOek1+fuz/RY3eVOb05sPTR7/UjgHDa6E4HypLx3h3FFl5Q6ng/oBPhkz9W/39gvxVwpuCRpUcTSiZ/YpqaqaFTM18eenrnXkWIpOlUyVTmZqNJ1p0MnZL7alb8LNVeIBNT4nyN5X8F7H+72j7UHtM1sNk0zmD0KG6hLIgdjetT/f2HG2VxHiml8/4tqEG98T3qRbP+96j9njmt13qW/WXJDzX76pM9UuRyfIun51XMfSgvAPHuSDzvW9EZ+o5m8Un0E4C9hj5HBVHSubr5wUh+hQXLku6IIQZLXWUYy/lmM4kJRW041LfejTCx3qnH/cd8Hx+t8guRep3VNfVqwOu1JJUBx6pnlJmICb9b0CE9gd1Ff5e1WW/pAcrkub0DsoSnTrP6k+CnXnHhf2a8TLlwUymbq7bZRTV293D+kzsdiUXPvFejx/U4AeOlC16W68p7p6o+tzhrIbmTMvk7ueOlMl7sh4wmu0W46M+fp7X8JoH9P9OJfqOI+kuyBJTtj2i/bwJ0Uu1bnZIej5XWZ+3vV0jrflqk2nak5V2HJgzknUc8KuyLWH285dn9SsDfmHmp+PO9ScB+y7YE0kiPpkpZY+SAIn4jKh0fmXopSRbjHHA+YxuQG/lvob0VKIyEyWZBXwbPQ+QZR5A51iQ5likMBAl0RbrxaW1zeX/fWS1cHRtfXNjffPB9bUvb+r/meRj9XP1qboCq/Ef1ZcwIw/UIeUa/6L+qv62/Z+dX+xc3vk1N/3ogsb8TJX+7Wz8F/gjXQI=</latexit> <latexit sha1_base64="/59ZCDJZPBrZfCS8zgReJB0hTeY=">AABFdnictVxfcxPJER8u/y7kH5c8piq1OR8JlyKOTUglVVepOrCN8WHAINnAIaC00loI1lqhlYRB56+Q1+Tb5HPkGyRPec1j+s/Mzqw0uz3rELZsz87Or7und6anu2eWeJwO8+nGxj8ufPStb3/nu9/7+PsXf/DDH/34J5c++elRns0mveSwl6XZ5HHczZN0OEoOp8NpmjweT5LuSZwmj+LXW/j80TyZ5MNs1J6+GyfPTrqD0fB42OtOsarz+HTrxaW1jfUN+hetFjZ1YU3pfwfZJ5+uq47qq0z11EydqESN1BTKqeqqHK6nalNtqDHUPVMLqJtAaUjPE3WmLgJ2Bq0SaNGF2tfwewB3T3XtCO6RZk7oHnBJ4WcCyEhdBkwG7SZQRm4RPZ8RZaytor0gmijbO/gba1onUDtVL6FWwpmWoTjsy1Qdqz9RH4bQpzHVYO96msqMtIKSR06vpkBhDHVY7sPzCZR7hDR6jgiTU99Rt116/k9qibV439NtZ+pfJOVluCLV0r3PCgpdNSf6Eb3NGTxjeVLgPAAKie4jlt6Srk+o9yNov4D6e3CdUcnoJIZrQbVntcgtuHzILRG5C5cPuSsi9+HyIfdF5AFcPuSBRiJ2Qjr341tw+fAtkfMDuHzIByLyIVw+5EMReQSXD3kkIr+Gy4f8WkTegsuHvCUi78DlQ94RkW24fMi2iDyEy4c8FJE7cPmQOxpZPVMncGVEZyjMyhtQLvNAS5FCzQ1RvptkHX3YmwFzuleBlWf1Nvz1Y7cDdJpUYHcCxt1xBVYeebtgI/1Y2RbdptXEh70tYvdgBPixeyL2K/WqAvtVwEx7XYGV59o+tPNjZet7F+782Lsi9h6U/Fh5jboPNX7s/YAVY1yBPRCxD9SbCmyI1Z9UYGW73wK74sfK61Qb2vuxIdZ0VoGV7ekReDB+rLxaPYJaP/aRiH2sTiuwj0XsE7DufuyTgBX2fQXWrLEXaQUZkD+SwIyto9YtZiWWxkCtK/BPi7UlJd84hnoJMygwA8KciIjdArEbiNgvEPvBcuWFHc3J35W5tApEKxARF2sTlqZi+37RHktpAGK7QGwvIeo8UnzXpi9z8i5MjYScFisXlkL6lBX2G0uJHg/1ltcg7pcQPLZf0si/StESRlCoqTpqL4s1npER3dch3lL0ZnppeMi4aWEVXNSpiIo9qFhEvfOg3omomQc1E1FzD2ououzMd3GdgBFg9Y/vYkF3PALYR66+IvAKbsCqcxvmaATj5wC8wIdUcx/+tij2lq46yTCax3USsxzPSpZ4AqWFWoN6GxVuU3yd0gxLQDJueV/H+HiHuY2FnnNshc+KlTwqMibhdIYkz6Cgg95iRPOpGZ07VHNG3h2XmuFvF/PelJrhd0jjZ+TFc6kZfqqln55D9rbGts+BbcFsGmvt23JTGpx/YRqmfJFWXbS4+FZP9JhBeqcN6e/pN7N3jveyRSXWjy03o5E7/ctL/WtCw+o5d/TcjAp6T+z1mlLUuCcjHffaclMZMlpFR1oOe9f0zWCbvn4zptyMxgF4XFsUcy+cctPROy56Y8vNaBwpznuekSdvys1oDOie9WHLzWhgtqWr43xbbmrZUQMcO9tyU6s+oiww5oB4zHON9Yom5CfNNLUh+Qf12RrX519dxzBn87yIEeopWd+2mk5crGX1Ehl/IQGrNm0oB/oXM8cHK9NYqGtifMUyTEvr+yodu8aj5vdBixHMft4DkHLmKUhochJovVOguClGXeWeGdw1EYej5HgJ1dG1U9FbtHw5a1Sue0G1Ulxme2v12CF7ndPYG5NPuE+alfSwX/mGqyhKGtovaUim10R37/V8LWt/Q8SNlxDjYqT1aEeId9Lq41Sf1luOji/rXZ4pXLznY8cvZpuPtbXBmCcjW4Sy1PF025k8kluH6+pVZXPc/CyiN4r2ak5WY0g7UrkYhZpsMXvjC7q3tA9pTw55MI0evMdIUxkr3jXDLDrm0yOyqK69lXijvkyGjss5WV1jj+vRAwc98KCbxzhbsGLcg1IbYoZDuGsHRDkXC11lpPGJ+m2xO5rRG6yP6NOShTQ02N4kJQtZF2W/LFF5C2gcDRylh9NYpmPwnRVKctTvk8fGrmXLf5l2bs3+dpfGePVors7E9InrNeIa0azhXV2+W+bAEiy8T66R/1rfS+TXhCPaUInrc4cz62VEO/4JRbBj8oxTmm3S7Ci3dvNTy08MpwNl9s5xNzsjCxmR/YtgfcpoTEb0454dMDvobBFSspEhdmdYeDc+X2cojjHrxw0Vn2qw4y0hWzYj/oauO7tyGoscMfA6cLY0to1O9skXTIjrRFt3O7frVx9E2nMS7ihhinasXCH+n9Nv82PGydrKiEAN4xvIta3zvY+MYhbUUZdW+XobZNq6Un5WyPBcS23XPyvTZyXJtiniQnlwte4D5x7dMy8cJROSO19pw+toXTYXKY+X9Ii9PaYonu3+QK/AKPdVWiXXaM51aJQMYBRMiyjCtJWyyMt863mVqYfRzv8v1K2uy1pDipGyGVzWkJTfTyhac6VMYVTz+H1Ns8mv9clSq3o+IxqLJ85c/gZqfwm/jdzmPoxOXLIKN2kMMAV7ZzXCNdFKizBeN0u8zMg0tOy95WfHpGnl1pwnvmbrZmPseWMqBzRqTnXWwpTPQ+OVQ+NVoA7btNdotWjqjSV6IcYWbb1bGcqvCbd2A8ozkbLskRnUMEBKN5YKo9oXqcoxvkG9F2ltiLS6MFvd3QB3zocg/XN9eXZ/U6zukbpFvk2PPDCOX/o0S4fkc5na+kiNKSDn69q+urO/QzXIPSYLipT5HCfOGN516tF1Vkj6K72yZWTnrUUw55be6jbGxnao/PsV5AnNiZzmpUFcpxaJlt+VI1qySOuOzxFR5r9LPhX7HfUxs9vavpOo5E/YeJNnleXFkcKI9C9l3vZWotc9J36NKCacae86BlrN3zBSYIzJJPg9y5zeEK5yvJPAHm1M9nPVTvEu3siRaJ2kXqg/B9gYjnrtWHfHlumx6dtvoCVq3b51XwuZXxrMUeJ3nh29Lq1qJ9pHXSzdn49WV69y5fs6PcyW+Fp9zKiNG1nYKK+M6agvgrmwRM24MCaES7NeNJG/meRNZObdqVDKprWhXM40sI15SfGSdA4UET7v7orXm/tc6Ee8Qi8mrEuNayRKmI3LdH7AtbSYlYqWIiS3XlqTUmc9qlovLA931bB2nC1lQlYwVVLuhlu7feiUohU5G8MUeopP9lbFiS7NL+DC35HyRYmGY0gOsQV+7g21pXY+wKmIN7rMmc2IatAm9Jdi8K7uZ7lFvY7eONRd+iEcwnkMQdeS9ENaUZvKzpRlyV3q4fTfkjWYqESU3rZs3geXi9yTVU5N+jMkCyf3ZqjMNzlN+2I4hPSkzCWcD+9vSL04VubbpmZ9MNTlHpQ5NOFhzjOEvXPbujkvl1O9vla5hPLgdcDsvBgc7gBWxyy2XYiFmjhv5MNzQOtwXEPdrBb/az8MH8upOa9Qbjl9c/Yq4K1zu0RnZtEvbj5nLLeQ0VzNMZxnVvTOek1+fuz/RY3eVOb05sPTR7/UjgHDa6E4HypLx3h3FFl5Q6ng/oBPhkz9W/39gvxVwpuCRpUcTSiZ/YpqaqaFTM18eenrnXkWIpOlUyVTmZqNJ1p0MnZL7alb8LNVeIBNT4nyN5X8F7H+72j7UHtM1sNk0zmD0KG6hLIgdjetT/f2HG2VxHiml8/4tqEG98T3qRbP+96j9njmt13qW/WXJDzX76pM9UuRyfIun51XMfSgvAPHuSDzvW9EZ+o5m8Un0E4C9hj5HBVHSubr5wUh+hQXLku6IIQZLXWUYy/lmM4kJRW041LfejTCx3qnH/cd8Hx+t8guRep3VNfVqwOu1JJUBx6pnlJmICb9b0CE9gd1Ff5e1WW/pAcrkub0DsoSnTrP6k+CnXnHhf2a8TLlwUymbq7bZRTV293D+kzsdiUXPvFejx/U4AeOlC16W68p7p6o+tzhrIbmTMvk7ueOlMl7sh4wmu0W46M+fp7X8JoH9P9OJfqOI+kuyBJTtj2i/bwJ0Uu1bnZIej5XWZ+3vV0jrflqk2nak5V2HJgzknUc8KuyLWH285dn9SsDfmHmp+PO9ScB+y7YE0kiPpkpZY+SAIn4jKh0fmXopSRbjHHA+YxuQG/lvob0VKIyEyWZBXwbPQ+QZR5A51iQ5likMBAl0RbrxaW1zeX/fWS1cHRtfXNjffPB9bUvb+r/meRj9XP1qboCq/Ef1ZcwIw/UIeUa/6L+qv62/Z+dX+xc3vk1N/3ogsb8TJX+7Wz8F/gjXQI=</latexit> <latexit sha1_base64="/59ZCDJZPBrZfCS8zgReJB0hTeY=">AABFdnictVxfcxPJER8u/y7kH5c8piq1OR8JlyKOTUglVVepOrCN8WHAINnAIaC00loI1lqhlYRB56+Q1+Tb5HPkGyRPec1j+s/Mzqw0uz3rELZsz87Or7und6anu2eWeJwO8+nGxj8ufPStb3/nu9/7+PsXf/DDH/34J5c++elRns0mveSwl6XZ5HHczZN0OEoOp8NpmjweT5LuSZwmj+LXW/j80TyZ5MNs1J6+GyfPTrqD0fB42OtOsarz+HTrxaW1jfUN+hetFjZ1YU3pfwfZJ5+uq47qq0z11EydqESN1BTKqeqqHK6nalNtqDHUPVMLqJtAaUjPE3WmLgJ2Bq0SaNGF2tfwewB3T3XtCO6RZk7oHnBJ4WcCyEhdBkwG7SZQRm4RPZ8RZaytor0gmijbO/gba1onUDtVL6FWwpmWoTjsy1Qdqz9RH4bQpzHVYO96msqMtIKSR06vpkBhDHVY7sPzCZR7hDR6jgiTU99Rt116/k9qibV439NtZ+pfJOVluCLV0r3PCgpdNSf6Eb3NGTxjeVLgPAAKie4jlt6Srk+o9yNov4D6e3CdUcnoJIZrQbVntcgtuHzILRG5C5cPuSsi9+HyIfdF5AFcPuSBRiJ2Qjr341tw+fAtkfMDuHzIByLyIVw+5EMReQSXD3kkIr+Gy4f8WkTegsuHvCUi78DlQ94RkW24fMi2iDyEy4c8FJE7cPmQOxpZPVMncGVEZyjMyhtQLvNAS5FCzQ1RvptkHX3YmwFzuleBlWf1Nvz1Y7cDdJpUYHcCxt1xBVYeebtgI/1Y2RbdptXEh70tYvdgBPixeyL2K/WqAvtVwEx7XYGV59o+tPNjZet7F+782Lsi9h6U/Fh5jboPNX7s/YAVY1yBPRCxD9SbCmyI1Z9UYGW73wK74sfK61Qb2vuxIdZ0VoGV7ekReDB+rLxaPYJaP/aRiH2sTiuwj0XsE7DufuyTgBX2fQXWrLEXaQUZkD+SwIyto9YtZiWWxkCtK/BPi7UlJd84hnoJMygwA8KciIjdArEbiNgvEPvBcuWFHc3J35W5tApEKxARF2sTlqZi+37RHktpAGK7QGwvIeo8UnzXpi9z8i5MjYScFisXlkL6lBX2G0uJHg/1ltcg7pcQPLZf0si/StESRlCoqTpqL4s1npER3dch3lL0ZnppeMi4aWEVXNSpiIo9qFhEvfOg3omomQc1E1FzD2ououzMd3GdgBFg9Y/vYkF3PALYR66+IvAKbsCqcxvmaATj5wC8wIdUcx/+tij2lq46yTCax3USsxzPSpZ4AqWFWoN6GxVuU3yd0gxLQDJueV/H+HiHuY2FnnNshc+KlTwqMibhdIYkz6Cgg95iRPOpGZ07VHNG3h2XmuFvF/PelJrhd0jjZ+TFc6kZfqqln55D9rbGts+BbcFsGmvt23JTGpx/YRqmfJFWXbS4+FZP9JhBeqcN6e/pN7N3jveyRSXWjy03o5E7/ctL/WtCw+o5d/TcjAp6T+z1mlLUuCcjHffaclMZMlpFR1oOe9f0zWCbvn4zptyMxgF4XFsUcy+cctPROy56Y8vNaBwpznuekSdvys1oDOie9WHLzWhgtqWr43xbbmrZUQMcO9tyU6s+oiww5oB4zHON9Yom5CfNNLUh+Qf12RrX519dxzBn87yIEeopWd+2mk5crGX1Ehl/IQGrNm0oB/oXM8cHK9NYqGtifMUyTEvr+yodu8aj5vdBixHMft4DkHLmKUhochJovVOguClGXeWeGdw1EYej5HgJ1dG1U9FbtHw5a1Sue0G1Ulxme2v12CF7ndPYG5NPuE+alfSwX/mGqyhKGtovaUim10R37/V8LWt/Q8SNlxDjYqT1aEeId9Lq41Sf1luOji/rXZ4pXLznY8cvZpuPtbXBmCcjW4Sy1PF025k8kluH6+pVZXPc/CyiN4r2ak5WY0g7UrkYhZpsMXvjC7q3tA9pTw55MI0evMdIUxkr3jXDLDrm0yOyqK69lXijvkyGjss5WV1jj+vRAwc98KCbxzhbsGLcg1IbYoZDuGsHRDkXC11lpPGJ+m2xO5rRG6yP6NOShTQ02N4kJQtZF2W/LFF5C2gcDRylh9NYpmPwnRVKctTvk8fGrmXLf5l2bs3+dpfGePVors7E9InrNeIa0azhXV2+W+bAEiy8T66R/1rfS+TXhCPaUInrc4cz62VEO/4JRbBj8oxTmm3S7Ci3dvNTy08MpwNl9s5xNzsjCxmR/YtgfcpoTEb0454dMDvobBFSspEhdmdYeDc+X2cojjHrxw0Vn2qw4y0hWzYj/oauO7tyGoscMfA6cLY0to1O9skXTIjrRFt3O7frVx9E2nMS7ihhinasXCH+n9Nv82PGydrKiEAN4xvIta3zvY+MYhbUUZdW+XobZNq6Un5WyPBcS23XPyvTZyXJtiniQnlwte4D5x7dMy8cJROSO19pw+toXTYXKY+X9Ii9PaYonu3+QK/AKPdVWiXXaM51aJQMYBRMiyjCtJWyyMt863mVqYfRzv8v1K2uy1pDipGyGVzWkJTfTyhac6VMYVTz+H1Ns8mv9clSq3o+IxqLJ85c/gZqfwm/jdzmPoxOXLIKN2kMMAV7ZzXCNdFKizBeN0u8zMg0tOy95WfHpGnl1pwnvmbrZmPseWMqBzRqTnXWwpTPQ+OVQ+NVoA7btNdotWjqjSV6IcYWbb1bGcqvCbd2A8ozkbLskRnUMEBKN5YKo9oXqcoxvkG9F2ltiLS6MFvd3QB3zocg/XN9eXZ/U6zukbpFvk2PPDCOX/o0S4fkc5na+kiNKSDn69q+urO/QzXIPSYLipT5HCfOGN516tF1Vkj6K72yZWTnrUUw55be6jbGxnao/PsV5AnNiZzmpUFcpxaJlt+VI1qySOuOzxFR5r9LPhX7HfUxs9vavpOo5E/YeJNnleXFkcKI9C9l3vZWotc9J36NKCacae86BlrN3zBSYIzJJPg9y5zeEK5yvJPAHm1M9nPVTvEu3siRaJ2kXqg/B9gYjnrtWHfHlumx6dtvoCVq3b51XwuZXxrMUeJ3nh29Lq1qJ9pHXSzdn49WV69y5fs6PcyW+Fp9zKiNG1nYKK+M6agvgrmwRM24MCaES7NeNJG/meRNZObdqVDKprWhXM40sI15SfGSdA4UET7v7orXm/tc6Ee8Qi8mrEuNayRKmI3LdH7AtbSYlYqWIiS3XlqTUmc9qlovLA931bB2nC1lQlYwVVLuhlu7feiUohU5G8MUeopP9lbFiS7NL+DC35HyRYmGY0gOsQV+7g21pXY+wKmIN7rMmc2IatAm9Jdi8K7uZ7lFvY7eONRd+iEcwnkMQdeS9ENaUZvKzpRlyV3q4fTfkjWYqESU3rZs3geXi9yTVU5N+jMkCyf3ZqjMNzlN+2I4hPSkzCWcD+9vSL04VubbpmZ9MNTlHpQ5NOFhzjOEvXPbujkvl1O9vla5hPLgdcDsvBgc7gBWxyy2XYiFmjhv5MNzQOtwXEPdrBb/az8MH8upOa9Qbjl9c/Yq4K1zu0RnZtEvbj5nLLeQ0VzNMZxnVvTOek1+fuz/RY3eVOb05sPTR7/UjgHDa6E4HypLx3h3FFl5Q6ng/oBPhkz9W/39gvxVwpuCRpUcTSiZ/YpqaqaFTM18eenrnXkWIpOlUyVTmZqNJ1p0MnZL7alb8LNVeIBNT4nyN5X8F7H+72j7UHtM1sNk0zmD0KG6hLIgdjetT/f2HG2VxHiml8/4tqEG98T3qRbP+96j9njmt13qW/WXJDzX76pM9UuRyfIun51XMfSgvAPHuSDzvW9EZ+o5m8Un0E4C9hj5HBVHSubr5wUh+hQXLku6IIQZLXWUYy/lmM4kJRW041LfejTCx3qnH/cd8Hx+t8guRep3VNfVqwOu1JJUBx6pnlJmICb9b0CE9gd1Ff5e1WW/pAcrkub0DsoSnTrP6k+CnXnHhf2a8TLlwUymbq7bZRTV293D+kzsdiUXPvFejx/U4AeOlC16W68p7p6o+tzhrIbmTMvk7ueOlMl7sh4wmu0W46M+fp7X8JoH9P9OJfqOI+kuyBJTtj2i/bwJ0Uu1bnZIej5XWZ+3vV0jrflqk2nak5V2HJgzknUc8KuyLWH285dn9SsDfmHmp+PO9ScB+y7YE0kiPpkpZY+SAIn4jKh0fmXopSRbjHHA+YxuQG/lvob0VKIyEyWZBXwbPQ+QZR5A51iQ5likMBAl0RbrxaW1zeX/fWS1cHRtfXNjffPB9bUvb+r/meRj9XP1qboCq/Ef1ZcwIw/UIeUa/6L+qv62/Z+dX+xc3vk1N/3ogsb8TJX+7Wz8F/gjXQI=</latexit> <latexit sha1_base64="/59ZCDJZPBrZfCS8zgReJB0hTeY=">AABFdnictVxfcxPJER8u/y7kH5c8piq1OR8JlyKOTUglVVepOrCN8WHAINnAIaC00loI1lqhlYRB56+Q1+Tb5HPkGyRPec1j+s/Mzqw0uz3rELZsz87Or7und6anu2eWeJwO8+nGxj8ufPStb3/nu9/7+PsXf/DDH/34J5c++elRns0mveSwl6XZ5HHczZN0OEoOp8NpmjweT5LuSZwmj+LXW/j80TyZ5MNs1J6+GyfPTrqD0fB42OtOsarz+HTrxaW1jfUN+hetFjZ1YU3pfwfZJ5+uq47qq0z11EydqESN1BTKqeqqHK6nalNtqDHUPVMLqJtAaUjPE3WmLgJ2Bq0SaNGF2tfwewB3T3XtCO6RZk7oHnBJ4WcCyEhdBkwG7SZQRm4RPZ8RZaytor0gmijbO/gba1onUDtVL6FWwpmWoTjsy1Qdqz9RH4bQpzHVYO96msqMtIKSR06vpkBhDHVY7sPzCZR7hDR6jgiTU99Rt116/k9qibV439NtZ+pfJOVluCLV0r3PCgpdNSf6Eb3NGTxjeVLgPAAKie4jlt6Srk+o9yNov4D6e3CdUcnoJIZrQbVntcgtuHzILRG5C5cPuSsi9+HyIfdF5AFcPuSBRiJ2Qjr341tw+fAtkfMDuHzIByLyIVw+5EMReQSXD3kkIr+Gy4f8WkTegsuHvCUi78DlQ94RkW24fMi2iDyEy4c8FJE7cPmQOxpZPVMncGVEZyjMyhtQLvNAS5FCzQ1RvptkHX3YmwFzuleBlWf1Nvz1Y7cDdJpUYHcCxt1xBVYeebtgI/1Y2RbdptXEh70tYvdgBPixeyL2K/WqAvtVwEx7XYGV59o+tPNjZet7F+782Lsi9h6U/Fh5jboPNX7s/YAVY1yBPRCxD9SbCmyI1Z9UYGW73wK74sfK61Qb2vuxIdZ0VoGV7ekReDB+rLxaPYJaP/aRiH2sTiuwj0XsE7DufuyTgBX2fQXWrLEXaQUZkD+SwIyto9YtZiWWxkCtK/BPi7UlJd84hnoJMygwA8KciIjdArEbiNgvEPvBcuWFHc3J35W5tApEKxARF2sTlqZi+37RHktpAGK7QGwvIeo8UnzXpi9z8i5MjYScFisXlkL6lBX2G0uJHg/1ltcg7pcQPLZf0si/StESRlCoqTpqL4s1npER3dch3lL0ZnppeMi4aWEVXNSpiIo9qFhEvfOg3omomQc1E1FzD2ououzMd3GdgBFg9Y/vYkF3PALYR66+IvAKbsCqcxvmaATj5wC8wIdUcx/+tij2lq46yTCax3USsxzPSpZ4AqWFWoN6GxVuU3yd0gxLQDJueV/H+HiHuY2FnnNshc+KlTwqMibhdIYkz6Cgg95iRPOpGZ07VHNG3h2XmuFvF/PelJrhd0jjZ+TFc6kZfqqln55D9rbGts+BbcFsGmvt23JTGpx/YRqmfJFWXbS4+FZP9JhBeqcN6e/pN7N3jveyRSXWjy03o5E7/ctL/WtCw+o5d/TcjAp6T+z1mlLUuCcjHffaclMZMlpFR1oOe9f0zWCbvn4zptyMxgF4XFsUcy+cctPROy56Y8vNaBwpznuekSdvys1oDOie9WHLzWhgtqWr43xbbmrZUQMcO9tyU6s+oiww5oB4zHON9Yom5CfNNLUh+Qf12RrX519dxzBn87yIEeopWd+2mk5crGX1Ehl/IQGrNm0oB/oXM8cHK9NYqGtifMUyTEvr+yodu8aj5vdBixHMft4DkHLmKUhochJovVOguClGXeWeGdw1EYej5HgJ1dG1U9FbtHw5a1Sue0G1Ulxme2v12CF7ndPYG5NPuE+alfSwX/mGqyhKGtovaUim10R37/V8LWt/Q8SNlxDjYqT1aEeId9Lq41Sf1luOji/rXZ4pXLznY8cvZpuPtbXBmCcjW4Sy1PF025k8kluH6+pVZXPc/CyiN4r2ak5WY0g7UrkYhZpsMXvjC7q3tA9pTw55MI0evMdIUxkr3jXDLDrm0yOyqK69lXijvkyGjss5WV1jj+vRAwc98KCbxzhbsGLcg1IbYoZDuGsHRDkXC11lpPGJ+m2xO5rRG6yP6NOShTQ02N4kJQtZF2W/LFF5C2gcDRylh9NYpmPwnRVKctTvk8fGrmXLf5l2bs3+dpfGePVors7E9InrNeIa0azhXV2+W+bAEiy8T66R/1rfS+TXhCPaUInrc4cz62VEO/4JRbBj8oxTmm3S7Ci3dvNTy08MpwNl9s5xNzsjCxmR/YtgfcpoTEb0454dMDvobBFSspEhdmdYeDc+X2cojjHrxw0Vn2qw4y0hWzYj/oauO7tyGoscMfA6cLY0to1O9skXTIjrRFt3O7frVx9E2nMS7ihhinasXCH+n9Nv82PGydrKiEAN4xvIta3zvY+MYhbUUZdW+XobZNq6Un5WyPBcS23XPyvTZyXJtiniQnlwte4D5x7dMy8cJROSO19pw+toXTYXKY+X9Ii9PaYonu3+QK/AKPdVWiXXaM51aJQMYBRMiyjCtJWyyMt863mVqYfRzv8v1K2uy1pDipGyGVzWkJTfTyhac6VMYVTz+H1Ns8mv9clSq3o+IxqLJ85c/gZqfwm/jdzmPoxOXLIKN2kMMAV7ZzXCNdFKizBeN0u8zMg0tOy95WfHpGnl1pwnvmbrZmPseWMqBzRqTnXWwpTPQ+OVQ+NVoA7btNdotWjqjSV6IcYWbb1bGcqvCbd2A8ozkbLskRnUMEBKN5YKo9oXqcoxvkG9F2ltiLS6MFvd3QB3zocg/XN9eXZ/U6zukbpFvk2PPDCOX/o0S4fkc5na+kiNKSDn69q+urO/QzXIPSYLipT5HCfOGN516tF1Vkj6K72yZWTnrUUw55be6jbGxnao/PsV5AnNiZzmpUFcpxaJlt+VI1qySOuOzxFR5r9LPhX7HfUxs9vavpOo5E/YeJNnleXFkcKI9C9l3vZWotc9J36NKCacae86BlrN3zBSYIzJJPg9y5zeEK5yvJPAHm1M9nPVTvEu3siRaJ2kXqg/B9gYjnrtWHfHlumx6dtvoCVq3b51XwuZXxrMUeJ3nh29Lq1qJ9pHXSzdn49WV69y5fs6PcyW+Fp9zKiNG1nYKK+M6agvgrmwRM24MCaES7NeNJG/meRNZObdqVDKprWhXM40sI15SfGSdA4UET7v7orXm/tc6Ee8Qi8mrEuNayRKmI3LdH7AtbSYlYqWIiS3XlqTUmc9qlovLA931bB2nC1lQlYwVVLuhlu7feiUohU5G8MUeopP9lbFiS7NL+DC35HyRYmGY0gOsQV+7g21pXY+wKmIN7rMmc2IatAm9Jdi8K7uZ7lFvY7eONRd+iEcwnkMQdeS9ENaUZvKzpRlyV3q4fTfkjWYqESU3rZs3geXi9yTVU5N+jMkCyf3ZqjMNzlN+2I4hPSkzCWcD+9vSL04VubbpmZ9MNTlHpQ5NOFhzjOEvXPbujkvl1O9vla5hPLgdcDsvBgc7gBWxyy2XYiFmjhv5MNzQOtwXEPdrBb/az8MH8upOa9Qbjl9c/Yq4K1zu0RnZtEvbj5nLLeQ0VzNMZxnVvTOek1+fuz/RY3eVOb05sPTR7/UjgHDa6E4HypLx3h3FFl5Q6ng/oBPhkz9W/39gvxVwpuCRpUcTSiZ/YpqaqaFTM18eenrnXkWIpOlUyVTmZqNJ1p0MnZL7alb8LNVeIBNT4nyN5X8F7H+72j7UHtM1sNk0zmD0KG6hLIgdjetT/f2HG2VxHiml8/4tqEG98T3qRbP+96j9njmt13qW/WXJDzX76pM9UuRyfIun51XMfSgvAPHuSDzvW9EZ+o5m8Un0E4C9hj5HBVHSubr5wUh+hQXLku6IIQZLXWUYy/lmM4kJRW041LfejTCx3qnH/cd8Hx+t8guRep3VNfVqwOu1JJUBx6pnlJmICb9b0CE9gd1Ff5e1WW/pAcrkub0DsoSnTrP6k+CnXnHhf2a8TLlwUymbq7bZRTV293D+kzsdiUXPvFejx/U4AeOlC16W68p7p6o+tzhrIbmTMvk7ueOlMl7sh4wmu0W46M+fp7X8JoH9P9OJfqOI+kuyBJTtj2i/bwJ0Uu1bnZIej5XWZ+3vV0jrflqk2nak5V2HJgzknUc8KuyLWH285dn9SsDfmHmp+PO9ScB+y7YE0kiPpkpZY+SAIn4jKh0fmXopSRbjHHA+YxuQG/lvob0VKIyEyWZBXwbPQ+QZR5A51iQ5likMBAl0RbrxaW1zeX/fWS1cHRtfXNjffPB9bUvb+r/meRj9XP1qboCq/Ef1ZcwIw/UIeUa/6L+qv62/Z+dX+xc3vk1N/3ogsb8TJX+7Wz8F/gjXQI=</latexit> <latexit sha1_base64="/59ZCDJZPBrZfCS8zgReJB0hTeY=">AABFdnictVxfcxPJER8u/y7kH5c8piq1OR8JlyKOTUglVVepOrCN8WHAINnAIaC00loI1lqhlYRB56+Q1+Tb5HPkGyRPec1j+s/Mzqw0uz3rELZsz87Or7und6anu2eWeJwO8+nGxj8ufPStb3/nu9/7+PsXf/DDH/34J5c++elRns0mveSwl6XZ5HHczZN0OEoOp8NpmjweT5LuSZwmj+LXW/j80TyZ5MNs1J6+GyfPTrqD0fB42OtOsarz+HTrxaW1jfUN+hetFjZ1YU3pfwfZJ5+uq47qq0z11EydqESN1BTKqeqqHK6nalNtqDHUPVMLqJtAaUjPE3WmLgJ2Bq0SaNGF2tfwewB3T3XtCO6RZk7oHnBJ4WcCyEhdBkwG7SZQRm4RPZ8RZaytor0gmijbO/gba1onUDtVL6FWwpmWoTjsy1Qdqz9RH4bQpzHVYO96msqMtIKSR06vpkBhDHVY7sPzCZR7hDR6jgiTU99Rt116/k9qibV439NtZ+pfJOVluCLV0r3PCgpdNSf6Eb3NGTxjeVLgPAAKie4jlt6Srk+o9yNov4D6e3CdUcnoJIZrQbVntcgtuHzILRG5C5cPuSsi9+HyIfdF5AFcPuSBRiJ2Qjr341tw+fAtkfMDuHzIByLyIVw+5EMReQSXD3kkIr+Gy4f8WkTegsuHvCUi78DlQ94RkW24fMi2iDyEy4c8FJE7cPmQOxpZPVMncGVEZyjMyhtQLvNAS5FCzQ1RvptkHX3YmwFzuleBlWf1Nvz1Y7cDdJpUYHcCxt1xBVYeebtgI/1Y2RbdptXEh70tYvdgBPixeyL2K/WqAvtVwEx7XYGV59o+tPNjZet7F+782Lsi9h6U/Fh5jboPNX7s/YAVY1yBPRCxD9SbCmyI1Z9UYGW73wK74sfK61Qb2vuxIdZ0VoGV7ekReDB+rLxaPYJaP/aRiH2sTiuwj0XsE7DufuyTgBX2fQXWrLEXaQUZkD+SwIyto9YtZiWWxkCtK/BPi7UlJd84hnoJMygwA8KciIjdArEbiNgvEPvBcuWFHc3J35W5tApEKxARF2sTlqZi+37RHktpAGK7QGwvIeo8UnzXpi9z8i5MjYScFisXlkL6lBX2G0uJHg/1ltcg7pcQPLZf0si/StESRlCoqTpqL4s1npER3dch3lL0ZnppeMi4aWEVXNSpiIo9qFhEvfOg3omomQc1E1FzD2ououzMd3GdgBFg9Y/vYkF3PALYR66+IvAKbsCqcxvmaATj5wC8wIdUcx/+tij2lq46yTCax3USsxzPSpZ4AqWFWoN6GxVuU3yd0gxLQDJueV/H+HiHuY2FnnNshc+KlTwqMibhdIYkz6Cgg95iRPOpGZ07VHNG3h2XmuFvF/PelJrhd0jjZ+TFc6kZfqqln55D9rbGts+BbcFsGmvt23JTGpx/YRqmfJFWXbS4+FZP9JhBeqcN6e/pN7N3jveyRSXWjy03o5E7/ctL/WtCw+o5d/TcjAp6T+z1mlLUuCcjHffaclMZMlpFR1oOe9f0zWCbvn4zptyMxgF4XFsUcy+cctPROy56Y8vNaBwpznuekSdvys1oDOie9WHLzWhgtqWr43xbbmrZUQMcO9tyU6s+oiww5oB4zHON9Yom5CfNNLUh+Qf12RrX519dxzBn87yIEeopWd+2mk5crGX1Ehl/IQGrNm0oB/oXM8cHK9NYqGtifMUyTEvr+yodu8aj5vdBixHMft4DkHLmKUhochJovVOguClGXeWeGdw1EYej5HgJ1dG1U9FbtHw5a1Sue0G1Ulxme2v12CF7ndPYG5NPuE+alfSwX/mGqyhKGtovaUim10R37/V8LWt/Q8SNlxDjYqT1aEeId9Lq41Sf1luOji/rXZ4pXLznY8cvZpuPtbXBmCcjW4Sy1PF025k8kluH6+pVZXPc/CyiN4r2ak5WY0g7UrkYhZpsMXvjC7q3tA9pTw55MI0evMdIUxkr3jXDLDrm0yOyqK69lXijvkyGjss5WV1jj+vRAwc98KCbxzhbsGLcg1IbYoZDuGsHRDkXC11lpPGJ+m2xO5rRG6yP6NOShTQ02N4kJQtZF2W/LFF5C2gcDRylh9NYpmPwnRVKctTvk8fGrmXLf5l2bs3+dpfGePVors7E9InrNeIa0azhXV2+W+bAEiy8T66R/1rfS+TXhCPaUInrc4cz62VEO/4JRbBj8oxTmm3S7Ci3dvNTy08MpwNl9s5xNzsjCxmR/YtgfcpoTEb0454dMDvobBFSspEhdmdYeDc+X2cojjHrxw0Vn2qw4y0hWzYj/oauO7tyGoscMfA6cLY0to1O9skXTIjrRFt3O7frVx9E2nMS7ihhinasXCH+n9Nv82PGydrKiEAN4xvIta3zvY+MYhbUUZdW+XobZNq6Un5WyPBcS23XPyvTZyXJtiniQnlwte4D5x7dMy8cJROSO19pw+toXTYXKY+X9Ii9PaYonu3+QK/AKPdVWiXXaM51aJQMYBRMiyjCtJWyyMt863mVqYfRzv8v1K2uy1pDipGyGVzWkJTfTyhac6VMYVTz+H1Ns8mv9clSq3o+IxqLJ85c/gZqfwm/jdzmPoxOXLIKN2kMMAV7ZzXCNdFKizBeN0u8zMg0tOy95WfHpGnl1pwnvmbrZmPseWMqBzRqTnXWwpTPQ+OVQ+NVoA7btNdotWjqjSV6IcYWbb1bGcqvCbd2A8ozkbLskRnUMEBKN5YKo9oXqcoxvkG9F2ltiLS6MFvd3QB3zocg/XN9eXZ/U6zukbpFvk2PPDCOX/o0S4fkc5na+kiNKSDn69q+urO/QzXIPSYLipT5HCfOGN516tF1Vkj6K72yZWTnrUUw55be6jbGxnao/PsV5AnNiZzmpUFcpxaJlt+VI1qySOuOzxFR5r9LPhX7HfUxs9vavpOo5E/YeJNnleXFkcKI9C9l3vZWotc9J36NKCacae86BlrN3zBSYIzJJPg9y5zeEK5yvJPAHm1M9nPVTvEu3siRaJ2kXqg/B9gYjnrtWHfHlumx6dtvoCVq3b51XwuZXxrMUeJ3nh29Lq1qJ9pHXSzdn49WV69y5fs6PcyW+Fp9zKiNG1nYKK+M6agvgrmwRM24MCaES7NeNJG/meRNZObdqVDKprWhXM40sI15SfGSdA4UET7v7orXm/tc6Ee8Qi8mrEuNayRKmI3LdH7AtbSYlYqWIiS3XlqTUmc9qlovLA931bB2nC1lQlYwVVLuhlu7feiUohU5G8MUeopP9lbFiS7NL+DC35HyRYmGY0gOsQV+7g21pXY+wKmIN7rMmc2IatAm9Jdi8K7uZ7lFvY7eONRd+iEcwnkMQdeS9ENaUZvKzpRlyV3q4fTfkjWYqESU3rZs3geXi9yTVU5N+jMkCyf3ZqjMNzlN+2I4hPSkzCWcD+9vSL04VubbpmZ9MNTlHpQ5NOFhzjOEvXPbujkvl1O9vla5hPLgdcDsvBgc7gBWxyy2XYiFmjhv5MNzQOtwXEPdrBb/az8MH8upOa9Qbjl9c/Yq4K1zu0RnZtEvbj5nLLeQ0VzNMZxnVvTOek1+fuz/RY3eVOb05sPTR7/UjgHDa6E4HypLx3h3FFl5Q6ng/oBPhkz9W/39gvxVwpuCRpUcTSiZ/YpqaqaFTM18eenrnXkWIpOlUyVTmZqNJ1p0MnZL7alb8LNVeIBNT4nyN5X8F7H+72j7UHtM1sNk0zmD0KG6hLIgdjetT/f2HG2VxHiml8/4tqEG98T3qRbP+96j9njmt13qW/WXJDzX76pM9UuRyfIun51XMfSgvAPHuSDzvW9EZ+o5m8Un0E4C9hj5HBVHSubr5wUh+hQXLku6IIQZLXWUYy/lmM4kJRW041LfejTCx3qnH/cd8Hx+t8guRep3VNfVqwOu1JJUBx6pnlJmICb9b0CE9gd1Ff5e1WW/pAcrkub0DsoSnTrP6k+CnXnHhf2a8TLlwUymbq7bZRTV293D+kzsdiUXPvFejx/U4AeOlC16W68p7p6o+tzhrIbmTMvk7ueOlMl7sh4wmu0W46M+fp7X8JoH9P9OJfqOI+kuyBJTtj2i/bwJ0Uu1bnZIej5XWZ+3vV0jrflqk2nak5V2HJgzknUc8KuyLWH285dn9SsDfmHmp+PO9ScB+y7YE0kiPpkpZY+SAIn4jKh0fmXopSRbjHHA+YxuQG/lvob0VKIyEyWZBXwbPQ+QZR5A51iQ5likMBAl0RbrxaW1zeX/fWS1cHRtfXNjffPB9bUvb+r/meRj9XP1qboCq/Ef1ZcwIw/UIeUa/6L+qv62/Z+dX+xc3vk1N/3ogsb8TJX+7Wz8F/gjXQI=</latexit> Y <latexit sha1_base64="6tOGw6FSQVfHa06oZqSaTlaRZAo=">AABFdnictVxtc9u4EUaub9f0Ldd+7EyHPZ/bXCd17TSdduamM5fYjuOLkziR7CQXJRlRohUltKiIkvKi81/o1/bf9Hf0H7Sf+rUfuy8AAUogF3TTcGyDIJ7dxRJY7C7AxON0mE83N/9x4aNvffs73/3ex9+/+IMf/ujHP7n0yU+P82w26SVHvSzNJo/ibp6kw1FyNB1O0+TReJJ0T+M0eRi/2sbnD+fJJB9mo/b03Th5etodjIYnw153ilWdx++2n19a29zYpH/RamFLF9aU/neYffLphuqovspUT83UqUrUSE2hnKquyuF6orbUphpD3VO1gLoJlIb0PFFn6iJgZ9AqgRZdqH0Fvwdw90TXjuAeaeaE7gGXFH4mgIzUOmAyaDeBMnKL6PmMKGNtFe0F0UTZ3sHfWNM6hdqpegG1Es60DMVhX6bqRP2J+jCEPo2pBnvX01RmpBWUPHJ6NQUKY6jDch+eT6DcI6TRc0SYnPqOuu3S839SS6zF+55uO1P/IinX4YpUS/c+Kyh01ZzoR/Q2Z/CM5UmB8wAoJLqPWHpDuj6l3o+g/QLq78J1RiWjkxiuBdWe1SK34fIht0XkHlw+5J6IPIDLhzwQkYdw+ZCHGonYCencj2/B5cO3RM734fIh74vIB3D5kA9E5DFcPuSxiPwaLh/yaxF5Ey4f8qaIvA2XD3lbRLbh8iHbIvIILh/ySETuwuVD7mpk9UydwJURnaEwK69DucwDLUUKNddF+W6QdfRhbwTM6V4FVp7VO/DXj90J0GlSgd0NGHcnFVh55O2BjfRjZVt0i1YTH/aWiN2HEeDH7ovYr9TLCuxXATPtVQVWnmsH0M6Pla3vHbjzY++I2LtQ8mPlNeoe1Pix9wJWjHEF9lDE3levK7AhVn9SgZXtfgvsih8rr1NtaO/HhljTWQVWtqfH4MH4sfJq9RBq/diHIvaReluBfSRiH4N192MfB6yw7yuwZo29SCvIgPyRBGZsHbVuMSuxNAZqXYF/WqwtKfnGMdRLmEGBGRDmVETsFYi9QMRBgTgIlisv7GhO/q7MpVUgWoGIuFibsDQV2/eL9lhKAxA7BWJnCVHnkeK7Nn2Zk3dhaiTktFi5sBTSp6yw31hK9Hiot7wGca+E4LH9gkb+FYqWMIJCTdVRe1Gs8YyM6L4O8YaiN9NLw0PGTQur4KLeiqjYg4pF1DsP6p2ImnlQMxE196DmIsrOfBfXCRgBVv/4LhZ0xyOAfeTqKwKv4DqsOrdgjkYwfg7BC3xANffgb4tib+mqkwyjeVwnMcvxtGSJJ1BaqDWot1HhDsXXKc2wBCTjlvd0jI93mNtY6DnHVvisWMmjImMSTmdI8gwKOugtRjSfmtG5TTVn5N1xqRn+VjHvTakZfpc0fkZePJea4ada+uk5ZG9rbPsc2BbMprHWvi03pcH5F6Zhyhdp1UWLi2/1VI8ZpPe2If19/Wb2z/FetqnE+rHlZjRyp395qX9NaFg9546em1FB74m9XlOKGvdkpONeW24qQ0ar6EjLYe+avhls09dvxpSb0TgEj2ubYu6FU246esdFb2y5GY1jxXnPM/LkTbkZjQHdsz5suRkNzLZ0dZxvy00tO2qAY2dbbmrVR5QFxhwQj3musV7RhPykmaY2JP+gPlvj+vyr6xjmbJ4VMUI9JevbVtOJi7WsXiLjLyRg1aYN5UD/Yub4YGUaC3VVjK9YhmlpfV+lY9d41PwBaDGC2c97AFLOPAUJTU4CrXcKFLfEqKvcM4O7KuJwlJwsoTq6dip6i5YvZ43Kdc+pVorLbG+tHjtkr3Mae2PyCQ9Is5IeDirfcBVFSUMHJQ3J9Jro7r2er2Xtb4q48RJiXIy0Hu0I8U5afZzq03rL0fG63uWZwsV7Pnb8Yrb5RFsbjHkyskUoSx1Pt53JI7l1uK5eUTbHzc8ieqNor+ZkNYa0I5WLUajJFrM3vqB7S/uI9uSQB9PowXuMNJWx4l0zzKJjPj0ii+raW4k36stk6Lick9U19rgePXDQAw+6eYyzDSvGXSi1IWY4grt2QJRzsdBVRhqfqN8Wu6MZvcH6iD4tWUhDg+1NUrKQdVH2ixKVN4DG0cBRejiNZToG31mhJEf9Pnls7Fq2/Ou0c2v2t7s0xqtHc3Umpk9crxLXiGYN7+ry3TIHlmDhfXKV/Nf6XiK/JhzRhkpcnzmcWS8j2vFPKIIdk2ec0myTZke5tZufWn5iOB0qs3eOu9kZWciI7F8E61NGYzKiH/fsgNlBZ4uQko0MsTvDwrvx+TpDcYxZP26o+FSDHW8J2bIZ8Td03dmV01jkiIHXgbOlsW10ckC+YEJcJ9q627ldv/og0p6TcEcJU7Rj5TLx/5x+mx8zTtZWRgRqGN9Arm2d731kFLOgjrq0ytfbINPWlfKzQoZnWmq7/lmZPitJtkMRF8qDq3UfOPfonnnhKJmQ3PlKG15H67K5SHm8pEfs7QlF8Wz3B3oFRrmv0Cq5RnOuQ6NkAKNgWkQRpq2URV7mW8+rTD2Mdv5/oW51XdYaUoyUzeCyhqT8fkLRmitlCqOax+8rmk1+rU+WWtXzGdFYPHXm8jdQ+0v4beQ292F04pJVuEFjgCnYO6sRrolWWoTxulHiZUamoWXvLT87Jk0rt+Y88TVbNxtjzxtTOaRR81ZnLUz5PDReOjReBuqwTXuNVoum3lii52Js0da7laH8mnBrN6A8EynLHplBDQOkdGOpMKp9kaoc4xvUe5HWpkirC7PV3Q1w53wI0j/Xl2f3N8XqHqmb5Nv0yAPj+KVPs3RIPpeprY/UmAJyvqbtqzv7O1SD3GOyoEiZz3HijOFdpx5dZ4Wkv9IrW0Z23loEc27pjW5jbGyHyr9fQZ7SnMhpXhrENWqRaPldOaIli7Th+BwRZf675FOx31EfM7ut7TuJSv6EjTd5VlleHCmMSP9S5m1/JXrdd+LXiGLCmfauY6DV/A0jBcaYTILfs8zpDeEqxzsJ7NHGZD9X7RTv4o0ciTZI6oX6c4CN4ajXjnV3bJkem779Blqi1u1b97WQ+aXBHCV+59nR69Kqdqp91MXS/flodfUqV76v08Nsia/Vx4zauJGFjfLKmI76IpgLS9SMC2NCuDTrRRP5m0neRGbenQqlbFobyuVMA9uYFxQvSedAEeHz7i57vbnPhX7EK/RiwrrUuEaihNm4TOcHXEuLWaloKUJy66U1KXXWo6r1wvJwVw1rx9lSJmQFUyXlbri124dOKVqRszFMoaf4ZG9VnOjS/AIu/B0pX5RoOIbkEFvg515X22r3A5yKeK3LnNmMqAZtQn8pBu/qfpZb1OvotUPdpR/CIZzHEHQtST+kFbWp7ExZltylHk7/DVmDiUpE6W3L5n1wucg9WeXUpD9DsnByb4bKfJPTtC+GQ0hPylzC+fD+htSLE2W+bWrWB0Nd7kGZQxMe5jxD2Du3rZvzcjnV62uVSygPXgfMzovB4Q5gdcxi24VYqInzRj48B7QOJzXUzWrxv/bD8LGcmvMK5ZbTN2cvA946t0t0Zhb94uZzxnILGc3VHMN5ZkXvrNfk58f+X9ToTWVObz48ffRL7RgwvBaK86GydIx3R5GVN5QK7g/4ZMjUv9XfL8hfJbwuaFTJ0YSS2a+opmZayNTMl5e+3plnITJZOlUylanZeKJFJ2O31b66CT/bhQfY9JQof1PJfxHr/462D7UnZD1MNp0zCB2qSygLYnfT+nRvz9FWSYxnevmMbxtqcE/8gGrxvO9dao9nftulvlV/ScJz/Y7KVL8UmSzv8tl5FUMPyjtwnAsy3/tGdKaes1l8Au00YI+Rz1FxpGS+fl4Qok9x4bKkC0KY0VJHOfZSjulMUlJBOy71rUcjfKx3+nHfAc/nd4vsUqR+R3VdvTrgSi1JdeiR6gllBmLS/yZEaH9QV+DvFV32S3q4ImlO76As0VvnWf1JsDPvuLBfM65THsxk6ua6XUZRvd09rM/E7lRy4RPv9fhBDX7gSNmit/WK4u6Jqs8dzmpozrRM7n7uSJm8J+sBo9luMT7q4+d5Da95QP9vV6JvO5LugSwxZdsj2s+bEL1U62aXpOdzlfV521s10pqvNpmmPVlpx4E5I1nHAb8q2xZmP395Vr8y4BdmfjruXH8csO+CPZEk4pOZUvYoCZCIz4hK51eGXkqyxRgHnM/oBvRW7mtITyUqM1GSWcC30fMAWeYBdE4EaU5ECgNREm2xnl9a21r+30dWC8dXN7Y2N7buX1v78ob+n0k+Vj9Xn6rLsBr/UX0JM/JQHVGu8S/qr+pvO//Z/cXu+u6vuelHFzTmZ6r0b3fzv4JTXQQ=</latexit> <latexit sha1_base64="6tOGw6FSQVfHa06oZqSaTlaRZAo=">AABFdnictVxtc9u4EUaub9f0Ldd+7EyHPZ/bXCd17TSdduamM5fYjuOLkziR7CQXJRlRohUltKiIkvKi81/o1/bf9Hf0H7Sf+rUfuy8AAUogF3TTcGyDIJ7dxRJY7C7AxON0mE83N/9x4aNvffs73/3ex9+/+IMf/ujHP7n0yU+P82w26SVHvSzNJo/ibp6kw1FyNB1O0+TReJJ0T+M0eRi/2sbnD+fJJB9mo/b03Th5etodjIYnw153ilWdx++2n19a29zYpH/RamFLF9aU/neYffLphuqovspUT83UqUrUSE2hnKquyuF6orbUphpD3VO1gLoJlIb0PFFn6iJgZ9AqgRZdqH0Fvwdw90TXjuAeaeaE7gGXFH4mgIzUOmAyaDeBMnKL6PmMKGNtFe0F0UTZ3sHfWNM6hdqpegG1Es60DMVhX6bqRP2J+jCEPo2pBnvX01RmpBWUPHJ6NQUKY6jDch+eT6DcI6TRc0SYnPqOuu3S839SS6zF+55uO1P/IinX4YpUS/c+Kyh01ZzoR/Q2Z/CM5UmB8wAoJLqPWHpDuj6l3o+g/QLq78J1RiWjkxiuBdWe1SK34fIht0XkHlw+5J6IPIDLhzwQkYdw+ZCHGonYCencj2/B5cO3RM734fIh74vIB3D5kA9E5DFcPuSxiPwaLh/yaxF5Ey4f8qaIvA2XD3lbRLbh8iHbIvIILh/ySETuwuVD7mpk9UydwJURnaEwK69DucwDLUUKNddF+W6QdfRhbwTM6V4FVp7VO/DXj90J0GlSgd0NGHcnFVh55O2BjfRjZVt0i1YTH/aWiN2HEeDH7ovYr9TLCuxXATPtVQVWnmsH0M6Pla3vHbjzY++I2LtQ8mPlNeoe1Pix9wJWjHEF9lDE3levK7AhVn9SgZXtfgvsih8rr1NtaO/HhljTWQVWtqfH4MH4sfJq9RBq/diHIvaReluBfSRiH4N192MfB6yw7yuwZo29SCvIgPyRBGZsHbVuMSuxNAZqXYF/WqwtKfnGMdRLmEGBGRDmVETsFYi9QMRBgTgIlisv7GhO/q7MpVUgWoGIuFibsDQV2/eL9lhKAxA7BWJnCVHnkeK7Nn2Zk3dhaiTktFi5sBTSp6yw31hK9Hiot7wGca+E4LH9gkb+FYqWMIJCTdVRe1Gs8YyM6L4O8YaiN9NLw0PGTQur4KLeiqjYg4pF1DsP6p2ImnlQMxE196DmIsrOfBfXCRgBVv/4LhZ0xyOAfeTqKwKv4DqsOrdgjkYwfg7BC3xANffgb4tib+mqkwyjeVwnMcvxtGSJJ1BaqDWot1HhDsXXKc2wBCTjlvd0jI93mNtY6DnHVvisWMmjImMSTmdI8gwKOugtRjSfmtG5TTVn5N1xqRn+VjHvTakZfpc0fkZePJea4ada+uk5ZG9rbPsc2BbMprHWvi03pcH5F6Zhyhdp1UWLi2/1VI8ZpPe2If19/Wb2z/FetqnE+rHlZjRyp395qX9NaFg9546em1FB74m9XlOKGvdkpONeW24qQ0ar6EjLYe+avhls09dvxpSb0TgEj2ubYu6FU246esdFb2y5GY1jxXnPM/LkTbkZjQHdsz5suRkNzLZ0dZxvy00tO2qAY2dbbmrVR5QFxhwQj3musV7RhPykmaY2JP+gPlvj+vyr6xjmbJ4VMUI9JevbVtOJi7WsXiLjLyRg1aYN5UD/Yub4YGUaC3VVjK9YhmlpfV+lY9d41PwBaDGC2c97AFLOPAUJTU4CrXcKFLfEqKvcM4O7KuJwlJwsoTq6dip6i5YvZ43Kdc+pVorLbG+tHjtkr3Mae2PyCQ9Is5IeDirfcBVFSUMHJQ3J9Jro7r2er2Xtb4q48RJiXIy0Hu0I8U5afZzq03rL0fG63uWZwsV7Pnb8Yrb5RFsbjHkyskUoSx1Pt53JI7l1uK5eUTbHzc8ieqNor+ZkNYa0I5WLUajJFrM3vqB7S/uI9uSQB9PowXuMNJWx4l0zzKJjPj0ii+raW4k36stk6Lick9U19rgePXDQAw+6eYyzDSvGXSi1IWY4grt2QJRzsdBVRhqfqN8Wu6MZvcH6iD4tWUhDg+1NUrKQdVH2ixKVN4DG0cBRejiNZToG31mhJEf9Pnls7Fq2/Ou0c2v2t7s0xqtHc3Umpk9crxLXiGYN7+ry3TIHlmDhfXKV/Nf6XiK/JhzRhkpcnzmcWS8j2vFPKIIdk2ec0myTZke5tZufWn5iOB0qs3eOu9kZWciI7F8E61NGYzKiH/fsgNlBZ4uQko0MsTvDwrvx+TpDcYxZP26o+FSDHW8J2bIZ8Td03dmV01jkiIHXgbOlsW10ckC+YEJcJ9q627ldv/og0p6TcEcJU7Rj5TLx/5x+mx8zTtZWRgRqGN9Arm2d731kFLOgjrq0ytfbINPWlfKzQoZnWmq7/lmZPitJtkMRF8qDq3UfOPfonnnhKJmQ3PlKG15H67K5SHm8pEfs7QlF8Wz3B3oFRrmv0Cq5RnOuQ6NkAKNgWkQRpq2URV7mW8+rTD2Mdv5/oW51XdYaUoyUzeCyhqT8fkLRmitlCqOax+8rmk1+rU+WWtXzGdFYPHXm8jdQ+0v4beQ292F04pJVuEFjgCnYO6sRrolWWoTxulHiZUamoWXvLT87Jk0rt+Y88TVbNxtjzxtTOaRR81ZnLUz5PDReOjReBuqwTXuNVoum3lii52Js0da7laH8mnBrN6A8EynLHplBDQOkdGOpMKp9kaoc4xvUe5HWpkirC7PV3Q1w53wI0j/Xl2f3N8XqHqmb5Nv0yAPj+KVPs3RIPpeprY/UmAJyvqbtqzv7O1SD3GOyoEiZz3HijOFdpx5dZ4Wkv9IrW0Z23loEc27pjW5jbGyHyr9fQZ7SnMhpXhrENWqRaPldOaIli7Th+BwRZf675FOx31EfM7ut7TuJSv6EjTd5VlleHCmMSP9S5m1/JXrdd+LXiGLCmfauY6DV/A0jBcaYTILfs8zpDeEqxzsJ7NHGZD9X7RTv4o0ciTZI6oX6c4CN4ajXjnV3bJkem779Blqi1u1b97WQ+aXBHCV+59nR69Kqdqp91MXS/flodfUqV76v08Nsia/Vx4zauJGFjfLKmI76IpgLS9SMC2NCuDTrRRP5m0neRGbenQqlbFobyuVMA9uYFxQvSedAEeHz7i57vbnPhX7EK/RiwrrUuEaihNm4TOcHXEuLWaloKUJy66U1KXXWo6r1wvJwVw1rx9lSJmQFUyXlbri124dOKVqRszFMoaf4ZG9VnOjS/AIu/B0pX5RoOIbkEFvg515X22r3A5yKeK3LnNmMqAZtQn8pBu/qfpZb1OvotUPdpR/CIZzHEHQtST+kFbWp7ExZltylHk7/DVmDiUpE6W3L5n1wucg9WeXUpD9DsnByb4bKfJPTtC+GQ0hPylzC+fD+htSLE2W+bWrWB0Nd7kGZQxMe5jxD2Du3rZvzcjnV62uVSygPXgfMzovB4Q5gdcxi24VYqInzRj48B7QOJzXUzWrxv/bD8LGcmvMK5ZbTN2cvA946t0t0Zhb94uZzxnILGc3VHMN5ZkXvrNfk58f+X9ToTWVObz48ffRL7RgwvBaK86GydIx3R5GVN5QK7g/4ZMjUv9XfL8hfJbwuaFTJ0YSS2a+opmZayNTMl5e+3plnITJZOlUylanZeKJFJ2O31b66CT/bhQfY9JQof1PJfxHr/462D7UnZD1MNp0zCB2qSygLYnfT+nRvz9FWSYxnevmMbxtqcE/8gGrxvO9dao9nftulvlV/ScJz/Y7KVL8UmSzv8tl5FUMPyjtwnAsy3/tGdKaes1l8Au00YI+Rz1FxpGS+fl4Qok9x4bKkC0KY0VJHOfZSjulMUlJBOy71rUcjfKx3+nHfAc/nd4vsUqR+R3VdvTrgSi1JdeiR6gllBmLS/yZEaH9QV+DvFV32S3q4ImlO76As0VvnWf1JsDPvuLBfM65THsxk6ua6XUZRvd09rM/E7lRy4RPv9fhBDX7gSNmit/WK4u6Jqs8dzmpozrRM7n7uSJm8J+sBo9luMT7q4+d5Da95QP9vV6JvO5LugSwxZdsj2s+bEL1U62aXpOdzlfV521s10pqvNpmmPVlpx4E5I1nHAb8q2xZmP395Vr8y4BdmfjruXH8csO+CPZEk4pOZUvYoCZCIz4hK51eGXkqyxRgHnM/oBvRW7mtITyUqM1GSWcC30fMAWeYBdE4EaU5ECgNREm2xnl9a21r+30dWC8dXN7Y2N7buX1v78ob+n0k+Vj9Xn6rLsBr/UX0JM/JQHVGu8S/qr+pvO//Z/cXu+u6vuelHFzTmZ6r0b3fzv4JTXQQ=</latexit> <latexit sha1_base64="6tOGw6FSQVfHa06oZqSaTlaRZAo=">AABFdnictVxtc9u4EUaub9f0Ldd+7EyHPZ/bXCd17TSdduamM5fYjuOLkziR7CQXJRlRohUltKiIkvKi81/o1/bf9Hf0H7Sf+rUfuy8AAUogF3TTcGyDIJ7dxRJY7C7AxON0mE83N/9x4aNvffs73/3ex9+/+IMf/ujHP7n0yU+P82w26SVHvSzNJo/ibp6kw1FyNB1O0+TReJJ0T+M0eRi/2sbnD+fJJB9mo/b03Th5etodjIYnw153ilWdx++2n19a29zYpH/RamFLF9aU/neYffLphuqovspUT83UqUrUSE2hnKquyuF6orbUphpD3VO1gLoJlIb0PFFn6iJgZ9AqgRZdqH0Fvwdw90TXjuAeaeaE7gGXFH4mgIzUOmAyaDeBMnKL6PmMKGNtFe0F0UTZ3sHfWNM6hdqpegG1Es60DMVhX6bqRP2J+jCEPo2pBnvX01RmpBWUPHJ6NQUKY6jDch+eT6DcI6TRc0SYnPqOuu3S839SS6zF+55uO1P/IinX4YpUS/c+Kyh01ZzoR/Q2Z/CM5UmB8wAoJLqPWHpDuj6l3o+g/QLq78J1RiWjkxiuBdWe1SK34fIht0XkHlw+5J6IPIDLhzwQkYdw+ZCHGonYCencj2/B5cO3RM734fIh74vIB3D5kA9E5DFcPuSxiPwaLh/yaxF5Ey4f8qaIvA2XD3lbRLbh8iHbIvIILh/ySETuwuVD7mpk9UydwJURnaEwK69DucwDLUUKNddF+W6QdfRhbwTM6V4FVp7VO/DXj90J0GlSgd0NGHcnFVh55O2BjfRjZVt0i1YTH/aWiN2HEeDH7ovYr9TLCuxXATPtVQVWnmsH0M6Pla3vHbjzY++I2LtQ8mPlNeoe1Pix9wJWjHEF9lDE3levK7AhVn9SgZXtfgvsih8rr1NtaO/HhljTWQVWtqfH4MH4sfJq9RBq/diHIvaReluBfSRiH4N192MfB6yw7yuwZo29SCvIgPyRBGZsHbVuMSuxNAZqXYF/WqwtKfnGMdRLmEGBGRDmVETsFYi9QMRBgTgIlisv7GhO/q7MpVUgWoGIuFibsDQV2/eL9lhKAxA7BWJnCVHnkeK7Nn2Zk3dhaiTktFi5sBTSp6yw31hK9Hiot7wGca+E4LH9gkb+FYqWMIJCTdVRe1Gs8YyM6L4O8YaiN9NLw0PGTQur4KLeiqjYg4pF1DsP6p2ImnlQMxE196DmIsrOfBfXCRgBVv/4LhZ0xyOAfeTqKwKv4DqsOrdgjkYwfg7BC3xANffgb4tib+mqkwyjeVwnMcvxtGSJJ1BaqDWot1HhDsXXKc2wBCTjlvd0jI93mNtY6DnHVvisWMmjImMSTmdI8gwKOugtRjSfmtG5TTVn5N1xqRn+VjHvTakZfpc0fkZePJea4ada+uk5ZG9rbPsc2BbMprHWvi03pcH5F6Zhyhdp1UWLi2/1VI8ZpPe2If19/Wb2z/FetqnE+rHlZjRyp395qX9NaFg9546em1FB74m9XlOKGvdkpONeW24qQ0ar6EjLYe+avhls09dvxpSb0TgEj2ubYu6FU246esdFb2y5GY1jxXnPM/LkTbkZjQHdsz5suRkNzLZ0dZxvy00tO2qAY2dbbmrVR5QFxhwQj3musV7RhPykmaY2JP+gPlvj+vyr6xjmbJ4VMUI9JevbVtOJi7WsXiLjLyRg1aYN5UD/Yub4YGUaC3VVjK9YhmlpfV+lY9d41PwBaDGC2c97AFLOPAUJTU4CrXcKFLfEqKvcM4O7KuJwlJwsoTq6dip6i5YvZ43Kdc+pVorLbG+tHjtkr3Mae2PyCQ9Is5IeDirfcBVFSUMHJQ3J9Jro7r2er2Xtb4q48RJiXIy0Hu0I8U5afZzq03rL0fG63uWZwsV7Pnb8Yrb5RFsbjHkyskUoSx1Pt53JI7l1uK5eUTbHzc8ieqNor+ZkNYa0I5WLUajJFrM3vqB7S/uI9uSQB9PowXuMNJWx4l0zzKJjPj0ii+raW4k36stk6Lick9U19rgePXDQAw+6eYyzDSvGXSi1IWY4grt2QJRzsdBVRhqfqN8Wu6MZvcH6iD4tWUhDg+1NUrKQdVH2ixKVN4DG0cBRejiNZToG31mhJEf9Pnls7Fq2/Ou0c2v2t7s0xqtHc3Umpk9crxLXiGYN7+ry3TIHlmDhfXKV/Nf6XiK/JhzRhkpcnzmcWS8j2vFPKIIdk2ec0myTZke5tZufWn5iOB0qs3eOu9kZWciI7F8E61NGYzKiH/fsgNlBZ4uQko0MsTvDwrvx+TpDcYxZP26o+FSDHW8J2bIZ8Td03dmV01jkiIHXgbOlsW10ckC+YEJcJ9q627ldv/og0p6TcEcJU7Rj5TLx/5x+mx8zTtZWRgRqGN9Arm2d731kFLOgjrq0ytfbINPWlfKzQoZnWmq7/lmZPitJtkMRF8qDq3UfOPfonnnhKJmQ3PlKG15H67K5SHm8pEfs7QlF8Wz3B3oFRrmv0Cq5RnOuQ6NkAKNgWkQRpq2URV7mW8+rTD2Mdv5/oW51XdYaUoyUzeCyhqT8fkLRmitlCqOax+8rmk1+rU+WWtXzGdFYPHXm8jdQ+0v4beQ292F04pJVuEFjgCnYO6sRrolWWoTxulHiZUamoWXvLT87Jk0rt+Y88TVbNxtjzxtTOaRR81ZnLUz5PDReOjReBuqwTXuNVoum3lii52Js0da7laH8mnBrN6A8EynLHplBDQOkdGOpMKp9kaoc4xvUe5HWpkirC7PV3Q1w53wI0j/Xl2f3N8XqHqmb5Nv0yAPj+KVPs3RIPpeprY/UmAJyvqbtqzv7O1SD3GOyoEiZz3HijOFdpx5dZ4Wkv9IrW0Z23loEc27pjW5jbGyHyr9fQZ7SnMhpXhrENWqRaPldOaIli7Th+BwRZf675FOx31EfM7ut7TuJSv6EjTd5VlleHCmMSP9S5m1/JXrdd+LXiGLCmfauY6DV/A0jBcaYTILfs8zpDeEqxzsJ7NHGZD9X7RTv4o0ciTZI6oX6c4CN4ajXjnV3bJkem779Blqi1u1b97WQ+aXBHCV+59nR69Kqdqp91MXS/flodfUqV76v08Nsia/Vx4zauJGFjfLKmI76IpgLS9SMC2NCuDTrRRP5m0neRGbenQqlbFobyuVMA9uYFxQvSedAEeHz7i57vbnPhX7EK/RiwrrUuEaihNm4TOcHXEuLWaloKUJy66U1KXXWo6r1wvJwVw1rx9lSJmQFUyXlbri124dOKVqRszFMoaf4ZG9VnOjS/AIu/B0pX5RoOIbkEFvg515X22r3A5yKeK3LnNmMqAZtQn8pBu/qfpZb1OvotUPdpR/CIZzHEHQtST+kFbWp7ExZltylHk7/DVmDiUpE6W3L5n1wucg9WeXUpD9DsnByb4bKfJPTtC+GQ0hPylzC+fD+htSLE2W+bWrWB0Nd7kGZQxMe5jxD2Du3rZvzcjnV62uVSygPXgfMzovB4Q5gdcxi24VYqInzRj48B7QOJzXUzWrxv/bD8LGcmvMK5ZbTN2cvA946t0t0Zhb94uZzxnILGc3VHMN5ZkXvrNfk58f+X9ToTWVObz48ffRL7RgwvBaK86GydIx3R5GVN5QK7g/4ZMjUv9XfL8hfJbwuaFTJ0YSS2a+opmZayNTMl5e+3plnITJZOlUylanZeKJFJ2O31b66CT/bhQfY9JQof1PJfxHr/462D7UnZD1MNp0zCB2qSygLYnfT+nRvz9FWSYxnevmMbxtqcE/8gGrxvO9dao9nftulvlV/ScJz/Y7KVL8UmSzv8tl5FUMPyjtwnAsy3/tGdKaes1l8Au00YI+Rz1FxpGS+fl4Qok9x4bKkC0KY0VJHOfZSjulMUlJBOy71rUcjfKx3+nHfAc/nd4vsUqR+R3VdvTrgSi1JdeiR6gllBmLS/yZEaH9QV+DvFV32S3q4ImlO76As0VvnWf1JsDPvuLBfM65THsxk6ua6XUZRvd09rM/E7lRy4RPv9fhBDX7gSNmit/WK4u6Jqs8dzmpozrRM7n7uSJm8J+sBo9luMT7q4+d5Da95QP9vV6JvO5LugSwxZdsj2s+bEL1U62aXpOdzlfV521s10pqvNpmmPVlpx4E5I1nHAb8q2xZmP395Vr8y4BdmfjruXH8csO+CPZEk4pOZUvYoCZCIz4hK51eGXkqyxRgHnM/oBvRW7mtITyUqM1GSWcC30fMAWeYBdE4EaU5ECgNREm2xnl9a21r+30dWC8dXN7Y2N7buX1v78ob+n0k+Vj9Xn6rLsBr/UX0JM/JQHVGu8S/qr+pvO//Z/cXu+u6vuelHFzTmZ6r0b3fzv4JTXQQ=</latexit> <latexit sha1_base64="6tOGw6FSQVfHa06oZqSaTlaRZAo=">AABFdnictVxtc9u4EUaub9f0Ldd+7EyHPZ/bXCd17TSdduamM5fYjuOLkziR7CQXJRlRohUltKiIkvKi81/o1/bf9Hf0H7Sf+rUfuy8AAUogF3TTcGyDIJ7dxRJY7C7AxON0mE83N/9x4aNvffs73/3ex9+/+IMf/ujHP7n0yU+P82w26SVHvSzNJo/ibp6kw1FyNB1O0+TReJJ0T+M0eRi/2sbnD+fJJB9mo/b03Th5etodjIYnw153ilWdx++2n19a29zYpH/RamFLF9aU/neYffLphuqovspUT83UqUrUSE2hnKquyuF6orbUphpD3VO1gLoJlIb0PFFn6iJgZ9AqgRZdqH0Fvwdw90TXjuAeaeaE7gGXFH4mgIzUOmAyaDeBMnKL6PmMKGNtFe0F0UTZ3sHfWNM6hdqpegG1Es60DMVhX6bqRP2J+jCEPo2pBnvX01RmpBWUPHJ6NQUKY6jDch+eT6DcI6TRc0SYnPqOuu3S839SS6zF+55uO1P/IinX4YpUS/c+Kyh01ZzoR/Q2Z/CM5UmB8wAoJLqPWHpDuj6l3o+g/QLq78J1RiWjkxiuBdWe1SK34fIht0XkHlw+5J6IPIDLhzwQkYdw+ZCHGonYCencj2/B5cO3RM734fIh74vIB3D5kA9E5DFcPuSxiPwaLh/yaxF5Ey4f8qaIvA2XD3lbRLbh8iHbIvIILh/ySETuwuVD7mpk9UydwJURnaEwK69DucwDLUUKNddF+W6QdfRhbwTM6V4FVp7VO/DXj90J0GlSgd0NGHcnFVh55O2BjfRjZVt0i1YTH/aWiN2HEeDH7ovYr9TLCuxXATPtVQVWnmsH0M6Pla3vHbjzY++I2LtQ8mPlNeoe1Pix9wJWjHEF9lDE3levK7AhVn9SgZXtfgvsih8rr1NtaO/HhljTWQVWtqfH4MH4sfJq9RBq/diHIvaReluBfSRiH4N192MfB6yw7yuwZo29SCvIgPyRBGZsHbVuMSuxNAZqXYF/WqwtKfnGMdRLmEGBGRDmVETsFYi9QMRBgTgIlisv7GhO/q7MpVUgWoGIuFibsDQV2/eL9lhKAxA7BWJnCVHnkeK7Nn2Zk3dhaiTktFi5sBTSp6yw31hK9Hiot7wGca+E4LH9gkb+FYqWMIJCTdVRe1Gs8YyM6L4O8YaiN9NLw0PGTQur4KLeiqjYg4pF1DsP6p2ImnlQMxE196DmIsrOfBfXCRgBVv/4LhZ0xyOAfeTqKwKv4DqsOrdgjkYwfg7BC3xANffgb4tib+mqkwyjeVwnMcvxtGSJJ1BaqDWot1HhDsXXKc2wBCTjlvd0jI93mNtY6DnHVvisWMmjImMSTmdI8gwKOugtRjSfmtG5TTVn5N1xqRn+VjHvTakZfpc0fkZePJea4ada+uk5ZG9rbPsc2BbMprHWvi03pcH5F6Zhyhdp1UWLi2/1VI8ZpPe2If19/Wb2z/FetqnE+rHlZjRyp395qX9NaFg9546em1FB74m9XlOKGvdkpONeW24qQ0ar6EjLYe+avhls09dvxpSb0TgEj2ubYu6FU246esdFb2y5GY1jxXnPM/LkTbkZjQHdsz5suRkNzLZ0dZxvy00tO2qAY2dbbmrVR5QFxhwQj3musV7RhPykmaY2JP+gPlvj+vyr6xjmbJ4VMUI9JevbVtOJi7WsXiLjLyRg1aYN5UD/Yub4YGUaC3VVjK9YhmlpfV+lY9d41PwBaDGC2c97AFLOPAUJTU4CrXcKFLfEqKvcM4O7KuJwlJwsoTq6dip6i5YvZ43Kdc+pVorLbG+tHjtkr3Mae2PyCQ9Is5IeDirfcBVFSUMHJQ3J9Jro7r2er2Xtb4q48RJiXIy0Hu0I8U5afZzq03rL0fG63uWZwsV7Pnb8Yrb5RFsbjHkyskUoSx1Pt53JI7l1uK5eUTbHzc8ieqNor+ZkNYa0I5WLUajJFrM3vqB7S/uI9uSQB9PowXuMNJWx4l0zzKJjPj0ii+raW4k36stk6Lick9U19rgePXDQAw+6eYyzDSvGXSi1IWY4grt2QJRzsdBVRhqfqN8Wu6MZvcH6iD4tWUhDg+1NUrKQdVH2ixKVN4DG0cBRejiNZToG31mhJEf9Pnls7Fq2/Ou0c2v2t7s0xqtHc3Umpk9crxLXiGYN7+ry3TIHlmDhfXKV/Nf6XiK/JhzRhkpcnzmcWS8j2vFPKIIdk2ec0myTZke5tZufWn5iOB0qs3eOu9kZWciI7F8E61NGYzKiH/fsgNlBZ4uQko0MsTvDwrvx+TpDcYxZP26o+FSDHW8J2bIZ8Td03dmV01jkiIHXgbOlsW10ckC+YEJcJ9q627ldv/og0p6TcEcJU7Rj5TLx/5x+mx8zTtZWRgRqGN9Arm2d731kFLOgjrq0ytfbINPWlfKzQoZnWmq7/lmZPitJtkMRF8qDq3UfOPfonnnhKJmQ3PlKG15H67K5SHm8pEfs7QlF8Wz3B3oFRrmv0Cq5RnOuQ6NkAKNgWkQRpq2URV7mW8+rTD2Mdv5/oW51XdYaUoyUzeCyhqT8fkLRmitlCqOax+8rmk1+rU+WWtXzGdFYPHXm8jdQ+0v4beQ292F04pJVuEFjgCnYO6sRrolWWoTxulHiZUamoWXvLT87Jk0rt+Y88TVbNxtjzxtTOaRR81ZnLUz5PDReOjReBuqwTXuNVoum3lii52Js0da7laH8mnBrN6A8EynLHplBDQOkdGOpMKp9kaoc4xvUe5HWpkirC7PV3Q1w53wI0j/Xl2f3N8XqHqmb5Nv0yAPj+KVPs3RIPpeprY/UmAJyvqbtqzv7O1SD3GOyoEiZz3HijOFdpx5dZ4Wkv9IrW0Z23loEc27pjW5jbGyHyr9fQZ7SnMhpXhrENWqRaPldOaIli7Th+BwRZf675FOx31EfM7ut7TuJSv6EjTd5VlleHCmMSP9S5m1/JXrdd+LXiGLCmfauY6DV/A0jBcaYTILfs8zpDeEqxzsJ7NHGZD9X7RTv4o0ciTZI6oX6c4CN4ajXjnV3bJkem779Blqi1u1b97WQ+aXBHCV+59nR69Kqdqp91MXS/flodfUqV76v08Nsia/Vx4zauJGFjfLKmI76IpgLS9SMC2NCuDTrRRP5m0neRGbenQqlbFobyuVMA9uYFxQvSedAEeHz7i57vbnPhX7EK/RiwrrUuEaihNm4TOcHXEuLWaloKUJy66U1KXXWo6r1wvJwVw1rx9lSJmQFUyXlbri124dOKVqRszFMoaf4ZG9VnOjS/AIu/B0pX5RoOIbkEFvg515X22r3A5yKeK3LnNmMqAZtQn8pBu/qfpZb1OvotUPdpR/CIZzHEHQtST+kFbWp7ExZltylHk7/DVmDiUpE6W3L5n1wucg9WeXUpD9DsnByb4bKfJPTtC+GQ0hPylzC+fD+htSLE2W+bWrWB0Nd7kGZQxMe5jxD2Du3rZvzcjnV62uVSygPXgfMzovB4Q5gdcxi24VYqInzRj48B7QOJzXUzWrxv/bD8LGcmvMK5ZbTN2cvA946t0t0Zhb94uZzxnILGc3VHMN5ZkXvrNfk58f+X9ToTWVObz48ffRL7RgwvBaK86GydIx3R5GVN5QK7g/4ZMjUv9XfL8hfJbwuaFTJ0YSS2a+opmZayNTMl5e+3plnITJZOlUylanZeKJFJ2O31b66CT/bhQfY9JQof1PJfxHr/462D7UnZD1MNp0zCB2qSygLYnfT+nRvz9FWSYxnevmMbxtqcE/8gGrxvO9dao9nftulvlV/ScJz/Y7KVL8UmSzv8tl5FUMPyjtwnAsy3/tGdKaes1l8Au00YI+Rz1FxpGS+fl4Qok9x4bKkC0KY0VJHOfZSjulMUlJBOy71rUcjfKx3+nHfAc/nd4vsUqR+R3VdvTrgSi1JdeiR6gllBmLS/yZEaH9QV+DvFV32S3q4ImlO76As0VvnWf1JsDPvuLBfM65THsxk6ua6XUZRvd09rM/E7lRy4RPv9fhBDX7gSNmit/WK4u6Jqs8dzmpozrRM7n7uSJm8J+sBo9luMT7q4+d5Da95QP9vV6JvO5LugSwxZdsj2s+bEL1U62aXpOdzlfV521s10pqvNpmmPVlpx4E5I1nHAb8q2xZmP395Vr8y4BdmfjruXH8csO+CPZEk4pOZUvYoCZCIz4hK51eGXkqyxRgHnM/oBvRW7mtITyUqM1GSWcC30fMAWeYBdE4EaU5ECgNREm2xnl9a21r+30dWC8dXN7Y2N7buX1v78ob+n0k+Vj9Xn6rLsBr/UX0JM/JQHVGu8S/qr+pvO//Z/cXu+u6vuelHFzTmZ6r0b3fzv4JTXQQ=</latexit> <latexit sha1_base64="6tOGw6FSQVfHa06oZqSaTlaRZAo=">AABFdnictVxtc9u4EUaub9f0Ldd+7EyHPZ/bXCd17TSdduamM5fYjuOLkziR7CQXJRlRohUltKiIkvKi81/o1/bf9Hf0H7Sf+rUfuy8AAUogF3TTcGyDIJ7dxRJY7C7AxON0mE83N/9x4aNvffs73/3ex9+/+IMf/ujHP7n0yU+P82w26SVHvSzNJo/ibp6kw1FyNB1O0+TReJJ0T+M0eRi/2sbnD+fJJB9mo/b03Th5etodjIYnw153ilWdx++2n19a29zYpH/RamFLF9aU/neYffLphuqovspUT83UqUrUSE2hnKquyuF6orbUphpD3VO1gLoJlIb0PFFn6iJgZ9AqgRZdqH0Fvwdw90TXjuAeaeaE7gGXFH4mgIzUOmAyaDeBMnKL6PmMKGNtFe0F0UTZ3sHfWNM6hdqpegG1Es60DMVhX6bqRP2J+jCEPo2pBnvX01RmpBWUPHJ6NQUKY6jDch+eT6DcI6TRc0SYnPqOuu3S839SS6zF+55uO1P/IinX4YpUS/c+Kyh01ZzoR/Q2Z/CM5UmB8wAoJLqPWHpDuj6l3o+g/QLq78J1RiWjkxiuBdWe1SK34fIht0XkHlw+5J6IPIDLhzwQkYdw+ZCHGonYCencj2/B5cO3RM734fIh74vIB3D5kA9E5DFcPuSxiPwaLh/yaxF5Ey4f8qaIvA2XD3lbRLbh8iHbIvIILh/ySETuwuVD7mpk9UydwJURnaEwK69DucwDLUUKNddF+W6QdfRhbwTM6V4FVp7VO/DXj90J0GlSgd0NGHcnFVh55O2BjfRjZVt0i1YTH/aWiN2HEeDH7ovYr9TLCuxXATPtVQVWnmsH0M6Pla3vHbjzY++I2LtQ8mPlNeoe1Pix9wJWjHEF9lDE3levK7AhVn9SgZXtfgvsih8rr1NtaO/HhljTWQVWtqfH4MH4sfJq9RBq/diHIvaReluBfSRiH4N192MfB6yw7yuwZo29SCvIgPyRBGZsHbVuMSuxNAZqXYF/WqwtKfnGMdRLmEGBGRDmVETsFYi9QMRBgTgIlisv7GhO/q7MpVUgWoGIuFibsDQV2/eL9lhKAxA7BWJnCVHnkeK7Nn2Zk3dhaiTktFi5sBTSp6yw31hK9Hiot7wGca+E4LH9gkb+FYqWMIJCTdVRe1Gs8YyM6L4O8YaiN9NLw0PGTQur4KLeiqjYg4pF1DsP6p2ImnlQMxE196DmIsrOfBfXCRgBVv/4LhZ0xyOAfeTqKwKv4DqsOrdgjkYwfg7BC3xANffgb4tib+mqkwyjeVwnMcvxtGSJJ1BaqDWot1HhDsXXKc2wBCTjlvd0jI93mNtY6DnHVvisWMmjImMSTmdI8gwKOugtRjSfmtG5TTVn5N1xqRn+VjHvTakZfpc0fkZePJea4ada+uk5ZG9rbPsc2BbMprHWvi03pcH5F6Zhyhdp1UWLi2/1VI8ZpPe2If19/Wb2z/FetqnE+rHlZjRyp395qX9NaFg9546em1FB74m9XlOKGvdkpONeW24qQ0ar6EjLYe+avhls09dvxpSb0TgEj2ubYu6FU246esdFb2y5GY1jxXnPM/LkTbkZjQHdsz5suRkNzLZ0dZxvy00tO2qAY2dbbmrVR5QFxhwQj3musV7RhPykmaY2JP+gPlvj+vyr6xjmbJ4VMUI9JevbVtOJi7WsXiLjLyRg1aYN5UD/Yub4YGUaC3VVjK9YhmlpfV+lY9d41PwBaDGC2c97AFLOPAUJTU4CrXcKFLfEqKvcM4O7KuJwlJwsoTq6dip6i5YvZ43Kdc+pVorLbG+tHjtkr3Mae2PyCQ9Is5IeDirfcBVFSUMHJQ3J9Jro7r2er2Xtb4q48RJiXIy0Hu0I8U5afZzq03rL0fG63uWZwsV7Pnb8Yrb5RFsbjHkyskUoSx1Pt53JI7l1uK5eUTbHzc8ieqNor+ZkNYa0I5WLUajJFrM3vqB7S/uI9uSQB9PowXuMNJWx4l0zzKJjPj0ii+raW4k36stk6Lick9U19rgePXDQAw+6eYyzDSvGXSi1IWY4grt2QJRzsdBVRhqfqN8Wu6MZvcH6iD4tWUhDg+1NUrKQdVH2ixKVN4DG0cBRejiNZToG31mhJEf9Pnls7Fq2/Ou0c2v2t7s0xqtHc3Umpk9crxLXiGYN7+ry3TIHlmDhfXKV/Nf6XiK/JhzRhkpcnzmcWS8j2vFPKIIdk2ec0myTZke5tZufWn5iOB0qs3eOu9kZWciI7F8E61NGYzKiH/fsgNlBZ4uQko0MsTvDwrvx+TpDcYxZP26o+FSDHW8J2bIZ8Td03dmV01jkiIHXgbOlsW10ckC+YEJcJ9q627ldv/og0p6TcEcJU7Rj5TLx/5x+mx8zTtZWRgRqGN9Arm2d731kFLOgjrq0ytfbINPWlfKzQoZnWmq7/lmZPitJtkMRF8qDq3UfOPfonnnhKJmQ3PlKG15H67K5SHm8pEfs7QlF8Wz3B3oFRrmv0Cq5RnOuQ6NkAKNgWkQRpq2URV7mW8+rTD2Mdv5/oW51XdYaUoyUzeCyhqT8fkLRmitlCqOax+8rmk1+rU+WWtXzGdFYPHXm8jdQ+0v4beQ292F04pJVuEFjgCnYO6sRrolWWoTxulHiZUamoWXvLT87Jk0rt+Y88TVbNxtjzxtTOaRR81ZnLUz5PDReOjReBuqwTXuNVoum3lii52Js0da7laH8mnBrN6A8EynLHplBDQOkdGOpMKp9kaoc4xvUe5HWpkirC7PV3Q1w53wI0j/Xl2f3N8XqHqmb5Nv0yAPj+KVPs3RIPpeprY/UmAJyvqbtqzv7O1SD3GOyoEiZz3HijOFdpx5dZ4Wkv9IrW0Z23loEc27pjW5jbGyHyr9fQZ7SnMhpXhrENWqRaPldOaIli7Th+BwRZf675FOx31EfM7ut7TuJSv6EjTd5VlleHCmMSP9S5m1/JXrdd+LXiGLCmfauY6DV/A0jBcaYTILfs8zpDeEqxzsJ7NHGZD9X7RTv4o0ciTZI6oX6c4CN4ajXjnV3bJkem779Blqi1u1b97WQ+aXBHCV+59nR69Kqdqp91MXS/flodfUqV76v08Nsia/Vx4zauJGFjfLKmI76IpgLS9SMC2NCuDTrRRP5m0neRGbenQqlbFobyuVMA9uYFxQvSedAEeHz7i57vbnPhX7EK/RiwrrUuEaihNm4TOcHXEuLWaloKUJy66U1KXXWo6r1wvJwVw1rx9lSJmQFUyXlbri124dOKVqRszFMoaf4ZG9VnOjS/AIu/B0pX5RoOIbkEFvg515X22r3A5yKeK3LnNmMqAZtQn8pBu/qfpZb1OvotUPdpR/CIZzHEHQtST+kFbWp7ExZltylHk7/DVmDiUpE6W3L5n1wucg9WeXUpD9DsnByb4bKfJPTtC+GQ0hPylzC+fD+htSLE2W+bWrWB0Nd7kGZQxMe5jxD2Du3rZvzcjnV62uVSygPXgfMzovB4Q5gdcxi24VYqInzRj48B7QOJzXUzWrxv/bD8LGcmvMK5ZbTN2cvA946t0t0Zhb94uZzxnILGc3VHMN5ZkXvrNfk58f+X9ToTWVObz48ffRL7RgwvBaK86GydIx3R5GVN5QK7g/4ZMjUv9XfL8hfJbwuaFTJ0YSS2a+opmZayNTMl5e+3plnITJZOlUylanZeKJFJ2O31b66CT/bhQfY9JQof1PJfxHr/462D7UnZD1MNp0zCB2qSygLYnfT+nRvz9FWSYxnevmMbxtqcE/8gGrxvO9dao9nftulvlV/ScJz/Y7KVL8UmSzv8tl5FUMPyjtwnAsy3/tGdKaes1l8Au00YI+Rz1FxpGS+fl4Qok9x4bKkC0KY0VJHOfZSjulMUlJBOy71rUcjfKx3+nHfAc/nd4vsUqR+R3VdvTrgSi1JdeiR6gllBmLS/yZEaH9QV+DvFV32S3q4ImlO76As0VvnWf1JsDPvuLBfM65THsxk6ua6XUZRvd09rM/E7lRy4RPv9fhBDX7gSNmit/WK4u6Jqs8dzmpozrRM7n7uSJm8J+sBo9luMT7q4+d5Da95QP9vV6JvO5LugSwxZdsj2s+bEL1U62aXpOdzlfV521s10pqvNpmmPVlpx4E5I1nHAb8q2xZmP395Vr8y4BdmfjruXH8csO+CPZEk4pOZUvYoCZCIz4hK51eGXkqyxRgHnM/oBvRW7mtITyUqM1GSWcC30fMAWeYBdE4EaU5ECgNREm2xnl9a21r+30dWC8dXN7Y2N7buX1v78ob+n0k+Vj9Xn6rLsBr/UX0JM/JQHVGu8S/qr+pvO//Z/cXu+u6vuelHFzTmZ6r0b3fzv4JTXQQ=</latexit> [Memoli 2011]<latexit sha1_base64="AkiNCXlhCi3VPvfsu2RRzG0SIYE=">AABEhnictVzrdhu3EYbTm+3ekvZn/2yquMfpcVRJcerm5PQc26IsK1Zs2qRkJ6btw8uKpr3k0rz5wug1+rd9hr5An6Nv0P7qK3QuwAJLYnewqqs9ErEgvpnBLDCYGWDVGSeD6Wxr65/nPvjBD3/045+cv3Dxpz/7+S9++eFHvzqepvNJNz7qpkk6edRpT+NkMIqPZoNZEj8aT+L2sJPEDzsvd/H7h4t4Mh2ko+bs7Th+Mmz3R4OTQbc9g6rW48ZsPhlGO1vb20+efbixtblFP9F6YVsXNpT+qacfffx31VI9laqumquhitVIzaCcqLaawvVYbastNYa6J2oJdRMoDej7WJ2qi4CdQ6sYWrSh9iX87cPdY107gnukOSV0F7gk8DsBZKQuASaFdhMoI7eIvp8TZawtor0kmijbW/jsaFpDqJ2p51Ar4UzLUBz2ZaZO1J+oDwPo05hqsHddTWVOWkHJI6dXM6Awhjos9+D7CZS7hDR6jggzpb6jbtv0/b+oJdbifVe3nat/k5SX4IpUQ/c+zSi01YLoR/Q05/Ady5MA5z5QiHUfsfSadD2k3o+g/RLq78J1SiWjkw5cS6o9LUXuwuVD7orIfbh8yH0ReQiXD3koIutw+ZB1jUTshHTuxzfg8uEbIuf7cPmQ90XkA7h8yAci8hguH/JYRH4Hlw/5nYi8BZcPeUtE3oHLh7wjIptw+ZBNEXkElw95JCL34PIh9zSyeKZO4EqJzkCYlTegnOeBliKBmhuifDfJOvqwNwPmdLcAK8/qGnz6sbUAncYF2L2AcXdSgJVH3j7YSD9WtkW3aTXxYW+L2AMYAX7sgYj9Wr0owH4dMNNeFmDluXYI7fxY2fp+A3d+7Dci9i6U/Fh5jboHNX7svYAVY1yArYvY++pVATbE6k8KsLLdb4Bd8WPldaoJ7f3YEGs6L8DK9vQYPBg/Vl6tHkKtH/tQxD5Sbwqwj0Tst2Dd/dhvA1bYdwVYs8ZepBWkT/5IDDO2jFo7m5VYGgO1tsA/ydaWhHzjDtRLmH6G6RNmKCL2M8R+IOIwQxwGyzXN7OiU/F2ZSyNDNAIRnWxtwtJMbN/L2mMpCUDUMkRtBVHmkeKzNn1ZkHdhaiTkLFu5sBTSpzSz31iK9Xgot7wGcS+H4LH9nEb+FYqWMIJCTZVRe56t8YyM6L4M8ZqiN9NLw0PGzTKr4KLeiKiOB9URUW89qLciau5BzUXUwoNaiCg7811cK2AEWP3js1jSHY8A9pGLrwi8ghuw6tyGORrB+KmDF/iAau7BZ4Nib+kqkwyjeVwnMcvxJGeJJ1Baqg2ot1FhjeLrhGZYDJJxy3s6xsc7zG0s9ZxjK3yareRRljEJpzMgefoZHfQWI5pP1ejcoZpT8u64VA1/O5v3plQNv0caPyUvnkvV8DMt/ewMsjc1tnkGbANm01hr35ar0uD8C9Mw5Yu06qLFxac61GMG6b2pSP9AP5mDMzyXXSqxfmy5Go2p079prn9VaFg9Tx09V6OC3hN7vaYUVe7JSMe9tlxVhpRW0ZGWw95VfTLYpqefjClXo1EHj2uXYu6lU646esdZb2y5Go1jxXnPU/LkTbkajT7dsz5suRoNzLa0dZxvy1UtO2qAY2dbrmrVR5QFxhwQj3musV7RhPykuaY2IP+gPFvj+vzr6xjmbJ5mMUI5JevbFtPpZGtZuUTGX4jBqs0qyoH+xdzxwfI0lmpHjK9YhllufV+nY9d41PwhaDGC2c97AFLOPAEJTU4CrXcCFLfFqCvfM4PbEXE4Sk5WUC1dOxO9RcuXs0b5umdUK8VltrdWjy2y11Mae2PyCQ9Js5IeDgufcBFFSUOHOQ3J9Kro7p2er3ntb4m48QpinI20Lu0I8U5aeZzq03rD0fElvcszg4v3fOz4xWzzibY2GPOkZItQljKebjuTR3LrcF29omyOm7+L6ImivVqQ1RjQjtRUjEJNtpi98SXdW9pHtCeHPJhGF55jpKmMFe+aYRYd8+kRWVTX3kq8UV8mQ8flKVldY4/L0X0H3fegq8c4u7Bi3IVSE2KGI7hrBkQ5FzNdpaTxifos2x1N6QmWR/RJzkIaGmxv4pyFLIuyn+eovAY0jgaO0sNprNIx+NYaJTnq98ljY9e85b9EO7dmf7tNY7x4NBdnYnrEdYe4RjRreFeX71Y5sARL7zc75L+W9xL5VeGINlTi+tThzHoZ0Y5/TBHsmDzjhGabNDvyrd381Oo3hlNdmb1z3M1OyUJGZP8iWJ9SGpMR/bpnB8wOOluEhGxkiN0ZZN6Nz9cZiGPM+nEDxaca7HiLyZbNib+h686uKY1Fjhh4HThdGdtGJ4fkC8bEdaKtu53b5asPIu05CXeUMEU7Vi4T/0/pr/k142RjbUSghvEJTLWt8z2PlGIW1FGbVvlyG2TaulJ+ksnwVEtt1z8r0yc5yWoUcaE8uFr3gHOX7pkXjpIJyT1da8PraFk2FymPV/SIvT2hKJ7tfl+vwCj3FVolN2jOtWiU9GEUzLIowrSVssirfMt55amH0Z7+X6hbXee1hhQjZTO4rCEpvx9TtOZKmcCo5vH7kmaTX+uTlVblfEY0FofOXP4eaj+Gv0Zucx9Gp5OzCjdpDDAFe2c1wjXRWoswXjdzvMzINLTsveVnx6Rp5dacJb5m62Zj7EVlKnUaNW901sKUz0LjhUPjRaAOm7TXaLVo6o0leibGFk29WxnKrwq3ZgXKc5Gy7JEZ1CBASjeWCqPaE6nKMb5BvRNpbYm02jBb3d0Ad86HIP1zfXV2f5+t7pG6Rb5Nlzwwjl96NEsH5HOZ2vJIjSkg56vavrqzv0U1yL1DFhQp8zlOnDG869Sl6zST9Hd6ZUvJzluLYM4tvdZtjI1tUfnzNeSQ5sSU5qVBXKUWsZbflSNasUibjs8RUea/TT4V+x3lMbPb2j6TKOdP2HiTZ5XlxZHCiPQvZd4O1qLXAyd+jSgmnGvvugO0qj9hpMAYk0nwe5ZTekK4yvFOAnu0HbKf63aKd/FGjkSbJPVS/TnAxnDUa8e6O7ZMj03ffg8tUev2qftayPySYI4Sv7Ps6LVpVRtqH3W5cn82Wm29yuXvy/QwX+Fr9TGnNm5kYaO8PKalvgrmwhJV48KYEC7VelFF/mqSV5GZd6dCKZvWhnI+08A25jnFS9I5UET4vLvLXm/uU6EfnTV6HcK61LhGooTZuFTnB1xLi1mpC2vrENdeKF2NEmclKlopDHV3tbD2my1kTNYvUVLOhlu7srdyUYqchWEKXcUneoviQ5fmV3Dh30j5okPDMSR32AD/9obaVXvv4TTEK13mjGZENWgLeiuxd1v3M9+iXEevHOou/RAO4TwGoGtJ+gGtpFVlZ8qy5C71cPqvyQpMVCxKb1tW74PLRe7JOqcq/RmQZZN7M1DmXZyqfTEcQnqS5xLOh/c1pF6cKPNOU7U+GOpyD/IcqvAw5xjCnrltXZ2Xy6lcX+tcQnnwKmB2XAwOd/6KYxXbLsRCTZwn8v45oHU4KaFuVov/tR+Gj+VUnVcotym9a/Yi4Klzu1hnZNEfrj5nLLeQ0VzMMZxnmvXOekt+fuz3RZWeVOr05v3TR3/UjgHDa6k4DypLx3h3FFl5Q6ngvoBPhlT9R/3jnPw2wquMRpEcVSiZfYpiaqaFTM28cenrnfkuRCZLp0imPDUbRzToROyuOlC34Hc38wCrng7ldyn5E7H+92d7UHtC1sNk0Tlz0KK6mLIfdhetR/f2/GyRxHiWl8/2NqEG98IPqRbP+d6l9njWt5nrW/EbJDzXv1Gp6uUiktXdPTuvOtCD/M4b54DMe74RnaXnLBafPBsG7C3y+SmOkMxbz0tC9CgeXJV0SQgzWsood7yUO3QWKS6g3cn1rUsjfKx3+HG/Ac/lt7OsUqT+QHVtvTrgSi1JVfdI9ZgyAh3S/xZEaF+oK/B5RZf9ktbXJJ3SM8hL9Mb5rvwE2Kl3XNi3GC9R/stk6Ba6XUrRvN01LM/A1gq58En3cny/BN93pGzQ03pJ8fZElecM5yU051omdx93pEy+k/WA0Ww7Gx/l8fOihNcioP93CtF3HEn3QZYOZdkj2sebEL1E62aPpOfzlOX52tsl0pq3NZmmPVFpx4E5G1m+F5DocVc8+/n8o5SjiQvouHOdT2JKuxOyPLI0IbJIVOaiJPOAd4QXAbIsAuicCNKciBT6oiR6BtP/5fiSfiIuXLuqC19uZ/+X43hnc/uPm5/f39m4flP/h47z6jfqt+oyrE7X1HUYoXV1BJzG6i/qr+pvtfO1zdoXtWvc9INzGvNrlfupXf8vDd4v0g==</latexit> [Sturm 2011] k(x, y, x0, y0) def. = |dX (x, x0) dY (y, y0)|2 <latexit sha1_base64="Me+rXVOTINPDARdCMVN99o+kq1w=">AABHA3ictVxLcxu5EYY3u8lGeXmTYy6T1Tprb2kdSXEqqdpK1dqUZGst27JJyfaatoqPIU2L4tB8yJJpHvNrckvlmuRX5JB/kJzyA3JJP4ABhsRMYxTHU5IwGHzdjR6g0d3AuDns98aT9fV/XPrgOx9+9N3vffz9lR/88Ec//snlT356OE6mo1Z80Er6yehJszGO+71BfDDpTfrxk+Eobpw0+/Hj5nEFnz8+jUfjXjKoTc6H8fOTRnfQ6/RajQlUHV1Ojq/Wzypr9fPK2qxO5GajuD0/+3ye3jf703h+/vn8WlSPX7fjTvRupd5+UiHcAuZa9CU8ewrPHHopfuXdi82jy6vr19fpX7Rc2NCFVaX/7SeffPpXVVdtlaiWmqoTFauBmkC5rxpqDNcztaHW1RDqnqsZ1I2g1KPnsZqrFcBOoVUMLRpQewy/u3D3TNcO4B5pjgndAi59+BkBMlJXAJNAuxGUkVtEz6dEGWvzaM+IJsp2Dn+bmtYJ1E7US6iVcKZlKA77MlEd9TvqQw/6NKQa7F1LU5mSVlDyyOnVBCgMoQ7LbXg+gnKLkEbPEWHG1HfUbYOe/5NaYi3et3TbqfoXSXkFrkhVde+TlEJDnRL9iN7mFJ6xPH3g3AUKse4jlt6Qrk+o9wNoP4P6+3DNqWR00oRrRrXzQmQFLh+yIiJvw+VD3haRe3D5kHsich8uH3JfIxE7Ip378VW4fPiqyPkhXD7kQxH5CC4f8pGIPITLhzwUkd/C5UN+KyJ34PIhd0TkXbh8yLsisgaXD1kTkQdw+ZAHInIbLh9yWyPzZ+oIroTo9IRZeRPKWR5oKfpQc1OU7xZZRx/2VsCcbuVg5Vm9BX/92K0AncY52O2AcdfJwcoj7zbYSD9WtkV3aDXxYe+I2F0YAX7sroj9Rr3KwX4TMNOOc7DyXNuDdn6sbH3vwZ0fe0/E3oeSHyuvUQ+gxo99ELBiDHOw+yL2oXqdgw2x+qMcrGz3q2BX/Fh5napBez82xJpOc7CyPT0ED8aPlVerx1Drxz4WsU/UWQ72iYh9Ctbdj30asMK+zcGaNXaFVpAu+SMxzNgiao10VmJpCNQaAv9+urb0yTduQr2E6aaYLmFORMTtFHE7ELGXIvaC5RqndnRM/q7MpZoiqoGIZro2YWkitm+n7bHUD0BspYitBUSRR4rv2vTllLwLUyMhJ+nKhaWQPiWp/cZSrMdDseU1iAcZBI/tlzTy1yhawggKNVVE7WW6xjMyovsixBuK3kwvDQ8ZN0mtgos6E1FND6opos49qHMRNfWgpiLq1IM6FVF25ru4esAIsPrHdzGjOx4B7CPnXxF4BTdh1bkDczSC8bMPXuAjqnkAf6sUe0tXkWQYzeM6iVmO5xlLPILSTK1CvY0Ktyi+7tMMi0EybvlAx/h4h7mNmZ5zbIXn6UoepRmTcDo9kqeb0kFvMaL5VI7OXaqZk3fHpXL4O+m8N6Vy+G3S+Jy8eC6Vw0+09JMLyF7T2NoFsFWYTUOtfVsuS4PzL0zDlFdo1UWLi2/1RI8ZpHdWkv6ufjO7F3gvFSqxfmy5HI2x079xpn9laFg9jx09l6OC3hN7vaYUle7JQMe9tlxWhoRW0YGWw96VfTPYpq3fjCmXo7EPHleFYu6ZUy47eodpb2y5HI1DxXnPOXnyplyORpfuWR+2XI4GZlsaOs635bKWHTXAsbMtl7XqA8oCYw6IxzzXWK9oRH7SVFPrkX9QnK1xff7ldQxzNi/SGKGYkvVt8+k007WsWCLjL8Rg1SYl5UD/Yur4YFkaM7UpxlcswySzvi/TsWs8an4PtBjB7Oc9ACln3gcJTU4CrXcfKG6IUVe2Zwa3KeJwlHQWUHVdOxG9RcuXs0bZuiOqleIy21urxzrZ6zGNvSH5hHukWUkPe7lvOI+ipKG9jIZkemV091bP16z210XccAExTEdai3aEeCetOE71ab3q6PiK3uWZwMV7Pnb8Yra5o60NxjwJ2SKUpYin287kkdw6XFfXlM1x87OI3ijaq1OyGj3akRqLUajJFrM3PqN7S/uA9uSQB9NowXuMNJWh4l0zzKJjPj0ii+raW4k36stk6Lg8Jqtr7HExuuugux50+RinAivGfSjVIGY4gLtaQJSzkuoqIY2P1Jfp7mhCb7A4ou9nLKShwfYmzljIoij7ZYbKG0DjaOAoPZzGIh2Dry9RkqN+nzw2ds1a/iu0c2v2txs0xvNHc34mpk1cN4lrRLOGd3X5bpEDSzDzPtkk/7W4l8ivDEe0oRLXFw5n1suAdvxjimCH5Bn3abZJsyPb2s1PLT4xnPaV2TvH3eyELGRE9i+C9SmhMRnRj3t2wOygs0Xok40MsTu91Lvx+To9cYxZP66n+FSDHW8x2bIp8Td03dk1prHIEQOvA/OFsW10ske+YExcR9q627ldvPog0p6TcEcJU7Rj5Srxv0a/zY8ZJ6tLIwI1jG9grG2d730kFLOgjhq0yhfbINPWlfKzVIYXWmq7/lmZPstItkURF8qDq3UbOLfonnnhKBmR3OOlNryOFmVzkfJwQY/Y2w5F8Wz3u3oFRrnXaJVcpTlXp1HShVEwSaMI01bKIi/yLeaVpR5Ge/x/oW51ndUaUoyUzeCyhqT8fkzRmitlH0Y1j99jmk1+rY8WWhXzGdBYPHHm8juo/QX8NnKb+zA6zYxVuEVjgCnYO6sRromWWoTxupXhZUamoWXvLT87Jk0rt+Yi8TVbNxtjn5amsk+j5kxnLUz5IjReOTReBeqwRnuNVoum3liiIzG2qOndylB+ZbjVSlCeipRlj8ygegFSurFUGNW2SFWO8Q3qrUhrXaTVgNnq7ga4cz4E6Z/ri7P7Xbq6R2qHfJsWeWAcv7RplvbI5zK1xZEaU0DON7R9dWd/nWqQe5MsKFLmc5w4Y3jXqUXXPJX0l3plS8jOW4tgzi290W2Mja1T+ddLyBOaE2OalwZxg1rEWn5XjmjBIl13fI6IMv8N8qnY7yiOmd3W9p1EGX/Cxps8qywvjhQGpH8p87a7FL3uOvFrRDHhVHvXTaBV/g0jBcaYTILfsxzTG8JVjncS2KNtkv1ctlO8izdwJLpOUs/U7wNsDEe9dqy7Y8v02PTtC2iJWrdv3ddC5tcP5ijxu8iOXoNWtRPto84W7i9Gq6FXuex9kR6mC3ytPqbUxo0sbJSXxdTVV8FcWKJyXBgTwqVcL8rIX07yMjLz7lQoZdPaUM5mGtjGvKR4SToHigifd3fV681dE/rRXKLXJKxLjWskSpiNS3R+wLW0mJWKFiIkt15ak/rOepS3Xlge7qph7ThbypisYF9JuRtu7fahnolW5GwMU2gpPtmbFye6NL+CC39HyhclGo4hOcQq+Lk3VUVtv4dTEa91mTObEdWgTWgvxOAN3c9si2IdvXaou/RDOITz6IGuJel7tKKWlZ0py5K71MPpvyFrMFKxKL1tWb4PLhe5J8ucyvSnRxZO7k1PmW9yyvbFcAjpSZZLOB/e35B60VHm26ZyfTDU5R5kOZThYc4zhL1z27o8L5dTsb6WuYTy4HXA7LwYHO4A5scstl2IhRo5b+T9c0Dr0CmgblaL/7Ufho/lVJ5XKLcxfXP2KuCtc7tYZ2bRLy4/Zyy3kNGczzGcZ5L2znpNfn7s/0Wl3lTi9Ob900e/1I4Bw2umOB8qS8d4dxRZeUOp4P6AT4ZE/Vv97ZL8VcLrlEaeHGUomf2KfGqmhUzNfHnp6515FiKTpZMnU5aajSeqdDK2onbVDvxUUg+w7ClR/qaS/yLW/x1tG2o7ZD1MNp0zCHWqiykLYnfT2nRvz9HmSYxnevmMbw1qcE98j2rxvO99ao9nfmuZvuV/ScJz/Z5KVDsTmSzu8tl51YQeZHfgOBdkvveN6Ew9Z7P4BNpJwB4jn6PiSMl8/TwjRJviwkVJZ4Qwo6WIctNLuUlnkuIc2s1M31o0wod6px/3HfB8fiPNLkXqV1TX0KsDrtSSVPseqZ5RZqBJ+l+HCO03ag3+rumyX9L9JUnH9A6yEp05z4pPgs2948J+zXiF8mAmU3eq2yUU1dvdw+JM7FYuFz7xXozvFuC7jpRVelvHFHePVHHucFpAc6plcvdzB8rkPVkPGM020vFRHD+fFvA6Dej/3Vz0XUfS2yBLk7LtEe3njYheX+tmm6Tnc5XFeds7BdKarzaZpj1ZaceBOSNZxAG/KqsIs5+/PCteGfALMz8dd64/Ddh3keSRZZElkaVoQ6+L5Wiro0DdtKHfkkRMLUQ/+KalN8YnV6XsWhzwxvgMrXS+p+elJFvUYcD5lUZAb+W+hvRUojIVJZkGfDt+GiDLaQCdjiBNR6TQFSXRFv3o8urG4v/Oslw43Ly+sX594+GN1a9v6f+55WP1c/Wpugreym/V12Cx9tUBcPq7+s+lDy99tPOHnT/u/Gnnz9z0g0sa8zOV+bfzl/8Cm1zBIg==</latexit> <latexit sha1_base64="Me+rXVOTINPDARdCMVN99o+kq1w=">AABHA3ictVxLcxu5EYY3u8lGeXmTYy6T1Tprb2kdSXEqqdpK1dqUZGst27JJyfaatoqPIU2L4tB8yJJpHvNrckvlmuRX5JB/kJzyA3JJP4ABhsRMYxTHU5IwGHzdjR6g0d3AuDns98aT9fV/XPrgOx9+9N3vffz9lR/88Ec//snlT356OE6mo1Z80Er6yehJszGO+71BfDDpTfrxk+Eobpw0+/Hj5nEFnz8+jUfjXjKoTc6H8fOTRnfQ6/RajQlUHV1Ojq/Wzypr9fPK2qxO5GajuD0/+3ye3jf703h+/vn8WlSPX7fjTvRupd5+UiHcAuZa9CU8ewrPHHopfuXdi82jy6vr19fpX7Rc2NCFVaX/7SeffPpXVVdtlaiWmqoTFauBmkC5rxpqDNcztaHW1RDqnqsZ1I2g1KPnsZqrFcBOoVUMLRpQewy/u3D3TNcO4B5pjgndAi59+BkBMlJXAJNAuxGUkVtEz6dEGWvzaM+IJsp2Dn+bmtYJ1E7US6iVcKZlKA77MlEd9TvqQw/6NKQa7F1LU5mSVlDyyOnVBCgMoQ7LbXg+gnKLkEbPEWHG1HfUbYOe/5NaYi3et3TbqfoXSXkFrkhVde+TlEJDnRL9iN7mFJ6xPH3g3AUKse4jlt6Qrk+o9wNoP4P6+3DNqWR00oRrRrXzQmQFLh+yIiJvw+VD3haRe3D5kHsich8uH3JfIxE7Ip378VW4fPiqyPkhXD7kQxH5CC4f8pGIPITLhzwUkd/C5UN+KyJ34PIhd0TkXbh8yLsisgaXD1kTkQdw+ZAHInIbLh9yWyPzZ+oIroTo9IRZeRPKWR5oKfpQc1OU7xZZRx/2VsCcbuVg5Vm9BX/92K0AncY52O2AcdfJwcoj7zbYSD9WtkV3aDXxYe+I2F0YAX7sroj9Rr3KwX4TMNOOc7DyXNuDdn6sbH3vwZ0fe0/E3oeSHyuvUQ+gxo99ELBiDHOw+yL2oXqdgw2x+qMcrGz3q2BX/Fh5napBez82xJpOc7CyPT0ED8aPlVerx1Drxz4WsU/UWQ72iYh9Ctbdj30asMK+zcGaNXaFVpAu+SMxzNgiao10VmJpCNQaAv9+urb0yTduQr2E6aaYLmFORMTtFHE7ELGXIvaC5RqndnRM/q7MpZoiqoGIZro2YWkitm+n7bHUD0BspYitBUSRR4rv2vTllLwLUyMhJ+nKhaWQPiWp/cZSrMdDseU1iAcZBI/tlzTy1yhawggKNVVE7WW6xjMyovsixBuK3kwvDQ8ZN0mtgos6E1FND6opos49qHMRNfWgpiLq1IM6FVF25ru4esAIsPrHdzGjOx4B7CPnXxF4BTdh1bkDczSC8bMPXuAjqnkAf6sUe0tXkWQYzeM6iVmO5xlLPILSTK1CvY0Ktyi+7tMMi0EybvlAx/h4h7mNmZ5zbIXn6UoepRmTcDo9kqeb0kFvMaL5VI7OXaqZk3fHpXL4O+m8N6Vy+G3S+Jy8eC6Vw0+09JMLyF7T2NoFsFWYTUOtfVsuS4PzL0zDlFdo1UWLi2/1RI8ZpHdWkv6ufjO7F3gvFSqxfmy5HI2x079xpn9laFg9jx09l6OC3hN7vaYUle7JQMe9tlxWhoRW0YGWw96VfTPYpq3fjCmXo7EPHleFYu6ZUy47eodpb2y5HI1DxXnPOXnyplyORpfuWR+2XI4GZlsaOs635bKWHTXAsbMtl7XqA8oCYw6IxzzXWK9oRH7SVFPrkX9QnK1xff7ldQxzNi/SGKGYkvVt8+k007WsWCLjL8Rg1SYl5UD/Yur4YFkaM7UpxlcswySzvi/TsWs8an4PtBjB7Oc9ACln3gcJTU4CrXcfKG6IUVe2Zwa3KeJwlHQWUHVdOxG9RcuXs0bZuiOqleIy21urxzrZ6zGNvSH5hHukWUkPe7lvOI+ipKG9jIZkemV091bP16z210XccAExTEdai3aEeCetOE71ab3q6PiK3uWZwMV7Pnb8Yra5o60NxjwJ2SKUpYin287kkdw6XFfXlM1x87OI3ijaq1OyGj3akRqLUajJFrM3PqN7S/uA9uSQB9NowXuMNJWh4l0zzKJjPj0ii+raW4k36stk6Lg8Jqtr7HExuuugux50+RinAivGfSjVIGY4gLtaQJSzkuoqIY2P1Jfp7mhCb7A4ou9nLKShwfYmzljIoij7ZYbKG0DjaOAoPZzGIh2Dry9RkqN+nzw2ds1a/iu0c2v2txs0xvNHc34mpk1cN4lrRLOGd3X5bpEDSzDzPtkk/7W4l8ivDEe0oRLXFw5n1suAdvxjimCH5Bn3abZJsyPb2s1PLT4xnPaV2TvH3eyELGRE9i+C9SmhMRnRj3t2wOygs0Xok40MsTu91Lvx+To9cYxZP66n+FSDHW8x2bIp8Td03dk1prHIEQOvA/OFsW10ske+YExcR9q627ldvPog0p6TcEcJU7Rj5Srxv0a/zY8ZJ6tLIwI1jG9grG2d730kFLOgjhq0yhfbINPWlfKzVIYXWmq7/lmZPstItkURF8qDq3UbOLfonnnhKBmR3OOlNryOFmVzkfJwQY/Y2w5F8Wz3u3oFRrnXaJVcpTlXp1HShVEwSaMI01bKIi/yLeaVpR5Ge/x/oW51ndUaUoyUzeCyhqT8fkzRmitlH0Y1j99jmk1+rY8WWhXzGdBYPHHm8juo/QX8NnKb+zA6zYxVuEVjgCnYO6sRromWWoTxupXhZUamoWXvLT87Jk0rt+Yi8TVbNxtjn5amsk+j5kxnLUz5IjReOTReBeqwRnuNVoum3liiIzG2qOndylB+ZbjVSlCeipRlj8ygegFSurFUGNW2SFWO8Q3qrUhrXaTVgNnq7ga4cz4E6Z/ri7P7Xbq6R2qHfJsWeWAcv7RplvbI5zK1xZEaU0DON7R9dWd/nWqQe5MsKFLmc5w4Y3jXqUXXPJX0l3plS8jOW4tgzi290W2Mja1T+ddLyBOaE2OalwZxg1rEWn5XjmjBIl13fI6IMv8N8qnY7yiOmd3W9p1EGX/Cxps8qywvjhQGpH8p87a7FL3uOvFrRDHhVHvXTaBV/g0jBcaYTILfsxzTG8JVjncS2KNtkv1ctlO8izdwJLpOUs/U7wNsDEe9dqy7Y8v02PTtC2iJWrdv3ddC5tcP5ijxu8iOXoNWtRPto84W7i9Gq6FXuex9kR6mC3ytPqbUxo0sbJSXxdTVV8FcWKJyXBgTwqVcL8rIX07yMjLz7lQoZdPaUM5mGtjGvKR4SToHigifd3fV681dE/rRXKLXJKxLjWskSpiNS3R+wLW0mJWKFiIkt15ak/rOepS3Xlge7qph7ThbypisYF9JuRtu7fahnolW5GwMU2gpPtmbFye6NL+CC39HyhclGo4hOcQq+Lk3VUVtv4dTEa91mTObEdWgTWgvxOAN3c9si2IdvXaou/RDOITz6IGuJel7tKKWlZ0py5K71MPpvyFrMFKxKL1tWb4PLhe5J8ucyvSnRxZO7k1PmW9yyvbFcAjpSZZLOB/e35B60VHm26ZyfTDU5R5kOZThYc4zhL1z27o8L5dTsb6WuYTy4HXA7LwYHO4A5scstl2IhRo5b+T9c0Dr0CmgblaL/7Ufho/lVJ5XKLcxfXP2KuCtc7tYZ2bRLy4/Zyy3kNGczzGcZ5L2znpNfn7s/0Wl3lTi9Ob900e/1I4Bw2umOB8qS8d4dxRZeUOp4P6AT4ZE/Vv97ZL8VcLrlEaeHGUomf2KfGqmhUzNfHnp6515FiKTpZMnU5aajSeqdDK2onbVDvxUUg+w7ClR/qaS/yLW/x1tG2o7ZD1MNp0zCHWqiykLYnfT2nRvz9HmSYxnevmMbw1qcE98j2rxvO99ao9nfmuZvuV/ScJz/Z5KVDsTmSzu8tl51YQeZHfgOBdkvveN6Ew9Z7P4BNpJwB4jn6PiSMl8/TwjRJviwkVJZ4Qwo6WIctNLuUlnkuIc2s1M31o0wod6px/3HfB8fiPNLkXqV1TX0KsDrtSSVPseqZ5RZqBJ+l+HCO03ag3+rumyX9L9JUnH9A6yEp05z4pPgs2948J+zXiF8mAmU3eq2yUU1dvdw+JM7FYuFz7xXozvFuC7jpRVelvHFHePVHHucFpAc6plcvdzB8rkPVkPGM020vFRHD+fFvA6Dej/3Vz0XUfS2yBLk7LtEe3njYheX+tmm6Tnc5XFeds7BdKarzaZpj1ZaceBOSNZxAG/KqsIs5+/PCteGfALMz8dd64/Ddh3keSRZZElkaVoQ6+L5Wiro0DdtKHfkkRMLUQ/+KalN8YnV6XsWhzwxvgMrXS+p+elJFvUYcD5lUZAb+W+hvRUojIVJZkGfDt+GiDLaQCdjiBNR6TQFSXRFv3o8urG4v/Oslw43Ly+sX594+GN1a9v6f+55WP1c/Wpugreym/V12Cx9tUBcPq7+s+lDy99tPOHnT/u/Gnnz9z0g0sa8zOV+bfzl/8Cm1zBIg==</latexit> <latexit sha1_base64="Me+rXVOTINPDARdCMVN99o+kq1w=">AABHA3ictVxLcxu5EYY3u8lGeXmTYy6T1Tprb2kdSXEqqdpK1dqUZGst27JJyfaatoqPIU2L4tB8yJJpHvNrckvlmuRX5JB/kJzyA3JJP4ABhsRMYxTHU5IwGHzdjR6g0d3AuDns98aT9fV/XPrgOx9+9N3vffz9lR/88Ec//snlT356OE6mo1Z80Er6yehJszGO+71BfDDpTfrxk+Eobpw0+/Hj5nEFnz8+jUfjXjKoTc6H8fOTRnfQ6/RajQlUHV1Ojq/Wzypr9fPK2qxO5GajuD0/+3ye3jf703h+/vn8WlSPX7fjTvRupd5+UiHcAuZa9CU8ewrPHHopfuXdi82jy6vr19fpX7Rc2NCFVaX/7SeffPpXVVdtlaiWmqoTFauBmkC5rxpqDNcztaHW1RDqnqsZ1I2g1KPnsZqrFcBOoVUMLRpQewy/u3D3TNcO4B5pjgndAi59+BkBMlJXAJNAuxGUkVtEz6dEGWvzaM+IJsp2Dn+bmtYJ1E7US6iVcKZlKA77MlEd9TvqQw/6NKQa7F1LU5mSVlDyyOnVBCgMoQ7LbXg+gnKLkEbPEWHG1HfUbYOe/5NaYi3et3TbqfoXSXkFrkhVde+TlEJDnRL9iN7mFJ6xPH3g3AUKse4jlt6Qrk+o9wNoP4P6+3DNqWR00oRrRrXzQmQFLh+yIiJvw+VD3haRe3D5kHsich8uH3JfIxE7Ip378VW4fPiqyPkhXD7kQxH5CC4f8pGIPITLhzwUkd/C5UN+KyJ34PIhd0TkXbh8yLsisgaXD1kTkQdw+ZAHInIbLh9yWyPzZ+oIroTo9IRZeRPKWR5oKfpQc1OU7xZZRx/2VsCcbuVg5Vm9BX/92K0AncY52O2AcdfJwcoj7zbYSD9WtkV3aDXxYe+I2F0YAX7sroj9Rr3KwX4TMNOOc7DyXNuDdn6sbH3vwZ0fe0/E3oeSHyuvUQ+gxo99ELBiDHOw+yL2oXqdgw2x+qMcrGz3q2BX/Fh5napBez82xJpOc7CyPT0ED8aPlVerx1Drxz4WsU/UWQ72iYh9Ctbdj30asMK+zcGaNXaFVpAu+SMxzNgiao10VmJpCNQaAv9+urb0yTduQr2E6aaYLmFORMTtFHE7ELGXIvaC5RqndnRM/q7MpZoiqoGIZro2YWkitm+n7bHUD0BspYitBUSRR4rv2vTllLwLUyMhJ+nKhaWQPiWp/cZSrMdDseU1iAcZBI/tlzTy1yhawggKNVVE7WW6xjMyovsixBuK3kwvDQ8ZN0mtgos6E1FND6opos49qHMRNfWgpiLq1IM6FVF25ru4esAIsPrHdzGjOx4B7CPnXxF4BTdh1bkDczSC8bMPXuAjqnkAf6sUe0tXkWQYzeM6iVmO5xlLPILSTK1CvY0Ktyi+7tMMi0EybvlAx/h4h7mNmZ5zbIXn6UoepRmTcDo9kqeb0kFvMaL5VI7OXaqZk3fHpXL4O+m8N6Vy+G3S+Jy8eC6Vw0+09JMLyF7T2NoFsFWYTUOtfVsuS4PzL0zDlFdo1UWLi2/1RI8ZpHdWkv6ufjO7F3gvFSqxfmy5HI2x079xpn9laFg9jx09l6OC3hN7vaYUle7JQMe9tlxWhoRW0YGWw96VfTPYpq3fjCmXo7EPHleFYu6ZUy47eodpb2y5HI1DxXnPOXnyplyORpfuWR+2XI4GZlsaOs635bKWHTXAsbMtl7XqA8oCYw6IxzzXWK9oRH7SVFPrkX9QnK1xff7ldQxzNi/SGKGYkvVt8+k007WsWCLjL8Rg1SYl5UD/Yur4YFkaM7UpxlcswySzvi/TsWs8an4PtBjB7Oc9ACln3gcJTU4CrXcfKG6IUVe2Zwa3KeJwlHQWUHVdOxG9RcuXs0bZuiOqleIy21urxzrZ6zGNvSH5hHukWUkPe7lvOI+ipKG9jIZkemV091bP16z210XccAExTEdai3aEeCetOE71ab3q6PiK3uWZwMV7Pnb8Yra5o60NxjwJ2SKUpYin287kkdw6XFfXlM1x87OI3ijaq1OyGj3akRqLUajJFrM3PqN7S/uA9uSQB9NowXuMNJWh4l0zzKJjPj0ii+raW4k36stk6Lg8Jqtr7HExuuugux50+RinAivGfSjVIGY4gLtaQJSzkuoqIY2P1Jfp7mhCb7A4ou9nLKShwfYmzljIoij7ZYbKG0DjaOAoPZzGIh2Dry9RkqN+nzw2ds1a/iu0c2v2txs0xvNHc34mpk1cN4lrRLOGd3X5bpEDSzDzPtkk/7W4l8ivDEe0oRLXFw5n1suAdvxjimCH5Bn3abZJsyPb2s1PLT4xnPaV2TvH3eyELGRE9i+C9SmhMRnRj3t2wOygs0Xok40MsTu91Lvx+To9cYxZP66n+FSDHW8x2bIp8Td03dk1prHIEQOvA/OFsW10ske+YExcR9q627ldvPog0p6TcEcJU7Rj5Srxv0a/zY8ZJ6tLIwI1jG9grG2d730kFLOgjhq0yhfbINPWlfKzVIYXWmq7/lmZPstItkURF8qDq3UbOLfonnnhKBmR3OOlNryOFmVzkfJwQY/Y2w5F8Wz3u3oFRrnXaJVcpTlXp1HShVEwSaMI01bKIi/yLeaVpR5Ge/x/oW51ndUaUoyUzeCyhqT8fkzRmitlH0Y1j99jmk1+rY8WWhXzGdBYPHHm8juo/QX8NnKb+zA6zYxVuEVjgCnYO6sRromWWoTxupXhZUamoWXvLT87Jk0rt+Yi8TVbNxtjn5amsk+j5kxnLUz5IjReOTReBeqwRnuNVoum3liiIzG2qOndylB+ZbjVSlCeipRlj8ygegFSurFUGNW2SFWO8Q3qrUhrXaTVgNnq7ga4cz4E6Z/ri7P7Xbq6R2qHfJsWeWAcv7RplvbI5zK1xZEaU0DON7R9dWd/nWqQe5MsKFLmc5w4Y3jXqUXXPJX0l3plS8jOW4tgzi290W2Mja1T+ddLyBOaE2OalwZxg1rEWn5XjmjBIl13fI6IMv8N8qnY7yiOmd3W9p1EGX/Cxps8qywvjhQGpH8p87a7FL3uOvFrRDHhVHvXTaBV/g0jBcaYTILfsxzTG8JVjncS2KNtkv1ctlO8izdwJLpOUs/U7wNsDEe9dqy7Y8v02PTtC2iJWrdv3ddC5tcP5ijxu8iOXoNWtRPto84W7i9Gq6FXuex9kR6mC3ytPqbUxo0sbJSXxdTVV8FcWKJyXBgTwqVcL8rIX07yMjLz7lQoZdPaUM5mGtjGvKR4SToHigifd3fV681dE/rRXKLXJKxLjWskSpiNS3R+wLW0mJWKFiIkt15ak/rOepS3Xlge7qph7ThbypisYF9JuRtu7fahnolW5GwMU2gpPtmbFye6NL+CC39HyhclGo4hOcQq+Lk3VUVtv4dTEa91mTObEdWgTWgvxOAN3c9si2IdvXaou/RDOITz6IGuJel7tKKWlZ0py5K71MPpvyFrMFKxKL1tWb4PLhe5J8ucyvSnRxZO7k1PmW9yyvbFcAjpSZZLOB/e35B60VHm26ZyfTDU5R5kOZThYc4zhL1z27o8L5dTsb6WuYTy4HXA7LwYHO4A5scstl2IhRo5b+T9c0Dr0CmgblaL/7Ufho/lVJ5XKLcxfXP2KuCtc7tYZ2bRLy4/Zyy3kNGczzGcZ5L2znpNfn7s/0Wl3lTi9Ob900e/1I4Bw2umOB8qS8d4dxRZeUOp4P6AT4ZE/Vv97ZL8VcLrlEaeHGUomf2KfGqmhUzNfHnp6515FiKTpZMnU5aajSeqdDK2onbVDvxUUg+w7ClR/qaS/yLW/x1tG2o7ZD1MNp0zCHWqiykLYnfT2nRvz9HmSYxnevmMbw1qcE98j2rxvO99ao9nfmuZvuV/ScJz/Z5KVDsTmSzu8tl51YQeZHfgOBdkvveN6Ew9Z7P4BNpJwB4jn6PiSMl8/TwjRJviwkVJZ4Qwo6WIctNLuUlnkuIc2s1M31o0wod6px/3HfB8fiPNLkXqV1TX0KsDrtSSVPseqZ5RZqBJ+l+HCO03ag3+rumyX9L9JUnH9A6yEp05z4pPgs2948J+zXiF8mAmU3eq2yUU1dvdw+JM7FYuFz7xXozvFuC7jpRVelvHFHePVHHucFpAc6plcvdzB8rkPVkPGM020vFRHD+fFvA6Dej/3Vz0XUfS2yBLk7LtEe3njYheX+tmm6Tnc5XFeds7BdKarzaZpj1ZaceBOSNZxAG/KqsIs5+/PCteGfALMz8dd64/Ddh3keSRZZElkaVoQ6+L5Wiro0DdtKHfkkRMLUQ/+KalN8YnV6XsWhzwxvgMrXS+p+elJFvUYcD5lUZAb+W+hvRUojIVJZkGfDt+GiDLaQCdjiBNR6TQFSXRFv3o8urG4v/Oslw43Ly+sX594+GN1a9v6f+55WP1c/Wpugreym/V12Cx9tUBcPq7+s+lDy99tPOHnT/u/Gnnz9z0g0sa8zOV+bfzl/8Cm1zBIg==</latexit> <latexit sha1_base64="Me+rXVOTINPDARdCMVN99o+kq1w=">AABHA3ictVxLcxu5EYY3u8lGeXmTYy6T1Tprb2kdSXEqqdpK1dqUZGst27JJyfaatoqPIU2L4tB8yJJpHvNrckvlmuRX5JB/kJzyA3JJP4ABhsRMYxTHU5IwGHzdjR6g0d3AuDns98aT9fV/XPrgOx9+9N3vffz9lR/88Ec//snlT356OE6mo1Z80Er6yehJszGO+71BfDDpTfrxk+Eobpw0+/Hj5nEFnz8+jUfjXjKoTc6H8fOTRnfQ6/RajQlUHV1Ojq/Wzypr9fPK2qxO5GajuD0/+3ye3jf703h+/vn8WlSPX7fjTvRupd5+UiHcAuZa9CU8ewrPHHopfuXdi82jy6vr19fpX7Rc2NCFVaX/7SeffPpXVVdtlaiWmqoTFauBmkC5rxpqDNcztaHW1RDqnqsZ1I2g1KPnsZqrFcBOoVUMLRpQewy/u3D3TNcO4B5pjgndAi59+BkBMlJXAJNAuxGUkVtEz6dEGWvzaM+IJsp2Dn+bmtYJ1E7US6iVcKZlKA77MlEd9TvqQw/6NKQa7F1LU5mSVlDyyOnVBCgMoQ7LbXg+gnKLkEbPEWHG1HfUbYOe/5NaYi3et3TbqfoXSXkFrkhVde+TlEJDnRL9iN7mFJ6xPH3g3AUKse4jlt6Qrk+o9wNoP4P6+3DNqWR00oRrRrXzQmQFLh+yIiJvw+VD3haRe3D5kHsich8uH3JfIxE7Ip378VW4fPiqyPkhXD7kQxH5CC4f8pGIPITLhzwUkd/C5UN+KyJ34PIhd0TkXbh8yLsisgaXD1kTkQdw+ZAHInIbLh9yWyPzZ+oIroTo9IRZeRPKWR5oKfpQc1OU7xZZRx/2VsCcbuVg5Vm9BX/92K0AncY52O2AcdfJwcoj7zbYSD9WtkV3aDXxYe+I2F0YAX7sroj9Rr3KwX4TMNOOc7DyXNuDdn6sbH3vwZ0fe0/E3oeSHyuvUQ+gxo99ELBiDHOw+yL2oXqdgw2x+qMcrGz3q2BX/Fh5napBez82xJpOc7CyPT0ED8aPlVerx1Drxz4WsU/UWQ72iYh9Ctbdj30asMK+zcGaNXaFVpAu+SMxzNgiao10VmJpCNQaAv9+urb0yTduQr2E6aaYLmFORMTtFHE7ELGXIvaC5RqndnRM/q7MpZoiqoGIZro2YWkitm+n7bHUD0BspYitBUSRR4rv2vTllLwLUyMhJ+nKhaWQPiWp/cZSrMdDseU1iAcZBI/tlzTy1yhawggKNVVE7WW6xjMyovsixBuK3kwvDQ8ZN0mtgos6E1FND6opos49qHMRNfWgpiLq1IM6FVF25ru4esAIsPrHdzGjOx4B7CPnXxF4BTdh1bkDczSC8bMPXuAjqnkAf6sUe0tXkWQYzeM6iVmO5xlLPILSTK1CvY0Ktyi+7tMMi0EybvlAx/h4h7mNmZ5zbIXn6UoepRmTcDo9kqeb0kFvMaL5VI7OXaqZk3fHpXL4O+m8N6Vy+G3S+Jy8eC6Vw0+09JMLyF7T2NoFsFWYTUOtfVsuS4PzL0zDlFdo1UWLi2/1RI8ZpHdWkv6ufjO7F3gvFSqxfmy5HI2x079xpn9laFg9jx09l6OC3hN7vaYUle7JQMe9tlxWhoRW0YGWw96VfTPYpq3fjCmXo7EPHleFYu6ZUy47eodpb2y5HI1DxXnPOXnyplyORpfuWR+2XI4GZlsaOs635bKWHTXAsbMtl7XqA8oCYw6IxzzXWK9oRH7SVFPrkX9QnK1xff7ldQxzNi/SGKGYkvVt8+k007WsWCLjL8Rg1SYl5UD/Yur4YFkaM7UpxlcswySzvi/TsWs8an4PtBjB7Oc9ACln3gcJTU4CrXcfKG6IUVe2Zwa3KeJwlHQWUHVdOxG9RcuXs0bZuiOqleIy21urxzrZ6zGNvSH5hHukWUkPe7lvOI+ipKG9jIZkemV091bP16z210XccAExTEdai3aEeCetOE71ab3q6PiK3uWZwMV7Pnb8Yra5o60NxjwJ2SKUpYin287kkdw6XFfXlM1x87OI3ijaq1OyGj3akRqLUajJFrM3PqN7S/uA9uSQB9NowXuMNJWh4l0zzKJjPj0ii+raW4k36stk6Lg8Jqtr7HExuuugux50+RinAivGfSjVIGY4gLtaQJSzkuoqIY2P1Jfp7mhCb7A4ou9nLKShwfYmzljIoij7ZYbKG0DjaOAoPZzGIh2Dry9RkqN+nzw2ds1a/iu0c2v2txs0xvNHc34mpk1cN4lrRLOGd3X5bpEDSzDzPtkk/7W4l8ivDEe0oRLXFw5n1suAdvxjimCH5Bn3abZJsyPb2s1PLT4xnPaV2TvH3eyELGRE9i+C9SmhMRnRj3t2wOygs0Xok40MsTu91Lvx+To9cYxZP66n+FSDHW8x2bIp8Td03dk1prHIEQOvA/OFsW10ske+YExcR9q627ldvPog0p6TcEcJU7Rj5Srxv0a/zY8ZJ6tLIwI1jG9grG2d730kFLOgjhq0yhfbINPWlfKzVIYXWmq7/lmZPstItkURF8qDq3UbOLfonnnhKBmR3OOlNryOFmVzkfJwQY/Y2w5F8Wz3u3oFRrnXaJVcpTlXp1HShVEwSaMI01bKIi/yLeaVpR5Ge/x/oW51ndUaUoyUzeCyhqT8fkzRmitlH0Y1j99jmk1+rY8WWhXzGdBYPHHm8juo/QX8NnKb+zA6zYxVuEVjgCnYO6sRromWWoTxupXhZUamoWXvLT87Jk0rt+Yi8TVbNxtjn5amsk+j5kxnLUz5IjReOTReBeqwRnuNVoum3liiIzG2qOndylB+ZbjVSlCeipRlj8ygegFSurFUGNW2SFWO8Q3qrUhrXaTVgNnq7ga4cz4E6Z/ri7P7Xbq6R2qHfJsWeWAcv7RplvbI5zK1xZEaU0DON7R9dWd/nWqQe5MsKFLmc5w4Y3jXqUXXPJX0l3plS8jOW4tgzi290W2Mja1T+ddLyBOaE2OalwZxg1rEWn5XjmjBIl13fI6IMv8N8qnY7yiOmd3W9p1EGX/Cxps8qywvjhQGpH8p87a7FL3uOvFrRDHhVHvXTaBV/g0jBcaYTILfsxzTG8JVjncS2KNtkv1ctlO8izdwJLpOUs/U7wNsDEe9dqy7Y8v02PTtC2iJWrdv3ddC5tcP5ijxu8iOXoNWtRPto84W7i9Gq6FXuex9kR6mC3ytPqbUxo0sbJSXxdTVV8FcWKJyXBgTwqVcL8rIX07yMjLz7lQoZdPaUM5mGtjGvKR4SToHigifd3fV681dE/rRXKLXJKxLjWskSpiNS3R+wLW0mJWKFiIkt15ak/rOepS3Xlge7qph7ThbypisYF9JuRtu7fahnolW5GwMU2gpPtmbFye6NL+CC39HyhclGo4hOcQq+Lk3VUVtv4dTEa91mTObEdWgTWgvxOAN3c9si2IdvXaou/RDOITz6IGuJel7tKKWlZ0py5K71MPpvyFrMFKxKL1tWb4PLhe5J8ucyvSnRxZO7k1PmW9yyvbFcAjpSZZLOB/e35B60VHm26ZyfTDU5R5kOZThYc4zhL1z27o8L5dTsb6WuYTy4HXA7LwYHO4A5scstl2IhRo5b+T9c0Dr0CmgblaL/7Ufho/lVJ5XKLcxfXP2KuCtc7tYZ2bRLy4/Zyy3kNGczzGcZ5L2znpNfn7s/0Wl3lTi9Ob900e/1I4Bw2umOB8qS8d4dxRZeUOp4P6AT4ZE/Vv97ZL8VcLrlEaeHGUomf2KfGqmhUzNfHnp6515FiKTpZMnU5aajSeqdDK2onbVDvxUUg+w7ClR/qaS/yLW/x1tG2o7ZD1MNp0zCHWqiykLYnfT2nRvz9HmSYxnevmMbw1qcE98j2rxvO99ao9nfmuZvuV/ScJz/Z5KVDsTmSzu8tl51YQeZHfgOBdkvveN6Ew9Z7P4BNpJwB4jn6PiSMl8/TwjRJviwkVJZ4Qwo6WIctNLuUlnkuIc2s1M31o0wod6px/3HfB8fiPNLkXqV1TX0KsDrtSSVPseqZ5RZqBJ+l+HCO03ag3+rumyX9L9JUnH9A6yEp05z4pPgs2948J+zXiF8mAmU3eq2yUU1dvdw+JM7FYuFz7xXozvFuC7jpRVelvHFHePVHHucFpAc6plcvdzB8rkPVkPGM020vFRHD+fFvA6Dej/3Vz0XUfS2yBLk7LtEe3njYheX+tmm6Tnc5XFeds7BdKarzaZpj1ZaceBOSNZxAG/KqsIs5+/PCteGfALMz8dd64/Ddh3keSRZZElkaVoQ6+L5Wiro0DdtKHfkkRMLUQ/+KalN8YnV6XsWhzwxvgMrXS+p+elJFvUYcD5lUZAb+W+hvRUojIVJZkGfDt+GiDLaQCdjiBNR6TQFSXRFv3o8urG4v/Oslw43Ly+sX594+GN1a9v6f+55WP1c/Wpugreym/V12Cx9tUBcPq7+s+lDy99tPOHnT/u/Gnnz9z0g0sa8zOV+bfzl/8Cm1zBIg==</latexit> <latexit sha1_base64="Me+rXVOTINPDARdCMVN99o+kq1w=">AABHA3ictVxLcxu5EYY3u8lGeXmTYy6T1Tprb2kdSXEqqdpK1dqUZGst27JJyfaatoqPIU2L4tB8yJJpHvNrckvlmuRX5JB/kJzyA3JJP4ABhsRMYxTHU5IwGHzdjR6g0d3AuDns98aT9fV/XPrgOx9+9N3vffz9lR/88Ec//snlT356OE6mo1Z80Er6yehJszGO+71BfDDpTfrxk+Eobpw0+/Hj5nEFnz8+jUfjXjKoTc6H8fOTRnfQ6/RajQlUHV1Ojq/Wzypr9fPK2qxO5GajuD0/+3ye3jf703h+/vn8WlSPX7fjTvRupd5+UiHcAuZa9CU8ewrPHHopfuXdi82jy6vr19fpX7Rc2NCFVaX/7SeffPpXVVdtlaiWmqoTFauBmkC5rxpqDNcztaHW1RDqnqsZ1I2g1KPnsZqrFcBOoVUMLRpQewy/u3D3TNcO4B5pjgndAi59+BkBMlJXAJNAuxGUkVtEz6dEGWvzaM+IJsp2Dn+bmtYJ1E7US6iVcKZlKA77MlEd9TvqQw/6NKQa7F1LU5mSVlDyyOnVBCgMoQ7LbXg+gnKLkEbPEWHG1HfUbYOe/5NaYi3et3TbqfoXSXkFrkhVde+TlEJDnRL9iN7mFJ6xPH3g3AUKse4jlt6Qrk+o9wNoP4P6+3DNqWR00oRrRrXzQmQFLh+yIiJvw+VD3haRe3D5kHsich8uH3JfIxE7Ip378VW4fPiqyPkhXD7kQxH5CC4f8pGIPITLhzwUkd/C5UN+KyJ34PIhd0TkXbh8yLsisgaXD1kTkQdw+ZAHInIbLh9yWyPzZ+oIroTo9IRZeRPKWR5oKfpQc1OU7xZZRx/2VsCcbuVg5Vm9BX/92K0AncY52O2AcdfJwcoj7zbYSD9WtkV3aDXxYe+I2F0YAX7sroj9Rr3KwX4TMNOOc7DyXNuDdn6sbH3vwZ0fe0/E3oeSHyuvUQ+gxo99ELBiDHOw+yL2oXqdgw2x+qMcrGz3q2BX/Fh5napBez82xJpOc7CyPT0ED8aPlVerx1Drxz4WsU/UWQ72iYh9Ctbdj30asMK+zcGaNXaFVpAu+SMxzNgiao10VmJpCNQaAv9+urb0yTduQr2E6aaYLmFORMTtFHE7ELGXIvaC5RqndnRM/q7MpZoiqoGIZro2YWkitm+n7bHUD0BspYitBUSRR4rv2vTllLwLUyMhJ+nKhaWQPiWp/cZSrMdDseU1iAcZBI/tlzTy1yhawggKNVVE7WW6xjMyovsixBuK3kwvDQ8ZN0mtgos6E1FND6opos49qHMRNfWgpiLq1IM6FVF25ru4esAIsPrHdzGjOx4B7CPnXxF4BTdh1bkDczSC8bMPXuAjqnkAf6sUe0tXkWQYzeM6iVmO5xlLPILSTK1CvY0Ktyi+7tMMi0EybvlAx/h4h7mNmZ5zbIXn6UoepRmTcDo9kqeb0kFvMaL5VI7OXaqZk3fHpXL4O+m8N6Vy+G3S+Jy8eC6Vw0+09JMLyF7T2NoFsFWYTUOtfVsuS4PzL0zDlFdo1UWLi2/1RI8ZpHdWkv6ufjO7F3gvFSqxfmy5HI2x079xpn9laFg9jx09l6OC3hN7vaYUle7JQMe9tlxWhoRW0YGWw96VfTPYpq3fjCmXo7EPHleFYu6ZUy47eodpb2y5HI1DxXnPOXnyplyORpfuWR+2XI4GZlsaOs635bKWHTXAsbMtl7XqA8oCYw6IxzzXWK9oRH7SVFPrkX9QnK1xff7ldQxzNi/SGKGYkvVt8+k007WsWCLjL8Rg1SYl5UD/Yur4YFkaM7UpxlcswySzvi/TsWs8an4PtBjB7Oc9ACln3gcJTU4CrXcfKG6IUVe2Zwa3KeJwlHQWUHVdOxG9RcuXs0bZuiOqleIy21urxzrZ6zGNvSH5hHukWUkPe7lvOI+ipKG9jIZkemV091bP16z210XccAExTEdai3aEeCetOE71ab3q6PiK3uWZwMV7Pnb8Yra5o60NxjwJ2SKUpYin287kkdw6XFfXlM1x87OI3ijaq1OyGj3akRqLUajJFrM3PqN7S/uA9uSQB9NowXuMNJWh4l0zzKJjPj0ii+raW4k36stk6Lg8Jqtr7HExuuugux50+RinAivGfSjVIGY4gLtaQJSzkuoqIY2P1Jfp7mhCb7A4ou9nLKShwfYmzljIoij7ZYbKG0DjaOAoPZzGIh2Dry9RkqN+nzw2ds1a/iu0c2v2txs0xvNHc34mpk1cN4lrRLOGd3X5bpEDSzDzPtkk/7W4l8ivDEe0oRLXFw5n1suAdvxjimCH5Bn3abZJsyPb2s1PLT4xnPaV2TvH3eyELGRE9i+C9SmhMRnRj3t2wOygs0Xok40MsTu91Lvx+To9cYxZP66n+FSDHW8x2bIp8Td03dk1prHIEQOvA/OFsW10ske+YExcR9q627ldvPog0p6TcEcJU7Rj5Srxv0a/zY8ZJ6tLIwI1jG9grG2d730kFLOgjhq0yhfbINPWlfKzVIYXWmq7/lmZPstItkURF8qDq3UbOLfonnnhKBmR3OOlNryOFmVzkfJwQY/Y2w5F8Wz3u3oFRrnXaJVcpTlXp1HShVEwSaMI01bKIi/yLeaVpR5Ge/x/oW51ndUaUoyUzeCyhqT8fkzRmitlH0Y1j99jmk1+rY8WWhXzGdBYPHHm8juo/QX8NnKb+zA6zYxVuEVjgCnYO6sRromWWoTxupXhZUamoWXvLT87Jk0rt+Yi8TVbNxtjn5amsk+j5kxnLUz5IjReOTReBeqwRnuNVoum3liiIzG2qOndylB+ZbjVSlCeipRlj8ygegFSurFUGNW2SFWO8Q3qrUhrXaTVgNnq7ga4cz4E6Z/ri7P7Xbq6R2qHfJsWeWAcv7RplvbI5zK1xZEaU0DON7R9dWd/nWqQe5MsKFLmc5w4Y3jXqUXXPJX0l3plS8jOW4tgzi290W2Mja1T+ddLyBOaE2OalwZxg1rEWn5XjmjBIl13fI6IMv8N8qnY7yiOmd3W9p1EGX/Cxps8qywvjhQGpH8p87a7FL3uOvFrRDHhVHvXTaBV/g0jBcaYTILfsxzTG8JVjncS2KNtkv1ctlO8izdwJLpOUs/U7wNsDEe9dqy7Y8v02PTtC2iJWrdv3ddC5tcP5ijxu8iOXoNWtRPto84W7i9Gq6FXuex9kR6mC3ytPqbUxo0sbJSXxdTVV8FcWKJyXBgTwqVcL8rIX07yMjLz7lQoZdPaUM5mGtjGvKR4SToHigifd3fV681dE/rRXKLXJKxLjWskSpiNS3R+wLW0mJWKFiIkt15ak/rOepS3Xlge7qph7ThbypisYF9JuRtu7fahnolW5GwMU2gpPtmbFye6NL+CC39HyhclGo4hOcQq+Lk3VUVtv4dTEa91mTObEdWgTWgvxOAN3c9si2IdvXaou/RDOITz6IGuJel7tKKWlZ0py5K71MPpvyFrMFKxKL1tWb4PLhe5J8ucyvSnRxZO7k1PmW9yyvbFcAjpSZZLOB/e35B60VHm26ZyfTDU5R5kOZThYc4zhL1z27o8L5dTsb6WuYTy4HXA7LwYHO4A5scstl2IhRo5b+T9c0Dr0CmgblaL/7Ufho/lVJ5XKLcxfXP2KuCtc7tYZ2bRLy4/Zyy3kNGczzGcZ5L2znpNfn7s/0Wl3lTi9Ob900e/1I4Bw2umOB8qS8d4dxRZeUOp4P6AT4ZE/Vv97ZL8VcLrlEaeHGUomf2KfGqmhUzNfHnp6515FiKTpZMnU5aajSeqdDK2onbVDvxUUg+w7ClR/qaS/yLW/x1tG2o7ZD1MNp0zCHWqiykLYnfT2nRvz9HmSYxnevmMbw1qcE98j2rxvO99ao9nfmuZvuV/ScJz/Z5KVDsTmSzu8tl51YQeZHfgOBdkvveN6Ew9Z7P4BNpJwB4jn6PiSMl8/TwjRJviwkVJZ4Qwo6WIctNLuUlnkuIc2s1M31o0wod6px/3HfB8fiPNLkXqV1TX0KsDrtSSVPseqZ5RZqBJ+l+HCO03ag3+rumyX9L9JUnH9A6yEp05z4pPgs2948J+zXiF8mAmU3eq2yUU1dvdw+JM7FYuFz7xXozvFuC7jpRVelvHFHePVHHucFpAc6plcvdzB8rkPVkPGM020vFRHD+fFvA6Dej/3Vz0XUfS2yBLk7LtEe3njYheX+tmm6Tnc5XFeds7BdKarzaZpj1ZaceBOSNZxAG/KqsIs5+/PCteGfALMz8dd64/Ddh3keSRZZElkaVoQ6+L5Wiro0DdtKHfkkRMLUQ/+KalN8YnV6XsWhzwxvgMrXS+p+elJFvUYcD5lUZAb+W+hvRUojIVJZkGfDt+GiDLaQCdjiBNR6TQFSXRFv3o8urG4v/Oslw43Ly+sX594+GN1a9v6f+55WP1c/Wpugreym/V12Cx9tUBcPq7+s+lDy99tPOHnT/u/Gnnz9z0g0sa8zOV+bfzl/8Cm1zBIg==</latexit> <latexit sha1_base64="Oxirc/Stga++TW0HF+4LpEcjjos=">AABGE3ictVxfc9y2EYfSpk3Vf0772Bcmijt2o7qS4jRNM56JfZJlxbItWydbjmlrjnfUiRbveL4/suzLfYw+94P0oTOdvvYD9Bu0T/0K3V0ABHgHckHVNUcSCOK3u1gCi90F6GiQJqPx2to/l9773vff/8EPP/jR8o9/8tOf/fzSh794PMomw3Z80M7SbHgYtUZxmvTjg3EyTuPDwTBu9aI0fhKdNvD5k7N4OEqyfnP8ZhA/77W6/eQ4abfGUHV06c/hOD4fT7efzI42XmxcmYZEcjqMO7Ow1xqfRNH0cDZb1fVROonzB09ns6vLYfyqEx8vh5Ne0p+Gg6RxtH4jbKWNVSpv3AijuDELwqQ/PppeCQ/PG0E4TnrxKAifvmlcfbEBzz7CKzgNwj8GYQdhYUZNiMKllbVra/QvWCysq8KKUP/2sg8/viZC0RGZaIuJ6IlY9MUYyqloiRFcz8S6WBMDqHsuplA3hFJCz2MxE8uAnUCrGFq0oPYUfnfh7pmq7cM90hwRug1cUvgZAjIQlwGTQbshlJFbQM8nRBlry2hPiSbK9gb+RopWD2rH4gRqOZxu6YvDvozFsfgD9SGBPg2oBnvXVlQmpBWUPLB6NQYKA6jDcgeeD6HcJqTWc0CYEfUdddui5/+illiL923VdiL+TVJehisQ+6r3WU6hJc6IfkBvcwLPpDwpcO4ChVj1EUuvSdc96n0f2k+h/j5cMyppnURwTal2VolswOVCNljkNlwu5DaL3IXLhdxlkXtwuZB7ConYIencjd+Hy4XfZzk/hMuFfMgiH8HlQj5ikY/hciEfs8hv4XIhv2WRt+FyIW+zyLtwuZB3WWQTLheyySIP4HIhD1jkFlwu5JZCls/UIVwZ0UmYWXkTykUeaClSqLnJyneLrKMLe8tjTrdLsPys3oS/buymh07jEuyWx7g7LsHyI28bbKQby9uiO7SauLB3WOwOjAA3dofFfiNelmC/8ZhppyVYfq7tQjs3lre+9+DOjb3HYu9DyY3l16gHUOPGPvBYMQYl2D0W+1C8KsH6WP1hCZa3+/tgV9xYfp1qQns31seaTkqwvD19DB6MG8uvVk+g1o19wmIPxXkJ9pDFPgXr7sY+9Vhh35Zg9Rq7TCtIl/yRGGZsFbVWPiuxNABqLYZ/mq8tKfnGEdRzmG6O6RKmxyK2c8S2J2I3R+x6yzXK7eiI/F2ey36O2PdERPnahKUx276Tt8dS6oHYzBGbc4gqjxTfte7LGXkXuoZDjvOVC0s+fcpy+42lWI2HasurEQ8KCDm2T2jkr1K0hBEUaqqK2km+xktkQPdViNcUveleah48bpxbBRt1zqIiBypiUW8cqDcsauJATVjUmQN1xqLMzLdxoccIMPrHdzGlOzkCpI9cfgXgFdyEVecOzNEAxs8eeIGPqOYB/N2n2Ju7qiTDaB7XScxyPC9Y4iGUpmIF6k1UuEnxdUozLAbJZMsHKsbHO8xtTNWck1Z4lq/kQZ4x8aeTkDzdnA56iwHNp3p07lLNjLw7WaqHv5PPe12qh98ijc/Ii5elevixkn58AdmbCtu8AHYfZtNAad+U69KQ+RdJQ5eXadVFi4tvtafGDNI7r0l/R72ZnQu8lwaVpH5MuR6NkdW/UaF/dWgYPY8sPdejgt6T9Hp1Kajdk76Ke025rgwZraJ9JYe5q/tmsE1HvRldrkdjDzyuBsXcU6tcd/QO8t6Ycj0aj4XMe87Ik9flejS6dC/1Ycr1aGC2paXifFOua9lRAzJ2NuW6Vr1PWWDMAckxL2uMVzQkP2miqCXkH1Rna2yff3Edw5zNizxGqKZkfNtyOlG+llVLpP2FGKzauKYc6F9MLB+sSGMqNtj4SsowLqzvi3TMGo+a3wUtBjD75R4AlzNPQUKdk0DrnQLFdTbqKvZM4zZYHI6S4zlUqGrHrLdo+MqsUbHuiGq5uMz01ugxJHs9orE3IJ9wlzTL6WG39A2XUeQ0tFvQEE+vju7eqvla1P4aixvMIQb5SGvTjpDcSauOU11a37d0fFnt8ozhkns+ZvxitvlYWRuMeTKyRShLFU+7nc4j2XW4rq4Kk+OWzwJ6o2ivzshqJLQjNWKjUJ0tlt74lO4N7QPak0MekkYb3mOgqAyE3DXDLDrm0wOyqLa95XijvnSGTpZHZHW1Pa5Gdy1014GuH+M0YMW4D6UmxAwHcNf0iHKWc11lpPGh+G2+O5rRG6yO6NOChdQ0pL2JCxayKso+KVB5DWgcDTJK96cxT0fjwwVKfNTvksfErkXLf5l2bvX+dovGePloLs/EdIjrBnENaNbIXV15N89BSjB1Ptkg/7W6l8ivDke0oRzXFxZnqZc+7fjHFMEOyDNOabZxs6PY2s5PzT/RnPaE3jvH3eyMLGRA9i+A9SmjMRnQj312QO+gS4uQko30sTtJ7t24fJ2EHWPGj0uEPNVgxltMtmxC/DVde3aNaCzKiEGuA7O5sa11sku+YExch8q6m7ldvfog0pyTsEeJpGjGyhXif5V+6x89TlYWRgRqGN/ASNk61/vIKGZBHbVola+2QbqtLeUnuQwvlNRm/TMyfVKQbJMiLpQHV+sOcG7TveSFo2RIco8W2sh1tCqbi5QHc3rE3h5TFC/tfletwCj3Kq2SKzTnQholXRgF4zyK0G25LPI832peRep+tEf/F+pG10WtIcVAmAyu1BCX348pWrOlTGFUy/F7SrPJrfXhXKtqPn0aiz1rLn8HtR/Bby23vvejExWswi0aA5KCuTMakTXBQgs/XrcKvPTI1LTMveFnxqRuZddcJL6W1s3E2Ge1qezRqDlXWQtdvgiNlxaNl546bNJeo9GirteW6IiNLZpqt9KXXx1uzRqUJyxl3iPTqMRDSjuW8qPaYanyMb5GvWVprbG0WjBb7d0Ae877IN1zfX52f5ev7oG4Tb5NmzwwGb90aJYm5HPp2upITVJAzteVfbVnf0g1yD0iC4qU5TlOnDFy16lN1yyX9NdqZcvIzhuLoM8tvVZttI0NqfzZArJHc2JE81IjrlOLWMlvyxHMWaRrls8RUOa/RT6V9DuqY2a7tXknQcGfMPGmnFWGl4wU+qR/LvO2sxC97ljxa0Ax4UR51xHQqv+GkYLE6EyC27Mc0RvCVU7uJEiPNiL7uWin5C5e35LoGkk9FTc8bIyMes1Yt8eW7rHu22+gJWrdvHVXC55f6s2R43eRHb0WrWo95aNO5+4vRqulVrnifZUeJnN8jT4m1MaOLEyUV8SE4itvLlKielwkxodLvV7Ukb+e5HVklrtTvpR1a025mGmQNuaE4iXuHCgiXN7dFac3d5XpR7RALyKsTU3WcJQwG5ep/IBtaTErFcxFSHY9tyal1npUtl4YHvaqYey4tJQxWcFUcLkb2druQ1iIVvhsjKTQFvJkb1mcaNP8Ci78HQhXlKg5+uQQ98HPvSkaYusdnIp4pcoysxlQDdqEzlwM3lL9LLao1tEri7pN34eDP48EdM1Jn9CKWld2SZmX3KbuT/81WYOhiFnpTcv6fbC58D1Z5FSnPwlZOL43idDf5NTti+bg05MiF38+cn+D68Wx0N821euDps73oMihDg99nsHvnZvW9XnZnKr1tcjFl4dcB/TOi8bhDmB5zGLa+VioofVG3j0HtA7HFdT1avG/9kPzMZzq8/LlNqJvzl56vHXZLlaZWfSL688Zw81nNJdz9OeZ5b0zXpObn/T/glpvKrN68+7po19qxoDmNRUyH8pLJ/H2KDLy+lLB/QGXDJn4j/jrEv9VwqucRpkcdSjp/YpyaroFT01/eenqnX7mI5OhUyZTkZqJJ/bpZGxD7Ijb8NPIPcC6p0TlN5XyL2Ld39F2oPaYrIfOpssMQkh1MWVBzG5ah+7NOdoyifFMrzzj24Qa3BPfpVo873uf2uOZ32ahb+Vfksi5fk9kolOITOZ3+cy8iqAHxR04mQvS3/sGdKZeZrPkCbSexx6jPEclIyX99fOUEB2KC+clnRJCj5YqypGTckRnkuIS2lGhb20a4QO104/7Dng+v5VnlwLxO6prqdUBV2pOqj2HVM8oMxCR/tcgQvtcrMLfVVV2S7q3IOmI3kFRonPrWfVJsJlzXJivGS9THkxn6s5Uu4yierN7WJ2J3SzlIk+8V+O7FfiuJeU+va1TiruHojp3OKmgOVEy2fu5faHznlIPGM228vFRHT+fVfA68+j/3VL0XUvSbZAlomx7QPt5Q6KXKt1skfTyXGV13vZOhbT6q01J05ysNONAn5Gs4oBflTWY2S+/PKteGfALMzcde64/9dh3wZ5wEsmTmVz2KPaQSJ4R5c6vJE5KvMUYeJzPaHn0lu+rT085KhNWkonHt9FnHrKcedA5ZqQ5Zil0WUmUxaL/j+RL+hfIwhfXVeHL9fz/I3m8cW3999c+e3h95etb6n8m+UD8SnwsrsBq/IX4GmbknjgQ7aX3lz5dur70+daftv6y9betv8um7y0pzC9F4d/WP/4L+p6W7w==</latexit> GW2 2 (X, Y) def. = min ⇡1=↵,⇡2= Z (X⇥Y)2 k d⇡ ⌦ ⇡ X <latexit sha1_base64="/59ZCDJZPBrZfCS8zgReJB0hTeY=">AABFdnictVxfcxPJER8u/y7kH5c8piq1OR8JlyKOTUglVVepOrCN8WHAINnAIaC00loI1lqhlYRB56+Q1+Tb5HPkGyRPec1j+s/Mzqw0uz3rELZsz87Or7und6anu2eWeJwO8+nGxj8ufPStb3/nu9/7+PsXf/DDH/34J5c++elRns0mveSwl6XZ5HHczZN0OEoOp8NpmjweT5LuSZwmj+LXW/j80TyZ5MNs1J6+GyfPTrqD0fB42OtOsarz+HTrxaW1jfUN+hetFjZ1YU3pfwfZJ5+uq47qq0z11EydqESN1BTKqeqqHK6nalNtqDHUPVMLqJtAaUjPE3WmLgJ2Bq0SaNGF2tfwewB3T3XtCO6RZk7oHnBJ4WcCyEhdBkwG7SZQRm4RPZ8RZaytor0gmijbO/gba1onUDtVL6FWwpmWoTjsy1Qdqz9RH4bQpzHVYO96msqMtIKSR06vpkBhDHVY7sPzCZR7hDR6jgiTU99Rt116/k9qibV439NtZ+pfJOVluCLV0r3PCgpdNSf6Eb3NGTxjeVLgPAAKie4jlt6Srk+o9yNov4D6e3CdUcnoJIZrQbVntcgtuHzILRG5C5cPuSsi9+HyIfdF5AFcPuSBRiJ2Qjr341tw+fAtkfMDuHzIByLyIVw+5EMReQSXD3kkIr+Gy4f8WkTegsuHvCUi78DlQ94RkW24fMi2iDyEy4c8FJE7cPmQOxpZPVMncGVEZyjMyhtQLvNAS5FCzQ1RvptkHX3YmwFzuleBlWf1Nvz1Y7cDdJpUYHcCxt1xBVYeebtgI/1Y2RbdptXEh70tYvdgBPixeyL2K/WqAvtVwEx7XYGV59o+tPNjZet7F+782Lsi9h6U/Fh5jboPNX7s/YAVY1yBPRCxD9SbCmyI1Z9UYGW73wK74sfK61Qb2vuxIdZ0VoGV7ekReDB+rLxaPYJaP/aRiH2sTiuwj0XsE7DufuyTgBX2fQXWrLEXaQUZkD+SwIyto9YtZiWWxkCtK/BPi7UlJd84hnoJMygwA8KciIjdArEbiNgvEPvBcuWFHc3J35W5tApEKxARF2sTlqZi+37RHktpAGK7QGwvIeo8UnzXpi9z8i5MjYScFisXlkL6lBX2G0uJHg/1ltcg7pcQPLZf0si/StESRlCoqTpqL4s1npER3dch3lL0ZnppeMi4aWEVXNSpiIo9qFhEvfOg3omomQc1E1FzD2ououzMd3GdgBFg9Y/vYkF3PALYR66+IvAKbsCqcxvmaATj5wC8wIdUcx/+tij2lq46yTCax3USsxzPSpZ4AqWFWoN6GxVuU3yd0gxLQDJueV/H+HiHuY2FnnNshc+KlTwqMibhdIYkz6Cgg95iRPOpGZ07VHNG3h2XmuFvF/PelJrhd0jjZ+TFc6kZfqqln55D9rbGts+BbcFsGmvt23JTGpx/YRqmfJFWXbS4+FZP9JhBeqcN6e/pN7N3jveyRSXWjy03o5E7/ctL/WtCw+o5d/TcjAp6T+z1mlLUuCcjHffaclMZMlpFR1oOe9f0zWCbvn4zptyMxgF4XFsUcy+cctPROy56Y8vNaBwpznuekSdvys1oDOie9WHLzWhgtqWr43xbbmrZUQMcO9tyU6s+oiww5oB4zHON9Yom5CfNNLUh+Qf12RrX519dxzBn87yIEeopWd+2mk5crGX1Ehl/IQGrNm0oB/oXM8cHK9NYqGtifMUyTEvr+yodu8aj5vdBixHMft4DkHLmKUhochJovVOguClGXeWeGdw1EYej5HgJ1dG1U9FbtHw5a1Sue0G1Ulxme2v12CF7ndPYG5NPuE+alfSwX/mGqyhKGtovaUim10R37/V8LWt/Q8SNlxDjYqT1aEeId9Lq41Sf1luOji/rXZ4pXLznY8cvZpuPtbXBmCcjW4Sy1PF025k8kluH6+pVZXPc/CyiN4r2ak5WY0g7UrkYhZpsMXvjC7q3tA9pTw55MI0evMdIUxkr3jXDLDrm0yOyqK69lXijvkyGjss5WV1jj+vRAwc98KCbxzhbsGLcg1IbYoZDuGsHRDkXC11lpPGJ+m2xO5rRG6yP6NOShTQ02N4kJQtZF2W/LFF5C2gcDRylh9NYpmPwnRVKctTvk8fGrmXLf5l2bs3+dpfGePVors7E9InrNeIa0azhXV2+W+bAEiy8T66R/1rfS+TXhCPaUInrc4cz62VEO/4JRbBj8oxTmm3S7Ci3dvNTy08MpwNl9s5xNzsjCxmR/YtgfcpoTEb0454dMDvobBFSspEhdmdYeDc+X2cojjHrxw0Vn2qw4y0hWzYj/oauO7tyGoscMfA6cLY0to1O9skXTIjrRFt3O7frVx9E2nMS7ihhinasXCH+n9Nv82PGydrKiEAN4xvIta3zvY+MYhbUUZdW+XobZNq6Un5WyPBcS23XPyvTZyXJtiniQnlwte4D5x7dMy8cJROSO19pw+toXTYXKY+X9Ii9PaYonu3+QK/AKPdVWiXXaM51aJQMYBRMiyjCtJWyyMt863mVqYfRzv8v1K2uy1pDipGyGVzWkJTfTyhac6VMYVTz+H1Ns8mv9clSq3o+IxqLJ85c/gZqfwm/jdzmPoxOXLIKN2kMMAV7ZzXCNdFKizBeN0u8zMg0tOy95WfHpGnl1pwnvmbrZmPseWMqBzRqTnXWwpTPQ+OVQ+NVoA7btNdotWjqjSV6IcYWbb1bGcqvCbd2A8ozkbLskRnUMEBKN5YKo9oXqcoxvkG9F2ltiLS6MFvd3QB3zocg/XN9eXZ/U6zukbpFvk2PPDCOX/o0S4fkc5na+kiNKSDn69q+urO/QzXIPSYLipT5HCfOGN516tF1Vkj6K72yZWTnrUUw55be6jbGxnao/PsV5AnNiZzmpUFcpxaJlt+VI1qySOuOzxFR5r9LPhX7HfUxs9vavpOo5E/YeJNnleXFkcKI9C9l3vZWotc9J36NKCacae86BlrN3zBSYIzJJPg9y5zeEK5yvJPAHm1M9nPVTvEu3siRaJ2kXqg/B9gYjnrtWHfHlumx6dtvoCVq3b51XwuZXxrMUeJ3nh29Lq1qJ9pHXSzdn49WV69y5fs6PcyW+Fp9zKiNG1nYKK+M6agvgrmwRM24MCaES7NeNJG/meRNZObdqVDKprWhXM40sI15SfGSdA4UET7v7orXm/tc6Ee8Qi8mrEuNayRKmI3LdH7AtbSYlYqWIiS3XlqTUmc9qlovLA931bB2nC1lQlYwVVLuhlu7feiUohU5G8MUeopP9lbFiS7NL+DC35HyRYmGY0gOsQV+7g21pXY+wKmIN7rMmc2IatAm9Jdi8K7uZ7lFvY7eONRd+iEcwnkMQdeS9ENaUZvKzpRlyV3q4fTfkjWYqESU3rZs3geXi9yTVU5N+jMkCyf3ZqjMNzlN+2I4hPSkzCWcD+9vSL04VubbpmZ9MNTlHpQ5NOFhzjOEvXPbujkvl1O9vla5hPLgdcDsvBgc7gBWxyy2XYiFmjhv5MNzQOtwXEPdrBb/az8MH8upOa9Qbjl9c/Yq4K1zu0RnZtEvbj5nLLeQ0VzNMZxnVvTOek1+fuz/RY3eVOb05sPTR7/UjgHDa6E4HypLx3h3FFl5Q6ng/oBPhkz9W/39gvxVwpuCRpUcTSiZ/YpqaqaFTM18eenrnXkWIpOlUyVTmZqNJ1p0MnZL7alb8LNVeIBNT4nyN5X8F7H+72j7UHtM1sNk0zmD0KG6hLIgdjetT/f2HG2VxHiml8/4tqEG98T3qRbP+96j9njmt13qW/WXJDzX76pM9UuRyfIun51XMfSgvAPHuSDzvW9EZ+o5m8Un0E4C9hj5HBVHSubr5wUh+hQXLku6IIQZLXWUYy/lmM4kJRW041LfejTCx3qnH/cd8Hx+t8guRep3VNfVqwOu1JJUBx6pnlJmICb9b0CE9gd1Ff5e1WW/pAcrkub0DsoSnTrP6k+CnXnHhf2a8TLlwUymbq7bZRTV293D+kzsdiUXPvFejx/U4AeOlC16W68p7p6o+tzhrIbmTMvk7ueOlMl7sh4wmu0W46M+fp7X8JoH9P9OJfqOI+kuyBJTtj2i/bwJ0Uu1bnZIej5XWZ+3vV0jrflqk2nak5V2HJgzknUc8KuyLWH285dn9SsDfmHmp+PO9ScB+y7YE0kiPpkpZY+SAIn4jKh0fmXopSRbjHHA+YxuQG/lvob0VKIyEyWZBXwbPQ+QZR5A51iQ5likMBAl0RbrxaW1zeX/fWS1cHRtfXNjffPB9bUvb+r/meRj9XP1qboCq/Ef1ZcwIw/UIeUa/6L+qv62/Z+dX+xc3vk1N/3ogsb8TJX+7Wz8F/gjXQI=</latexit> <latexit sha1_base64="/59ZCDJZPBrZfCS8zgReJB0hTeY=">AABFdnictVxfcxPJER8u/y7kH5c8piq1OR8JlyKOTUglVVepOrCN8WHAINnAIaC00loI1lqhlYRB56+Q1+Tb5HPkGyRPec1j+s/Mzqw0uz3rELZsz87Or7und6anu2eWeJwO8+nGxj8ufPStb3/nu9/7+PsXf/DDH/34J5c++elRns0mveSwl6XZ5HHczZN0OEoOp8NpmjweT5LuSZwmj+LXW/j80TyZ5MNs1J6+GyfPTrqD0fB42OtOsarz+HTrxaW1jfUN+hetFjZ1YU3pfwfZJ5+uq47qq0z11EydqESN1BTKqeqqHK6nalNtqDHUPVMLqJtAaUjPE3WmLgJ2Bq0SaNGF2tfwewB3T3XtCO6RZk7oHnBJ4WcCyEhdBkwG7SZQRm4RPZ8RZaytor0gmijbO/gba1onUDtVL6FWwpmWoTjsy1Qdqz9RH4bQpzHVYO96msqMtIKSR06vpkBhDHVY7sPzCZR7hDR6jgiTU99Rt116/k9qibV439NtZ+pfJOVluCLV0r3PCgpdNSf6Eb3NGTxjeVLgPAAKie4jlt6Srk+o9yNov4D6e3CdUcnoJIZrQbVntcgtuHzILRG5C5cPuSsi9+HyIfdF5AFcPuSBRiJ2Qjr341tw+fAtkfMDuHzIByLyIVw+5EMReQSXD3kkIr+Gy4f8WkTegsuHvCUi78DlQ94RkW24fMi2iDyEy4c8FJE7cPmQOxpZPVMncGVEZyjMyhtQLvNAS5FCzQ1RvptkHX3YmwFzuleBlWf1Nvz1Y7cDdJpUYHcCxt1xBVYeebtgI/1Y2RbdptXEh70tYvdgBPixeyL2K/WqAvtVwEx7XYGV59o+tPNjZet7F+782Lsi9h6U/Fh5jboPNX7s/YAVY1yBPRCxD9SbCmyI1Z9UYGW73wK74sfK61Qb2vuxIdZ0VoGV7ekReDB+rLxaPYJaP/aRiH2sTiuwj0XsE7DufuyTgBX2fQXWrLEXaQUZkD+SwIyto9YtZiWWxkCtK/BPi7UlJd84hnoJMygwA8KciIjdArEbiNgvEPvBcuWFHc3J35W5tApEKxARF2sTlqZi+37RHktpAGK7QGwvIeo8UnzXpi9z8i5MjYScFisXlkL6lBX2G0uJHg/1ltcg7pcQPLZf0si/StESRlCoqTpqL4s1npER3dch3lL0ZnppeMi4aWEVXNSpiIo9qFhEvfOg3omomQc1E1FzD2ououzMd3GdgBFg9Y/vYkF3PALYR66+IvAKbsCqcxvmaATj5wC8wIdUcx/+tij2lq46yTCax3USsxzPSpZ4AqWFWoN6GxVuU3yd0gxLQDJueV/H+HiHuY2FnnNshc+KlTwqMibhdIYkz6Cgg95iRPOpGZ07VHNG3h2XmuFvF/PelJrhd0jjZ+TFc6kZfqqln55D9rbGts+BbcFsGmvt23JTGpx/YRqmfJFWXbS4+FZP9JhBeqcN6e/pN7N3jveyRSXWjy03o5E7/ctL/WtCw+o5d/TcjAp6T+z1mlLUuCcjHffaclMZMlpFR1oOe9f0zWCbvn4zptyMxgF4XFsUcy+cctPROy56Y8vNaBwpznuekSdvys1oDOie9WHLzWhgtqWr43xbbmrZUQMcO9tyU6s+oiww5oB4zHON9Yom5CfNNLUh+Qf12RrX519dxzBn87yIEeopWd+2mk5crGX1Ehl/IQGrNm0oB/oXM8cHK9NYqGtifMUyTEvr+yodu8aj5vdBixHMft4DkHLmKUhochJovVOguClGXeWeGdw1EYej5HgJ1dG1U9FbtHw5a1Sue0G1Ulxme2v12CF7ndPYG5NPuE+alfSwX/mGqyhKGtovaUim10R37/V8LWt/Q8SNlxDjYqT1aEeId9Lq41Sf1luOji/rXZ4pXLznY8cvZpuPtbXBmCcjW4Sy1PF025k8kluH6+pVZXPc/CyiN4r2ak5WY0g7UrkYhZpsMXvjC7q3tA9pTw55MI0evMdIUxkr3jXDLDrm0yOyqK69lXijvkyGjss5WV1jj+vRAwc98KCbxzhbsGLcg1IbYoZDuGsHRDkXC11lpPGJ+m2xO5rRG6yP6NOShTQ02N4kJQtZF2W/LFF5C2gcDRylh9NYpmPwnRVKctTvk8fGrmXLf5l2bs3+dpfGePVors7E9InrNeIa0azhXV2+W+bAEiy8T66R/1rfS+TXhCPaUInrc4cz62VEO/4JRbBj8oxTmm3S7Ci3dvNTy08MpwNl9s5xNzsjCxmR/YtgfcpoTEb0454dMDvobBFSspEhdmdYeDc+X2cojjHrxw0Vn2qw4y0hWzYj/oauO7tyGoscMfA6cLY0to1O9skXTIjrRFt3O7frVx9E2nMS7ihhinasXCH+n9Nv82PGydrKiEAN4xvIta3zvY+MYhbUUZdW+XobZNq6Un5WyPBcS23XPyvTZyXJtiniQnlwte4D5x7dMy8cJROSO19pw+toXTYXKY+X9Ii9PaYonu3+QK/AKPdVWiXXaM51aJQMYBRMiyjCtJWyyMt863mVqYfRzv8v1K2uy1pDipGyGVzWkJTfTyhac6VMYVTz+H1Ns8mv9clSq3o+IxqLJ85c/gZqfwm/jdzmPoxOXLIKN2kMMAV7ZzXCNdFKizBeN0u8zMg0tOy95WfHpGnl1pwnvmbrZmPseWMqBzRqTnXWwpTPQ+OVQ+NVoA7btNdotWjqjSV6IcYWbb1bGcqvCbd2A8ozkbLskRnUMEBKN5YKo9oXqcoxvkG9F2ltiLS6MFvd3QB3zocg/XN9eXZ/U6zukbpFvk2PPDCOX/o0S4fkc5na+kiNKSDn69q+urO/QzXIPSYLipT5HCfOGN516tF1Vkj6K72yZWTnrUUw55be6jbGxnao/PsV5AnNiZzmpUFcpxaJlt+VI1qySOuOzxFR5r9LPhX7HfUxs9vavpOo5E/YeJNnleXFkcKI9C9l3vZWotc9J36NKCacae86BlrN3zBSYIzJJPg9y5zeEK5yvJPAHm1M9nPVTvEu3siRaJ2kXqg/B9gYjnrtWHfHlumx6dtvoCVq3b51XwuZXxrMUeJ3nh29Lq1qJ9pHXSzdn49WV69y5fs6PcyW+Fp9zKiNG1nYKK+M6agvgrmwRM24MCaES7NeNJG/meRNZObdqVDKprWhXM40sI15SfGSdA4UET7v7orXm/tc6Ee8Qi8mrEuNayRKmI3LdH7AtbSYlYqWIiS3XlqTUmc9qlovLA931bB2nC1lQlYwVVLuhlu7feiUohU5G8MUeopP9lbFiS7NL+DC35HyRYmGY0gOsQV+7g21pXY+wKmIN7rMmc2IatAm9Jdi8K7uZ7lFvY7eONRd+iEcwnkMQdeS9ENaUZvKzpRlyV3q4fTfkjWYqESU3rZs3geXi9yTVU5N+jMkCyf3ZqjMNzlN+2I4hPSkzCWcD+9vSL04VubbpmZ9MNTlHpQ5NOFhzjOEvXPbujkvl1O9vla5hPLgdcDsvBgc7gBWxyy2XYiFmjhv5MNzQOtwXEPdrBb/az8MH8upOa9Qbjl9c/Yq4K1zu0RnZtEvbj5nLLeQ0VzNMZxnVvTOek1+fuz/RY3eVOb05sPTR7/UjgHDa6E4HypLx3h3FFl5Q6ng/oBPhkz9W/39gvxVwpuCRpUcTSiZ/YpqaqaFTM18eenrnXkWIpOlUyVTmZqNJ1p0MnZL7alb8LNVeIBNT4nyN5X8F7H+72j7UHtM1sNk0zmD0KG6hLIgdjetT/f2HG2VxHiml8/4tqEG98T3qRbP+96j9njmt13qW/WXJDzX76pM9UuRyfIun51XMfSgvAPHuSDzvW9EZ+o5m8Un0E4C9hj5HBVHSubr5wUh+hQXLku6IIQZLXWUYy/lmM4kJRW041LfejTCx3qnH/cd8Hx+t8guRep3VNfVqwOu1JJUBx6pnlJmICb9b0CE9gd1Ff5e1WW/pAcrkub0DsoSnTrP6k+CnXnHhf2a8TLlwUymbq7bZRTV293D+kzsdiUXPvFejx/U4AeOlC16W68p7p6o+tzhrIbmTMvk7ueOlMl7sh4wmu0W46M+fp7X8JoH9P9OJfqOI+kuyBJTtj2i/bwJ0Uu1bnZIej5XWZ+3vV0jrflqk2nak5V2HJgzknUc8KuyLWH285dn9SsDfmHmp+PO9ScB+y7YE0kiPpkpZY+SAIn4jKh0fmXopSRbjHHA+YxuQG/lvob0VKIyEyWZBXwbPQ+QZR5A51iQ5likMBAl0RbrxaW1zeX/fWS1cHRtfXNjffPB9bUvb+r/meRj9XP1qboCq/Ef1ZcwIw/UIeUa/6L+qv62/Z+dX+xc3vk1N/3ogsb8TJX+7Wz8F/gjXQI=</latexit> <latexit sha1_base64="/59ZCDJZPBrZfCS8zgReJB0hTeY=">AABFdnictVxfcxPJER8u/y7kH5c8piq1OR8JlyKOTUglVVepOrCN8WHAINnAIaC00loI1lqhlYRB56+Q1+Tb5HPkGyRPec1j+s/Mzqw0uz3rELZsz87Or7und6anu2eWeJwO8+nGxj8ufPStb3/nu9/7+PsXf/DDH/34J5c++elRns0mveSwl6XZ5HHczZN0OEoOp8NpmjweT5LuSZwmj+LXW/j80TyZ5MNs1J6+GyfPTrqD0fB42OtOsarz+HTrxaW1jfUN+hetFjZ1YU3pfwfZJ5+uq47qq0z11EydqESN1BTKqeqqHK6nalNtqDHUPVMLqJtAaUjPE3WmLgJ2Bq0SaNGF2tfwewB3T3XtCO6RZk7oHnBJ4WcCyEhdBkwG7SZQRm4RPZ8RZaytor0gmijbO/gba1onUDtVL6FWwpmWoTjsy1Qdqz9RH4bQpzHVYO96msqMtIKSR06vpkBhDHVY7sPzCZR7hDR6jgiTU99Rt116/k9qibV439NtZ+pfJOVluCLV0r3PCgpdNSf6Eb3NGTxjeVLgPAAKie4jlt6Srk+o9yNov4D6e3CdUcnoJIZrQbVntcgtuHzILRG5C5cPuSsi9+HyIfdF5AFcPuSBRiJ2Qjr341tw+fAtkfMDuHzIByLyIVw+5EMReQSXD3kkIr+Gy4f8WkTegsuHvCUi78DlQ94RkW24fMi2iDyEy4c8FJE7cPmQOxpZPVMncGVEZyjMyhtQLvNAS5FCzQ1RvptkHX3YmwFzuleBlWf1Nvz1Y7cDdJpUYHcCxt1xBVYeebtgI/1Y2RbdptXEh70tYvdgBPixeyL2K/WqAvtVwEx7XYGV59o+tPNjZet7F+782Lsi9h6U/Fh5jboPNX7s/YAVY1yBPRCxD9SbCmyI1Z9UYGW73wK74sfK61Qb2vuxIdZ0VoGV7ekReDB+rLxaPYJaP/aRiH2sTiuwj0XsE7DufuyTgBX2fQXWrLEXaQUZkD+SwIyto9YtZiWWxkCtK/BPi7UlJd84hnoJMygwA8KciIjdArEbiNgvEPvBcuWFHc3J35W5tApEKxARF2sTlqZi+37RHktpAGK7QGwvIeo8UnzXpi9z8i5MjYScFisXlkL6lBX2G0uJHg/1ltcg7pcQPLZf0si/StESRlCoqTpqL4s1npER3dch3lL0ZnppeMi4aWEVXNSpiIo9qFhEvfOg3omomQc1E1FzD2ououzMd3GdgBFg9Y/vYkF3PALYR66+IvAKbsCqcxvmaATj5wC8wIdUcx/+tij2lq46yTCax3USsxzPSpZ4AqWFWoN6GxVuU3yd0gxLQDJueV/H+HiHuY2FnnNshc+KlTwqMibhdIYkz6Cgg95iRPOpGZ07VHNG3h2XmuFvF/PelJrhd0jjZ+TFc6kZfqqln55D9rbGts+BbcFsGmvt23JTGpx/YRqmfJFWXbS4+FZP9JhBeqcN6e/pN7N3jveyRSXWjy03o5E7/ctL/WtCw+o5d/TcjAp6T+z1mlLUuCcjHffaclMZMlpFR1oOe9f0zWCbvn4zptyMxgF4XFsUcy+cctPROy56Y8vNaBwpznuekSdvys1oDOie9WHLzWhgtqWr43xbbmrZUQMcO9tyU6s+oiww5oB4zHON9Yom5CfNNLUh+Qf12RrX519dxzBn87yIEeopWd+2mk5crGX1Ehl/IQGrNm0oB/oXM8cHK9NYqGtifMUyTEvr+yodu8aj5vdBixHMft4DkHLmKUhochJovVOguClGXeWeGdw1EYej5HgJ1dG1U9FbtHw5a1Sue0G1Ulxme2v12CF7ndPYG5NPuE+alfSwX/mGqyhKGtovaUim10R37/V8LWt/Q8SNlxDjYqT1aEeId9Lq41Sf1luOji/rXZ4pXLznY8cvZpuPtbXBmCcjW4Sy1PF025k8kluH6+pVZXPc/CyiN4r2ak5WY0g7UrkYhZpsMXvjC7q3tA9pTw55MI0evMdIUxkr3jXDLDrm0yOyqK69lXijvkyGjss5WV1jj+vRAwc98KCbxzhbsGLcg1IbYoZDuGsHRDkXC11lpPGJ+m2xO5rRG6yP6NOShTQ02N4kJQtZF2W/LFF5C2gcDRylh9NYpmPwnRVKctTvk8fGrmXLf5l2bs3+dpfGePVors7E9InrNeIa0azhXV2+W+bAEiy8T66R/1rfS+TXhCPaUInrc4cz62VEO/4JRbBj8oxTmm3S7Ci3dvNTy08MpwNl9s5xNzsjCxmR/YtgfcpoTEb0454dMDvobBFSspEhdmdYeDc+X2cojjHrxw0Vn2qw4y0hWzYj/oauO7tyGoscMfA6cLY0to1O9skXTIjrRFt3O7frVx9E2nMS7ihhinasXCH+n9Nv82PGydrKiEAN4xvIta3zvY+MYhbUUZdW+XobZNq6Un5WyPBcS23XPyvTZyXJtiniQnlwte4D5x7dMy8cJROSO19pw+toXTYXKY+X9Ii9PaYonu3+QK/AKPdVWiXXaM51aJQMYBRMiyjCtJWyyMt863mVqYfRzv8v1K2uy1pDipGyGVzWkJTfTyhac6VMYVTz+H1Ns8mv9clSq3o+IxqLJ85c/gZqfwm/jdzmPoxOXLIKN2kMMAV7ZzXCNdFKizBeN0u8zMg0tOy95WfHpGnl1pwnvmbrZmPseWMqBzRqTnXWwpTPQ+OVQ+NVoA7btNdotWjqjSV6IcYWbb1bGcqvCbd2A8ozkbLskRnUMEBKN5YKo9oXqcoxvkG9F2ltiLS6MFvd3QB3zocg/XN9eXZ/U6zukbpFvk2PPDCOX/o0S4fkc5na+kiNKSDn69q+urO/QzXIPSYLipT5HCfOGN516tF1Vkj6K72yZWTnrUUw55be6jbGxnao/PsV5AnNiZzmpUFcpxaJlt+VI1qySOuOzxFR5r9LPhX7HfUxs9vavpOo5E/YeJNnleXFkcKI9C9l3vZWotc9J36NKCacae86BlrN3zBSYIzJJPg9y5zeEK5yvJPAHm1M9nPVTvEu3siRaJ2kXqg/B9gYjnrtWHfHlumx6dtvoCVq3b51XwuZXxrMUeJ3nh29Lq1qJ9pHXSzdn49WV69y5fs6PcyW+Fp9zKiNG1nYKK+M6agvgrmwRM24MCaES7NeNJG/meRNZObdqVDKprWhXM40sI15SfGSdA4UET7v7orXm/tc6Ee8Qi8mrEuNayRKmI3LdH7AtbSYlYqWIiS3XlqTUmc9qlovLA931bB2nC1lQlYwVVLuhlu7feiUohU5G8MUeopP9lbFiS7NL+DC35HyRYmGY0gOsQV+7g21pXY+wKmIN7rMmc2IatAm9Jdi8K7uZ7lFvY7eONRd+iEcwnkMQdeS9ENaUZvKzpRlyV3q4fTfkjWYqESU3rZs3geXi9yTVU5N+jMkCyf3ZqjMNzlN+2I4hPSkzCWcD+9vSL04VubbpmZ9MNTlHpQ5NOFhzjOEvXPbujkvl1O9vla5hPLgdcDsvBgc7gBWxyy2XYiFmjhv5MNzQOtwXEPdrBb/az8MH8upOa9Qbjl9c/Yq4K1zu0RnZtEvbj5nLLeQ0VzNMZxnVvTOek1+fuz/RY3eVOb05sPTR7/UjgHDa6E4HypLx3h3FFl5Q6ng/oBPhkz9W/39gvxVwpuCRpUcTSiZ/YpqaqaFTM18eenrnXkWIpOlUyVTmZqNJ1p0MnZL7alb8LNVeIBNT4nyN5X8F7H+72j7UHtM1sNk0zmD0KG6hLIgdjetT/f2HG2VxHiml8/4tqEG98T3qRbP+96j9njmt13qW/WXJDzX76pM9UuRyfIun51XMfSgvAPHuSDzvW9EZ+o5m8Un0E4C9hj5HBVHSubr5wUh+hQXLku6IIQZLXWUYy/lmM4kJRW041LfejTCx3qnH/cd8Hx+t8guRep3VNfVqwOu1JJUBx6pnlJmICb9b0CE9gd1Ff5e1WW/pAcrkub0DsoSnTrP6k+CnXnHhf2a8TLlwUymbq7bZRTV293D+kzsdiUXPvFejx/U4AeOlC16W68p7p6o+tzhrIbmTMvk7ueOlMl7sh4wmu0W46M+fp7X8JoH9P9OJfqOI+kuyBJTtj2i/bwJ0Uu1bnZIej5XWZ+3vV0jrflqk2nak5V2HJgzknUc8KuyLWH285dn9SsDfmHmp+PO9ScB+y7YE0kiPpkpZY+SAIn4jKh0fmXopSRbjHHA+YxuQG/lvob0VKIyEyWZBXwbPQ+QZR5A51iQ5likMBAl0RbrxaW1zeX/fWS1cHRtfXNjffPB9bUvb+r/meRj9XP1qboCq/Ef1ZcwIw/UIeUa/6L+qv62/Z+dX+xc3vk1N/3ogsb8TJX+7Wz8F/gjXQI=</latexit> <latexit sha1_base64="/59ZCDJZPBrZfCS8zgReJB0hTeY=">AABFdnictVxfcxPJER8u/y7kH5c8piq1OR8JlyKOTUglVVepOrCN8WHAINnAIaC00loI1lqhlYRB56+Q1+Tb5HPkGyRPec1j+s/Mzqw0uz3rELZsz87Or7und6anu2eWeJwO8+nGxj8ufPStb3/nu9/7+PsXf/DDH/34J5c++elRns0mveSwl6XZ5HHczZN0OEoOp8NpmjweT5LuSZwmj+LXW/j80TyZ5MNs1J6+GyfPTrqD0fB42OtOsarz+HTrxaW1jfUN+hetFjZ1YU3pfwfZJ5+uq47qq0z11EydqESN1BTKqeqqHK6nalNtqDHUPVMLqJtAaUjPE3WmLgJ2Bq0SaNGF2tfwewB3T3XtCO6RZk7oHnBJ4WcCyEhdBkwG7SZQRm4RPZ8RZaytor0gmijbO/gba1onUDtVL6FWwpmWoTjsy1Qdqz9RH4bQpzHVYO96msqMtIKSR06vpkBhDHVY7sPzCZR7hDR6jgiTU99Rt116/k9qibV439NtZ+pfJOVluCLV0r3PCgpdNSf6Eb3NGTxjeVLgPAAKie4jlt6Srk+o9yNov4D6e3CdUcnoJIZrQbVntcgtuHzILRG5C5cPuSsi9+HyIfdF5AFcPuSBRiJ2Qjr341tw+fAtkfMDuHzIByLyIVw+5EMReQSXD3kkIr+Gy4f8WkTegsuHvCUi78DlQ94RkW24fMi2iDyEy4c8FJE7cPmQOxpZPVMncGVEZyjMyhtQLvNAS5FCzQ1RvptkHX3YmwFzuleBlWf1Nvz1Y7cDdJpUYHcCxt1xBVYeebtgI/1Y2RbdptXEh70tYvdgBPixeyL2K/WqAvtVwEx7XYGV59o+tPNjZet7F+782Lsi9h6U/Fh5jboPNX7s/YAVY1yBPRCxD9SbCmyI1Z9UYGW73wK74sfK61Qb2vuxIdZ0VoGV7ekReDB+rLxaPYJaP/aRiH2sTiuwj0XsE7DufuyTgBX2fQXWrLEXaQUZkD+SwIyto9YtZiWWxkCtK/BPi7UlJd84hnoJMygwA8KciIjdArEbiNgvEPvBcuWFHc3J35W5tApEKxARF2sTlqZi+37RHktpAGK7QGwvIeo8UnzXpi9z8i5MjYScFisXlkL6lBX2G0uJHg/1ltcg7pcQPLZf0si/StESRlCoqTpqL4s1npER3dch3lL0ZnppeMi4aWEVXNSpiIo9qFhEvfOg3omomQc1E1FzD2ououzMd3GdgBFg9Y/vYkF3PALYR66+IvAKbsCqcxvmaATj5wC8wIdUcx/+tij2lq46yTCax3USsxzPSpZ4AqWFWoN6GxVuU3yd0gxLQDJueV/H+HiHuY2FnnNshc+KlTwqMibhdIYkz6Cgg95iRPOpGZ07VHNG3h2XmuFvF/PelJrhd0jjZ+TFc6kZfqqln55D9rbGts+BbcFsGmvt23JTGpx/YRqmfJFWXbS4+FZP9JhBeqcN6e/pN7N3jveyRSXWjy03o5E7/ctL/WtCw+o5d/TcjAp6T+z1mlLUuCcjHffaclMZMlpFR1oOe9f0zWCbvn4zptyMxgF4XFsUcy+cctPROy56Y8vNaBwpznuekSdvys1oDOie9WHLzWhgtqWr43xbbmrZUQMcO9tyU6s+oiww5oB4zHON9Yom5CfNNLUh+Qf12RrX519dxzBn87yIEeopWd+2mk5crGX1Ehl/IQGrNm0oB/oXM8cHK9NYqGtifMUyTEvr+yodu8aj5vdBixHMft4DkHLmKUhochJovVOguClGXeWeGdw1EYej5HgJ1dG1U9FbtHw5a1Sue0G1Ulxme2v12CF7ndPYG5NPuE+alfSwX/mGqyhKGtovaUim10R37/V8LWt/Q8SNlxDjYqT1aEeId9Lq41Sf1luOji/rXZ4pXLznY8cvZpuPtbXBmCcjW4Sy1PF025k8kluH6+pVZXPc/CyiN4r2ak5WY0g7UrkYhZpsMXvjC7q3tA9pTw55MI0evMdIUxkr3jXDLDrm0yOyqK69lXijvkyGjss5WV1jj+vRAwc98KCbxzhbsGLcg1IbYoZDuGsHRDkXC11lpPGJ+m2xO5rRG6yP6NOShTQ02N4kJQtZF2W/LFF5C2gcDRylh9NYpmPwnRVKctTvk8fGrmXLf5l2bs3+dpfGePVors7E9InrNeIa0azhXV2+W+bAEiy8T66R/1rfS+TXhCPaUInrc4cz62VEO/4JRbBj8oxTmm3S7Ci3dvNTy08MpwNl9s5xNzsjCxmR/YtgfcpoTEb0454dMDvobBFSspEhdmdYeDc+X2cojjHrxw0Vn2qw4y0hWzYj/oauO7tyGoscMfA6cLY0to1O9skXTIjrRFt3O7frVx9E2nMS7ihhinasXCH+n9Nv82PGydrKiEAN4xvIta3zvY+MYhbUUZdW+XobZNq6Un5WyPBcS23XPyvTZyXJtiniQnlwte4D5x7dMy8cJROSO19pw+toXTYXKY+X9Ii9PaYonu3+QK/AKPdVWiXXaM51aJQMYBRMiyjCtJWyyMt863mVqYfRzv8v1K2uy1pDipGyGVzWkJTfTyhac6VMYVTz+H1Ns8mv9clSq3o+IxqLJ85c/gZqfwm/jdzmPoxOXLIKN2kMMAV7ZzXCNdFKizBeN0u8zMg0tOy95WfHpGnl1pwnvmbrZmPseWMqBzRqTnXWwpTPQ+OVQ+NVoA7btNdotWjqjSV6IcYWbb1bGcqvCbd2A8ozkbLskRnUMEBKN5YKo9oXqcoxvkG9F2ltiLS6MFvd3QB3zocg/XN9eXZ/U6zukbpFvk2PPDCOX/o0S4fkc5na+kiNKSDn69q+urO/QzXIPSYLipT5HCfOGN516tF1Vkj6K72yZWTnrUUw55be6jbGxnao/PsV5AnNiZzmpUFcpxaJlt+VI1qySOuOzxFR5r9LPhX7HfUxs9vavpOo5E/YeJNnleXFkcKI9C9l3vZWotc9J36NKCacae86BlrN3zBSYIzJJPg9y5zeEK5yvJPAHm1M9nPVTvEu3siRaJ2kXqg/B9gYjnrtWHfHlumx6dtvoCVq3b51XwuZXxrMUeJ3nh29Lq1qJ9pHXSzdn49WV69y5fs6PcyW+Fp9zKiNG1nYKK+M6agvgrmwRM24MCaES7NeNJG/meRNZObdqVDKprWhXM40sI15SfGSdA4UET7v7orXm/tc6Ee8Qi8mrEuNayRKmI3LdH7AtbSYlYqWIiS3XlqTUmc9qlovLA931bB2nC1lQlYwVVLuhlu7feiUohU5G8MUeopP9lbFiS7NL+DC35HyRYmGY0gOsQV+7g21pXY+wKmIN7rMmc2IatAm9Jdi8K7uZ7lFvY7eONRd+iEcwnkMQdeS9ENaUZvKzpRlyV3q4fTfkjWYqESU3rZs3geXi9yTVU5N+jMkCyf3ZqjMNzlN+2I4hPSkzCWcD+9vSL04VubbpmZ9MNTlHpQ5NOFhzjOEvXPbujkvl1O9vla5hPLgdcDsvBgc7gBWxyy2XYiFmjhv5MNzQOtwXEPdrBb/az8MH8upOa9Qbjl9c/Yq4K1zu0RnZtEvbj5nLLeQ0VzNMZxnVvTOek1+fuz/RY3eVOb05sPTR7/UjgHDa6E4HypLx3h3FFl5Q6ng/oBPhkz9W/39gvxVwpuCRpUcTSiZ/YpqaqaFTM18eenrnXkWIpOlUyVTmZqNJ1p0MnZL7alb8LNVeIBNT4nyN5X8F7H+72j7UHtM1sNk0zmD0KG6hLIgdjetT/f2HG2VxHiml8/4tqEG98T3qRbP+96j9njmt13qW/WXJDzX76pM9UuRyfIun51XMfSgvAPHuSDzvW9EZ+o5m8Un0E4C9hj5HBVHSubr5wUh+hQXLku6IIQZLXWUYy/lmM4kJRW041LfejTCx3qnH/cd8Hx+t8guRep3VNfVqwOu1JJUBx6pnlJmICb9b0CE9gd1Ff5e1WW/pAcrkub0DsoSnTrP6k+CnXnHhf2a8TLlwUymbq7bZRTV293D+kzsdiUXPvFejx/U4AeOlC16W68p7p6o+tzhrIbmTMvk7ueOlMl7sh4wmu0W46M+fp7X8JoH9P9OJfqOI+kuyBJTtj2i/bwJ0Uu1bnZIej5XWZ+3vV0jrflqk2nak5V2HJgzknUc8KuyLWH285dn9SsDfmHmp+PO9ScB+y7YE0kiPpkpZY+SAIn4jKh0fmXopSRbjHHA+YxuQG/lvob0VKIyEyWZBXwbPQ+QZR5A51iQ5likMBAl0RbrxaW1zeX/fWS1cHRtfXNjffPB9bUvb+r/meRj9XP1qboCq/Ef1ZcwIw/UIeUa/6L+qv62/Z+dX+xc3vk1N/3ogsb8TJX+7Wz8F/gjXQI=</latexit> <latexit sha1_base64="/59ZCDJZPBrZfCS8zgReJB0hTeY=">AABFdnictVxfcxPJER8u/y7kH5c8piq1OR8JlyKOTUglVVepOrCN8WHAINnAIaC00loI1lqhlYRB56+Q1+Tb5HPkGyRPec1j+s/Mzqw0uz3rELZsz87Or7und6anu2eWeJwO8+nGxj8ufPStb3/nu9/7+PsXf/DDH/34J5c++elRns0mveSwl6XZ5HHczZN0OEoOp8NpmjweT5LuSZwmj+LXW/j80TyZ5MNs1J6+GyfPTrqD0fB42OtOsarz+HTrxaW1jfUN+hetFjZ1YU3pfwfZJ5+uq47qq0z11EydqESN1BTKqeqqHK6nalNtqDHUPVMLqJtAaUjPE3WmLgJ2Bq0SaNGF2tfwewB3T3XtCO6RZk7oHnBJ4WcCyEhdBkwG7SZQRm4RPZ8RZaytor0gmijbO/gba1onUDtVL6FWwpmWoTjsy1Qdqz9RH4bQpzHVYO96msqMtIKSR06vpkBhDHVY7sPzCZR7hDR6jgiTU99Rt116/k9qibV439NtZ+pfJOVluCLV0r3PCgpdNSf6Eb3NGTxjeVLgPAAKie4jlt6Srk+o9yNov4D6e3CdUcnoJIZrQbVntcgtuHzILRG5C5cPuSsi9+HyIfdF5AFcPuSBRiJ2Qjr341tw+fAtkfMDuHzIByLyIVw+5EMReQSXD3kkIr+Gy4f8WkTegsuHvCUi78DlQ94RkW24fMi2iDyEy4c8FJE7cPmQOxpZPVMncGVEZyjMyhtQLvNAS5FCzQ1RvptkHX3YmwFzuleBlWf1Nvz1Y7cDdJpUYHcCxt1xBVYeebtgI/1Y2RbdptXEh70tYvdgBPixeyL2K/WqAvtVwEx7XYGV59o+tPNjZet7F+782Lsi9h6U/Fh5jboPNX7s/YAVY1yBPRCxD9SbCmyI1Z9UYGW73wK74sfK61Qb2vuxIdZ0VoGV7ekReDB+rLxaPYJaP/aRiH2sTiuwj0XsE7DufuyTgBX2fQXWrLEXaQUZkD+SwIyto9YtZiWWxkCtK/BPi7UlJd84hnoJMygwA8KciIjdArEbiNgvEPvBcuWFHc3J35W5tApEKxARF2sTlqZi+37RHktpAGK7QGwvIeo8UnzXpi9z8i5MjYScFisXlkL6lBX2G0uJHg/1ltcg7pcQPLZf0si/StESRlCoqTpqL4s1npER3dch3lL0ZnppeMi4aWEVXNSpiIo9qFhEvfOg3omomQc1E1FzD2ououzMd3GdgBFg9Y/vYkF3PALYR66+IvAKbsCqcxvmaATj5wC8wIdUcx/+tij2lq46yTCax3USsxzPSpZ4AqWFWoN6GxVuU3yd0gxLQDJueV/H+HiHuY2FnnNshc+KlTwqMibhdIYkz6Cgg95iRPOpGZ07VHNG3h2XmuFvF/PelJrhd0jjZ+TFc6kZfqqln55D9rbGts+BbcFsGmvt23JTGpx/YRqmfJFWXbS4+FZP9JhBeqcN6e/pN7N3jveyRSXWjy03o5E7/ctL/WtCw+o5d/TcjAp6T+z1mlLUuCcjHffaclMZMlpFR1oOe9f0zWCbvn4zptyMxgF4XFsUcy+cctPROy56Y8vNaBwpznuekSdvys1oDOie9WHLzWhgtqWr43xbbmrZUQMcO9tyU6s+oiww5oB4zHON9Yom5CfNNLUh+Qf12RrX519dxzBn87yIEeopWd+2mk5crGX1Ehl/IQGrNm0oB/oXM8cHK9NYqGtifMUyTEvr+yodu8aj5vdBixHMft4DkHLmKUhochJovVOguClGXeWeGdw1EYej5HgJ1dG1U9FbtHw5a1Sue0G1Ulxme2v12CF7ndPYG5NPuE+alfSwX/mGqyhKGtovaUim10R37/V8LWt/Q8SNlxDjYqT1aEeId9Lq41Sf1luOji/rXZ4pXLznY8cvZpuPtbXBmCcjW4Sy1PF025k8kluH6+pVZXPc/CyiN4r2ak5WY0g7UrkYhZpsMXvjC7q3tA9pTw55MI0evMdIUxkr3jXDLDrm0yOyqK69lXijvkyGjss5WV1jj+vRAwc98KCbxzhbsGLcg1IbYoZDuGsHRDkXC11lpPGJ+m2xO5rRG6yP6NOShTQ02N4kJQtZF2W/LFF5C2gcDRylh9NYpmPwnRVKctTvk8fGrmXLf5l2bs3+dpfGePVors7E9InrNeIa0azhXV2+W+bAEiy8T66R/1rfS+TXhCPaUInrc4cz62VEO/4JRbBj8oxTmm3S7Ci3dvNTy08MpwNl9s5xNzsjCxmR/YtgfcpoTEb0454dMDvobBFSspEhdmdYeDc+X2cojjHrxw0Vn2qw4y0hWzYj/oauO7tyGoscMfA6cLY0to1O9skXTIjrRFt3O7frVx9E2nMS7ihhinasXCH+n9Nv82PGydrKiEAN4xvIta3zvY+MYhbUUZdW+XobZNq6Un5WyPBcS23XPyvTZyXJtiniQnlwte4D5x7dMy8cJROSO19pw+toXTYXKY+X9Ii9PaYonu3+QK/AKPdVWiXXaM51aJQMYBRMiyjCtJWyyMt863mVqYfRzv8v1K2uy1pDipGyGVzWkJTfTyhac6VMYVTz+H1Ns8mv9clSq3o+IxqLJ85c/gZqfwm/jdzmPoxOXLIKN2kMMAV7ZzXCNdFKizBeN0u8zMg0tOy95WfHpGnl1pwnvmbrZmPseWMqBzRqTnXWwpTPQ+OVQ+NVoA7btNdotWjqjSV6IcYWbb1bGcqvCbd2A8ozkbLskRnUMEBKN5YKo9oXqcoxvkG9F2ltiLS6MFvd3QB3zocg/XN9eXZ/U6zukbpFvk2PPDCOX/o0S4fkc5na+kiNKSDn69q+urO/QzXIPSYLipT5HCfOGN516tF1Vkj6K72yZWTnrUUw55be6jbGxnao/PsV5AnNiZzmpUFcpxaJlt+VI1qySOuOzxFR5r9LPhX7HfUxs9vavpOo5E/YeJNnleXFkcKI9C9l3vZWotc9J36NKCacae86BlrN3zBSYIzJJPg9y5zeEK5yvJPAHm1M9nPVTvEu3siRaJ2kXqg/B9gYjnrtWHfHlumx6dtvoCVq3b51XwuZXxrMUeJ3nh29Lq1qJ9pHXSzdn49WV69y5fs6PcyW+Fp9zKiNG1nYKK+M6agvgrmwRM24MCaES7NeNJG/meRNZObdqVDKprWhXM40sI15SfGSdA4UET7v7orXm/tc6Ee8Qi8mrEuNayRKmI3LdH7AtbSYlYqWIiS3XlqTUmc9qlovLA931bB2nC1lQlYwVVLuhlu7feiUohU5G8MUeopP9lbFiS7NL+DC35HyRYmGY0gOsQV+7g21pXY+wKmIN7rMmc2IatAm9Jdi8K7uZ7lFvY7eONRd+iEcwnkMQdeS9ENaUZvKzpRlyV3q4fTfkjWYqESU3rZs3geXi9yTVU5N+jMkCyf3ZqjMNzlN+2I4hPSkzCWcD+9vSL04VubbpmZ9MNTlHpQ5NOFhzjOEvXPbujkvl1O9vla5hPLgdcDsvBgc7gBWxyy2XYiFmjhv5MNzQOtwXEPdrBb/az8MH8upOa9Qbjl9c/Yq4K1zu0RnZtEvbj5nLLeQ0VzNMZxnVvTOek1+fuz/RY3eVOb05sPTR7/UjgHDa6E4HypLx3h3FFl5Q6ng/oBPhkz9W/39gvxVwpuCRpUcTSiZ/YpqaqaFTM18eenrnXkWIpOlUyVTmZqNJ1p0MnZL7alb8LNVeIBNT4nyN5X8F7H+72j7UHtM1sNk0zmD0KG6hLIgdjetT/f2HG2VxHiml8/4tqEG98T3qRbP+96j9njmt13qW/WXJDzX76pM9UuRyfIun51XMfSgvAPHuSDzvW9EZ+o5m8Un0E4C9hj5HBVHSubr5wUh+hQXLku6IIQZLXWUYy/lmM4kJRW041LfejTCx3qnH/cd8Hx+t8guRep3VNfVqwOu1JJUBx6pnlJmICb9b0CE9gd1Ff5e1WW/pAcrkub0DsoSnTrP6k+CnXnHhf2a8TLlwUymbq7bZRTV293D+kzsdiUXPvFejx/U4AeOlC16W68p7p6o+tzhrIbmTMvk7ueOlMl7sh4wmu0W46M+fp7X8JoH9P9OJfqOI+kuyBJTtj2i/bwJ0Uu1bnZIej5XWZ+3vV0jrflqk2nak5V2HJgzknUc8KuyLWH285dn9SsDfmHmp+PO9ScB+y7YE0kiPpkpZY+SAIn4jKh0fmXopSRbjHHA+YxuQG/lvob0VKIyEyWZBXwbPQ+QZR5A51iQ5likMBAl0RbrxaW1zeX/fWS1cHRtfXNjffPB9bUvb+r/meRj9XP1qboCq/Ef1ZcwIw/UIeUa/6L+qv62/Z+dX+xc3vk1N/3ogsb8TJX+7Wz8F/gjXQI=</latexit> <latexit sha1_base64="O+fT+UDZYhoqifeIw6Ke6DTBAFc=">AAA/fXiczVtbdxu3EUbSW6ze7PSxD91WUWPnuDqy4lM3J6d1bEmWFdOWbFGykzB2eVlRG1NcepfUxazyT/raPvQn9Jf0H9Q/oU/tzABYYEnsDqAm50Q4krAgvpnBAJgLsOyMBkk+Xln511tvf+/7P/jhj965tPDjn/z0Zz+/fOXd/TydZN14r5sO0uxZp53Hg2QY742T8SB+Nsri9lFnED/tvFzDz58ex1mepMPm+GwUf3nU7g+Tg6TbHkPTi8tXWkRjmsW986j3ovXs9MXlxZXlFfqJ5is3VGVRqJ+d9MqvPhAt0ROp6IqJOBKxGIox1AeiLXIoX4gbYkWMoO1LMYW2DGoJfR6Lc7EA2An0iqFHG1pfwt8+PH2hWofwjDRzQneBywB+M0BGYgkwKfTLoI7cIvp8QpSxtYr2lGiibGfwv6NoHUHrWBxCK4fTPf1xPWg9ANlQM/VjHkO/P9BYE+g9ohbUQldxm5D2cISRNfoxUBhBG9Z78HkG9S4h9XxEhMlJRzgHbfr839QTW/G5q/pOxBsazXdFf989vSwFlEhsiUdiTTTEnlgXG2KX5K0vC4Rbg3GMQMcZSN4HDaG0V0Gaa/B/FfbUirgFtU2QsUN9YhhLJHbg/xnJv6BkjcRDcUc0xX3ifRXqD6F2LWCeuJ56bec0G/7rZoFZZRnNyFmtBGMa/4QsQCZOa/vi2ump2Tyg9ZCrHVk/p1KDa+KJ2K6dP+Q8BPonZImOSIPIcQrtfZAJV+gA+KFNxLX8D/G1WIT61+Kfah1HIFemVvYh0ZNP/jT/DAVpvg/lXFwimnsg9UIxygie5Aykxepvi2PaGxFZ8gl8JvfSgNbekHrVje4RlHOq6VXTgTKl1vNa5BoUF3KNRW5CcSE3WWQDigvZYJE7UFzIHYWswz6G4sI+Zrk+geJCPmGRTSguZJNF7kNxIfdZ5OdQXMjPWeQ9KC7kPRb5AIoL+YBF7kFxIfdY5AYUF3JDIav3Gtq1lOgkzL66A/UyD/RTA2i5w8p3l2ysC3vXY1d2K7D8vlyH/27suodO4wrshsfqOajA8utnE6ycG8tbk/vkI13Y+yx2C1aAG7vFYj8VX1VgP/XYLy8rsPyOaZC/cWF5+/kQntzYhyz2EdTcWN7LbEOLG7vtYfNHFdgdFvtYvKrA+lj9rALL2/1disVc2F0PnzGuwPJeYw9iBzeWt6f7EIO4sbzPeQqtbuxTFvuMokYX9hmL/YyiUxf2Mw8/+boCqz2ljN77FAPGsGPrqLWLXYm1EVBrM/wHhW/BGvqoHovpF5g+YY5YxGaB2PRENApEw1uuvLCjOUWsPJfdArHriegUvglrY7Z/r+jfo9yMR6wXiPUZRF0WgHOtx3JM0YVu4ZDjwnNhzWdMaWG/sRar9VBveTViu4SQa/uQVv51ytUxk+lR3lpN7bDw8RIZ0XMd4oRyPT1KzYPHjQurYKNOWVTHgeqwqDMH6oxFTRyoCYs6dqCOWZTZ+Tau5bECjP5xLqb0pHN/7iylfHaxDR53A7wftmzDf5+zlPqsHE8E0FPq7NnY4gxqU8qkTWa3TjmyPGmIQTLZc1udMeETnk1O1a6Tdvi88OWR0Cee/nQSkqdf0MF4MaIdFUbnAbWcU3wna2H4+8XO17Uw/AZp/JzieFkLw4+V9OMLyN5U2OYFsLuwn0ZK+6YeSkOeoUgaus7Z5q3CbuJ55SntHNkWyn+NalIHph5GI7fGkJfGEELD6DK3dBlGBWMkGdvqWhQ8kqHKbk09VIaUfOVQyWGeQmcG+/TUzOh6GI0diKvWKLOeWvXQFToqRmPqYTT2hTxbP6d4XdfDaPTpWerD1MNo4JlKW2Xzph5qvVEDMkM2dR2zZBTF6BPnhLx3/VmKHZHP+xg8UXleRPD1lEzkWU2nU/iZeolmrUuIHOj9J1aEVKYxFats9iNlGJd87zwd439R8w3QYgS7Vp7rc2fSA5BQnxjEdEr+nKjVY8oj07hVFoeW5GAG1VKtYzaWM3zlmU657QW1clmTGa3RY4vsbE5rb0QRW4M0y+mhUTnDVRQ5DTVKGuLphejuNe3gdEb7KyxuNIMYFSutS7dD8pa6Pot0aX3X0vGSukUZQ5F3Kmb94lnwAeEyykhSsjYoSx1Pu58+5bHb0B9eF+YEWn4W0YyivTomq5HQjU/OxiH6LFdGylN6NrT36J6tfGsVKSojIW9U8YwbT7sjus+0bS3HG/Wlz89kPSera+7R62/HDLrvQIdmH2vgKx5BrQnR/B48NT3yD3PnlpK+M/G74v4zpfmrz7btm71WQUNam7hkH+sy4MMSlRNA41qQGbQ/jVk6Gt+ao8Rn5C55TF5ZtvtLdKev3xxp0wqvXsvVpyQ94rpKXCPaM/K+Xz7NcpASTJ2frFLUWT9K5BfCES0ox/W5xVnqZUjv0sSUW44onh3QXuP2Rrm3fXY0+4nmtCP0WxV4V5ySfYzI+kXgnVJakxH92m/l6HcrpD0YkIX0sTpJEdu4Ip2EXWMJ7XK5RuT7Qma9xWTJJsRf07V3V05rUcb50gucz6xtrZMGRYIxcc2UbTd7u973INK8CWGvEknRrJWrxP8a/dW/ep0szq0I1DDOQK4snWs+Uso0UEdt8vH1Nkj3taV8r5DhuZLaeD8j03slydYpT0J50Ff3gHOXniUvXCUZyZ3P9ZFetO6kFSmPZvSIo0Xv2lJWv6/8L8p9nXzkIu25ljBv2OjYX/flTnhn+dbzKlP3o51/K9SNrstaQ4qRMKerUkPc2XtMOZYt5YDeSZJv38SK0rzWs5le9XyGtBaPrL38F2j9NfzVcutnPzqdklW4S2tAUjBPRiOyJZrr4cfrbomXXpmalnk2/Mya1L3slotkxdK6mcz4OJjKDq2aU3XWoOs+42/SHZ7RgG7XVuTFTATdVHd+vtTDaPtTnrCU+dhJoxIPKe2cx49qj6XK5+Ia9ZqltcLSwrfx7BN1e3favvMexQ5dinBkdtCjXZBQTKNb6/MgSQF53VT2y95dLWrBvdQhC4WUy28V4tldV8h3SKWMv1WeIyU7anacfmfnRPXRNqxF9Q/nkEeUzea0dzTiJvWIlfy2HNHMjl+2fHpEZ95tilmkX6/PSO3eZhaikr822ZzcC4bXQLyvovEhzcFYvKnltjWXH25ZGWIk5H3foIjgcZbfBM0y5m1yZehc3R295TRL6Ekyyudl1NghGzV/yiBvsYagfb3ulknqqfijh3WQeaXZKfb6ws8mKivBsX0APVHzZuZdPXh+A2+OHL+L3Ge1yXMcqThwOvN8MVpt5UnKz3V6mMzwNfqYiKHKCXX0bjKpMqYlPvbmIiUK4yIxPlzCRhEif5jkITLLextfyrq3plzO5qWNOaSchHsPEhGuCOqqM2K6xoyjM0evQ1ibmmzhKOF5V6pycNva4snPpTlfJFsv1XqkgeWNqryFpm57DGPDpYWMyfoNBHcuInt3hXwftSqDsnODj6Hg30i48iftTXxO13YhisT36v2+FVF/k/9K1eWJX0QtuJN7M9lpW42z3KN+ll9Z1G36Phz8eSSga076hPxgqOySMi+5Td2f/gnt4UzErPSmZ/gYbC78SOY5hYwnIbvEjyYR+ntMoWPRHHxGUubiz0ee+3OjOBD6+3RhY9DU+RGUOYTw0PfzfnNueofzsjnV62ueiy8PacP1jYTG4c1YdbZh+vlYqMyakW+eA1qHgxrq2lv8v+PQfAyncF6+3HL6rtNXHrMu+8XqzBKj2fA9Y7j5rOZqjv4802J0JtZx85NRWxQ0U6k1mm+ePkaTZg1oXlMhTwp56STeXkVGXl8qeHLukiEV//GSQeKrZPClok/wqynpHjw1/U0/16j0Zz4yGTpVMpWpIT2ZabdoD8d0WmBudnr0XLxtSd9D/4h+Ilm5dVNVPrpRfA99f3X5xu+XP3x8c/GTu+ob6e+IX4rfQCR/Q9wSn4j7EGHugQwn4q/ib+Lvf/rv7aXb128vy65vv6UwvxCln9u3/gfA1CcO</latexit> dX Y <latexit sha1_base64="6tOGw6FSQVfHa06oZqSaTlaRZAo=">AABFdnictVxtc9u4EUaub9f0Ldd+7EyHPZ/bXCd17TSdduamM5fYjuOLkziR7CQXJRlRohUltKiIkvKi81/o1/bf9Hf0H7Sf+rUfuy8AAUogF3TTcGyDIJ7dxRJY7C7AxON0mE83N/9x4aNvffs73/3ex9+/+IMf/ujHP7n0yU+P82w26SVHvSzNJo/ibp6kw1FyNB1O0+TReJJ0T+M0eRi/2sbnD+fJJB9mo/b03Th5etodjIYnw153ilWdx++2n19a29zYpH/RamFLF9aU/neYffLphuqovspUT83UqUrUSE2hnKquyuF6orbUphpD3VO1gLoJlIb0PFFn6iJgZ9AqgRZdqH0Fvwdw90TXjuAeaeaE7gGXFH4mgIzUOmAyaDeBMnKL6PmMKGNtFe0F0UTZ3sHfWNM6hdqpegG1Es60DMVhX6bqRP2J+jCEPo2pBnvX01RmpBWUPHJ6NQUKY6jDch+eT6DcI6TRc0SYnPqOuu3S839SS6zF+55uO1P/IinX4YpUS/c+Kyh01ZzoR/Q2Z/CM5UmB8wAoJLqPWHpDuj6l3o+g/QLq78J1RiWjkxiuBdWe1SK34fIht0XkHlw+5J6IPIDLhzwQkYdw+ZCHGonYCencj2/B5cO3RM734fIh74vIB3D5kA9E5DFcPuSxiPwaLh/yaxF5Ey4f8qaIvA2XD3lbRLbh8iHbIvIILh/ySETuwuVD7mpk9UydwJURnaEwK69DucwDLUUKNddF+W6QdfRhbwTM6V4FVp7VO/DXj90J0GlSgd0NGHcnFVh55O2BjfRjZVt0i1YTH/aWiN2HEeDH7ovYr9TLCuxXATPtVQVWnmsH0M6Pla3vHbjzY++I2LtQ8mPlNeoe1Pix9wJWjHEF9lDE3levK7AhVn9SgZXtfgvsih8rr1NtaO/HhljTWQVWtqfH4MH4sfJq9RBq/diHIvaReluBfSRiH4N192MfB6yw7yuwZo29SCvIgPyRBGZsHbVuMSuxNAZqXYF/WqwtKfnGMdRLmEGBGRDmVETsFYi9QMRBgTgIlisv7GhO/q7MpVUgWoGIuFibsDQV2/eL9lhKAxA7BWJnCVHnkeK7Nn2Zk3dhaiTktFi5sBTSp6yw31hK9Hiot7wGca+E4LH9gkb+FYqWMIJCTdVRe1Gs8YyM6L4O8YaiN9NLw0PGTQur4KLeiqjYg4pF1DsP6p2ImnlQMxE196DmIsrOfBfXCRgBVv/4LhZ0xyOAfeTqKwKv4DqsOrdgjkYwfg7BC3xANffgb4tib+mqkwyjeVwnMcvxtGSJJ1BaqDWot1HhDsXXKc2wBCTjlvd0jI93mNtY6DnHVvisWMmjImMSTmdI8gwKOugtRjSfmtG5TTVn5N1xqRn+VjHvTakZfpc0fkZePJea4ada+uk5ZG9rbPsc2BbMprHWvi03pcH5F6Zhyhdp1UWLi2/1VI8ZpPe2If19/Wb2z/FetqnE+rHlZjRyp395qX9NaFg9546em1FB74m9XlOKGvdkpONeW24qQ0ar6EjLYe+avhls09dvxpSb0TgEj2ubYu6FU246esdFb2y5GY1jxXnPM/LkTbkZjQHdsz5suRkNzLZ0dZxvy00tO2qAY2dbbmrVR5QFxhwQj3musV7RhPykmaY2JP+gPlvj+vyr6xjmbJ4VMUI9JevbVtOJi7WsXiLjLyRg1aYN5UD/Yub4YGUaC3VVjK9YhmlpfV+lY9d41PwBaDGC2c97AFLOPAUJTU4CrXcKFLfEqKvcM4O7KuJwlJwsoTq6dip6i5YvZ43Kdc+pVorLbG+tHjtkr3Mae2PyCQ9Is5IeDirfcBVFSUMHJQ3J9Jro7r2er2Xtb4q48RJiXIy0Hu0I8U5afZzq03rL0fG63uWZwsV7Pnb8Yrb5RFsbjHkyskUoSx1Pt53JI7l1uK5eUTbHzc8ieqNor+ZkNYa0I5WLUajJFrM3vqB7S/uI9uSQB9PowXuMNJWx4l0zzKJjPj0ii+raW4k36stk6Lick9U19rgePXDQAw+6eYyzDSvGXSi1IWY4grt2QJRzsdBVRhqfqN8Wu6MZvcH6iD4tWUhDg+1NUrKQdVH2ixKVN4DG0cBRejiNZToG31mhJEf9Pnls7Fq2/Ou0c2v2t7s0xqtHc3Umpk9crxLXiGYN7+ry3TIHlmDhfXKV/Nf6XiK/JhzRhkpcnzmcWS8j2vFPKIIdk2ec0myTZke5tZufWn5iOB0qs3eOu9kZWciI7F8E61NGYzKiH/fsgNlBZ4uQko0MsTvDwrvx+TpDcYxZP26o+FSDHW8J2bIZ8Td03dmV01jkiIHXgbOlsW10ckC+YEJcJ9q627ldv/og0p6TcEcJU7Rj5TLx/5x+mx8zTtZWRgRqGN9Arm2d731kFLOgjrq0ytfbINPWlfKzQoZnWmq7/lmZPitJtkMRF8qDq3UfOPfonnnhKJmQ3PlKG15H67K5SHm8pEfs7QlF8Wz3B3oFRrmv0Cq5RnOuQ6NkAKNgWkQRpq2URV7mW8+rTD2Mdv5/oW51XdYaUoyUzeCyhqT8fkLRmitlCqOax+8rmk1+rU+WWtXzGdFYPHXm8jdQ+0v4beQ292F04pJVuEFjgCnYO6sRrolWWoTxulHiZUamoWXvLT87Jk0rt+Y88TVbNxtjzxtTOaRR81ZnLUz5PDReOjReBuqwTXuNVoum3lii52Js0da7laH8mnBrN6A8EynLHplBDQOkdGOpMKp9kaoc4xvUe5HWpkirC7PV3Q1w53wI0j/Xl2f3N8XqHqmb5Nv0yAPj+KVPs3RIPpeprY/UmAJyvqbtqzv7O1SD3GOyoEiZz3HijOFdpx5dZ4Wkv9IrW0Z23loEc27pjW5jbGyHyr9fQZ7SnMhpXhrENWqRaPldOaIli7Th+BwRZf675FOx31EfM7ut7TuJSv6EjTd5VlleHCmMSP9S5m1/JXrdd+LXiGLCmfauY6DV/A0jBcaYTILfs8zpDeEqxzsJ7NHGZD9X7RTv4o0ciTZI6oX6c4CN4ajXjnV3bJkem779Blqi1u1b97WQ+aXBHCV+59nR69Kqdqp91MXS/flodfUqV76v08Nsia/Vx4zauJGFjfLKmI76IpgLS9SMC2NCuDTrRRP5m0neRGbenQqlbFobyuVMA9uYFxQvSedAEeHz7i57vbnPhX7EK/RiwrrUuEaihNm4TOcHXEuLWaloKUJy66U1KXXWo6r1wvJwVw1rx9lSJmQFUyXlbri124dOKVqRszFMoaf4ZG9VnOjS/AIu/B0pX5RoOIbkEFvg515X22r3A5yKeK3LnNmMqAZtQn8pBu/qfpZb1OvotUPdpR/CIZzHEHQtST+kFbWp7ExZltylHk7/DVmDiUpE6W3L5n1wucg9WeXUpD9DsnByb4bKfJPTtC+GQ0hPylzC+fD+htSLE2W+bWrWB0Nd7kGZQxMe5jxD2Du3rZvzcjnV62uVSygPXgfMzovB4Q5gdcxi24VYqInzRj48B7QOJzXUzWrxv/bD8LGcmvMK5ZbTN2cvA946t0t0Zhb94uZzxnILGc3VHMN5ZkXvrNfk58f+X9ToTWVObz48ffRL7RgwvBaK86GydIx3R5GVN5QK7g/4ZMjUv9XfL8hfJbwuaFTJ0YSS2a+opmZayNTMl5e+3plnITJZOlUylanZeKJFJ2O31b66CT/bhQfY9JQof1PJfxHr/462D7UnZD1MNp0zCB2qSygLYnfT+nRvz9FWSYxnevmMbxtqcE/8gGrxvO9dao9nftulvlV/ScJz/Y7KVL8UmSzv8tl5FUMPyjtwnAsy3/tGdKaes1l8Au00YI+Rz1FxpGS+fl4Qok9x4bKkC0KY0VJHOfZSjulMUlJBOy71rUcjfKx3+nHfAc/nd4vsUqR+R3VdvTrgSi1JdeiR6gllBmLS/yZEaH9QV+DvFV32S3q4ImlO76As0VvnWf1JsDPvuLBfM65THsxk6ua6XUZRvd09rM/E7lRy4RPv9fhBDX7gSNmit/WK4u6Jqs8dzmpozrRM7n7uSJm8J+sBo9luMT7q4+d5Da95QP9vV6JvO5LugSwxZdsj2s+bEL1U62aXpOdzlfV521s10pqvNpmmPVlpx4E5I1nHAb8q2xZmP395Vr8y4BdmfjruXH8csO+CPZEk4pOZUvYoCZCIz4hK51eGXkqyxRgHnM/oBvRW7mtITyUqM1GSWcC30fMAWeYBdE4EaU5ECgNREm2xnl9a21r+30dWC8dXN7Y2N7buX1v78ob+n0k+Vj9Xn6rLsBr/UX0JM/JQHVGu8S/qr+pvO//Z/cXu+u6vuelHFzTmZ6r0b3fzv4JTXQQ=</latexit> <latexit sha1_base64="6tOGw6FSQVfHa06oZqSaTlaRZAo=">AABFdnictVxtc9u4EUaub9f0Ldd+7EyHPZ/bXCd17TSdduamM5fYjuOLkziR7CQXJRlRohUltKiIkvKi81/o1/bf9Hf0H7Sf+rUfuy8AAUogF3TTcGyDIJ7dxRJY7C7AxON0mE83N/9x4aNvffs73/3ex9+/+IMf/ujHP7n0yU+P82w26SVHvSzNJo/ibp6kw1FyNB1O0+TReJJ0T+M0eRi/2sbnD+fJJB9mo/b03Th5etodjIYnw153ilWdx++2n19a29zYpH/RamFLF9aU/neYffLphuqovspUT83UqUrUSE2hnKquyuF6orbUphpD3VO1gLoJlIb0PFFn6iJgZ9AqgRZdqH0Fvwdw90TXjuAeaeaE7gGXFH4mgIzUOmAyaDeBMnKL6PmMKGNtFe0F0UTZ3sHfWNM6hdqpegG1Es60DMVhX6bqRP2J+jCEPo2pBnvX01RmpBWUPHJ6NQUKY6jDch+eT6DcI6TRc0SYnPqOuu3S839SS6zF+55uO1P/IinX4YpUS/c+Kyh01ZzoR/Q2Z/CM5UmB8wAoJLqPWHpDuj6l3o+g/QLq78J1RiWjkxiuBdWe1SK34fIht0XkHlw+5J6IPIDLhzwQkYdw+ZCHGonYCencj2/B5cO3RM734fIh74vIB3D5kA9E5DFcPuSxiPwaLh/yaxF5Ey4f8qaIvA2XD3lbRLbh8iHbIvIILh/ySETuwuVD7mpk9UydwJURnaEwK69DucwDLUUKNddF+W6QdfRhbwTM6V4FVp7VO/DXj90J0GlSgd0NGHcnFVh55O2BjfRjZVt0i1YTH/aWiN2HEeDH7ovYr9TLCuxXATPtVQVWnmsH0M6Pla3vHbjzY++I2LtQ8mPlNeoe1Pix9wJWjHEF9lDE3levK7AhVn9SgZXtfgvsih8rr1NtaO/HhljTWQVWtqfH4MH4sfJq9RBq/diHIvaReluBfSRiH4N192MfB6yw7yuwZo29SCvIgPyRBGZsHbVuMSuxNAZqXYF/WqwtKfnGMdRLmEGBGRDmVETsFYi9QMRBgTgIlisv7GhO/q7MpVUgWoGIuFibsDQV2/eL9lhKAxA7BWJnCVHnkeK7Nn2Zk3dhaiTktFi5sBTSp6yw31hK9Hiot7wGca+E4LH9gkb+FYqWMIJCTdVRe1Gs8YyM6L4O8YaiN9NLw0PGTQur4KLeiqjYg4pF1DsP6p2ImnlQMxE196DmIsrOfBfXCRgBVv/4LhZ0xyOAfeTqKwKv4DqsOrdgjkYwfg7BC3xANffgb4tib+mqkwyjeVwnMcvxtGSJJ1BaqDWot1HhDsXXKc2wBCTjlvd0jI93mNtY6DnHVvisWMmjImMSTmdI8gwKOugtRjSfmtG5TTVn5N1xqRn+VjHvTakZfpc0fkZePJea4ada+uk5ZG9rbPsc2BbMprHWvi03pcH5F6Zhyhdp1UWLi2/1VI8ZpPe2If19/Wb2z/FetqnE+rHlZjRyp395qX9NaFg9546em1FB74m9XlOKGvdkpONeW24qQ0ar6EjLYe+avhls09dvxpSb0TgEj2ubYu6FU246esdFb2y5GY1jxXnPM/LkTbkZjQHdsz5suRkNzLZ0dZxvy00tO2qAY2dbbmrVR5QFxhwQj3musV7RhPykmaY2JP+gPlvj+vyr6xjmbJ4VMUI9JevbVtOJi7WsXiLjLyRg1aYN5UD/Yub4YGUaC3VVjK9YhmlpfV+lY9d41PwBaDGC2c97AFLOPAUJTU4CrXcKFLfEqKvcM4O7KuJwlJwsoTq6dip6i5YvZ43Kdc+pVorLbG+tHjtkr3Mae2PyCQ9Is5IeDirfcBVFSUMHJQ3J9Jro7r2er2Xtb4q48RJiXIy0Hu0I8U5afZzq03rL0fG63uWZwsV7Pnb8Yrb5RFsbjHkyskUoSx1Pt53JI7l1uK5eUTbHzc8ieqNor+ZkNYa0I5WLUajJFrM3vqB7S/uI9uSQB9PowXuMNJWx4l0zzKJjPj0ii+raW4k36stk6Lick9U19rgePXDQAw+6eYyzDSvGXSi1IWY4grt2QJRzsdBVRhqfqN8Wu6MZvcH6iD4tWUhDg+1NUrKQdVH2ixKVN4DG0cBRejiNZToG31mhJEf9Pnls7Fq2/Ou0c2v2t7s0xqtHc3Umpk9crxLXiGYN7+ry3TIHlmDhfXKV/Nf6XiK/JhzRhkpcnzmcWS8j2vFPKIIdk2ec0myTZke5tZufWn5iOB0qs3eOu9kZWciI7F8E61NGYzKiH/fsgNlBZ4uQko0MsTvDwrvx+TpDcYxZP26o+FSDHW8J2bIZ8Td03dmV01jkiIHXgbOlsW10ckC+YEJcJ9q627ldv/og0p6TcEcJU7Rj5TLx/5x+mx8zTtZWRgRqGN9Arm2d731kFLOgjrq0ytfbINPWlfKzQoZnWmq7/lmZPitJtkMRF8qDq3UfOPfonnnhKJmQ3PlKG15H67K5SHm8pEfs7QlF8Wz3B3oFRrmv0Cq5RnOuQ6NkAKNgWkQRpq2URV7mW8+rTD2Mdv5/oW51XdYaUoyUzeCyhqT8fkLRmitlCqOax+8rmk1+rU+WWtXzGdFYPHXm8jdQ+0v4beQ292F04pJVuEFjgCnYO6sRrolWWoTxulHiZUamoWXvLT87Jk0rt+Y88TVbNxtjzxtTOaRR81ZnLUz5PDReOjReBuqwTXuNVoum3lii52Js0da7laH8mnBrN6A8EynLHplBDQOkdGOpMKp9kaoc4xvUe5HWpkirC7PV3Q1w53wI0j/Xl2f3N8XqHqmb5Nv0yAPj+KVPs3RIPpeprY/UmAJyvqbtqzv7O1SD3GOyoEiZz3HijOFdpx5dZ4Wkv9IrW0Z23loEc27pjW5jbGyHyr9fQZ7SnMhpXhrENWqRaPldOaIli7Th+BwRZf675FOx31EfM7ut7TuJSv6EjTd5VlleHCmMSP9S5m1/JXrdd+LXiGLCmfauY6DV/A0jBcaYTILfs8zpDeEqxzsJ7NHGZD9X7RTv4o0ciTZI6oX6c4CN4ajXjnV3bJkem779Blqi1u1b97WQ+aXBHCV+59nR69Kqdqp91MXS/flodfUqV76v08Nsia/Vx4zauJGFjfLKmI76IpgLS9SMC2NCuDTrRRP5m0neRGbenQqlbFobyuVMA9uYFxQvSedAEeHz7i57vbnPhX7EK/RiwrrUuEaihNm4TOcHXEuLWaloKUJy66U1KXXWo6r1wvJwVw1rx9lSJmQFUyXlbri124dOKVqRszFMoaf4ZG9VnOjS/AIu/B0pX5RoOIbkEFvg515X22r3A5yKeK3LnNmMqAZtQn8pBu/qfpZb1OvotUPdpR/CIZzHEHQtST+kFbWp7ExZltylHk7/DVmDiUpE6W3L5n1wucg9WeXUpD9DsnByb4bKfJPTtC+GQ0hPylzC+fD+htSLE2W+bWrWB0Nd7kGZQxMe5jxD2Du3rZvzcjnV62uVSygPXgfMzovB4Q5gdcxi24VYqInzRj48B7QOJzXUzWrxv/bD8LGcmvMK5ZbTN2cvA946t0t0Zhb94uZzxnILGc3VHMN5ZkXvrNfk58f+X9ToTWVObz48ffRL7RgwvBaK86GydIx3R5GVN5QK7g/4ZMjUv9XfL8hfJbwuaFTJ0YSS2a+opmZayNTMl5e+3plnITJZOlUylanZeKJFJ2O31b66CT/bhQfY9JQof1PJfxHr/462D7UnZD1MNp0zCB2qSygLYnfT+nRvz9FWSYxnevmMbxtqcE/8gGrxvO9dao9nftulvlV/ScJz/Y7KVL8UmSzv8tl5FUMPyjtwnAsy3/tGdKaes1l8Au00YI+Rz1FxpGS+fl4Qok9x4bKkC0KY0VJHOfZSjulMUlJBOy71rUcjfKx3+nHfAc/nd4vsUqR+R3VdvTrgSi1JdeiR6gllBmLS/yZEaH9QV+DvFV32S3q4ImlO76As0VvnWf1JsDPvuLBfM65THsxk6ua6XUZRvd09rM/E7lRy4RPv9fhBDX7gSNmit/WK4u6Jqs8dzmpozrRM7n7uSJm8J+sBo9luMT7q4+d5Da95QP9vV6JvO5LugSwxZdsj2s+bEL1U62aXpOdzlfV521s10pqvNpmmPVlpx4E5I1nHAb8q2xZmP395Vr8y4BdmfjruXH8csO+CPZEk4pOZUvYoCZCIz4hK51eGXkqyxRgHnM/oBvRW7mtITyUqM1GSWcC30fMAWeYBdE4EaU5ECgNREm2xnl9a21r+30dWC8dXN7Y2N7buX1v78ob+n0k+Vj9Xn6rLsBr/UX0JM/JQHVGu8S/qr+pvO//Z/cXu+u6vuelHFzTmZ6r0b3fzv4JTXQQ=</latexit> <latexit sha1_base64="6tOGw6FSQVfHa06oZqSaTlaRZAo=">AABFdnictVxtc9u4EUaub9f0Ldd+7EyHPZ/bXCd17TSdduamM5fYjuOLkziR7CQXJRlRohUltKiIkvKi81/o1/bf9Hf0H7Sf+rUfuy8AAUogF3TTcGyDIJ7dxRJY7C7AxON0mE83N/9x4aNvffs73/3ex9+/+IMf/ujHP7n0yU+P82w26SVHvSzNJo/ibp6kw1FyNB1O0+TReJJ0T+M0eRi/2sbnD+fJJB9mo/b03Th5etodjIYnw153ilWdx++2n19a29zYpH/RamFLF9aU/neYffLphuqovspUT83UqUrUSE2hnKquyuF6orbUphpD3VO1gLoJlIb0PFFn6iJgZ9AqgRZdqH0Fvwdw90TXjuAeaeaE7gGXFH4mgIzUOmAyaDeBMnKL6PmMKGNtFe0F0UTZ3sHfWNM6hdqpegG1Es60DMVhX6bqRP2J+jCEPo2pBnvX01RmpBWUPHJ6NQUKY6jDch+eT6DcI6TRc0SYnPqOuu3S839SS6zF+55uO1P/IinX4YpUS/c+Kyh01ZzoR/Q2Z/CM5UmB8wAoJLqPWHpDuj6l3o+g/QLq78J1RiWjkxiuBdWe1SK34fIht0XkHlw+5J6IPIDLhzwQkYdw+ZCHGonYCencj2/B5cO3RM734fIh74vIB3D5kA9E5DFcPuSxiPwaLh/yaxF5Ey4f8qaIvA2XD3lbRLbh8iHbIvIILh/ySETuwuVD7mpk9UydwJURnaEwK69DucwDLUUKNddF+W6QdfRhbwTM6V4FVp7VO/DXj90J0GlSgd0NGHcnFVh55O2BjfRjZVt0i1YTH/aWiN2HEeDH7ovYr9TLCuxXATPtVQVWnmsH0M6Pla3vHbjzY++I2LtQ8mPlNeoe1Pix9wJWjHEF9lDE3levK7AhVn9SgZXtfgvsih8rr1NtaO/HhljTWQVWtqfH4MH4sfJq9RBq/diHIvaReluBfSRiH4N192MfB6yw7yuwZo29SCvIgPyRBGZsHbVuMSuxNAZqXYF/WqwtKfnGMdRLmEGBGRDmVETsFYi9QMRBgTgIlisv7GhO/q7MpVUgWoGIuFibsDQV2/eL9lhKAxA7BWJnCVHnkeK7Nn2Zk3dhaiTktFi5sBTSp6yw31hK9Hiot7wGca+E4LH9gkb+FYqWMIJCTdVRe1Gs8YyM6L4O8YaiN9NLw0PGTQur4KLeiqjYg4pF1DsP6p2ImnlQMxE196DmIsrOfBfXCRgBVv/4LhZ0xyOAfeTqKwKv4DqsOrdgjkYwfg7BC3xANffgb4tib+mqkwyjeVwnMcvxtGSJJ1BaqDWot1HhDsXXKc2wBCTjlvd0jI93mNtY6DnHVvisWMmjImMSTmdI8gwKOugtRjSfmtG5TTVn5N1xqRn+VjHvTakZfpc0fkZePJea4ada+uk5ZG9rbPsc2BbMprHWvi03pcH5F6Zhyhdp1UWLi2/1VI8ZpPe2If19/Wb2z/FetqnE+rHlZjRyp395qX9NaFg9546em1FB74m9XlOKGvdkpONeW24qQ0ar6EjLYe+avhls09dvxpSb0TgEj2ubYu6FU246esdFb2y5GY1jxXnPM/LkTbkZjQHdsz5suRkNzLZ0dZxvy00tO2qAY2dbbmrVR5QFxhwQj3musV7RhPykmaY2JP+gPlvj+vyr6xjmbJ4VMUI9JevbVtOJi7WsXiLjLyRg1aYN5UD/Yub4YGUaC3VVjK9YhmlpfV+lY9d41PwBaDGC2c97AFLOPAUJTU4CrXcKFLfEqKvcM4O7KuJwlJwsoTq6dip6i5YvZ43Kdc+pVorLbG+tHjtkr3Mae2PyCQ9Is5IeDirfcBVFSUMHJQ3J9Jro7r2er2Xtb4q48RJiXIy0Hu0I8U5afZzq03rL0fG63uWZwsV7Pnb8Yrb5RFsbjHkyskUoSx1Pt53JI7l1uK5eUTbHzc8ieqNor+ZkNYa0I5WLUajJFrM3vqB7S/uI9uSQB9PowXuMNJWx4l0zzKJjPj0ii+raW4k36stk6Lick9U19rgePXDQAw+6eYyzDSvGXSi1IWY4grt2QJRzsdBVRhqfqN8Wu6MZvcH6iD4tWUhDg+1NUrKQdVH2ixKVN4DG0cBRejiNZToG31mhJEf9Pnls7Fq2/Ou0c2v2t7s0xqtHc3Umpk9crxLXiGYN7+ry3TIHlmDhfXKV/Nf6XiK/JhzRhkpcnzmcWS8j2vFPKIIdk2ec0myTZke5tZufWn5iOB0qs3eOu9kZWciI7F8E61NGYzKiH/fsgNlBZ4uQko0MsTvDwrvx+TpDcYxZP26o+FSDHW8J2bIZ8Td03dmV01jkiIHXgbOlsW10ckC+YEJcJ9q627ldv/og0p6TcEcJU7Rj5TLx/5x+mx8zTtZWRgRqGN9Arm2d731kFLOgjrq0ytfbINPWlfKzQoZnWmq7/lmZPitJtkMRF8qDq3UfOPfonnnhKJmQ3PlKG15H67K5SHm8pEfs7QlF8Wz3B3oFRrmv0Cq5RnOuQ6NkAKNgWkQRpq2URV7mW8+rTD2Mdv5/oW51XdYaUoyUzeCyhqT8fkLRmitlCqOax+8rmk1+rU+WWtXzGdFYPHXm8jdQ+0v4beQ292F04pJVuEFjgCnYO6sRrolWWoTxulHiZUamoWXvLT87Jk0rt+Y88TVbNxtjzxtTOaRR81ZnLUz5PDReOjReBuqwTXuNVoum3lii52Js0da7laH8mnBrN6A8EynLHplBDQOkdGOpMKp9kaoc4xvUe5HWpkirC7PV3Q1w53wI0j/Xl2f3N8XqHqmb5Nv0yAPj+KVPs3RIPpeprY/UmAJyvqbtqzv7O1SD3GOyoEiZz3HijOFdpx5dZ4Wkv9IrW0Z23loEc27pjW5jbGyHyr9fQZ7SnMhpXhrENWqRaPldOaIli7Th+BwRZf675FOx31EfM7ut7TuJSv6EjTd5VlleHCmMSP9S5m1/JXrdd+LXiGLCmfauY6DV/A0jBcaYTILfs8zpDeEqxzsJ7NHGZD9X7RTv4o0ciTZI6oX6c4CN4ajXjnV3bJkem779Blqi1u1b97WQ+aXBHCV+59nR69Kqdqp91MXS/flodfUqV76v08Nsia/Vx4zauJGFjfLKmI76IpgLS9SMC2NCuDTrRRP5m0neRGbenQqlbFobyuVMA9uYFxQvSedAEeHz7i57vbnPhX7EK/RiwrrUuEaihNm4TOcHXEuLWaloKUJy66U1KXXWo6r1wvJwVw1rx9lSJmQFUyXlbri124dOKVqRszFMoaf4ZG9VnOjS/AIu/B0pX5RoOIbkEFvg515X22r3A5yKeK3LnNmMqAZtQn8pBu/qfpZb1OvotUPdpR/CIZzHEHQtST+kFbWp7ExZltylHk7/DVmDiUpE6W3L5n1wucg9WeXUpD9DsnByb4bKfJPTtC+GQ0hPylzC+fD+htSLE2W+bWrWB0Nd7kGZQxMe5jxD2Du3rZvzcjnV62uVSygPXgfMzovB4Q5gdcxi24VYqInzRj48B7QOJzXUzWrxv/bD8LGcmvMK5ZbTN2cvA946t0t0Zhb94uZzxnILGc3VHMN5ZkXvrNfk58f+X9ToTWVObz48ffRL7RgwvBaK86GydIx3R5GVN5QK7g/4ZMjUv9XfL8hfJbwuaFTJ0YSS2a+opmZayNTMl5e+3plnITJZOlUylanZeKJFJ2O31b66CT/bhQfY9JQof1PJfxHr/462D7UnZD1MNp0zCB2qSygLYnfT+nRvz9FWSYxnevmMbxtqcE/8gGrxvO9dao9nftulvlV/ScJz/Y7KVL8UmSzv8tl5FUMPyjtwnAsy3/tGdKaes1l8Au00YI+Rz1FxpGS+fl4Qok9x4bKkC0KY0VJHOfZSjulMUlJBOy71rUcjfKx3+nHfAc/nd4vsUqR+R3VdvTrgSi1JdeiR6gllBmLS/yZEaH9QV+DvFV32S3q4ImlO76As0VvnWf1JsDPvuLBfM65THsxk6ua6XUZRvd09rM/E7lRy4RPv9fhBDX7gSNmit/WK4u6Jqs8dzmpozrRM7n7uSJm8J+sBo9luMT7q4+d5Da95QP9vV6JvO5LugSwxZdsj2s+bEL1U62aXpOdzlfV521s10pqvNpmmPVlpx4E5I1nHAb8q2xZmP395Vr8y4BdmfjruXH8csO+CPZEk4pOZUvYoCZCIz4hK51eGXkqyxRgHnM/oBvRW7mtITyUqM1GSWcC30fMAWeYBdE4EaU5ECgNREm2xnl9a21r+30dWC8dXN7Y2N7buX1v78ob+n0k+Vj9Xn6rLsBr/UX0JM/JQHVGu8S/qr+pvO//Z/cXu+u6vuelHFzTmZ6r0b3fzv4JTXQQ=</latexit> <latexit sha1_base64="6tOGw6FSQVfHa06oZqSaTlaRZAo=">AABFdnictVxtc9u4EUaub9f0Ldd+7EyHPZ/bXCd17TSdduamM5fYjuOLkziR7CQXJRlRohUltKiIkvKi81/o1/bf9Hf0H7Sf+rUfuy8AAUogF3TTcGyDIJ7dxRJY7C7AxON0mE83N/9x4aNvffs73/3ex9+/+IMf/ujHP7n0yU+P82w26SVHvSzNJo/ibp6kw1FyNB1O0+TReJJ0T+M0eRi/2sbnD+fJJB9mo/b03Th5etodjIYnw153ilWdx++2n19a29zYpH/RamFLF9aU/neYffLphuqovspUT83UqUrUSE2hnKquyuF6orbUphpD3VO1gLoJlIb0PFFn6iJgZ9AqgRZdqH0Fvwdw90TXjuAeaeaE7gGXFH4mgIzUOmAyaDeBMnKL6PmMKGNtFe0F0UTZ3sHfWNM6hdqpegG1Es60DMVhX6bqRP2J+jCEPo2pBnvX01RmpBWUPHJ6NQUKY6jDch+eT6DcI6TRc0SYnPqOuu3S839SS6zF+55uO1P/IinX4YpUS/c+Kyh01ZzoR/Q2Z/CM5UmB8wAoJLqPWHpDuj6l3o+g/QLq78J1RiWjkxiuBdWe1SK34fIht0XkHlw+5J6IPIDLhzwQkYdw+ZCHGonYCencj2/B5cO3RM734fIh74vIB3D5kA9E5DFcPuSxiPwaLh/yaxF5Ey4f8qaIvA2XD3lbRLbh8iHbIvIILh/ySETuwuVD7mpk9UydwJURnaEwK69DucwDLUUKNddF+W6QdfRhbwTM6V4FVp7VO/DXj90J0GlSgd0NGHcnFVh55O2BjfRjZVt0i1YTH/aWiN2HEeDH7ovYr9TLCuxXATPtVQVWnmsH0M6Pla3vHbjzY++I2LtQ8mPlNeoe1Pix9wJWjHEF9lDE3levK7AhVn9SgZXtfgvsih8rr1NtaO/HhljTWQVWtqfH4MH4sfJq9RBq/diHIvaReluBfSRiH4N192MfB6yw7yuwZo29SCvIgPyRBGZsHbVuMSuxNAZqXYF/WqwtKfnGMdRLmEGBGRDmVETsFYi9QMRBgTgIlisv7GhO/q7MpVUgWoGIuFibsDQV2/eL9lhKAxA7BWJnCVHnkeK7Nn2Zk3dhaiTktFi5sBTSp6yw31hK9Hiot7wGca+E4LH9gkb+FYqWMIJCTdVRe1Gs8YyM6L4O8YaiN9NLw0PGTQur4KLeiqjYg4pF1DsP6p2ImnlQMxE196DmIsrOfBfXCRgBVv/4LhZ0xyOAfeTqKwKv4DqsOrdgjkYwfg7BC3xANffgb4tib+mqkwyjeVwnMcvxtGSJJ1BaqDWot1HhDsXXKc2wBCTjlvd0jI93mNtY6DnHVvisWMmjImMSTmdI8gwKOugtRjSfmtG5TTVn5N1xqRn+VjHvTakZfpc0fkZePJea4ada+uk5ZG9rbPsc2BbMprHWvi03pcH5F6Zhyhdp1UWLi2/1VI8ZpPe2If19/Wb2z/FetqnE+rHlZjRyp395qX9NaFg9546em1FB74m9XlOKGvdkpONeW24qQ0ar6EjLYe+avhls09dvxpSb0TgEj2ubYu6FU246esdFb2y5GY1jxXnPM/LkTbkZjQHdsz5suRkNzLZ0dZxvy00tO2qAY2dbbmrVR5QFxhwQj3musV7RhPykmaY2JP+gPlvj+vyr6xjmbJ4VMUI9JevbVtOJi7WsXiLjLyRg1aYN5UD/Yub4YGUaC3VVjK9YhmlpfV+lY9d41PwBaDGC2c97AFLOPAUJTU4CrXcKFLfEqKvcM4O7KuJwlJwsoTq6dip6i5YvZ43Kdc+pVorLbG+tHjtkr3Mae2PyCQ9Is5IeDirfcBVFSUMHJQ3J9Jro7r2er2Xtb4q48RJiXIy0Hu0I8U5afZzq03rL0fG63uWZwsV7Pnb8Yrb5RFsbjHkyskUoSx1Pt53JI7l1uK5eUTbHzc8ieqNor+ZkNYa0I5WLUajJFrM3vqB7S/uI9uSQB9PowXuMNJWx4l0zzKJjPj0ii+raW4k36stk6Lick9U19rgePXDQAw+6eYyzDSvGXSi1IWY4grt2QJRzsdBVRhqfqN8Wu6MZvcH6iD4tWUhDg+1NUrKQdVH2ixKVN4DG0cBRejiNZToG31mhJEf9Pnls7Fq2/Ou0c2v2t7s0xqtHc3Umpk9crxLXiGYN7+ry3TIHlmDhfXKV/Nf6XiK/JhzRhkpcnzmcWS8j2vFPKIIdk2ec0myTZke5tZufWn5iOB0qs3eOu9kZWciI7F8E61NGYzKiH/fsgNlBZ4uQko0MsTvDwrvx+TpDcYxZP26o+FSDHW8J2bIZ8Td03dmV01jkiIHXgbOlsW10ckC+YEJcJ9q627ldv/og0p6TcEcJU7Rj5TLx/5x+mx8zTtZWRgRqGN9Arm2d731kFLOgjrq0ytfbINPWlfKzQoZnWmq7/lmZPitJtkMRF8qDq3UfOPfonnnhKJmQ3PlKG15H67K5SHm8pEfs7QlF8Wz3B3oFRrmv0Cq5RnOuQ6NkAKNgWkQRpq2URV7mW8+rTD2Mdv5/oW51XdYaUoyUzeCyhqT8fkLRmitlCqOax+8rmk1+rU+WWtXzGdFYPHXm8jdQ+0v4beQ292F04pJVuEFjgCnYO6sRrolWWoTxulHiZUamoWXvLT87Jk0rt+Y88TVbNxtjzxtTOaRR81ZnLUz5PDReOjReBuqwTXuNVoum3lii52Js0da7laH8mnBrN6A8EynLHplBDQOkdGOpMKp9kaoc4xvUe5HWpkirC7PV3Q1w53wI0j/Xl2f3N8XqHqmb5Nv0yAPj+KVPs3RIPpeprY/UmAJyvqbtqzv7O1SD3GOyoEiZz3HijOFdpx5dZ4Wkv9IrW0Z23loEc27pjW5jbGyHyr9fQZ7SnMhpXhrENWqRaPldOaIli7Th+BwRZf675FOx31EfM7ut7TuJSv6EjTd5VlleHCmMSP9S5m1/JXrdd+LXiGLCmfauY6DV/A0jBcaYTILfs8zpDeEqxzsJ7NHGZD9X7RTv4o0ciTZI6oX6c4CN4ajXjnV3bJkem779Blqi1u1b97WQ+aXBHCV+59nR69Kqdqp91MXS/flodfUqV76v08Nsia/Vx4zauJGFjfLKmI76IpgLS9SMC2NCuDTrRRP5m0neRGbenQqlbFobyuVMA9uYFxQvSedAEeHz7i57vbnPhX7EK/RiwrrUuEaihNm4TOcHXEuLWaloKUJy66U1KXXWo6r1wvJwVw1rx9lSJmQFUyXlbri124dOKVqRszFMoaf4ZG9VnOjS/AIu/B0pX5RoOIbkEFvg515X22r3A5yKeK3LnNmMqAZtQn8pBu/qfpZb1OvotUPdpR/CIZzHEHQtST+kFbWp7ExZltylHk7/DVmDiUpE6W3L5n1wucg9WeXUpD9DsnByb4bKfJPTtC+GQ0hPylzC+fD+htSLE2W+bWrWB0Nd7kGZQxMe5jxD2Du3rZvzcjnV62uVSygPXgfMzovB4Q5gdcxi24VYqInzRj48B7QOJzXUzWrxv/bD8LGcmvMK5ZbTN2cvA946t0t0Zhb94uZzxnILGc3VHMN5ZkXvrNfk58f+X9ToTWVObz48ffRL7RgwvBaK86GydIx3R5GVN5QK7g/4ZMjUv9XfL8hfJbwuaFTJ0YSS2a+opmZayNTMl5e+3plnITJZOlUylanZeKJFJ2O31b66CT/bhQfY9JQof1PJfxHr/462D7UnZD1MNp0zCB2qSygLYnfT+nRvz9FWSYxnevmMbxtqcE/8gGrxvO9dao9nftulvlV/ScJz/Y7KVL8UmSzv8tl5FUMPyjtwnAsy3/tGdKaes1l8Au00YI+Rz1FxpGS+fl4Qok9x4bKkC0KY0VJHOfZSjulMUlJBOy71rUcjfKx3+nHfAc/nd4vsUqR+R3VdvTrgSi1JdeiR6gllBmLS/yZEaH9QV+DvFV32S3q4ImlO76As0VvnWf1JsDPvuLBfM65THsxk6ua6XUZRvd09rM/E7lRy4RPv9fhBDX7gSNmit/WK4u6Jqs8dzmpozrRM7n7uSJm8J+sBo9luMT7q4+d5Da95QP9vV6JvO5LugSwxZdsj2s+bEL1U62aXpOdzlfV521s10pqvNpmmPVlpx4E5I1nHAb8q2xZmP395Vr8y4BdmfjruXH8csO+CPZEk4pOZUvYoCZCIz4hK51eGXkqyxRgHnM/oBvRW7mtITyUqM1GSWcC30fMAWeYBdE4EaU5ECgNREm2xnl9a21r+30dWC8dXN7Y2N7buX1v78ob+n0k+Vj9Xn6rLsBr/UX0JM/JQHVGu8S/qr+pvO//Z/cXu+u6vuelHFzTmZ6r0b3fzv4JTXQQ=</latexit> <latexit sha1_base64="6tOGw6FSQVfHa06oZqSaTlaRZAo=">AABFdnictVxtc9u4EUaub9f0Ldd+7EyHPZ/bXCd17TSdduamM5fYjuOLkziR7CQXJRlRohUltKiIkvKi81/o1/bf9Hf0H7Sf+rUfuy8AAUogF3TTcGyDIJ7dxRJY7C7AxON0mE83N/9x4aNvffs73/3ex9+/+IMf/ujHP7n0yU+P82w26SVHvSzNJo/ibp6kw1FyNB1O0+TReJJ0T+M0eRi/2sbnD+fJJB9mo/b03Th5etodjIYnw153ilWdx++2n19a29zYpH/RamFLF9aU/neYffLphuqovspUT83UqUrUSE2hnKquyuF6orbUphpD3VO1gLoJlIb0PFFn6iJgZ9AqgRZdqH0Fvwdw90TXjuAeaeaE7gGXFH4mgIzUOmAyaDeBMnKL6PmMKGNtFe0F0UTZ3sHfWNM6hdqpegG1Es60DMVhX6bqRP2J+jCEPo2pBnvX01RmpBWUPHJ6NQUKY6jDch+eT6DcI6TRc0SYnPqOuu3S839SS6zF+55uO1P/IinX4YpUS/c+Kyh01ZzoR/Q2Z/CM5UmB8wAoJLqPWHpDuj6l3o+g/QLq78J1RiWjkxiuBdWe1SK34fIht0XkHlw+5J6IPIDLhzwQkYdw+ZCHGonYCencj2/B5cO3RM734fIh74vIB3D5kA9E5DFcPuSxiPwaLh/yaxF5Ey4f8qaIvA2XD3lbRLbh8iHbIvIILh/ySETuwuVD7mpk9UydwJURnaEwK69DucwDLUUKNddF+W6QdfRhbwTM6V4FVp7VO/DXj90J0GlSgd0NGHcnFVh55O2BjfRjZVt0i1YTH/aWiN2HEeDH7ovYr9TLCuxXATPtVQVWnmsH0M6Pla3vHbjzY++I2LtQ8mPlNeoe1Pix9wJWjHEF9lDE3levK7AhVn9SgZXtfgvsih8rr1NtaO/HhljTWQVWtqfH4MH4sfJq9RBq/diHIvaReluBfSRiH4N192MfB6yw7yuwZo29SCvIgPyRBGZsHbVuMSuxNAZqXYF/WqwtKfnGMdRLmEGBGRDmVETsFYi9QMRBgTgIlisv7GhO/q7MpVUgWoGIuFibsDQV2/eL9lhKAxA7BWJnCVHnkeK7Nn2Zk3dhaiTktFi5sBTSp6yw31hK9Hiot7wGca+E4LH9gkb+FYqWMIJCTdVRe1Gs8YyM6L4O8YaiN9NLw0PGTQur4KLeiqjYg4pF1DsP6p2ImnlQMxE196DmIsrOfBfXCRgBVv/4LhZ0xyOAfeTqKwKv4DqsOrdgjkYwfg7BC3xANffgb4tib+mqkwyjeVwnMcvxtGSJJ1BaqDWot1HhDsXXKc2wBCTjlvd0jI93mNtY6DnHVvisWMmjImMSTmdI8gwKOugtRjSfmtG5TTVn5N1xqRn+VjHvTakZfpc0fkZePJea4ada+uk5ZG9rbPsc2BbMprHWvi03pcH5F6Zhyhdp1UWLi2/1VI8ZpPe2If19/Wb2z/FetqnE+rHlZjRyp395qX9NaFg9546em1FB74m9XlOKGvdkpONeW24qQ0ar6EjLYe+avhls09dvxpSb0TgEj2ubYu6FU246esdFb2y5GY1jxXnPM/LkTbkZjQHdsz5suRkNzLZ0dZxvy00tO2qAY2dbbmrVR5QFxhwQj3musV7RhPykmaY2JP+gPlvj+vyr6xjmbJ4VMUI9JevbVtOJi7WsXiLjLyRg1aYN5UD/Yub4YGUaC3VVjK9YhmlpfV+lY9d41PwBaDGC2c97AFLOPAUJTU4CrXcKFLfEqKvcM4O7KuJwlJwsoTq6dip6i5YvZ43Kdc+pVorLbG+tHjtkr3Mae2PyCQ9Is5IeDirfcBVFSUMHJQ3J9Jro7r2er2Xtb4q48RJiXIy0Hu0I8U5afZzq03rL0fG63uWZwsV7Pnb8Yrb5RFsbjHkyskUoSx1Pt53JI7l1uK5eUTbHzc8ieqNor+ZkNYa0I5WLUajJFrM3vqB7S/uI9uSQB9PowXuMNJWx4l0zzKJjPj0ii+raW4k36stk6Lick9U19rgePXDQAw+6eYyzDSvGXSi1IWY4grt2QJRzsdBVRhqfqN8Wu6MZvcH6iD4tWUhDg+1NUrKQdVH2ixKVN4DG0cBRejiNZToG31mhJEf9Pnls7Fq2/Ou0c2v2t7s0xqtHc3Umpk9crxLXiGYN7+ry3TIHlmDhfXKV/Nf6XiK/JhzRhkpcnzmcWS8j2vFPKIIdk2ec0myTZke5tZufWn5iOB0qs3eOu9kZWciI7F8E61NGYzKiH/fsgNlBZ4uQko0MsTvDwrvx+TpDcYxZP26o+FSDHW8J2bIZ8Td03dmV01jkiIHXgbOlsW10ckC+YEJcJ9q627ldv/og0p6TcEcJU7Rj5TLx/5x+mx8zTtZWRgRqGN9Arm2d731kFLOgjrq0ytfbINPWlfKzQoZnWmq7/lmZPitJtkMRF8qDq3UfOPfonnnhKJmQ3PlKG15H67K5SHm8pEfs7QlF8Wz3B3oFRrmv0Cq5RnOuQ6NkAKNgWkQRpq2URV7mW8+rTD2Mdv5/oW51XdYaUoyUzeCyhqT8fkLRmitlCqOax+8rmk1+rU+WWtXzGdFYPHXm8jdQ+0v4beQ292F04pJVuEFjgCnYO6sRrolWWoTxulHiZUamoWXvLT87Jk0rt+Y88TVbNxtjzxtTOaRR81ZnLUz5PDReOjReBuqwTXuNVoum3lii52Js0da7laH8mnBrN6A8EynLHplBDQOkdGOpMKp9kaoc4xvUe5HWpkirC7PV3Q1w53wI0j/Xl2f3N8XqHqmb5Nv0yAPj+KVPs3RIPpeprY/UmAJyvqbtqzv7O1SD3GOyoEiZz3HijOFdpx5dZ4Wkv9IrW0Z23loEc27pjW5jbGyHyr9fQZ7SnMhpXhrENWqRaPldOaIli7Th+BwRZf675FOx31EfM7ut7TuJSv6EjTd5VlleHCmMSP9S5m1/JXrdd+LXiGLCmfauY6DV/A0jBcaYTILfs8zpDeEqxzsJ7NHGZD9X7RTv4o0ciTZI6oX6c4CN4ajXjnV3bJkem779Blqi1u1b97WQ+aXBHCV+59nR69Kqdqp91MXS/flodfUqV76v08Nsia/Vx4zauJGFjfLKmI76IpgLS9SMC2NCuDTrRRP5m0neRGbenQqlbFobyuVMA9uYFxQvSedAEeHz7i57vbnPhX7EK/RiwrrUuEaihNm4TOcHXEuLWaloKUJy66U1KXXWo6r1wvJwVw1rx9lSJmQFUyXlbri124dOKVqRszFMoaf4ZG9VnOjS/AIu/B0pX5RoOIbkEFvg515X22r3A5yKeK3LnNmMqAZtQn8pBu/qfpZb1OvotUPdpR/CIZzHEHQtST+kFbWp7ExZltylHk7/DVmDiUpE6W3L5n1wucg9WeXUpD9DsnByb4bKfJPTtC+GQ0hPylzC+fD+htSLE2W+bWrWB0Nd7kGZQxMe5jxD2Du3rZvzcjnV62uVSygPXgfMzovB4Q5gdcxi24VYqInzRj48B7QOJzXUzWrxv/bD8LGcmvMK5ZbTN2cvA946t0t0Zhb94uZzxnILGc3VHMN5ZkXvrNfk58f+X9ToTWVObz48ffRL7RgwvBaK86GydIx3R5GVN5QK7g/4ZMjUv9XfL8hfJbwuaFTJ0YSS2a+opmZayNTMl5e+3plnITJZOlUylanZeKJFJ2O31b66CT/bhQfY9JQof1PJfxHr/462D7UnZD1MNp0zCB2qSygLYnfT+nRvz9FWSYxnevmMbxtqcE/8gGrxvO9dao9nftulvlV/ScJz/Y7KVL8UmSzv8tl5FUMPyjtwnAsy3/tGdKaes1l8Au00YI+Rz1FxpGS+fl4Qok9x4bKkC0KY0VJHOfZSjulMUlJBOy71rUcjfKx3+nHfAc/nd4vsUqR+R3VdvTrgSi1JdeiR6gllBmLS/yZEaH9QV+DvFV32S3q4ImlO76As0VvnWf1JsDPvuLBfM65THsxk6ua6XUZRvd09rM/E7lRy4RPv9fhBDX7gSNmit/WK4u6Jqs8dzmpozrRM7n7uSJm8J+sBo9luMT7q4+d5Da95QP9vV6JvO5LugSwxZdsj2s+bEL1U62aXpOdzlfV521s10pqvNpmmPVlpx4E5I1nHAb8q2xZmP395Vr8y4BdmfjruXH8csO+CPZEk4pOZUvYoCZCIz4hK51eGXkqyxRgHnM/oBvRW7mtITyUqM1GSWcC30fMAWeYBdE4EaU5ECgNREm2xnl9a21r+30dWC8dXN7Y2N7buX1v78ob+n0k+Vj9Xn6rLsBr/UX0JM/JQHVGu8S/qr+pvO//Z/cXu+u6vuelHFzTmZ6r0b3fzv4JTXQQ=</latexit> <latexit sha1_base64="kVF27gTIsbauBCqg40Iqh1v4D6s=">AAA/fniczVvbchy3EYXtXCzmYtl5zEMmoWVLLlmhaFVklytFSyRF0VqJlHiRZK9F72W4HGu4s5rZpURt6E/Ja1KVT8iX5A+iT8hbuhvAALOLmQYUp8pEkcRgcbobDaAvwGx3lCbFeGnpX2+8+dZPfvqzn799buEXv/zVr985/+57+0U2yXvxXi9Ls/xRt1PEaTKM98bJOI0fjfK4c9xN44fdp6v4+cOTOC+SbLg7Ph3F3xx3BsPkMOl1xtB0cP69NtGYdtNJfBb1D9qPTw/OLy5dWaKfaL5yVVUWhfrZzt793UeiLfoiEz0xEcciFkMxhnoqOqKA8rW4KpbECNq+EVNoy6GW0OexOBMLgJ1Arxh6dKD1KfwdwNPXqnUIz0izIHQPuKTwmwMyEhcAk0G/HOrILaLPJ0QZW+toT4kmynYK/7uK1jG0jsURtHI43dMf14fWQ5ANNdM85jH0+5TGmkDvEbWgFnqK24S0hyOMrNGPgcII2rDeh89zqPcIqecjIkxBOsI56NDn/6ae2IrPPdV3Il7RaH4s+vvx6eVCQInEprgnVkVL7Ik1sS52SN7mskC4VRjHCHScg+QD0BBKexGkuQT/l2FPLYnrUNsAGbvUJ4axRGIb/p+S/AtK1kjcFTfErrhNvC9C/S7ULgXME9dTr+2CZsN/3SwwqyynGTltlGBM45+QBcjFi8a+uHb6ajYPaT0Uakc2z6nU4Kp4ILYa5w85D4H+c7JEx6RB5DiF9gHIhCs0BX5oE3Et/0N8Lxah/r34p1rHEciVq5V9RPTkkz/Nb6EgzQ+hnIlzRHMPpF4oRxnBk5yBrFz9HXFCeyMiSz6Bz+ReSmntDalX0+juQTmjml41XShTaj1rRK5CcSFXWeQGFBdyg0W2oLiQLRa5DcWF3FbIJux9KC7sfZbrAygu5AMWuQvFhdxlkftQXMh9FvkVFBfyKxZ5C4oLeYtF3oHiQt5hkXtQXMg9FrkOxYVcV8j6vYZ2LSM6CbOvbkC9ygP9VAotN1j5bpKNdWFveuzKXg2W35dr8N+NXfPQaVyDXfdYPYc1WH79bICVc2N5a3KbfKQLe5vFbsIKcGM3WeyX4rsa7Jce++VpDZbfMS3yNy4sbz/vwpMbe5fF3oOaG8t7mS1ocWO3PGz+qAa7zWLvi2c1WB+rn9dgebu/Q7GYC7vj4TPGNVjea+xB7ODG8vZ0H2IQN5b3OQ+h1Y19yGIfUdTowj5isY8pOnVhH3v4yZc1WO0pZfQ+oBgwhh3bRK1T7kqsjYBah+Gflr4Fa+ij+ixmUGIGhDlmERslYsMT0SoRLW+5itKOFhSx8lx2SsSOJ6Jb+iasjdn+/bJ/n3IzHrFWItZmEE1ZAM61HssJRRe6hUOOS8+FNZ8xZaX9xlqs1kOz5dWIrQpCru0jWvmXKVfHTKZPeWs9taPSx0tkRM9NiOeU6+lRah48blxaBRv1gkV1Haguizp1oE5Z1MSBmrCoEwfqhEWZnW/j2h4rwOgf52JKTzr3585SqmcXW+Bx18H7YcsW/Pc5S2nOyvFEAD2lzp6NLc6hNqVM2mR2a5Qjy5OGGCSTPbfUGRM+4dnkVO06aYfPSl8eCX3i6U8nIXkGJR2MFyPaUWF07lDLGcV3shaGv13ufF0Lw6+Txs8ojpe1MPxYST9+Ddl3FXb3NbA7sJ9GSvumHkpDnqFIGrrO2ebN0m7ieeUL2jmyLZT/KtWkDkw9jEZhjaGojCGEhtFlYekyjArGSDK21bUoeCRDld2aeqgMGfnKoZLDPIXODPbpq5nR9TAa2xBXrVJmPbXqoSt0VI7G1MNo7At5tn5G8bquh9EY0LPUh6mH0cAzlY7K5k091HqjBmSGbOo6ZskpitEnzgl57+azFDsin/cxeKLypIzgmymZyLOeTrf0M80SzVqXEDnQ+0+sCKlKYyqW2exHyjCu+N55Osb/ouZboMUIdq081+fOpFOQUJ8YxHRK/oSoNWOqI9O4ZRaHluRwBtVWrWM2ljN85ZlOte2AWrmsyYzW6LFNdragtTeiiK1FmuX00Kqd4TqKnIZaFQ3x9EJ095J2cDaj/SUWN5pBjMqV1qPbIXlL3ZxFurS+Y+n4grpFGUORdypm/eJZ8CHhcspIMrI2KEsTT7ufPuWx29AfXhbmBFp+FtGMor06IauR0I1PwcYh+ixXRspTeja09+ierXprFSkqIyFvVPGMG0+7I7rPtG0txxv1pc/PZL0gq2vu0Ztvxwx64ECHZh+r4CvuQW0Xovk9eNr1yD/MnVtG+s7Fx+X9Z0bz15xt2zd77ZKGtDZxxT42ZcBHFSrPAY1rQWbQ/jRm6Wh8e44Sn5G75DF5ZdXuX6A7ff3mSIdWeP1arj8l6RPXZeIa0Z6R9/3yaZaDlGDq/GSZos7mUSK/EI5oQTmuTyzOUi9DepcmptxyRPFsSnuN2xvV3vbZ0ewnmtO20G9V4F1xRvYxIusXgXfKaE1G9Gu/laPfrZD2ICUL6WN1kjK2cUU6CbvGEtrlco3I94XMeovJkk2Iv6Zr766C1qKM86UXOJtZ21onLYoEY+KaK9tu9naz70GkeRPCXiWSolkrF4n/Jfqrf/U6WZxbEahhnIFCWTrXfGSUaaCOOuTjm22Q7mtL+X4pwxMltfF+Rqb3K5KtUZ6E8qCv7gPnHj1LXrhKcpK7mOsjvWjTSStSHs3oEUeL3rWtrP5A+V+U+zL5yEXac21h3rDRsb/uy53wzvJt5lWl7ke7+L9QN7quag0pRsKcrkoNcWfvMeVYtpQpvZMk376JFaV5reczvZr5DGktHlt7+S/Q+nv4q+XWz350uhWrcJPWgKRgnoxGZEs018OP180KL70yNS3zbPiZNal72S2vkxVL62Yy45NgKtu0al6oswZd9xn/Lt3hGQ3odm1FDmYi6F115+dLPYy2P+UJS5mPnTQq8ZDSznn8qPZZqnwurlEvWVpLLC18G88+Ubd3p+07b1Hs0KMIR2YHfdoFCcU0urU5D5IUkNc1Zb/s3dWmFtxLXbJQSLn6ViGe3fWEfIdUyviB8hwZ2VGz4/Q7O89VH23D2lT/ZA55TNlsQXtHI65Rj1jJb8sRzez4K5ZPj+jMu0Mxi/TrzRmp3dvMQlTx1yabk3vB8ErFhyoaH9IcjMWrRm6bc/nhppUhRkLe96VlBI+z/CpoljFvkytD5+ru6K2gWUJPklM+L6PGLtmo+VMGeYs1BO3rdXeFpJ6KP3tYB5lXmp1iry/8bKKyEhzbR9ATNW9m3tWD55d6c+T4vc59Voc8x7GKA6czz69Hq6M8SfW5SQ+TGb5GHxMxVDmhjt5NJlXFtMXn3lykRGFcJMaHS9goQuQPkzxEZnlv40tZ99aUq9m8tDFHlJNw70EiwhVBXXRGTJeYcXTn6HUJa1OTLRwlPO/KVA5uW1s8+Tk354tk67lGj5Ra3qjOW2jqtscwNlxayJisXyq4cxHZuyfk+6h1GZSdG3wOBf9GwpU/aW/ic7q2A1Ekvlfv962I5pv8Z6ouT/wiasGd3J/JTjtqnNUezbP8zKJu0/fh4M8jAV1z0ifkB0Nll5R5yW3q/vSf0x7ORcxKb3qGj8Hmwo9knlPIeBKyS/xoEqG/xxQ6Fs3BZyRVLv585Lk/N4pDob9PFzYGTZ0fQZVDCA99P+8356Z3OC+bU7O+5rn48pA2XN9IaBzejNVnG6afj4XKrRn54TmgdThsoK69xf86Ds3HcArn5cutoO86fecx67JfrM4sMZoN3zOGm89qrufozzMrR2diHTc/GbVFQTOVWaP54eljNGnWgOY1FfKkkJdO4u1VZOT1pYIn5y4ZMvEfLxkkvk4GXyr6BL+eku7BU9Pf9HONSn/mI5OhUydTlRrSk5l2m/ZwTKcF5manT8/l25b0PfTP6CeSlevXVOWzq+X30PeXr1z905VP7l9b/OKm+kb62+K34g8QyV8V18UX4jZEmHsgwwvxV/E38fcVsfLByscrf5Rd33xDYX4jKj8rn/4XWWsmiA==</latexit> dY <latexit sha1_base64="Uu/jGzHimifAQUBslloJGY6wA84=">AABFdnictVzbchy3EYWcm6Pc7OQxVamJaSayS2EoWYnjcqXKEklRtCiJ0i4pyVpJtbM7XI003FntTZc1fyGvyd/kO/IHyVNe85i+AAPMLmYawyicIheDxelu9ACN7gaG8ShLJ9PNzX+ce+873/3e93/w/g/P/+jHP/npzz748OdHk3w27iWHvTzLxw/i7iTJ0mFyOE2nWfJgNE66J3GW3I9fbOH39+fJeJLmw/b0zSh5fNIdDNPjtNedYlVnlG49/WBtc2OTfqLVwiVdWFP65yD/8KMN1VF9lauemqkTlaihmkI5U101geuRuqQ21QjqHqsF1I2hlNL3iTpV5wE7g1YJtOhC7Qv4O4C7R7p2CPdIc0LoHnDJ4HcMyEitAyaHdmMoI7eIvp8RZaytor0gmijbG/iMNa0TqJ2qZ1Ar4UzLUBz2ZaqO1Z+oDyn0aUQ12LuepjIjraDkkdOrKVAYQR2W+/D9GMo9Qho9R4SZUN9Rt136/p/UEmvxvqfbztS/SMp1uCLV0r3PCwpdNSf6ET3NGXzH8mTAeQAUEt1HLL0iXZ9Q74fQfgH1t+E6pZLRSQzXgmpPa5FbcPmQWyJyFy4fcldE7sPlQ+6LyAO4fMgDjUTsmHTux7fg8uFbIue7cPmQd0XkPbh8yHsi8gguH/JIRH4Dlw/5jYi8DpcPeV1E3oTLh7wpIttw+ZBtEXkIlw95KCJ34PIhdzSyeqaO4cqJTirMyqtQLvNAS5FBzVVRvmtkHX3YawFzuleBlWf1Nnz6sdsBOk0qsDsB4+64AiuPvF2wkX6sbItu0Griw94QsXswAvzYPRH7tXpegf06YKa9qMDKc20f2vmxsvW9BXd+7C0RextKfqy8Rt2BGj/2TsCKMarAHojYu+plBTbE6o8rsLLdb4Fd8WPldaoN7f3YEGs6q8DK9vQIPBg/Vl6t7kOtH3tfxD5QryuwD0TsQ7DufuzDgBX2bQXWrLHnaQUZkD+SwIyto9YtZiWWRkCtK/DPirUlI984hnoJMygwA8KciIjdArEbiNgvEPvBck0KOzohf1fm0ioQrUBEXKxNWJqK7ftFeyxlAYjtArG9hKjzSPFZm77MybswNRJyWqxcWArpU17YbywlejzUW16DuFNC8Nh+RiP/IkVLGEGhpuqoPSvWeEZGdF+HeEXRm+ml4SHjpoVVcFGvRVTsQcUi6o0H9UZEzTyomYiae1BzEWVnvovrBIwAq398Fgu64xHAPnL1FYFXcBVWnRswRyMYPwfgBd6jmjvw2aLYW7rqJMNoHtdJzHI8LlniMZQWag3qbVS4TfF1RjMsAcm45R0d4+Md5jYWes6xFT4tVvKoyJiE00lJnkFBB73FiOZTMzo3qeaUvDsuNcPfKOa9KTXD75DGT8mL51Iz/FRLPz2D7G2NbZ8B24LZNNLat+WmNDj/wjRM+Tytumhx8ame6DGD9F43pL+nn8zeGZ7LFpVYP7bcjMbE6d+k1L8mNKyeJ46em1FB74m9XlOKGvdkqONeW24qQ06r6FDLYe+aPhls09dPxpSb0TgAj2uLYu6FU246ekdFb2y5GY0jxXnPU/LkTbkZjQHdsz5suRkNzLZ0dZxvy00tO2qAY2dbbmrVh5QFxhwQj3musV7RmPykmaaWkn9Qn61xff7VdQxzNk+KGKGekvVtq+nExVpWL5HxFxKwatOGcqB/MXN8sDKNhbosxlcsw7S0vq/SsWs8an4ftBjB7Oc9AClnnoGEJieB1jsDipfEqKvcM4O7LOJwlBwvoTq6dip6i5YvZ43KdU+pVorLbG+tHjtkryc09kbkE+6TZiU97Fc+4SqKkob2SxqS6TXR3Vs9X8va3xRxoyXEqBhpPdoR4p20+jjVp/WWo+N1vcszhYv3fOz4xWzzsbY2GPPkZItQljqebjuTR3LrcF29qGyOm7+L6ImivZqT1UhpR2oiRqEmW8ze+ILuLe1D2pNDHkyjB88x0lRGinfNMIuO+fSILKprbyXeqC+ToePyhKyuscf16IGDHnjQzWOcLVgxbkOpDTHDIdy1A6Kc84WuctL4WP2u2B3N6QnWR/RZyUIaGmxvkpKFrIuyn5WovAI0jgaO0sNpLNMx+M4KJTnq98ljY9ey5V+nnVuzv92lMV49mqszMX3iepm4RjRreFeX75Y5sAQL7zeXyX+t7yXya8IRbajE9YnDmfUypB3/hCLYEXnGGc02aXaUW7v5qeVvDKcDZfbOcTc7JwsZkf2LYH3KaUxG9OueHTA76GwRMrKRIXYnLbwbn6+TimPM+nGp4lMNdrwlZMtmxN/QdWfXhMYiRwy8DpwujW2jk33yBRPiOtbW3c7t+tUHkfachDtKmKIdKxeI/yf01/yacbK2MiJQw/gEJtrW+Z5HTjEL6qhLq3y9DTJtXSk/LmR4oqW265+V6eOSZNsUcaE8uFr3gXOP7pkXjpIxyT1ZacPraF02FymPlvSIvT2mKJ7t/kCvwCj3RVol12jOdWiUDGAUTIsowrSVssjLfOt5lamH0Z78X6hbXZe1hhQjZTO4rCEpv59QtOZKmcGo5vH7gmaTX+vjpVb1fIY0Fk+cufwt1P4a/hq5zX0YnbhkFa7RGGAK9s5qhGuilRZhvK6VeJmRaWjZe8vPjknTyq05S3zN1s3G2PPGVA5o1LzWWQtTPguN5w6N54E6bNNeo9WiqTeW6KkYW7T1bmUovybc2g0oz0TKskdmUGmAlG4sFUa1L1KVY3yDeivS2hRpdWG2ursB7pwPQfrn+vLs/rZY3SN1nXybHnlgHL/0aZam5HOZ2vpIjSkg5yvavrqzv0M1yD0mC4qU+RwnzhjederRdVpI+hu9suVk561FMOeWXuk2xsZ2qPzZCvKE5sSE5qVBXKEWiZbflSNaskgbjs8RUea/Sz4V+x31MbPb2j6TqORP2HiTZ5XlxZHCkPQvZd72VqLXPSd+jSgmnGnvOgZazZ8wUmCMyST4PcsJPSFc5XgngT3amOznqp3iXbyhI9EGSb1Qfw6wMRz12rHuji3TY9O3T6Elat0+dV8LmV8WzFHid5YdvS6taifaR10s3Z+NVlevcuX7Oj3MlvhafcyojRtZ2CivjOmoL4O5sETNuDAmhEuzXjSRv5nkTWTm3alQyqa1oVzONLCNeUbxknQOFBE+7+6C15v7ROhHvEIvJqxLjWskSpiNy3V+wLW0mJWKliIkt15akzJnPapaLywPd9WwdpwtZUJWMFNS7oZbu33olKIVORvDFHqKT/ZWxYkuzS/hwr+R8kWJhmNIDrEFfu5VtaV23sGpiJe6zJnNiGrQJvSXYvCu7me5Rb2OXjrUXfohHMJ5pKBrSfqUVtSmsjNlWXKXejj9V2QNxioRpbctm/fB5SL3ZJVTk/6kZOHk3qTKvJPTtC+GQ0hPylzC+fD+htSLY2XebWrWB0Nd7kGZQxMe5jxD2DO3rZvzcjnV62uVSygPXgfMzovB4Q5gdcxi24VYqLHzRN49B7QOxzXUzWrxv/bD8LGcmvMK5Tahd86eBzx1bpfozCz6xc3njOUWMpqrOYbzzIveWa/Jz4/9v6jRk8qd3rx7+uiX2jFgeC0U50Nl6RjvjiIrbygV3B/wyZCrf6u/n5PfSnhZ0KiSowkls19RTc20kKmZNy99vTPfhchk6VTJVKZm44kWnYzdUnvqOvxuFR5g01Oi/E4lfyLW/x5tH2qPyXqYbDpnEDpUl1AWxO6m9enenqOtkhjP9PIZ3zbU4J74PtXied/b1B7P/LZLfat+k4Tn+i2Vq34pMlne5bPzKoYelHfgOBdk3veN6Ew9Z7P4BNpJwB4jn6PiSMm8/bwgRJ/iwmVJF4Qwo6WOcuylHNOZpKSCdlzqW49G+Ejv9OO+A57P7xbZpUj9nuq6enXAlVqS6sAj1SPKDMSk/02I0P6gLsLnRV32S3qwIumEnkFZotfOd/UnwU6948K+zbhOeTCTqZvrdjlF9Xb3sD4Tu13JhU+81+MHNfiBI2WLntYLirvHqj53OKuhOdMyufu5Q2XynqwHjGa7xfioj5/nNbzmAf2/WYm+6Ui6C7LElG2PaD9vTPQyrZsdkp7PVdbnbW/USGve2mSa9mSlHQfmjGQdB3yrbEuY/fzmWf3KgG+Y+em4c/1hwL4L9kSSiE9mStmjJEAiPiMqnV9JvZRkizEKOJ/RDeit3NeQnkpUZqIks4B3o+cBsswD6BwL0hyLFAaiJNpi0f8j+YJ+Ii58fkUXvrhU/D+So8sbl/648dndK2tfXdP/meR99Uv1kboAq/Hn6iuYkQfqkHKNf1F/VX/b/s/Or3bWd37LTd87pzG/UKWfnc3/AqaKXaM=</latexit> ⇡ <latexit sha1_base64="Ov2LTKTmb98Skpojd3G2ltsOy/U=">AAA/eHiczVvbchy3EYWdm8Xc7OQxD5mEViS6FBZFq6K4XIkskRRJayVS4kWyvZayl+FyrOHOamaXErWhvyOvyWs+IV+SP4g+IXlKdwMYYHYx0wDjVJkokhgsTnfj1jfMdkdpUoxXVv751tvf+e73vv+Ddy4t/PBHP/7JT99972eHRTbJe/FBL0uz/Em3U8RpMowPxsk4jZ+M8rhz0k3jx93na/j549M4L5JsuD8+G8VfnnQGw+Qo6XXG0PS0TRSm3XQSn0dnz95dXFleoZ9ovnJdVRaF+tnN3vvlB6It+iITPTERJyIWQzGGeio6ooDyhbguVsQI2r4UU2jLoZbQ57E4FwuAnUCvGHp0oPU5/B3A0xeqdQjPSLMgdA+4pPCbAzISlwGTQb8c6sgtos8nRBlb62hPiSbKdgb/u4rWCbSOxTG0cjjd0x/Xh9YjkA1npnnMY+j3exprAr1H1IKz0FPcJjR7OMLIGv0YKIygDet9+DyHeo+Qej0iwhQ0R7gGHfr8X9QTW/G5p/pOxBsazbdl/r5983I5oERiWzwQa6IlDsS62BB7JG9zWSDcGoxjBHOcg+QDmCGU9ipIswT/V+FMrYibUNsEGbvUJ4axRGIX/p+R/AtK1kjcF7fFvtgi3lehfh9qSwHrxPXUe7ug1fDfNwvMLstpRc4aJRjT+CekAXLxqrEv7p2+Ws0j2g+FOpHNaypncE08EjuN64ech0D/JWmiE5pB5DiF9gHIhDs0BX6oE3Ev/118LRah/rX4h9rHEciVq519TPTkkz/NP0FBmlegnItLRPMApF4oRxnBk1yBrNz9HXFKZyMiTT6Bz+RZSmnvDalX0+geQDmnmt41XShTaj1vRK5BcSHXWOQmFBdyk0W2oLiQLRa5C8WF3FXIJuxDKC7sQ5brIygu5CMWuQ/FhdxnkYdQXMhDFvk5FBfycxZ5F4oLeZdF3oPiQt5jkQdQXMgDFrkBxYXcUMj6s4Z6LSM6CXOubkO9ygPtVAott1n57pCOdWHveJzKXg2WP5fr8N+NXfeY07gGu+Gxe45qsPz+2QQt58by2mSLbKQLu8Vit2EHuLHbLPZT8VUN9lOP8/K8BsufmBbZGxeW15/34cmNvc9iH0DNjeWtzA60uLE7Hjp/VIPdZbEPxYsarI/Wz2uwvN7fI1/Mhd3zsBnjGixvNQ7Ad3BjeX16CD6IG8vbnMfQ6sY+ZrFPyGt0YZ+w2M/IO3VhP/Owk69rsNpSSu99QD5gDCe2iVqnPJVYGwG1DsM/LW0L1tBG9VnMoMQMCHPCIjZLxKYnolUiWt5yFaUeLchj5bnslYg9T0S3tE1YG7P9+2X/PsVmPGK9RKzPIJqiAFxrPZZT8i50C4ccl5YLaz5jykr9jbVY7YdmzasROxWE3NvHtPOvUayOkUyf4tZ6aseljZfIiJ6bEC8p1tOj1Dx43LjUCjbqFYvqOlBdFnXmQJ2xqIkDNWFRpw7UKYsyJ9/GtT12gJl/XIspPenYn8ulVHMXO2BxN8D6YcsO/PfJpTRH5ZgRQEupo2eji3OoTSmSNpHdOsXIMtMQg2Sy547KMeET5ian6tRJPXxe2vJI6IynP52E5BmUdNBfjOhEhdG5Ry3n5N/JWhh+qzz5uhaG36AZPyc/XtbC8GMl/fgCsu8r7P4FsHtwnkZq9k09lIbMoUgaus7p5u1Sb2K+8hWdHNkWyn+NanIOTD2MRmGNoaiMIYSGmcvCmsswKugjSd9W16LgkQxVdGvqoTJkZCuHSg7zFLoy2KevVkbXw2jsgl+1RpH11KqH7tBRORpTD6NxKGRu/Zz8dV0PozGgZzkfph5GA3MqHRXNm3qo9sYZkBGyqWufJScvRmecE7LezbkU2yOftzGYUXlaevDNlIznWU+nW9qZZolmtUuIHGj9J5aHVKUxFats9CNlGFds7zwdY39x5lswixGcWpnX53LSKUioMwYxZcmfErVmTHVkGrfK4lCTHM2g2qp1zPpyhq/M6VTbnlErFzWZ0Zp5bJOeLWjvjchja9HMcvPQql3hOorcDLUqM8TTC5m713SCs5nZX2FxoxnEqNxpPbodkrfUzVGka9b3rDm+rG5RxlDknYrZv5gLPiJcThFJRtoGZWniaffTWR67De3hNWEy0PKziFYU9dUpaY2EbnwK1g/RuVzpKU/p2dA+oHu26q1VpKiMhLxRxRw3Zrsjus+0dS3HG+dL589kvSCta+7Rm2/HDHrgQIdGH2tgKx5AbR+8+QN42veIP8ydW0bznYvflvefGa1fc7Rt3+y1SxpS28QV/dgUAR9XqLwENO4FGUH705ilo/HtOUp8RO6Sx8SVVb1/me709ZsjHdrh9Xu5PkvSJ66rxDWiMyPv++XTLAcpwdT5ySp5nc2jRH4hHFGDclyfWpzlvAzpXZqYYssR+bMpnTXubFR727mj2U80p12h36rAu+KM9GNE2i8C65TRnozo134rR79bIfVBShrSR+skpW/j8nQSdo8ldMrlHpHvC5n9FpMmmxB/Tdc+XQXtRennSytwPrO39Zy0yBOMiWuudLs52822B5HmTQh7l0iKZq9cJf5L9Ff/6n2yOLcjcIZxBQql6VzrkVGkgXPUIRvfrIN0X1vK90sZniqpjfUzMr1fkWyd4iSUB211Hzj36Fnywl2Sk9zFXB9pRZsyrUh5NDOPOFq0rm2l9QfK/qLc18hGLtKZawvzho32/XVfLsM7y7eZV5W6H+3i/0LdzHV11pBiJEx2Vc4Ql3uPKcaypUzpnST59k2sKM3Pej7Tq5nPkPbiiXWW/wytv4K/Wm797EenW9EKd2gPSArmycyIbInmevjxulPhpXempmWeDT+zJ3Uvu+UiUbHUbiYyPg2msku75pXKNei6z/j36Q7PzIBu11rk2YwHva/u/Hyph9H2pzxhKfO+k0YlHlLaMY8f1T5LlY/FNeo1S2uFpYVv49kZdft02rbzLvkOPfJwZHTQp1OQkE+jW5vjIEkBed1Q+ss+XW1qwbPUJQ2FlKtvFWLurifkO6RSxt8oy5GRHjUnTr+z81L10TqsTfUP55AnFM0WdHY04gb1iJX8thzRzIlftmx6RDnvDvks0q43R6R2b7MKUcVem2hOngXDKxVXlDc+pDUYizeN3Lbn4sNtK0KMhLzvS0sPHlf5TdAqY9wmd4aO1d3eW0GrhJYkp3heeo1d0lHzWQZ5izWE2df7bpmknoo/eGgHGVeak2LvL/xsoqISHNsH0BNn3qy8qwfPL/XmyPG7yH1WhyzHifIDpzPPF6PVUZak+tw0D5MZvmY+JmKoYkLtvZtIqoppi4+9uUiJwrhIjA+XsFGEyB8meYjM8t7Gl7LurSlXo3mpY44pJuHeg0SEy4O66vSYlphxdOfodQlrU5MtHCXMd2UqBre1LWZ+Ls3ZItl6qdEipZY1qrMWmrptMYwOlxoyJu2XCi4vInv3hHwftS6CsmODj6Hg30i44idtTXyya3vgReJ79X7fimi+yX+h6jLjF1ELnuT+THTaUeOs9mhe5RcWdZu+Dwd/HgnMNSd9QnYwVHZJmZfcpu5P/yWd4VzErPSmZ/gYbC78SOY5hYwnIb3EjyYR+ntMoWPRHHxGUuXiz0fm/blRHAn9fbqwMWjq/AiqHEJ46Pt5vzU3vcN52Zya52ueiy8PqcP1jYTG4c1YfbRh+vloqNxakW+eA2qHowbq2lr8r+PQfAyncF6+3Ar6rtNXHqsu+8UqZ4nebPiZMdx8dnM9R3+eWTk64+u4+UmvLQpaqcwazTdPH71Jswc0r6mQmUJeOom3d5GR15cKZs5dMmTi314ySHydDL5UdAa/npLuwVPT3/RzjUp/5iOToVMnU5Ua0pORdpvOcEzZAnOz06fn8m1L+h76R/QTycrNG6ry0fXye+iHq8vXf7f84cMbi5/cUd9If0f8QvwaPPnr4qb4RGyBh3lA2e6/iL+Kv/3xP7eiW1duLcmub7+lMD8XlZ9bq/8FWlgltg==</latexit> y <latexit sha1_base64="LvFcuviAqZAdjSTE/PqtKDzG1pU=">AAA/e3iczVvbchy3EYXtXCzmYtl5zEMmoRVdSmGRtBLF5UpkiaQoWiuREi+S7bWUvQyXYw13VjO7lKgN/SN5TZ7yCfmS/EH0CXlIVbobwACzi5kGFKfKRJHEYHG6Gw2gL8Bsd5QmxXh5+Z9vvf3O977/gx++e27hRz/+yU/fO//+BwdFNsl78X4vS7P8cbdTxGkyjPfHyTiNH4/yuHPcTeNH3Wdr+Pmjkzgvkmy4Nz4dxV8ddwbD5DDpdcbQ9PT8e22iMe2mk/gsOr349Pzi8tIy/UTzlRVVWRTqZyd7/xdXRFv0RSZ6YiKORSyGYgz1VHREAeVLsSKWxQjavhJTaMuhltDnsTgTC4CdQK8YenSg9Rn8HcDTl6p1CM9IsyB0D7ik8JsDMhIXAJNBvxzqyC2izydEGVvraE+JJsp2Cv+7itYxtI7FEbRyON3TH9eH1kOQDTXTPOYx9Ps9jTWB3iNqQS30FLcJaQ9HGFmjHwOFEbRhvQ+f51DvEVLPR0SYgnSEc9Chz/9FPbEVn3uq70S8ptF8V/T33dPLhYASiS1xX6yJltgX62JD7JK8zWWBcGswjhHoOAfJB6AhlPYSSHMZ/q/CnloW16G2CTJ2qU8MY4nEDvw/JfkXlKyRuCduij1xh3hfgvo9qF0OmCeup17bBc2G/7pZYFZZTjNy2ijBmMY/IQuQi5eNfXHt9NVsHtJ6KNSObJ5TqcE18VBsN84fch4C/RdkiY5Jg8hxCu0DkAlXaAr80CbiWv67+EYsQv0b8Q+1jiOQK1cr+4joySd/mn+CgjQvQjkT54jmPki9UI4ygic5A1m5+jvihPZGRJZ8Ap/JvZTS2htSr6bR3YdyRjW9arpQptR61ohcg+JCrrHITSgu5CaLbEFxIVsscgeKC7mjkE3YB1Bc2Acs14dQXMiHLHIPigu5xyIPoLiQByzyCygu5Bcs8jYUF/I2i7wLxYW8yyL3obiQ+yxyA4oLuaGQ9XsN7VpGdBJmX92EepUH+qkUWm6y8t0iG+vC3vLYlb0aLL8v1+G/G7vuodO4BrvhsXoOa7D8+tkEK+fG8tbkDvlIF/YOi92CFeDGbrHYz8TXNdjPPPbLsxosv2Na5G9cWN5+3oMnN/Yei70PNTeW9zLb0OLGbnvY/FENdofFPhDPa7A+Vj+vwfJ2f5diMRd218NnjGuwvNfYh9jBjeXt6QHEIG4s73MeQasb+4jFPqao0YV9zGI/p+jUhf3cw0++qsFqTymj9wHFgDHs2CZqnXJXYm0E1DoM/7T0LVhDH9VnMYMSMyDMMYvYLBGbnohWiWh5y1WUdrSgiJXnslsidj0R3dI3YW3M9u+X/fuUm/GI9RKxPoNoygJwrvVYTii60C0cclx6Lqz5jCkr7TfWYrUemi2vRmxXEHJtH9HKv0q5OmYyfcpb66kdlT5eIiN6bkK8oFxPj1Lz4HHj0irYqJcsqutAdVnUqQN1yqImDtSERZ04UCcsyux8G9f2WAFG/zgXU3rSuT93llI9u9gGj7sB3g9btuG/z1lKc1aOJwLoKXX2bGxxDrUpZdIms1unHFmeNMQgmey5rc6Y8AnPJqdq10k7fFb68kjoE09/OgnJMyjpYLwY0Y4Ko3OXWs4ovpO1MPydcufrWhh+gzR+RnG8rIXhx0r68RvIvqewe2+A3YX9NFLaN/VQGvIMRdLQdc42b5V2E88rX9LOkW2h/NeoJnVg6mE0CmsMRWUMITSMLgtLl2FUMEaSsa2uRcEjGars1tRDZcjIVw6VHOYpdGawT1/NjK6H0diBuGqNMuupVQ9doaNyNKYeRuNAyLP1M4rXdT2MxoCepT5MPYwGnql0VDZv6qHWGzUgM2RT1zFLTlGMPnFOyHs3n6XYEfm8j8ETlSdlBN9MyUSe9XS6pZ9plmjWuoTIgd5/YkVIVRpTscpmP1KGccX3ztMx/hc13wItRrBr5bk+dyadgoT6xCCmU/InRK0ZUx2Zxq2yOLQkhzOotmods7Gc4SvPdKptT6mVy5rMaI0e22RnC1p7I4rYWqRZTg+t2hmuo8hpqFXREE8vRHevaAdnM9pfZnGjGcSoXGk9uh2St9TNWaRL67uWji+oW5QxFHmnYtYvngUfEi6njCQja4OyNPG0++lTHrsN/eFVYU6g5WcRzSjaqxOyGgnd+BRsHKLPcmWkPKVnQ3uf7tmqt1aRojIS8kYVz7jxtDui+0zb1nK8UV/6/EzWC7K65h69+XbMoAcOdGj2sQa+4j7U9iCa34enPY/8w9y5ZaTvXPymvP/MaP6as237Zq9d0pDWJq7Yx6YM+KhC5QWgcS3IDNqfxiwdjW/PUeIzcpc8Jq+s2v0LdKev3xzp0AqvX8v1pyR94rpKXCPaM/K+Xz7NcpASTJ2frFLU2TxK5BfCES0ox/WJxVnqZUjv0sSUW44onk1pr3F7o9rbPjua/URz2hH6rQq8K87IPkZk/SLwThmtyYh+7bdy9LsV0h6kZCF9rE5SxjauSCdh11hCu1yuEfm+kFlvMVmyCfHXdO3dVdBalHG+9AJnM2tb66RFkWBMXHNl283ebvY9iDRvQtirRFI0a+US8b9Mf/WvXieLcysCNYwzUChL55qPjDIN1FGHfHyzDdJ9bSk/LGV4oqQ23s/I9GFFsnXKk1Ae9NV94NyjZ8kLV0lOchdzfaQXbTppRcqjGT3iaNG7tpXVHyj/i3JfJR+5SHuuLcwbNjr21325E95Zvs28qtT9aBf/F+pG11WtIcVImNNVqSHu7D2mHMuWMqV3kuTbN7GiNK/1fKZXM58hrcVjay//GVp/CX+13PrZj063YhVu0RqQFMyT0YhsieZ6+PG6VeGlV6amZZ4NP7MmdS+75U2yYmndTGZ8Ekxlh1bNS3XWoOs+49+jOzyjAd2urcjTmQh6T935+VIPo+1PecJS5mMnjUo8pLRzHj+qfZYqn4tr1CuW1jJLC9/Gs0/U7d1p+87bFDv0KMKR2UGfdkFCMY1ubc6DJAXkdU3ZL3t3takF91KXLBRSrr5ViGd3PSHfIZUy/lp5jozsqNlx+p2dF6qPtmFtqn80hzymbLagvaMR16hHrOS35YhmdvyS5dMjOvPuUMwi/XpzRmr3NrMQVfy1yebkXjC8UnFRReNDmoOxeN3IbWsuP9yyMsRIyPu+tIzgcZZfB80y5m1yZehc3R29FTRL6Elyyudl1NglGzV/yiBvsYagfb3ulkjqqfiDh3WQeaXZKfb6ws8mKivBsV2Bnqh5M/OuHjy/1Jsjx+9N7rM65DmOVRw4nXl+M1od5Umqz016mMzwNfqYiKHKCXX0bjKpKqYtPvHmIiUK4yIxPlzCRhEif5jkITLLextfyrq3plzN5qWNOaKchHsPEhGuCOqSM2K6zIyjO0evS1ibmmzhKOF5V6ZycNva4snPuTlfJFvPNXqk1PJGdd5CU7c9hrHh0kLGZP1SwZ2LyN49Id9Hrcug7NzgEyj4NxKu/El7E5/TtV2IIvG9er9vRTTf5D9XdXniF1EL7uT+THbaUeOs9mie5ecWdZu+Dwd/HgnompM+IT8YKrukzEtuU/en/4L2cC5iVnrTM3wMNhd+JPOcQsaTkF3iR5MI/T2m0LFoDj4jqXLx5yPP/blRHAr9fbqwMWjq/AiqHEJ46Pt5vzk3vcN52Zya9TXPxZeHtOH6RkLj8GasPtsw/XwsVG7NyLfPAa3DYQN17S3+13FoPoZTOC9fbgV91+lrj1mX/WJ1ZonRbPieMdx8VnM9R3+eWTk6E+u4+cmoLQqaqcwazbdPH6NJswY0r6mQJ4W8dBJvryIjry8VPDl3yZCJf3vJIPF1MvhS0Sf49ZR0D56a/qafa1T6Mx+ZDJ06marUkJ7MtNu0h2M6LTA3O316Lt+2pO+hf0w/kaxcv6YqH6+U30M/WF1a+d3SRw+uLX56S30j/V3xc/EriORXxHXxqbgDEea+wG+m/0X8Vfztj/+5sXjjyo2rsuvbbynMz0Tl58Zv/wtIPiYY</latexit> y0 <latexit sha1_base64="P6ma5GbrGzlp3Azs8/N4GutUeUg=">AAA/d3iczVtZcxy3EYady2Iu23nMgyehZUsuhUXSqiguVyKLh0haK5ESD8n2Ssoew+VYy53VzC4Pbei/kdfkOT8hvyT/IPoJfkt3AxhgdjHTAGNXmSiSGCy+7kYD6AOYbQ/7ST5aXPzPG2/+6Mc/+enP3roy9/Nf/PJXv377nXcP8nScdeL9TtpPsyftVh73k0G8P0pG/fjJMItbx+1+/Lj9YhU/f3wSZ3mSDvZG58P46XGrN0gOk05rBE1Pm0RhksXdi+js+dvziwuL9BPNVpZUZV6on530nfc+Ek3RFanoiLE4FrEYiBHU+6IlcihfiSWxKIbQ9lRMoC2DWkKfx+JCzAF2DL1i6NGC1hfwtwdPX6nWATwjzZzQHeDSh98MkJG4CpgU+mVQR24RfT4mythaRXtCNFG2c/jfVrSOoXUkjqCVw+me/rgutB6CbKiZ+jGPoN+faKwJ9B5SC2qho7iNSXs4wsga/QgoDKEN6134PIN6h5B6PiLC5KQjnIMWff5f6omt+NxRfcfiNY3mh6K/H55ergaUSGyJB2JVNMS+WBPrYpfkrS9zhFuFcQxBxxlI3gMNobTXQJrr8H8Z9tSiuAW1DZCxTX1iGEskduD/Ock/p2SNxH1xR+yJTeJ9Der3oXY9YJ64nnpt5zQb/utmjlllGc3Iea0EIxr/mCxAJs5q++La6arZPKT1kKsdWT+nUoOr4pHYrp0/5DwA+qdkiY5Jg8hxAu09kAlXaB/4oU3Etfwv8Y2Yh/o34t9qHUcgV6ZW9hHRk0/+NP8KBWl+COVCXCGa+yD1XDHKCJ7kDKTF6m+JE9obEVnyMXwm91Kf1t6AetWN7gGUC6rpVdOGMqHWi1rkKhQXcpVFbkBxITdYZAOKC9lgkTtQXMgdhazDPoTiwj5kuT6C4kI+YpF7UFzIPRZ5AMWFPGCRX0JxIb9kkXehuJB3WeQ9KC7kPRa5D8WF3GeR61BcyHWFrN5raNdSopMw++oO1Ms80E/1oeUOK98K2VgXdsVjV3YqsPy+XIP/buyah07jCuy6x+o5rMDy62cDrJwby1uTTfKRLuwmi92CFeDGbrHYz8XXFdjPPfbLiwosv2Ma5G9cWN5+3ocnN/Y+i30ANTeW9zLb0OLGbnvY/GEFdofFPhQvK7A+Vj+rwPJ2f5diMRd218NnjCqwvNfYh9jBjeXt6QHEIG4s73MeQ6sb+5jFPqGo0YV9wmK/oOjUhf3Cw0++qsBqTymj9x7FgDHs2DpqrWJXYm0I1FoM/37hW7CGPqrLYnoFpkeYYxaxUSA2PBGNAtHwlisv7GhOESvPZbdA7Hoi2oVvwtqI7d8t+ncpN+MRawVibQpRlwXgXOuxnFB0oVs45KjwXFjzGVNa2G+sxWo91FtejdguIeTaPqKVf4NydcxkupS3VlM7Kny8REb0XIc4pVxPj1Lz4HGjwirYqDMW1Xag2izq3IE6Z1FjB2rMok4cqBMWZXa+jWt6rACjf5yLCT3p3J87SymfXWyDx10H74ct2/Df5yylPivHEwH0lDp7NrY4g9qEMmmT2a1RjixPGmKQTPbcVmdM+IRnkxO166Qdvih8eST0iac/nYTk6RV0MF6MaEeF0blHLRcU38laGH6z2Pm6FoZfJ41fUBwva2H4kZJ+dAnZ9xR27xLYXdhPQ6V9Uw+lIc9QJA1d52zzVmE38bzyjHaObAvlv0o1qQNTD6ORW2PIS2MIoWF0mVu6DKOCMZKMbXUtCh7JQGW3ph4qQ0q+cqDkME+hM4N9umpmdD2Mxg7EVauUWU+seugKHRajMfUwGgdCnq1fULyu62E0evQs9WHqYTTwTKWlsnlTD7XeqAGZIZu6jlkyimL0iXNC3rv+LMWOyGd9DJ6oPCsi+HpKJvKsptMu/Ey9RNPWJUQO9P5jK0Iq05iIZTb7kTKMSr53lo7xv6j5Bmgxgl0rz/W5M+k+SKhPDGI6JX9G1Oox5ZFp3DKLQ0tyOIVqqtYRG8sZvvJMp9z2nFq5rMmM1uixSXY2p7U3pIitQZrl9NConOEqipyGGiUN8fRCdPeKdnA6pf1FFjecQgyLldah2yF5S12fRbq0vmvp+Kq6RRlBkXcqZv3iWfAh4TLKSFKyNihLHU+7nz7lsdvQH94Q5gRafhbRjKK9OiGrkdCNT87GIfosV0bKE3o2tPfpnq18axUpKkMhb1TxjBtPuyO6z7RtLccb9aXPz2Q9J6tr7tHrb8cMuudAh2Yfq+ArHkBtD6L5fXja88g/zJ1bSvrOxB+K+8+U5q8+27Zv9poFDWlt4pJ9rMuAj0pUTgGNa0Fm0P40pulofHOGEp+Ru+QxeWXZ7l+lO3395kiLVnj1Wq4+JekS12XiGtGekff98mmag5Rg4vxkmaLO+lEivxCOaEE5rs8szlIvA3qXJqbcckjxbJ/2Grc3yr3ts6PpTzSnHaHfqsC74pTsY0TWLwLvlNKajOjXfitHv1sh7UGfLKSP1UmK2MYV6STsGktol8s1It8XMustJks2Jv6arr27clqLMs6XXuBiam1rnTQoEoyJa6Zsu9nb9b4HkeZNCHuVSIpmrVwj/tfpr/7V62R+ZkWghnEGcmXpXPORUqaBOmqRj6+3QbqvLeX7hQzPlNTG+xmZ3i9JtkZ5EsqDvroLnDv0LHnhKslI7nymj/SidSetSHk4pUccLXrXprL6PeV/Ue4b5CPnac81hXnDRsf+ui93wjvNt55Xmbof7fx7oW50XdYaUoyEOV2VGuLO3mPKsWwp+/ROknz7JlaUZrWeTfWq5zOgtXhs7eW/Qevv4K+WWz/70WmXrMIKrQFJwTwZjciWaKaHH6+VEi+9MjUt82z4mTWpe9ktl8mKpXUzmfFJMJUdWjVn6qxB133Gv0d3eEYDul1bkedTEfSeuvPzpR5G25/ymKXMx04alXhIaec8flS7LFU+F9eoVyytRZYWvo1nn6jbu9P2nXcpduhQhCOzgy7tgoRiGt1anwdJCsjrprJf9u5qUgvupTZZKKRcfqsQz+46Qr5DKmX8QHmOlOyo2XH6nZ1T1UfbsCbVP55BHlM2m9Pe0Yib1CNW8ttyRFM7fsHy6RGdebcoZpF+vT4jtXubWYhK/tpkc3IvGF598aGKxgc0ByPxupbb1kx+uGVliJGQ9339IoLHWX4dNMuYt8mVoXN1d/SW0yyhJ8kon5dRY5ts1Owpg7zFGoD29bpbIKkn4s8e1kHmlWan2OsLPxurrATH9hH0RM2bmXf14Pn1vTly/C5zn9Uiz3Gs4sDJ1PPlaLWUJyk/1+lhPMXX6GMsBion1NG7yaTKmKb41JuLlCiMi8T4cAkbRYj8YZKHyCzvbXwp696acjmblzbmiHIS7j1IRLgiqGvOiOk6M472DL02YW1qsoWjhOddqcrBbWuLJz9XZnyRbL1S65H6ljeq8haauu0xjA2XFjIm69cX3LmI7N0R8n3UqgzKzg0+hYJ/I+HKn7Q38Tld24UoEt+r9/tWRP1N/ktVlyd+EbXgTu5OZactNc5yj/pZfmlRt+n7cPDnkYCuOekT8oOhskvKvOQ2dX/6p7SHMxGz0pue4WOwufAjmeUUMp6E7BI/mkTo7zGFjkVz8BlJmYs/H3nuz43iUOjv04WNQVPnR1DmEMJD38/7zbnpHc7L5lSvr1kuvjykDdc3EhqHN2PV2Ybp52OhMmtGvnsOaB0Oa6hrb/H/jkPzMZzCeflyy+m7Tl97zLrsF6szS4xmw/eM4eazmqs5+vNMi9GZWMfNT0ZtUdBMpdZovnv6GE2aNaB5TYQ8KeSlk3h7FRl5fangyblLhlR86yWDxFfJ4EtFn+BXU9I9eGr6m36uUenPfGQydKpkKlNDejLTbtIejum0wNzsdOm5eNuSvof+Cf1EsnLrpqp8slR8D/1geWHpjwsfP7w5/9mK+kb6W+K34vcQyS+JW+IzsQkR5j5J+XfxD/HPv3x7+73bH9y+Jru++YbC/EaUfm4v/Q/bzCU+</latexit> x <latexit sha1_base64="lu4TI7OEyJXvtBBsg9Av3iRYKnI=">AAA/eHiczVtZcxy3EYady2IuO3nMQyahFYkuhUXSqiguVyKLhyhaK5ESD8n2msoew+VYy53VzC4PbejfkdfkNT8hvyT/IPoJyVO6G8AAs4uZBhinykSRxGDxdTeuvjDbHvaTfLS09M+33v7Od7/3/R+8c23uhz/68U9++u57PzvI03HWifc7aT/NnrdbedxPBvH+KBn14+fDLG6dtPvxs/bLNfz82Wmc5Uk62BtdDOMvT1q9QXKUdFojaDpsEoVJFncvo/MbL96dX1pcop9otrKsKvNC/eyk7/3yA9EUXZGKjhiLExGLgRhBvS9aIofyhVgWS2IIbV+KCbRlUEvo81hcijnAjqFXDD1a0PoS/vbg6QvVOoBnpJkTugNc+vCbATIS1wGTQr8M6sgtos/HRBlbq2hPiCbKdgH/24rWCbSOxDG0cjjd0x/XhdYjkA1npn7MI+j3exprAr2H1IKz0FHcxjR7OMLIGv0IKAyhDetd+DyDeoeQej0iwuQ0R7gGLfr8X9QTW/G5o/qOxRsazbdl/r5983I9oERiSzwWa6Ih9sW62BC7JG99mSPcGoxjCHOcgeQ9mCGU9iZIswD/V+BMLYk7UNsEGdvUJ4axRGIH/l+Q/HNK1kg8EvfEnnhAvG9C/RHUFgLWieup93ZOq+G/b+aYXZbRilzUSjCi8Y9JA2TivLYv7p2uWs0j2g+5OpH1aypncE08Fdu164ecB0D/jDTRCc0gcpxAew9kwh3aB36oE3Ev/118Leah/rX4h9rHEciVqZ19TPTkkz/NP0FBmjegXIprRHMfpJ4rRhnBk1yBtNj9LXFKZyMiTT6Gz+RZ6tPeG1CvutE9hnJJNb1r2lAm1HpZi1yD4kKuschNKC7kJotsQHEhGyxyB4oLuaOQddgnUFzYJyzXp1BcyKcscg+KC7nHIg+guJAHLPJzKC7k5yzyPhQX8j6LfAjFhXzIIvehuJD7LHIDigu5oZDVZw31Wkp0EuZc3YN6mQfaqT603GPlWyUd68KuepzKTgWWP5fr8N+NXfeY07gCu+Gxe44qsPz+2QQt58by2uQB2UgX9gGL3YId4MZusdhPxVcV2E89zsvLCix/Yhpkb1xYXn8+gic39hGLfQw1N5a3MtvQ4sZue+j8YQV2h8U+Ea8qsD5aP6vA8np/l3wxF3bXw2aMKrC81dgH38GN5fXpAfggbixvc55Bqxv7jMU+J6/RhX3OYj8j79SF/czDTr6uwGpLKb33HvmAMZzYOmqt4lRibQjUWgz/fmFbsIY2qstiegWmR5gTFrFZIDY9EY0C0fCWKy/0aE4eK89lt0DseiLahW3C2ojt3y36dyk24xHrBWJ9ClEXBeBa67GcknehWzjkqLBcWPMZU1rob6zFaj/Ua16N2C4h5N4+pp1/i2J1jGS6FLdWUzsubLxERvRchzijWE+PUvPgcaNCK9iocxbVdqDaLOrCgbpgUWMHasyiTh2oUxZlTr6Na3rsADP/uBYTetKxP5dLKecutsHiboD1w5Zt+O+TS6mPyjEjgJZSR89GF2dQm1AkbSK7dYqRZaYhBslkz22VY8InzE1O1KmTeviysOWR0BlPfzoJydMr6KC/GNGJCqPzkFouyb+TtTD8g+Lk61oYfoNm/JL8eFkLw4+U9KMryL6nsHtXwO7CeRqq2Tf1UBoyhyJp6Dqnm7cKvYn5ynM6ObItlP8a1eQcmHoYjdwaQ14aQwgNM5e5NZdhVNBHkr6trkXBIxmo6NbUQ2VIyVYOlBzmKXRlsE9XrYyuh9HYAb9qjSLriVUP3aHDYjSmHkbjQMjc+iX567oeRqNHz3I+TD2MBuZUWiqaN/VQ7Y0zICNkU9c+S0ZejM44J2S963Mptkc+a2Mwo3JYePD1lIznWU2nXdiZeommtUuIHGj9x5aHVKYxESts9CNlGJVs7ywdY39x5hswixGcWpnX53LSfZBQZwxiypIfErV6THlkGrfC4lCTHE2hmqp1xPpyhq/M6ZTbXlArFzWZ0Zp5bJKezWnvDclja9DMcvPQqFzhKorcDDVKM8TTC5m713SC06nZX2JxwynEsNhpHbodkrfU9VGka9Z3rTm+rm5RRlDknYrZv5gLPiJcRhFJStoGZanjaffTWR67De3hLWEy0PKziFYU9dUpaY2Ebnxy1g/RuVzpKU/o2dDep3u28q1VpKgMhbxRxRw3Zrsjus+0dS3HG+dL589kPSeta+7R62/HDLrnQIdGH2tgKx5DbQ+8+X142vOIP8ydW0rznYnfFvefKa1ffbRt3+w1CxpS28Ql/VgXAR+XqJwBGveCjKD9aUzT0fjmDCU+InfJY+LKst6/Tnf6+s2RFu3w6r1cnSXpEtcV4hrRmZH3/fJpmoOUYOL8ZIW8zvpRIr8QjqhBOa6HFmc5LwN6lyam2HJI/myfzhp3Nsq97dzR9Cea047Qb1XgXXFK+jEi7ReBdUppT0b0a7+Vo9+tkPqgTxrSR+skhW/j8nQSdo8ldMrlHpHvC5n9FpMmGxN/Tdc+XTntRennSytwObW39Zw0yBOMiWumdLs52/W2B5HmTQh7l0iKZq/cJP4L9Ff/6n0yP7MjcIZxBXKl6VzrkVKkgXPUIhtfr4N0X1vK9wsZDpXUxvoZmd4vSbZOcRLKg7a6C5w79Cx54S7JSO58po+0onWZVqQ8nJpHHC1a16bS+j1lf1HuW2Qj5+nMNYV5w0b7/rovl+Gd5lvPq0zdj3b+f6Fu5ro8a0gxEia7KmeIy73HFGPZUvbpnST59k2sKM3OejbVq57PgPbiiXWW/wytv4K/Wm797EenXdIKq7QHJAXzZGZEtkQzPfx4rZZ46Z2paZlnw8/sSd3LbrlKVCy1m4mMT4Op7NCuOVe5Bl33Gf8e3eGZGdDtWou8mPKg99Sdny/1MNr+lMcsZd530qjEQ0o75vGj2mWp8rG4Rr1maS2xtPBtPDujbp9O23beJ9+hQx6OjA66dAoS8ml0a30cJCkgr9tKf9mnq0kteJbapKGQcvmtQszddYR8h1TK+BtlOVLSo+bE6Xd2zlQfrcOaVP9wBnlC0WxOZ0cjblOPWMlvyxFNnfhFy6ZHlPNukc8i7Xp9RGr3NqsQley1iebkWTC8+uKG8sYHtAYj8aaW29ZMfLhlRYiRkPd9/cKDx1V+E7TKGLfJnaFjdbf3ltMqoSXJKJ6XXmObdNRslkHeYg1g9vW+WySpJ+IPHtpBxpXmpNj7Cz8bq6gEx/YB9MSZNyvv6sHz63tz5Phd5T6rRZbjRPmBk6nnq9FqKUtSfq6bh/EUXzMfYzFQMaH23k0kVcY0xcfeXKREYVwkxodL2ChC5A+TPERmeW/jS1n31pTL0bzUMccUk3DvQSLC5UHddHpMC8w42jP02oS1qckWjhLmu1IVg9vaFjM/12ZskWy9VmuR+pY1qrIWmrptMYwOlxoyJu3XF1xeRPbuCPk+alUEZccGH0PBv5FwxU/amvhk13bBi8T36v2+FVF/k/9K1WXGL6IWPMndqei0pcZZ7lG/yq8s6jZ9Hw7+PBKYa076hOxgqOySMi+5Td2f/hmd4UzErPSmZ/gYbC78SGY5hYwnIb3EjyYR+ntMoWPRHHxGUubiz0fm/blRHAn9fbqwMWjq/AjKHEJ46Pt5vzU3vcN52Zzq52uWiy8PqcP1jYTG4c1YdbRh+vloqMxakW+eA2qHoxrq2lr8r+PQfAyncF6+3HL6rtNXHqsu+8UqZ4nebPiZMdx8dnM1R3+eaTE64+u4+UmvLQpaqdQazTdPH71Jswc0r4mQmUJeOom3d5GR15cKZs5dMqTi314ySHyVDL5UdAa/mpLuwVPT3/RzjUp/5iOToVMlU5ka0pORdpPOcEzZAnOz06Xn4m1L+h76R/QTycqd26ry0XLxPfSDlcXl3y1++OT2/Cer6hvp74hfiF+DJ78s7ohPxAPwMPcp2/0X8Vfxtz/+525098bdBdn17bcU5uei9HN35b/eOCVv</latexit> x0 Facundo Memoli Karl-Theodor Sturm <latexit sha1_base64="6XcTMNLhOkSkELp7a9v5fVQsQH4=">AABFhXictVzrdhPJEW42l92QGyQ/82eyXnLYHNYxXrKbPXtysmAb48WAQLKBxcDRZSwGJI3QSDKg9aPkb/IYeY68QfIrr5C6dE/3SD1TPQ7xHFs9rf6qqmu6q6uqe9wZD5JsurHxz3Mf/OCHP/rxhx/95PxPf/bzX/zywsVfHWbpbNKND7rpIJ086rSzeJCM4oNpMh3Ej8aTuD3sDOKHnVdb+P3DeTzJknTUmr4dx0+H7f4oOU667SlUPb9wcTaOpmmUZOkwnk6SOFt/fmFtY32DfqLVwlVdWFP6p5Fe/HhdHameSlVXzdRQxWqkplAeqLbK4HqirqoNNYa6p2oBdRMoJfR9rE7VecDOoFUMLdpQ+wr+9uHuia4dwT3SzAjdBS4D+J0AMlKXAJNCuwmUkVtE38+IMtaW0V4QTZTtLXx2NK0h1E7VC6iVcKZlKA77MlXH6k/UhwT6NKYa7F1XU5mRVlDyyOnVFCiMoQ7LPfh+AuUuIY2eI8Jk1HfUbZu+/xe1xFq87+q2M/VvkvISXJFq6t6nOYW2mhP9iJ7mDL5jeQbAuQ8UYt1HLJ2QrofU+xG0X0D9XbhOqWR00oFrQbWnlcgtuHzILRG5C5cPuSsi9+HyIfdFZAMuH7KhkYidkM79+CZcPnxT5HwfLh/yvoh8AJcP+UBEHsLlQx6KyO/g8iG/E5E34fIhb4rI23D5kLdFZAsuH7IlIg/g8iEPROQOXD7kjkaWz9QJXCnRSYRZeR3KRR5oKQZQc12U7wZZRx/2RsCc7pZg5Vm9DZ9+7HaATuMS7E7AuDsuwcojbxdspB8r26JbtJr4sLdE7B6MAD92T8R+q16WYL8NmGmvSrDyXNuHdn6sbH3vwJ0fe0fE3oWSHyuvUfegxo+9F7BijEuwDRF7X70uwYZY/UkJVrb7TbArfqy8TrWgvR8bYk1nJVjZnh6CB+PHyqvVQ6j1Yx+K2EfqTQn2kYh9DNbdj30csMK+K8GaNfY8rSB98kdimLFV1Nr5rMTSGKi1Bf6DfG0ZkG/cgXoJ088xfcIMRcRujtgNROzniP1gubLcjmbk78pcmjmiGYjo5GsTlqZi+17eHkuDAMR2jtheQlR5pPisTV/m5F2YGgk5zVcuLIX0Kc3tN5ZiPR6qLa9B3CsgeGy/oJF/haIljKBQU1XUXuRrPCMjuq9CnFD0ZnppeMi4aW4VXNQbEdXxoDoi6q0H9VZEzTyomYiae1BzEWVnvos7ChgBVv/4LBZ0xyOAfeTyKwKv4DqsOrdgjkYwfhrgBT6gmnvw2aTYW7qqJMNoHtdJzHI8LVjiCZQWag3qbVS4TfH1gGZYDJJxy3s6xsc7zG0s9JxjK3yar+RRnjEJp5OQPP2cDnqLEc2nenRuU80peXdcqoe/lc97U6qH3yGNn5IXz6V6+KmWfnoG2Vsa2zoDtgmzaay1b8t1aXD+hWmY8nladdHi4lMd6jGD9N7UpL+nn8zeGZ7LFpVYP7Zcj0bm9C8r9K8ODavnzNFzPSroPbHXa0pR7Z6MdNxry3VlSGkVHWk57F3dJ4NtevrJmHI9Gg3wuLYo5l445bqjd5z3xpbr0ThUnPc8JU/elOvR6NM968OW69HAbEtbx/m2XNeyowY4drblulZ9RFlgzAHxmOca6xVNyE+aaWoJ+QfV2RrX519dxzBn8yyPEaopWd+2nE4nX8uqJTL+QgxWbVpTDvQvZo4PVqSxUJtifMUyTAvr+yodu8aj5vdBixHMft4DkHLmA5DQ5CTQeg+A4lUx6ir2zOA2RRyOkuMl1JGunYreouXLWaNi3XOqleIy21urxyOy1xmNvTH5hPukWUkP+6VPuIyipKH9goZkenV0907P16L2N0TceAkxzkdal3aEeCetOk71ab3p6PiS3uWZwsV7Pnb8Yrb5WFsbjHlSskUoSxVPt53JI7l1uK5eUTbHzd9F9ETRXs3JaiS0I5WJUajJFrM3vqB7S/uA9uSQB9PownOMNJWx4l0zzKJjPj0ii+raW4k36stk6LickdU19rga3XfQfQ+6foyzBSvGXSi1IGY4gLtWQJRzPtdVShqfqM/y3dGUnmB1RD8oWEhDg+1NXLCQVVH2iwKVE0DjaOAoPZzGMh2DP1qhJEf9Pnls7Fq0/Jdo59bsb7dpjJeP5vJMTI+4bhLXiGYN7+ry3TIHlmDh/WaT/NfqXiK/OhzRhkpcnzmcWS8j2vGPKYIdk2c8oNkmzY5iazc/tfyN4dRQZu8cd7NTspAR2b8I1qeUxmREv+7ZAbODzhZhQDYyxO4kuXfj83UScYxZPy5RfKrBjreYbNmM+Bu67uzKaCxyxMDrwOnS2DY62SdfMCauE23d7dyuXn0Qac9JuKOEKdqxcpn4f0p/za8ZJ2srIwI1jE8g07bO9zxSillQR21a5attkGnrSvlJLsMzLbVd/6xMnxQk26aIC+XB1boHnLt0z7xwlExI7mylDa+jVdlcpDxe0iP29piieLb7fb0Co9xXaJVcozl3RKOkD6NgmkcRpq2URV7mW82rSD2MdvZ/oW51XdQaUoyUzeCyhqT8fkzRmivlAEY1j99XNJv8Wp8starmM6KxOHTm8vdQ+1v4a+Q292F0OgWrcIPGAFOwd1YjXBOttAjjdaPAy4xMQ8veW352TJpWbs1Z4mu2bjbGntem0qBR80ZnLUz5LDReOjReBuqwRXuNVoum3lii52Js0dK7laH86nBr1aA8EynLHplBJQFSurFUGNWeSFWO8Q3qnUhrQ6TVhtnq7ga4cz4E6Z/ry7P7+3x1j9RN8m265IFx/NKjWZqQz2VqqyM1poCcr2n76s7+I6pB7h2yoEiZz3HijOFdpy5dp7mkv9MrW0p23loEc27pRLcxNvaIyp+vIIc0JzKalwZxjVrEWn5XjmjJIq07PkdEmf82+VTsd1THzG5r+0yigj9h402eVZYXRwoj0r+UedtbiV73nPg1ophwpr3rDtCq/4SRAmNMJsHvWWb0hHCV450E9mg7ZD9X7RTv4o0cidZJ6oX6c4CN4ajXjnV3bJkem779Hlqi1u1T97WQ+Q2COUr8zrKj16ZVbah91MXS/dlotfUqV7yv0sNsia/Vx4zauJGFjfKKmCP1dTAXlqgeF8aEcKnXizry15O8jsy8OxVK2bQ2lIuZBrYxLyheks6BIsLn3V32enOfCv3orNDrENalxjUSJczGpTo/4FpazEpFSxGSWy+tSQNnPSpbLywPd9WwdpwtZUxWcKCk3A23dvtwVIhW5GwMU+gqPtlbFie6NL+GC/9GyhclGo4hOcQm+LnX1ZbaeQ+nIl7rMmc2I6pBm9BbisHbup/FFtU6eu1Qd+mHcAjnkYCuJekTWlHrys6UZcld6uH0T8gaTFQsSm9b1u+Dy0XuySqnOv1JyMLJvUmUeSenbl8Mh5CeFLmE8+H9DakXx8q821SvD4a63IMihzo8zHmGsGduW9fn5XKq1tcql1AevA6YnReDwx3A8pjFtguxUBPnibx/Dmgdjiuom9Xif+2H4WM51ecVyi2jd85eBjx1bhfrzCz6xfXnjOUWMprLOYbzTPPeWa/Jz4/9v6jWk0qd3rx/+uiX2jFgeC0U50Nl6RjvjiIrbygV3B/wyZCq/6h/nJPfSnid0yiTow4ls19RTs20kKmZNy99vTPfhchk6ZTJVKRm44kmnYzdUnvqJvxu5R5g3VOi/E4lfyLW/x5tD2qPyXqYbDpnEI6oLqYsiN1N69G9PUdbJjGe6eUzvi2owT3xfarF8753qT2e+W0V+lb+JgnP9TsqVb1CZLK8y2fnVQd6UNyB41yQed83ojP1nM3iE2jDgD1GPkfFkZJ5+3lBiB7FhcuSLghhRksV5Y6XcofOJMUltDuFvnVphI/1Tj/uO+D5/HaeXYrUH6iurVcHXKklqRoeqZ5QZqBD+t+ACO2P6gp8XtFlv6SNFUkzegZFid4431WfBDv1jgv7NuMlyoOZTN1ct0spqre7h9WZ2O1SLnzivRrfr8D3HSmb9LReUdw9UdW5w1kFzZmWyd3PHSmT92Q9YDTbzsdHdfw8r+A1D+j/7VL0bUfSXZClQ9n2iPbzJkRvoHWzQ9LzucrqvO2tCmnNW5tM056stOPAnJGs4oBvlW0Js5/fPKteGfANMz8dd64/Dth3wZ5IEvHJTCl7FAdIxGdEpfMriZeSbDHGAecz2gG9lfsa0lOJykyUZBbwbvQ8QJZ5AJ1jQZpjkUJflERbLPp/JF/RT8SFL6/pwldX8/9Hcri5fvWL9c/vb659c0P/Z5KP1G/Ux+oyrMZfqm9gRjbUAXA6UX9Vf1N/3/lw57OdaztfcNMPzmnMr1XhZ+cv/wWO0mJX</latexit> up to isometries. <latexit sha1_base64="fcW1dR7VxF9OmMhK+EQAhlodyGE=">AABFl3ictVzddhu3EYbTv9T9S9qrnt5so7jH6XFVWXGbpjk9jS3JsmLZlk1KtmPaPktyRdEmuTSXpGUzeoA+TW/bqz5H36C96it0foAFlsTuYFVXeyRiQXwzg1lgMDPAqj0e9LPpxsY/L7z3rW9/57vfe//7F3/wwx/9+CcffPjToyydTTrJYScdpJNH7ThLBv1RcjjtTwfJo/EkiYftQfKw/XILv384TyZZPx01p2/GydNh3Bv1j/udeApVzz9Ya02TU8AtmidJOkmGfzyLdh9G/SyKoy5wj0edJIJWG+sb9BOtFq7qwprSPwfphx+tq5bqqlR11EwNVaJGagrlgYpVBtcTdVVtqDHUPVULqJtAqU/fJ+pMXQTsDFol0CKG2pfwtwd3T3TtCO6RZkboDnAZwO8EkJG6BJgU2k2gjNwi+n5GlLG2jPaCaKJsb+CzrWkNoXaqTqBWwpmWoTjsy1Qdqz9QH/rQpzHVYO86msqMtIKSR06vpkBhDHVY7sL3Eyh3CGn0HBEmo76jbmP6/l/UEmvxvqPbztS/ScpLcEWqoXuf5hRiNSf6ET3NGXzH8gyAcw8oJLqPWHpNuh5S70fQfgH1d+E6o5LRSRuuBdWeVSK34PIht0TkLlw+5K6I3IfLh9wXkQdw+ZAHGonYCencj2/A5cM3RM734fIh74vIB3D5kA9E5BFcPuSRiPwaLh/yaxF5Ey4f8qaIvA2XD3lbRDbh8iGbIvIQLh/yUETuwOVD7mhk+UydwJUSnb4wK69DucgDLcUAaq6L8t0g6+jD3giY050SrDyrt+HTj90O0GlSgt0JGHfHJVh55O2CjfRjZVt0i1YTH/aWiN2DEeDH7onYr9SLEuxXATPtZQlWnmv70M6Pla3vHbjzY++I2LtQ8mPlNeoe1Pix9wJWjHEJ9kDE3levSrAhVn9SgpXtfgPsih8rr1NNaO/HhljTWQlWtqdH4MH4sfJq9RBq/diHIvaROi3BPhKxj8G6+7GPA1bYtyVYs8ZepBWkR/5IAjO2ilqcz0osjYFaLPAf5GvLgHzjNtRLmF6O6RFmKCJ2c8RuIGI/R+wHy5XldjQjf1fm0sgRjUBEO1+bsDQV23fz9lgaBCC2c8T2EqLKI8VnbfoyJ+/C1EjIab5yYSmkT2luv7GU6PFQbXkN4l4BwWP7hEb+FYqWMIJCTVVRO8nXeEZGdF+FeE3Rm+ml4SHjprlVcFGnIqrtQbVF1BsP6o2ImnlQMxE196DmIsrOfBfXChgBVv/4LBZ0xyOAfeTyKwKv4DqsOrdgjkYwfg7AC3xANffgs0Gxt3RVSYbRPK6TmOV4WrDEEygt1BrU26hwm+LrAc2wBCTjlvd0jI93mNtY6DnHVvgsX8mjPGMSTqdP8vRyOugtRjSf6tG5TTVn5N1xqR7+Vj7vTakefoc0fkZePJfq4ada+uk5ZG9qbPMc2AbMprHWvi3XpcH5F6Zhyhdp1UWLi091qMcM0jutSX9PP5m9czyXLSqxfmy5Ho3M6V9W6F8dGlbPmaPnelTQe2Kv15Si2j0Z6bjXluvKkNIqOtJy2Lu6TwbbdPWTMeV6NA7A49qimHvhlOuO3nHeG1uuR+NIcd7zjDx5U65Ho0f3rA9brkcDsy2xjvNtua5lRw1w7GzLda36iLLAmAPiMc811iuakJ8009T65B9UZ2tcn391HcOczbM8RqimZH3bcjrtfC2rlsj4CwlYtWlNOdC/mDk+WJHGQm2K8RXLMC2s76t07BqPmt8HLUYw+3kPQMqZD0BCk5NA6z0AilfFqKvYM4PbFHE4So6XUC1dOxW9RcuXs0bFuudUK8VltrdWjy2y1xmNvTH5hPukWUkP+6VPuIyipKH9goZkenV091bP16L2N0TceAkxzkdah3aEeCetOk71ab3h6PiS3uWZwsV7Pnb8Yrb5WFsbjHlSskUoSxVPt53JI7l1uK5eUTbHzd9F9ETRXs3JavRpRyoTo1CTLWZvfEH3lvYh7ckhD6bRgecYaSpjxbtmmEXHfHpEFtW1txJv1JfJ0HE5I6tr7HE1uuegex50/RhnC1aMu1BqQsxwCHfNgCjnYq6rlDQ+Ub/Jd0dTeoLVEf2gYCENDbY3ScFCVkXZJwUqrwGNo4Gj9HAay3QMvrVCSY76ffLY2LVo+S/Rzq3Z345pjJeP5vJMTJe4bhLXiGYN7+ry3TIHlmDh/WaT/NfqXiK/OhzRhkpcnzmcWS8j2vFPKIIdk2c8oNkmzY5iazc/tfyN4XSgzN457manZCEjsn8RrE8pjcmIft2zA2YHnS3CgGxkiN3p596Nz9fpi2PM+nF9xaca7HhLyJbNiL+h686ujMYiRwy8DpwtjW2jk33yBRPiOtHW3c7t6tUHkfachDtKmKIdK5eJ/yf01/yacbK2MiJQw/gEMm3rfM8jpZgFdRTTKl9tg0xbV8qPcxmeaant+mdl+rgg2TZFXCgPrtZd4Nyhe+aFo2RCcmcrbXgdrcrmIuXxkh6xt8cUxbPd7+kVGOW+QqvkGs25Fo2SHoyCaR5FmLZSFnmZbzWvIvUw2tn/hbrVdVFrSDFSNoPLGpLy+wlFa66UAxjVPH5f0mzya32y1Kqaz4jG4tCZy99A7S/hr5Hb3IfRaReswg0aA0zB3lmNcE200iKM140CLzMyDS17b/nZMWlauTXnia/ZutkYe16bygGNmlOdtTDl89B44dB4EajDJu01Wi2aemOJnouxRVPvVobyq8OtWYPyTKQse2QG1Q+Q0o2lwqh2RapyjG9Qb0VaGyKtGGaruxvgzvkQpH+uL8/ub/LVPVI3ybfpkAfG8UuXZmmffC5TWx2pMQXkfE3bV3f2t6gGubfJgiJlPseJM4Z3nTp0neWS/kqvbCnZeWsRzLml17qNsbEtKn+6ghzSnMhoXhrENWqRaPldOaIli7Tu+BwRZf5j8qnY76iOmd3W9plEBX/Cxps8qywvjhRGpH8p87a3Er3uOfFrRDHhTHvXbaBV/wkjBcaYTILfs8zoCeEqxzsJ7NG2yX6u2inexRs5Eq2T1Av1pwAbw1GvHevu2DI9Nn37NbRErdun7msh8xsEc5T4nWdHL6ZVbah91MXS/floxXqVK95X6WG2xNfqY0Zt3MjCRnlFTEt9EcyFJarHhTEhXOr1oo789SSvIzPvToVSNq0N5WKmgW3MCcVL0jlQRPi8u8teb+4ToR/tFXptwrrUuEaihNm4VOcHXEuLWaloKUJy66U1aeCsR2XrheXhrhrWjrOlTMgKDpSUu+HWbh9ahWhFzsYwhY7ik71lcaJL8wu48G+kfFGi4RiSQ2yAn3tdbamdd3Aq4pUuc2Yzohq0Cd2lGDzW/Sy2qNbRK4e6Sz+EQziPPuhakr5PK2pd2ZmyLLlLPZz+a7IGE5WI0tuW9fvgcpF7ssqpTn/6ZOHk3vSVeSenbl8Mh5CeFLmE8+H9DakXx8q821SvD4a63IMihzo8zHmGsGduW9fn5XKq1tcql1AevA6YnReDwx3A8pjFtguxUBPnibx7Dmgdjiuom9Xif+2H4WM51ecVyi2jd85eBDx1bpfozCz6xfXnjOUWMprLOYbzTPPeWa/Jz4/9v6jWk0qd3rx7+uiX2jFgeC0U50Nl6RjvjiIrbygV3B/wyZCq/6h/XJDfSniV0yiTow4ls19RTs20kKmZNy99vTPfhchk6ZTJVKRm44kGnYzdUnvqJvxu5R5g3VOi/E4lfyLW/x5tF2qPyXqYbDpnEFpUl1AWxO6mdenenqMtkxjP9PIZ3ybU4J74PtXied+71B7P/DYLfSt/k4Tn+h2Vqm4hMlne5bPzqg09KO7AcS7IvO8b0Zl6zmbxCbRhwB4jn6PiSMm8/bwgRJfiwmVJF4Qwo6WKcttLuU1nkpIS2u1C3zo0wsd6px/3HfB8fpxnlyL1W6qL9eqAK7Uk1YFHqieUGWiT/jcgQvudugKfV3TZL+nBiqQZPYOiRKfOd9Unwc6848K+zXiJ8mAmUzfX7VKK6u3uYXUmdruUC594r8b3KvA9R8oGPa2XFHdPVHXucFZBc6ZlcvdzR8rkPVkPGM3G+fiojp/nFbzmAf2/XYq+7Ui6C7K0Kdse0X7ehOgNtG52SHo+V1mdt71VIa15a5Np2pOVdhyYM5JVHPCtsi1h9vObZ9UrA75h5qfjzvXHAfsu2BNJIj6ZKWWPkgCJ+IyodH6l76UkW4xxwPmMOKC3cl9DeipRmYmSzALejZ4HyDIPoHMsSHMsUuiJkmiLRf+P5HP6ibjw2TVd+Pxq/v9IjjbXr/5+/dP7m2tf3tD/meR99Qv1kboMq/Fn6kuYkQfqEDj9Rf1V/U39fefnO3/eublzi5u+d0FjfqYKPzv3/wumCGlb</latexit> Theorem: GW is a distance ! non-convex, NP-hard . . . <latexit sha1_base64="ggcMBMVGAVaQVaHnsBSwPgZxe5I=">AABFoHictVzvctu4EUeu/67pn8u1H/uFjZNOruO4tnudduamM5fYju2LL1Ei2fmnJENKtKyEFhVSkp3o/BJ9mn7rtG/RN2g/9RW6uwAIUAK5oJuGYxsE8dtdLIHF7gJMNE6G+WR9/Z9XPvne93/wwx99+uOrP/npz37+2bXPf3GUp9OsFx/20iTNnkZhHifDUXw4GU6S+Ok4i8PTKImfRG+38PmTWZzlw3TUmbwfxy9Pw8FoeDzshROoen1t9UY3SUeDbDg4mYRZlp7dCEbp6HYvHc3i89XgQev2SZj1g27STyf562sr62vr9C9YLmyowopQ/1rp59fXRFf0RSp6YipORSxGYgLlRIQih+uF2BDrYgx1L8Uc6jIoDel5LC7EVcBOoVUMLUKofQu/B3D3QtWO4B5p5oTuAZcEfjJABuImYFJol0EZuQX0fEqUsbaK9pxoomzv4W+kaJ1C7UScQC2H0y19cdiXiTgWf6I+DKFPY6rB3vUUlSlpBSUPrF5NgMIY6rDch+cZlHuE1HoOCJNT31G3IT3/F7XEWrzvqbZT8W+S8iZcgWir3qcFhVDMiH5Ab3MKz6Q8CXAeAIVY9RFLZ6TrU+r9CNrPof4BXBdU0jqJ4JpT7UUtcgsuF3KLRe7C5ULussgDuFzIAxbZgsuFbCkkYjPSuRvfhsuFb7OcH8HlQj5ikY/hciEfs8gjuFzIIxb5HC4X8jmLvAeXC3mPRd6Hy4W8zyI7cLmQHRZ5CJcLecgid+ByIXcUsnqmZnClRGfIzMo7UC7zQEuRQM0dVr67ZB1d2Lsec7pXgeVn9Tb8dWO3PXQaV2B3PMbdcQWWH3m7YCPdWN4W7dFq4sLusdh9GAFu7D6L/Ua8qcB+4zHT3lZg+bl2AO3cWN76fgt3buy3LPYBlNxYfo16CDVu7EOPFWNcgW2x2EfiXQXWx+pnFVje7rfBrrix/DrVgfZurI81nVZgeXt6BB6MG8uvVk+g1o19wmKfivMK7FMW+wysuxv7zGOF/VCB1WvsVVpBBuSPxDBj66iFxazE0hiohQz/pFhbEvKNI6jnMIMCMyDMKYvYLRC7noiDAnHgLVde2NGc/F2eS7tAtD0RUbE2YWnCtu8X7bGUeCC2C8T2AqLOI8V3rfsyI+9C13DISbFyYcmnT2lhv7EUq/FQb3k14mEJIcf2CY38VYqWMIJCTdVROynWeIkM6L4OcUbRm+6l5sHjJoVVsFHnLCpyoCIW9d6Bes+ipg7UlEXNHKgZizIz38Z1PUaA0T++izndyREgfeTqKwCv4A6sOnswRwMYPy3wAh9TzUP426bYm7vqJMNoHtdJzHK8LFniDEpzsQL1Jircpvg6oRkWg2Sy5UMV4+Md5jbmas5JK3xRrORBkTHxpzMkeQYFHfQWA5pPzejcp5oL8u5kqRl+r5j3utQMv0MavyAvXpaa4SdK+sklZO8obOcS2DbMprHSvik3pSHzL5KGLl+lVRctLr7VUzVmkN55Q/r76s3sX+K9bFFJ6seUm9HIrf7lpf41oWH0nFt6bkYFvSfp9epS0LgnIxX3mnJTGVJaRUdKDnPX9M1gm756M7rcjEYLPK4tirnnVrnp6B0XvTHlZjSOhMx7XpAnr8vNaAzoXurDlJvRwGxLqOJ8U25q2VEDMnY25aZWfURZYMwByTEva4xXlJGfNFXUhuQf1GdrbJ9/eR3DnM2rIkaop2R822o6UbGW1Uuk/YUYrNqkoRzoX0wtH6xMYy422fhKyjApre/LdMwaj5o/AC0GMPvlHgCXM09AQp2TQOudAMUNNuoq90zjNlkcjpLjBVRX1U5Yb9HwlVmjct1rquXiMtNbo8cu2eucxt6YfMID0iynh4PKN1xFkdPQQUlDPL0muvug5mtZ++ssbryAGBcjrUc7QnInrT5OdWm9ben4ptrlmcAl93zM+MVs87GyNhjzpGSLUJY6nnY7nUey63BdXRUmxy2fBfRG0V7NyGoMaUcqZ6NQnS2W3vic7g3tQ9qTQx6SRg/eY6CojIXcNcMsOubTA7Kotr3leKO+dIZOlnOyutoe16MHFnrgQDePcbZgxXgApQ7EDIdw1/GIcq4WukpJ45m4XeyOpvQG6yP6pGQhNQ1pb+KShayLsk9KVM4AjaNBRun+NBbpaHx3iRIf9bvkMbFr2fLfpJ1bvb8d0hivHs3VmZg+cd0krgHNGrmrK+8WOUgJ5s4nm+S/1vcS+TXhiDaU4/rK4iz1MqId/5gi2DF5xgnNNm52lFvb+anFJ5pTS+i9c9zNTslCBmT/AlifUhqTAf3YZwf0Drq0CAnZSB+7Myy8G5evM2THmPHjhkKeajDjLSZbNiX+mq49u3IaizJikOvAxcLY1jo5IF8wJq6Zsu5mbtevPog05yTsUSIpmrFyi/h/Qb/1jx4nK0sjAjWMbyBXts71PlKKWVBHIa3y9TZIt7WlvFHI8EpJbdY/I9ONkmTbFHGhPLha94Fzj+4lLxwlGcmdL7WR62hdNhcpjxf0iL09pihe2v2BWoFR7lVaJVdoznVplAxgFEyKKEK35bLIi3zreZWp+9HO/y/Uja7LWkOKgTAZXKkhLr8fU7RmS5nAqJbj9y3NJrfWs4VW9XxGNBZPrbn8HdT+Gn5rufW9H52oZBXu0hiQFMyd0YisCZZa+PG6W+KlR6amZe4NPzMmdSu75jLxtbRuJsaeNabSolFzrrIWunwZGm8sGm88ddihvUajRV2vLdFrNrboqN1KX35NuHUaUJ6ylHmPTKOGHlLasZQf1T5LlY/xNeoDS2udpRXCbLV3A+w574N0z/XF2f1dsboH4h75Nj3ywGT80qdZOiSfS9fWR2qSAnL+UtlXe/Z3qQa5R2RBkbI8x4kzRu469ei6KCT9jVrZUrLzxiLoc0tnqo22sV0q/34JeUpzIqd5qRFfUotYyW/LESxYpDXL5wgo8x+STyX9jvqY2W5t3klQ8idMvClnleElI4UR6Z/LvO0vRa/7VvwaUEw4Vd51BLSav2GkIDE6k+D2LHN6Q7jKyZ0E6dFGZD+X7ZTcxRtZEq2R1HPxZw8bI6NeM9btsaV7rPv2W2iJWjdv3dWC55d4c+T4XWZHL6RV7VT5qPOF+8vRCtUqV76v08N0ga/Rx5Ta2JGFifLKmK74ypuLlKgZF4nx4dKsF03kbyZ5E5nl7pQvZd1aUy5nGqSNOaF4iTsHigiXd3fL6c19wfQjWqIXEdamJms4SpiNS1V+wLa0mJUKFiIku55bkxJrPapaLwwPe9UwdlxaypisYCK43I1sbfehW4pW+GyMpNAT8mRvVZxo0/wKLvwdCFeUqDn65BDb4OfeEVti5yOcininyjKzGVAN2oT+Qgweqn6WW9Tr6J1F3abvw8GfxxB0zUk/pBW1qeySMi+5Td2f/hlZg0zErPSmZfM+2Fz4nixzatKfIVk4vjdDob/JadoXzcGnJ2Uu/nzk/gbXi2Ohv21q1gdNne9BmUMTHvo8g987N62b87I51etrmYsvD7kO6J0XjcMdwOqYxbTzsVCZ9UY+Pge0Dsc11PVq8b/2Q/MxnJrz8uWW0zdnbzzeumwXq8ws+sXN54zh5jOaqzn680yL3hmvyc1P+n9BozeVWr35+PTRLzVjQPOaC5kP5aWTeHsUGXl9qeD+gEuGVPxH/O0K/1XCu4JGlRxNKOn9impqugVPTX956eqdfuYjk6FTJVOZmokn2nQydkvsi3vws1V4gE1PicpvKuVfxLq/o+1D7TFZD51NlxmELtXFlAUxu2l9ujfnaKskxjO98oxvB2pwT/yAavG87wNqj2d+O6W+VX9JIuf6tyIV/VJksrjLZ+ZVBD0o78DJXJD+3jegM/UymyVPoJ167DHKc1QyUtJfP88J0ae4cFHSOSH0aKmjHDkpR3QmKa6gHZX61qMRPlY7/bjvgOfzwyK7FIjfUV2oVgdcqTmpWg6pXlBmICL9r0OE9gexCn9XVdktaWtJ0pzeQVmic+tZ/UmwC+e4MF8z3qQ8mM7UzVS7lKJ6s3tYn4ndruQiT7zX4wc1+IElZZve1luKuzNRnzuc1tCcKpns/dyR0HlPqQeMZsNifNTHz7MaXjOP/t+vRN+3JN0FWSLKtge0n5cRvUTpZoekl+cq6/O2ezXS6q82JU1zstKMA31Gso4DflW2xcx++eVZ/cqAX5i56dhz/ZnHvgv2hJNInszkskexh0TyjCh3fmXopMRbjLHH+YzQo7d8X316ylGZspJMPb6NnnnIMvOgc8xIc8xSGLCSKIv1+trKxuL/PrJcONpc21hf23i0ufL1XfU/k3wqfiWui1uwGv9RfA0zsiUOgdNfxF/F38U/dq7v7O083Hkkm35yRWF+KUr/dp7/F/zmbHM=</latexit> <latexit sha1_base64="ggcMBMVGAVaQVaHnsBSwPgZxe5I=">AABFoHictVzvctu4EUeu/67pn8u1H/uFjZNOruO4tnudduamM5fYju2LL1Ei2fmnJENKtKyEFhVSkp3o/BJ9mn7rtG/RN2g/9RW6uwAIUAK5oJuGYxsE8dtdLIHF7gJMNE6G+WR9/Z9XPvne93/wwx99+uOrP/npz37+2bXPf3GUp9OsFx/20iTNnkZhHifDUXw4GU6S+Ok4i8PTKImfRG+38PmTWZzlw3TUmbwfxy9Pw8FoeDzshROoen1t9UY3SUeDbDg4mYRZlp7dCEbp6HYvHc3i89XgQev2SZj1g27STyf562sr62vr9C9YLmyowopQ/1rp59fXRFf0RSp6YipORSxGYgLlRIQih+uF2BDrYgx1L8Uc6jIoDel5LC7EVcBOoVUMLUKofQu/B3D3QtWO4B5p5oTuAZcEfjJABuImYFJol0EZuQX0fEqUsbaK9pxoomzv4W+kaJ1C7UScQC2H0y19cdiXiTgWf6I+DKFPY6rB3vUUlSlpBSUPrF5NgMIY6rDch+cZlHuE1HoOCJNT31G3IT3/F7XEWrzvqbZT8W+S8iZcgWir3qcFhVDMiH5Ab3MKz6Q8CXAeAIVY9RFLZ6TrU+r9CNrPof4BXBdU0jqJ4JpT7UUtcgsuF3KLRe7C5ULussgDuFzIAxbZgsuFbCkkYjPSuRvfhsuFb7OcH8HlQj5ikY/hciEfs8gjuFzIIxb5HC4X8jmLvAeXC3mPRd6Hy4W8zyI7cLmQHRZ5CJcLecgid+ByIXcUsnqmZnClRGfIzMo7UC7zQEuRQM0dVr67ZB1d2Lsec7pXgeVn9Tb8dWO3PXQaV2B3PMbdcQWWH3m7YCPdWN4W7dFq4sLusdh9GAFu7D6L/Ua8qcB+4zHT3lZg+bl2AO3cWN76fgt3buy3LPYBlNxYfo16CDVu7EOPFWNcgW2x2EfiXQXWx+pnFVje7rfBrrix/DrVgfZurI81nVZgeXt6BB6MG8uvVk+g1o19wmKfivMK7FMW+wysuxv7zGOF/VCB1WvsVVpBBuSPxDBj66iFxazE0hiohQz/pFhbEvKNI6jnMIMCMyDMKYvYLRC7noiDAnHgLVde2NGc/F2eS7tAtD0RUbE2YWnCtu8X7bGUeCC2C8T2AqLOI8V3rfsyI+9C13DISbFyYcmnT2lhv7EUq/FQb3k14mEJIcf2CY38VYqWMIJCTdVROynWeIkM6L4OcUbRm+6l5sHjJoVVsFHnLCpyoCIW9d6Bes+ipg7UlEXNHKgZizIz38Z1PUaA0T++izndyREgfeTqKwCv4A6sOnswRwMYPy3wAh9TzUP426bYm7vqJMNoHtdJzHK8LFniDEpzsQL1Jircpvg6oRkWg2Sy5UMV4+Md5jbmas5JK3xRrORBkTHxpzMkeQYFHfQWA5pPzejcp5oL8u5kqRl+r5j3utQMv0MavyAvXpaa4SdK+sklZO8obOcS2DbMprHSvik3pSHzL5KGLl+lVRctLr7VUzVmkN55Q/r76s3sX+K9bFFJ6seUm9HIrf7lpf41oWH0nFt6bkYFvSfp9epS0LgnIxX3mnJTGVJaRUdKDnPX9M1gm756M7rcjEYLPK4tirnnVrnp6B0XvTHlZjSOhMx7XpAnr8vNaAzoXurDlJvRwGxLqOJ8U25q2VEDMnY25aZWfURZYMwByTEva4xXlJGfNFXUhuQf1GdrbJ9/eR3DnM2rIkaop2R822o6UbGW1Uuk/YUYrNqkoRzoX0wtH6xMYy422fhKyjApre/LdMwaj5o/AC0GMPvlHgCXM09AQp2TQOudAMUNNuoq90zjNlkcjpLjBVRX1U5Yb9HwlVmjct1rquXiMtNbo8cu2eucxt6YfMID0iynh4PKN1xFkdPQQUlDPL0muvug5mtZ++ssbryAGBcjrUc7QnInrT5OdWm9ben4ptrlmcAl93zM+MVs87GyNhjzpGSLUJY6nnY7nUey63BdXRUmxy2fBfRG0V7NyGoMaUcqZ6NQnS2W3vic7g3tQ9qTQx6SRg/eY6CojIXcNcMsOubTA7Kotr3leKO+dIZOlnOyutoe16MHFnrgQDePcbZgxXgApQ7EDIdw1/GIcq4WukpJ45m4XeyOpvQG6yP6pGQhNQ1pb+KShayLsk9KVM4AjaNBRun+NBbpaHx3iRIf9bvkMbFr2fLfpJ1bvb8d0hivHs3VmZg+cd0krgHNGrmrK+8WOUgJ5s4nm+S/1vcS+TXhiDaU4/rK4iz1MqId/5gi2DF5xgnNNm52lFvb+anFJ5pTS+i9c9zNTslCBmT/AlifUhqTAf3YZwf0Drq0CAnZSB+7Myy8G5evM2THmPHjhkKeajDjLSZbNiX+mq49u3IaizJikOvAxcLY1jo5IF8wJq6Zsu5mbtevPog05yTsUSIpmrFyi/h/Qb/1jx4nK0sjAjWMbyBXts71PlKKWVBHIa3y9TZIt7WlvFHI8EpJbdY/I9ONkmTbFHGhPLha94Fzj+4lLxwlGcmdL7WR62hdNhcpjxf0iL09pihe2v2BWoFR7lVaJVdoznVplAxgFEyKKEK35bLIi3zreZWp+9HO/y/Uja7LWkOKgTAZXKkhLr8fU7RmS5nAqJbj9y3NJrfWs4VW9XxGNBZPrbn8HdT+Gn5rufW9H52oZBXu0hiQFMyd0YisCZZa+PG6W+KlR6amZe4NPzMmdSu75jLxtbRuJsaeNabSolFzrrIWunwZGm8sGm88ddihvUajRV2vLdFrNrboqN1KX35NuHUaUJ6ylHmPTKOGHlLasZQf1T5LlY/xNeoDS2udpRXCbLV3A+w574N0z/XF2f1dsboH4h75Nj3ywGT80qdZOiSfS9fWR2qSAnL+UtlXe/Z3qQa5R2RBkbI8x4kzRu469ei6KCT9jVrZUrLzxiLoc0tnqo22sV0q/34JeUpzIqd5qRFfUotYyW/LESxYpDXL5wgo8x+STyX9jvqY2W5t3klQ8idMvClnleElI4UR6Z/LvO0vRa/7VvwaUEw4Vd51BLSav2GkIDE6k+D2LHN6Q7jKyZ0E6dFGZD+X7ZTcxRtZEq2R1HPxZw8bI6NeM9btsaV7rPv2W2iJWjdv3dWC55d4c+T4XWZHL6RV7VT5qPOF+8vRCtUqV76v08N0ga/Rx5Ta2JGFifLKmK74ypuLlKgZF4nx4dKsF03kbyZ5E5nl7pQvZd1aUy5nGqSNOaF4iTsHigiXd3fL6c19wfQjWqIXEdamJms4SpiNS1V+wLa0mJUKFiIku55bkxJrPapaLwwPe9UwdlxaypisYCK43I1sbfehW4pW+GyMpNAT8mRvVZxo0/wKLvwdCFeUqDn65BDb4OfeEVti5yOcininyjKzGVAN2oT+Qgweqn6WW9Tr6J1F3abvw8GfxxB0zUk/pBW1qeySMi+5Td2f/hlZg0zErPSmZfM+2Fz4nixzatKfIVk4vjdDob/JadoXzcGnJ2Uu/nzk/gbXi2Ohv21q1gdNne9BmUMTHvo8g987N62b87I51etrmYsvD7kO6J0XjcMdwOqYxbTzsVCZ9UY+Pge0Dsc11PVq8b/2Q/MxnJrz8uWW0zdnbzzeumwXq8ws+sXN54zh5jOaqzn680yL3hmvyc1P+n9BozeVWr35+PTRLzVjQPOaC5kP5aWTeHsUGXl9qeD+gEuGVPxH/O0K/1XCu4JGlRxNKOn9impqugVPTX956eqdfuYjk6FTJVOZmokn2nQydkvsi3vws1V4gE1PicpvKuVfxLq/o+1D7TFZD51NlxmELtXFlAUxu2l9ujfnaKskxjO98oxvB2pwT/yAavG87wNqj2d+O6W+VX9JIuf6tyIV/VJksrjLZ+ZVBD0o78DJXJD+3jegM/UymyVPoJ167DHKc1QyUtJfP88J0ae4cFHSOSH0aKmjHDkpR3QmKa6gHZX61qMRPlY7/bjvgOfzwyK7FIjfUV2oVgdcqTmpWg6pXlBmICL9r0OE9gexCn9XVdktaWtJ0pzeQVmic+tZ/UmwC+e4MF8z3qQ8mM7UzVS7lKJ6s3tYn4ndruQiT7zX4wc1+IElZZve1luKuzNRnzuc1tCcKpns/dyR0HlPqQeMZsNifNTHz7MaXjOP/t+vRN+3JN0FWSLKtge0n5cRvUTpZoekl+cq6/O2ezXS6q82JU1zstKMA31Gso4DflW2xcx++eVZ/cqAX5i56dhz/ZnHvgv2hJNInszkskexh0TyjCh3fmXopMRbjLHH+YzQo7d8X316ylGZspJMPb6NnnnIMvOgc8xIc8xSGLCSKIv1+trKxuL/PrJcONpc21hf23i0ufL1XfU/k3wqfiWui1uwGv9RfA0zsiUOgdNfxF/F38U/dq7v7O083Hkkm35yRWF+KUr/dp7/F/zmbHM=</latexit> <latexit sha1_base64="ggcMBMVGAVaQVaHnsBSwPgZxe5I=">AABFoHictVzvctu4EUeu/67pn8u1H/uFjZNOruO4tnudduamM5fYju2LL1Ei2fmnJENKtKyEFhVSkp3o/BJ9mn7rtG/RN2g/9RW6uwAIUAK5oJuGYxsE8dtdLIHF7gJMNE6G+WR9/Z9XPvne93/wwx99+uOrP/npz37+2bXPf3GUp9OsFx/20iTNnkZhHifDUXw4GU6S+Ok4i8PTKImfRG+38PmTWZzlw3TUmbwfxy9Pw8FoeDzshROoen1t9UY3SUeDbDg4mYRZlp7dCEbp6HYvHc3i89XgQev2SZj1g27STyf562sr62vr9C9YLmyowopQ/1rp59fXRFf0RSp6YipORSxGYgLlRIQih+uF2BDrYgx1L8Uc6jIoDel5LC7EVcBOoVUMLUKofQu/B3D3QtWO4B5p5oTuAZcEfjJABuImYFJol0EZuQX0fEqUsbaK9pxoomzv4W+kaJ1C7UScQC2H0y19cdiXiTgWf6I+DKFPY6rB3vUUlSlpBSUPrF5NgMIY6rDch+cZlHuE1HoOCJNT31G3IT3/F7XEWrzvqbZT8W+S8iZcgWir3qcFhVDMiH5Ab3MKz6Q8CXAeAIVY9RFLZ6TrU+r9CNrPof4BXBdU0jqJ4JpT7UUtcgsuF3KLRe7C5ULussgDuFzIAxbZgsuFbCkkYjPSuRvfhsuFb7OcH8HlQj5ikY/hciEfs8gjuFzIIxb5HC4X8jmLvAeXC3mPRd6Hy4W8zyI7cLmQHRZ5CJcLecgid+ByIXcUsnqmZnClRGfIzMo7UC7zQEuRQM0dVr67ZB1d2Lsec7pXgeVn9Tb8dWO3PXQaV2B3PMbdcQWWH3m7YCPdWN4W7dFq4sLusdh9GAFu7D6L/Ua8qcB+4zHT3lZg+bl2AO3cWN76fgt3buy3LPYBlNxYfo16CDVu7EOPFWNcgW2x2EfiXQXWx+pnFVje7rfBrrix/DrVgfZurI81nVZgeXt6BB6MG8uvVk+g1o19wmKfivMK7FMW+wysuxv7zGOF/VCB1WvsVVpBBuSPxDBj66iFxazE0hiohQz/pFhbEvKNI6jnMIMCMyDMKYvYLRC7noiDAnHgLVde2NGc/F2eS7tAtD0RUbE2YWnCtu8X7bGUeCC2C8T2AqLOI8V3rfsyI+9C13DISbFyYcmnT2lhv7EUq/FQb3k14mEJIcf2CY38VYqWMIJCTdVROynWeIkM6L4OcUbRm+6l5sHjJoVVsFHnLCpyoCIW9d6Bes+ipg7UlEXNHKgZizIz38Z1PUaA0T++izndyREgfeTqKwCv4A6sOnswRwMYPy3wAh9TzUP426bYm7vqJMNoHtdJzHK8LFniDEpzsQL1Jircpvg6oRkWg2Sy5UMV4+Md5jbmas5JK3xRrORBkTHxpzMkeQYFHfQWA5pPzejcp5oL8u5kqRl+r5j3utQMv0MavyAvXpaa4SdK+sklZO8obOcS2DbMprHSvik3pSHzL5KGLl+lVRctLr7VUzVmkN55Q/r76s3sX+K9bFFJ6seUm9HIrf7lpf41oWH0nFt6bkYFvSfp9epS0LgnIxX3mnJTGVJaRUdKDnPX9M1gm756M7rcjEYLPK4tirnnVrnp6B0XvTHlZjSOhMx7XpAnr8vNaAzoXurDlJvRwGxLqOJ8U25q2VEDMnY25aZWfURZYMwByTEva4xXlJGfNFXUhuQf1GdrbJ9/eR3DnM2rIkaop2R822o6UbGW1Uuk/YUYrNqkoRzoX0wtH6xMYy422fhKyjApre/LdMwaj5o/AC0GMPvlHgCXM09AQp2TQOudAMUNNuoq90zjNlkcjpLjBVRX1U5Yb9HwlVmjct1rquXiMtNbo8cu2eucxt6YfMID0iynh4PKN1xFkdPQQUlDPL0muvug5mtZ++ssbryAGBcjrUc7QnInrT5OdWm9ben4ptrlmcAl93zM+MVs87GyNhjzpGSLUJY6nnY7nUey63BdXRUmxy2fBfRG0V7NyGoMaUcqZ6NQnS2W3vic7g3tQ9qTQx6SRg/eY6CojIXcNcMsOubTA7Kotr3leKO+dIZOlnOyutoe16MHFnrgQDePcbZgxXgApQ7EDIdw1/GIcq4WukpJ45m4XeyOpvQG6yP6pGQhNQ1pb+KShayLsk9KVM4AjaNBRun+NBbpaHx3iRIf9bvkMbFr2fLfpJ1bvb8d0hivHs3VmZg+cd0krgHNGrmrK+8WOUgJ5s4nm+S/1vcS+TXhiDaU4/rK4iz1MqId/5gi2DF5xgnNNm52lFvb+anFJ5pTS+i9c9zNTslCBmT/AlifUhqTAf3YZwf0Drq0CAnZSB+7Myy8G5evM2THmPHjhkKeajDjLSZbNiX+mq49u3IaizJikOvAxcLY1jo5IF8wJq6Zsu5mbtevPog05yTsUSIpmrFyi/h/Qb/1jx4nK0sjAjWMbyBXts71PlKKWVBHIa3y9TZIt7WlvFHI8EpJbdY/I9ONkmTbFHGhPLha94Fzj+4lLxwlGcmdL7WR62hdNhcpjxf0iL09pihe2v2BWoFR7lVaJVdoznVplAxgFEyKKEK35bLIi3zreZWp+9HO/y/Uja7LWkOKgTAZXKkhLr8fU7RmS5nAqJbj9y3NJrfWs4VW9XxGNBZPrbn8HdT+Gn5rufW9H52oZBXu0hiQFMyd0YisCZZa+PG6W+KlR6amZe4NPzMmdSu75jLxtbRuJsaeNabSolFzrrIWunwZGm8sGm88ddihvUajRV2vLdFrNrboqN1KX35NuHUaUJ6ylHmPTKOGHlLasZQf1T5LlY/xNeoDS2udpRXCbLV3A+w574N0z/XF2f1dsboH4h75Nj3ywGT80qdZOiSfS9fWR2qSAnL+UtlXe/Z3qQa5R2RBkbI8x4kzRu469ei6KCT9jVrZUrLzxiLoc0tnqo22sV0q/34JeUpzIqd5qRFfUotYyW/LESxYpDXL5wgo8x+STyX9jvqY2W5t3klQ8idMvClnleElI4UR6Z/LvO0vRa/7VvwaUEw4Vd51BLSav2GkIDE6k+D2LHN6Q7jKyZ0E6dFGZD+X7ZTcxRtZEq2R1HPxZw8bI6NeM9btsaV7rPv2W2iJWjdv3dWC55d4c+T4XWZHL6RV7VT5qPOF+8vRCtUqV76v08N0ga/Rx5Ta2JGFifLKmK74ypuLlKgZF4nx4dKsF03kbyZ5E5nl7pQvZd1aUy5nGqSNOaF4iTsHigiXd3fL6c19wfQjWqIXEdamJms4SpiNS1V+wLa0mJUKFiIku55bkxJrPapaLwwPe9UwdlxaypisYCK43I1sbfehW4pW+GyMpNAT8mRvVZxo0/wKLvwdCFeUqDn65BDb4OfeEVti5yOcininyjKzGVAN2oT+Qgweqn6WW9Tr6J1F3abvw8GfxxB0zUk/pBW1qeySMi+5Td2f/hlZg0zErPSmZfM+2Fz4nixzatKfIVk4vjdDob/JadoXzcGnJ2Uu/nzk/gbXi2Ohv21q1gdNne9BmUMTHvo8g987N62b87I51etrmYsvD7kO6J0XjcMdwOqYxbTzsVCZ9UY+Pge0Dsc11PVq8b/2Q/MxnJrz8uWW0zdnbzzeumwXq8ws+sXN54zh5jOaqzn680yL3hmvyc1P+n9BozeVWr35+PTRLzVjQPOaC5kP5aWTeHsUGXl9qeD+gEuGVPxH/O0K/1XCu4JGlRxNKOn9impqugVPTX956eqdfuYjk6FTJVOZmokn2nQydkvsi3vws1V4gE1PicpvKuVfxLq/o+1D7TFZD51NlxmELtXFlAUxu2l9ujfnaKskxjO98oxvB2pwT/yAavG87wNqj2d+O6W+VX9JIuf6tyIV/VJksrjLZ+ZVBD0o78DJXJD+3jegM/UymyVPoJ167DHKc1QyUtJfP88J0ae4cFHSOSH0aKmjHDkpR3QmKa6gHZX61qMRPlY7/bjvgOfzwyK7FIjfUV2oVgdcqTmpWg6pXlBmICL9r0OE9gexCn9XVdktaWtJ0pzeQVmic+tZ/UmwC+e4MF8z3qQ8mM7UzVS7lKJ6s3tYn4ndruQiT7zX4wc1+IElZZve1luKuzNRnzuc1tCcKpns/dyR0HlPqQeMZsNifNTHz7MaXjOP/t+vRN+3JN0FWSLKtge0n5cRvUTpZoekl+cq6/O2ezXS6q82JU1zstKMA31Gso4DflW2xcx++eVZ/cqAX5i56dhz/ZnHvgv2hJNInszkskexh0TyjCh3fmXopMRbjLHH+YzQo7d8X316ylGZspJMPb6NnnnIMvOgc8xIc8xSGLCSKIv1+trKxuL/PrJcONpc21hf23i0ufL1XfU/k3wqfiWui1uwGv9RfA0zsiUOgdNfxF/F38U/dq7v7O083Hkkm35yRWF+KUr/dp7/F/zmbHM=</latexit> <latexit sha1_base64="ggcMBMVGAVaQVaHnsBSwPgZxe5I=">AABFoHictVzvctu4EUeu/67pn8u1H/uFjZNOruO4tnudduamM5fYju2LL1Ei2fmnJENKtKyEFhVSkp3o/BJ9mn7rtG/RN2g/9RW6uwAIUAK5oJuGYxsE8dtdLIHF7gJMNE6G+WR9/Z9XPvne93/wwx99+uOrP/npz37+2bXPf3GUp9OsFx/20iTNnkZhHifDUXw4GU6S+Ok4i8PTKImfRG+38PmTWZzlw3TUmbwfxy9Pw8FoeDzshROoen1t9UY3SUeDbDg4mYRZlp7dCEbp6HYvHc3i89XgQev2SZj1g27STyf562sr62vr9C9YLmyowopQ/1rp59fXRFf0RSp6YipORSxGYgLlRIQih+uF2BDrYgx1L8Uc6jIoDel5LC7EVcBOoVUMLUKofQu/B3D3QtWO4B5p5oTuAZcEfjJABuImYFJol0EZuQX0fEqUsbaK9pxoomzv4W+kaJ1C7UScQC2H0y19cdiXiTgWf6I+DKFPY6rB3vUUlSlpBSUPrF5NgMIY6rDch+cZlHuE1HoOCJNT31G3IT3/F7XEWrzvqbZT8W+S8iZcgWir3qcFhVDMiH5Ab3MKz6Q8CXAeAIVY9RFLZ6TrU+r9CNrPof4BXBdU0jqJ4JpT7UUtcgsuF3KLRe7C5ULussgDuFzIAxbZgsuFbCkkYjPSuRvfhsuFb7OcH8HlQj5ikY/hciEfs8gjuFzIIxb5HC4X8jmLvAeXC3mPRd6Hy4W8zyI7cLmQHRZ5CJcLecgid+ByIXcUsnqmZnClRGfIzMo7UC7zQEuRQM0dVr67ZB1d2Lsec7pXgeVn9Tb8dWO3PXQaV2B3PMbdcQWWH3m7YCPdWN4W7dFq4sLusdh9GAFu7D6L/Ua8qcB+4zHT3lZg+bl2AO3cWN76fgt3buy3LPYBlNxYfo16CDVu7EOPFWNcgW2x2EfiXQXWx+pnFVje7rfBrrix/DrVgfZurI81nVZgeXt6BB6MG8uvVk+g1o19wmKfivMK7FMW+wysuxv7zGOF/VCB1WvsVVpBBuSPxDBj66iFxazE0hiohQz/pFhbEvKNI6jnMIMCMyDMKYvYLRC7noiDAnHgLVde2NGc/F2eS7tAtD0RUbE2YWnCtu8X7bGUeCC2C8T2AqLOI8V3rfsyI+9C13DISbFyYcmnT2lhv7EUq/FQb3k14mEJIcf2CY38VYqWMIJCTdVROynWeIkM6L4OcUbRm+6l5sHjJoVVsFHnLCpyoCIW9d6Bes+ipg7UlEXNHKgZizIz38Z1PUaA0T++izndyREgfeTqKwCv4A6sOnswRwMYPy3wAh9TzUP426bYm7vqJMNoHtdJzHK8LFniDEpzsQL1Jircpvg6oRkWg2Sy5UMV4+Md5jbmas5JK3xRrORBkTHxpzMkeQYFHfQWA5pPzejcp5oL8u5kqRl+r5j3utQMv0MavyAvXpaa4SdK+sklZO8obOcS2DbMprHSvik3pSHzL5KGLl+lVRctLr7VUzVmkN55Q/r76s3sX+K9bFFJ6seUm9HIrf7lpf41oWH0nFt6bkYFvSfp9epS0LgnIxX3mnJTGVJaRUdKDnPX9M1gm756M7rcjEYLPK4tirnnVrnp6B0XvTHlZjSOhMx7XpAnr8vNaAzoXurDlJvRwGxLqOJ8U25q2VEDMnY25aZWfURZYMwByTEva4xXlJGfNFXUhuQf1GdrbJ9/eR3DnM2rIkaop2R822o6UbGW1Uuk/YUYrNqkoRzoX0wtH6xMYy422fhKyjApre/LdMwaj5o/AC0GMPvlHgCXM09AQp2TQOudAMUNNuoq90zjNlkcjpLjBVRX1U5Yb9HwlVmjct1rquXiMtNbo8cu2eucxt6YfMID0iynh4PKN1xFkdPQQUlDPL0muvug5mtZ++ssbryAGBcjrUc7QnInrT5OdWm9ben4ptrlmcAl93zM+MVs87GyNhjzpGSLUJY6nnY7nUey63BdXRUmxy2fBfRG0V7NyGoMaUcqZ6NQnS2W3vic7g3tQ9qTQx6SRg/eY6CojIXcNcMsOubTA7Kotr3leKO+dIZOlnOyutoe16MHFnrgQDePcbZgxXgApQ7EDIdw1/GIcq4WukpJ45m4XeyOpvQG6yP6pGQhNQ1pb+KShayLsk9KVM4AjaNBRun+NBbpaHx3iRIf9bvkMbFr2fLfpJ1bvb8d0hivHs3VmZg+cd0krgHNGrmrK+8WOUgJ5s4nm+S/1vcS+TXhiDaU4/rK4iz1MqId/5gi2DF5xgnNNm52lFvb+anFJ5pTS+i9c9zNTslCBmT/AlifUhqTAf3YZwf0Drq0CAnZSB+7Myy8G5evM2THmPHjhkKeajDjLSZbNiX+mq49u3IaizJikOvAxcLY1jo5IF8wJq6Zsu5mbtevPog05yTsUSIpmrFyi/h/Qb/1jx4nK0sjAjWMbyBXts71PlKKWVBHIa3y9TZIt7WlvFHI8EpJbdY/I9ONkmTbFHGhPLha94Fzj+4lLxwlGcmdL7WR62hdNhcpjxf0iL09pihe2v2BWoFR7lVaJVdoznVplAxgFEyKKEK35bLIi3zreZWp+9HO/y/Uja7LWkOKgTAZXKkhLr8fU7RmS5nAqJbj9y3NJrfWs4VW9XxGNBZPrbn8HdT+Gn5rufW9H52oZBXu0hiQFMyd0YisCZZa+PG6W+KlR6amZe4NPzMmdSu75jLxtbRuJsaeNabSolFzrrIWunwZGm8sGm88ddihvUajRV2vLdFrNrboqN1KX35NuHUaUJ6ylHmPTKOGHlLasZQf1T5LlY/xNeoDS2udpRXCbLV3A+w574N0z/XF2f1dsboH4h75Nj3ywGT80qdZOiSfS9fWR2qSAnL+UtlXe/Z3qQa5R2RBkbI8x4kzRu469ei6KCT9jVrZUrLzxiLoc0tnqo22sV0q/34JeUpzIqd5qRFfUotYyW/LESxYpDXL5wgo8x+STyX9jvqY2W5t3klQ8idMvClnleElI4UR6Z/LvO0vRa/7VvwaUEw4Vd51BLSav2GkIDE6k+D2LHN6Q7jKyZ0E6dFGZD+X7ZTcxRtZEq2R1HPxZw8bI6NeM9btsaV7rPv2W2iJWjdv3dWC55d4c+T4XWZHL6RV7VT5qPOF+8vRCtUqV76v08N0ga/Rx5Ta2JGFifLKmK74ypuLlKgZF4nx4dKsF03kbyZ5E5nl7pQvZd1aUy5nGqSNOaF4iTsHigiXd3fL6c19wfQjWqIXEdamJms4SpiNS1V+wLa0mJUKFiIku55bkxJrPapaLwwPe9UwdlxaypisYCK43I1sbfehW4pW+GyMpNAT8mRvVZxo0/wKLvwdCFeUqDn65BDb4OfeEVti5yOcininyjKzGVAN2oT+Qgweqn6WW9Tr6J1F3abvw8GfxxB0zUk/pBW1qeySMi+5Td2f/hlZg0zErPSmZfM+2Fz4nixzatKfIVk4vjdDob/JadoXzcGnJ2Uu/nzk/gbXi2Ohv21q1gdNne9BmUMTHvo8g987N62b87I51etrmYsvD7kO6J0XjcMdwOqYxbTzsVCZ9UY+Pge0Dsc11PVq8b/2Q/MxnJrz8uWW0zdnbzzeumwXq8ws+sXN54zh5jOaqzn680yL3hmvyc1P+n9BozeVWr35+PTRLzVjQPOaC5kP5aWTeHsUGXl9qeD+gEuGVPxH/O0K/1XCu4JGlRxNKOn9impqugVPTX956eqdfuYjk6FTJVOZmokn2nQydkvsi3vws1V4gE1PicpvKuVfxLq/o+1D7TFZD51NlxmELtXFlAUxu2l9ujfnaKskxjO98oxvB2pwT/yAavG87wNqj2d+O6W+VX9JIuf6tyIV/VJksrjLZ+ZVBD0o78DJXJD+3jegM/UymyVPoJ167DHKc1QyUtJfP88J0ae4cFHSOSH0aKmjHDkpR3QmKa6gHZX61qMRPlY7/bjvgOfzwyK7FIjfUV2oVgdcqTmpWg6pXlBmICL9r0OE9gexCn9XVdktaWtJ0pzeQVmic+tZ/UmwC+e4MF8z3qQ8mM7UzVS7lKJ6s3tYn4ndruQiT7zX4wc1+IElZZve1luKuzNRnzuc1tCcKpns/dyR0HlPqQeMZsNifNTHz7MaXjOP/t+vRN+3JN0FWSLKtge0n5cRvUTpZoekl+cq6/O2ezXS6q82JU1zstKMA31Gso4DflW2xcx++eVZ/cqAX5i56dhz/ZnHvgv2hJNInszkskexh0TyjCh3fmXopMRbjLHH+YzQo7d8X316ylGZspJMPb6NnnnIMvOgc8xIc8xSGLCSKIv1+trKxuL/PrJcONpc21hf23i0ufL1XfU/k3wqfiWui1uwGv9RfA0zsiUOgdNfxF/F38U/dq7v7O083Hkkm35yRWF+KUr/dp7/F/zmbHM=</latexit> <latexit sha1_base64="ggcMBMVGAVaQVaHnsBSwPgZxe5I=">AABFoHictVzvctu4EUeu/67pn8u1H/uFjZNOruO4tnudduamM5fYju2LL1Ei2fmnJENKtKyEFhVSkp3o/BJ9mn7rtG/RN2g/9RW6uwAIUAK5oJuGYxsE8dtdLIHF7gJMNE6G+WR9/Z9XPvne93/wwx99+uOrP/npz37+2bXPf3GUp9OsFx/20iTNnkZhHifDUXw4GU6S+Ok4i8PTKImfRG+38PmTWZzlw3TUmbwfxy9Pw8FoeDzshROoen1t9UY3SUeDbDg4mYRZlp7dCEbp6HYvHc3i89XgQev2SZj1g27STyf562sr62vr9C9YLmyowopQ/1rp59fXRFf0RSp6YipORSxGYgLlRIQih+uF2BDrYgx1L8Uc6jIoDel5LC7EVcBOoVUMLUKofQu/B3D3QtWO4B5p5oTuAZcEfjJABuImYFJol0EZuQX0fEqUsbaK9pxoomzv4W+kaJ1C7UScQC2H0y19cdiXiTgWf6I+DKFPY6rB3vUUlSlpBSUPrF5NgMIY6rDch+cZlHuE1HoOCJNT31G3IT3/F7XEWrzvqbZT8W+S8iZcgWir3qcFhVDMiH5Ab3MKz6Q8CXAeAIVY9RFLZ6TrU+r9CNrPof4BXBdU0jqJ4JpT7UUtcgsuF3KLRe7C5ULussgDuFzIAxbZgsuFbCkkYjPSuRvfhsuFb7OcH8HlQj5ikY/hciEfs8gjuFzIIxb5HC4X8jmLvAeXC3mPRd6Hy4W8zyI7cLmQHRZ5CJcLecgid+ByIXcUsnqmZnClRGfIzMo7UC7zQEuRQM0dVr67ZB1d2Lsec7pXgeVn9Tb8dWO3PXQaV2B3PMbdcQWWH3m7YCPdWN4W7dFq4sLusdh9GAFu7D6L/Ua8qcB+4zHT3lZg+bl2AO3cWN76fgt3buy3LPYBlNxYfo16CDVu7EOPFWNcgW2x2EfiXQXWx+pnFVje7rfBrrix/DrVgfZurI81nVZgeXt6BB6MG8uvVk+g1o19wmKfivMK7FMW+wysuxv7zGOF/VCB1WvsVVpBBuSPxDBj66iFxazE0hiohQz/pFhbEvKNI6jnMIMCMyDMKYvYLRC7noiDAnHgLVde2NGc/F2eS7tAtD0RUbE2YWnCtu8X7bGUeCC2C8T2AqLOI8V3rfsyI+9C13DISbFyYcmnT2lhv7EUq/FQb3k14mEJIcf2CY38VYqWMIJCTdVROynWeIkM6L4OcUbRm+6l5sHjJoVVsFHnLCpyoCIW9d6Bes+ipg7UlEXNHKgZizIz38Z1PUaA0T++izndyREgfeTqKwCv4A6sOnswRwMYPy3wAh9TzUP426bYm7vqJMNoHtdJzHK8LFniDEpzsQL1Jircpvg6oRkWg2Sy5UMV4+Md5jbmas5JK3xRrORBkTHxpzMkeQYFHfQWA5pPzejcp5oL8u5kqRl+r5j3utQMv0MavyAvXpaa4SdK+sklZO8obOcS2DbMprHSvik3pSHzL5KGLl+lVRctLr7VUzVmkN55Q/r76s3sX+K9bFFJ6seUm9HIrf7lpf41oWH0nFt6bkYFvSfp9epS0LgnIxX3mnJTGVJaRUdKDnPX9M1gm756M7rcjEYLPK4tirnnVrnp6B0XvTHlZjSOhMx7XpAnr8vNaAzoXurDlJvRwGxLqOJ8U25q2VEDMnY25aZWfURZYMwByTEva4xXlJGfNFXUhuQf1GdrbJ9/eR3DnM2rIkaop2R822o6UbGW1Uuk/YUYrNqkoRzoX0wtH6xMYy422fhKyjApre/LdMwaj5o/AC0GMPvlHgCXM09AQp2TQOudAMUNNuoq90zjNlkcjpLjBVRX1U5Yb9HwlVmjct1rquXiMtNbo8cu2eucxt6YfMID0iynh4PKN1xFkdPQQUlDPL0muvug5mtZ++ssbryAGBcjrUc7QnInrT5OdWm9ben4ptrlmcAl93zM+MVs87GyNhjzpGSLUJY6nnY7nUey63BdXRUmxy2fBfRG0V7NyGoMaUcqZ6NQnS2W3vic7g3tQ9qTQx6SRg/eY6CojIXcNcMsOubTA7Kotr3leKO+dIZOlnOyutoe16MHFnrgQDePcbZgxXgApQ7EDIdw1/GIcq4WukpJ45m4XeyOpvQG6yP6pGQhNQ1pb+KShayLsk9KVM4AjaNBRun+NBbpaHx3iRIf9bvkMbFr2fLfpJ1bvb8d0hivHs3VmZg+cd0krgHNGrmrK+8WOUgJ5s4nm+S/1vcS+TXhiDaU4/rK4iz1MqId/5gi2DF5xgnNNm52lFvb+anFJ5pTS+i9c9zNTslCBmT/AlifUhqTAf3YZwf0Drq0CAnZSB+7Myy8G5evM2THmPHjhkKeajDjLSZbNiX+mq49u3IaizJikOvAxcLY1jo5IF8wJq6Zsu5mbtevPog05yTsUSIpmrFyi/h/Qb/1jx4nK0sjAjWMbyBXts71PlKKWVBHIa3y9TZIt7WlvFHI8EpJbdY/I9ONkmTbFHGhPLha94Fzj+4lLxwlGcmdL7WR62hdNhcpjxf0iL09pihe2v2BWoFR7lVaJVdoznVplAxgFEyKKEK35bLIi3zreZWp+9HO/y/Uja7LWkOKgTAZXKkhLr8fU7RmS5nAqJbj9y3NJrfWs4VW9XxGNBZPrbn8HdT+Gn5rufW9H52oZBXu0hiQFMyd0YisCZZa+PG6W+KlR6amZe4NPzMmdSu75jLxtbRuJsaeNabSolFzrrIWunwZGm8sGm88ddihvUajRV2vLdFrNrboqN1KX35NuHUaUJ6ylHmPTKOGHlLasZQf1T5LlY/xNeoDS2udpRXCbLV3A+w574N0z/XF2f1dsboH4h75Nj3ywGT80qdZOiSfS9fWR2qSAnL+UtlXe/Z3qQa5R2RBkbI8x4kzRu469ei6KCT9jVrZUrLzxiLoc0tnqo22sV0q/34JeUpzIqd5qRFfUotYyW/LESxYpDXL5wgo8x+STyX9jvqY2W5t3klQ8idMvClnleElI4UR6Z/LvO0vRa/7VvwaUEw4Vd51BLSav2GkIDE6k+D2LHN6Q7jKyZ0E6dFGZD+X7ZTcxRtZEq2R1HPxZw8bI6NeM9btsaV7rPv2W2iJWjdv3dWC55d4c+T4XWZHL6RV7VT5qPOF+8vRCtUqV76v08N0ga/Rx5Ta2JGFifLKmK74ypuLlKgZF4nx4dKsF03kbyZ5E5nl7pQvZd1aUy5nGqSNOaF4iTsHigiXd3fL6c19wfQjWqIXEdamJms4SpiNS1V+wLa0mJUKFiIku55bkxJrPapaLwwPe9UwdlxaypisYCK43I1sbfehW4pW+GyMpNAT8mRvVZxo0/wKLvwdCFeUqDn65BDb4OfeEVti5yOcininyjKzGVAN2oT+Qgweqn6WW9Tr6J1F3abvw8GfxxB0zUk/pBW1qeySMi+5Td2f/hlZg0zErPSmZfM+2Fz4nixzatKfIVk4vjdDob/JadoXzcGnJ2Uu/nzk/gbXi2Ohv21q1gdNne9BmUMTHvo8g987N62b87I51etrmYsvD7kO6J0XjcMdwOqYxbTzsVCZ9UY+Pge0Dsc11PVq8b/2Q/MxnJrz8uWW0zdnbzzeumwXq8ws+sXN54zh5jOaqzn680yL3hmvyc1P+n9BozeVWr35+PTRLzVjQPOaC5kP5aWTeHsUGXl9qeD+gEuGVPxH/O0K/1XCu4JGlRxNKOn9impqugVPTX956eqdfuYjk6FTJVOZmokn2nQydkvsi3vws1V4gE1PicpvKuVfxLq/o+1D7TFZD51NlxmELtXFlAUxu2l9ujfnaKskxjO98oxvB2pwT/yAavG87wNqj2d+O6W+VX9JIuf6tyIV/VJksrjLZ+ZVBD0o78DJXJD+3jegM/UymyVPoJ167DHKc1QyUtJfP88J0ae4cFHSOSH0aKmjHDkpR3QmKa6gHZX61qMRPlY7/bjvgOfzwyK7FIjfUV2oVgdcqTmpWg6pXlBmICL9r0OE9gexCn9XVdktaWtJ0pzeQVmic+tZ/UmwC+e4MF8z3qQ8mM7UzVS7lKJ6s3tYn4ndruQiT7zX4wc1+IElZZve1luKuzNRnzuc1tCcKpns/dyR0HlPqQeMZsNifNTHz7MaXjOP/t+vRN+3JN0FWSLKtge0n5cRvUTpZoekl+cq6/O2ezXS6q82JU1zstKMA31Gso4DflW2xcx++eVZ/cqAX5i56dhz/ZnHvgv2hJNInszkskexh0TyjCh3fmXopMRbjLHH+YzQo7d8X316ylGZspJMPb6NnnnIMvOgc8xIc8xSGLCSKIv1+trKxuL/PrJcONpc21hf23i0ufL1XfU/k3wqfiWui1uwGv9RfA0zsiUOgdNfxF/F38U/dq7v7O083Hkkm35yRWF+KUr/dp7/F/zmbHM=</latexit> <latexit sha1_base64="3orCZ9wD/UXO9gH8EOr4FXQFPnc=">AABB93ictVzddhS5ERabv4X8scllbnpjyGFzCDFeks1mz56zxjbGiwHDjA3sDnDmpz0M9EwP0zPGZtZPkovc5eQ2T5CT2+QJ8gbJVV4h9SO11DPqLrVD0LGt1uirKlVLpaqShs44GWTT1dV/nnvvW9/+zne/9/75C9//wQ9/9OOLH/zkIEtnk268302TdPK4087iZDCK96eDaRI/Hk/i9rCTxI86rzbw80dH8SQbpKPm9GQcPx22+6PB4aDbnkLT84u/GRxGl3rPW4+PP2+N0slw3ur20unp1QjanpwU2i79Puqmo277KP7w+cWV1Wur9C9arlzXlRWl/+2lH0T7qqV6KlVdNVNDFauRmkI9UW2VQflaXVeragxtT9Uc2iZQG9DnsTpVFwA7g14x9GhD6yv43Yenr3XrCJ6RZkboLnBJ4GcCyEhdBkwK/SZQR24RfT4jythaRntONFG2E/jb0bSG0DpVL6BVwpmeoTgcy1Qdqt/RGAYwpjG14Oi6msqMtIKSR86opkBhDG1Y78HnE6h3CWn0HBEmo7Gjbtv0+b+oJ7bic1f3nal/k5SXoUSqoUef5hTa6ojoR/Q2Z/AZy5MA5z5QiPUYsfaGdD2k0Y+g/xza70E5pZrRSQfKnFpPK5EbUHzIDRG5DcWH3BaRu1B8yF0RuQfFh9zTSMROSOd+fAOKD98QOT+A4kM+EJEPofiQD0XkARQf8kBEfgXFh/xKRN6C4kPeEpF3oPiQd0RkE4oP2RSR+1B8yH0RuQXFh9zSyPKVOoGSEp2BsCrXoV7kgZYigZZ1Ub6bZB192JsBa7pbgpVX9Sb89WM3A3Qal2C3AubdYQlWnnnbYCP9WNkW3abdxIe9LWJ3YAb4sTsi9kv1sgT7ZcBKe1WCldfaLvTzY2Xrexee/Ni7IvYe1PxYeY+6Dy1+7P2AHWNcgt0TsQ/U6xJsiNWflGBlu98Au+LHyvtUE/r7sSHWdFaCle3pAXgwfqy8Wz2CVj/2kYh9rI5LsI9F7BOw7n7sk4Ad9m0J1uyxF2gH6ZM/EsOKraLWzlcl1sZArS3wT/K9JSHfuAPtEqafY/qEGYqI7RyxHYjYzRG7wXJluR3NyN+VuTRyRCMQ0cn3JqxNxf69vD/WkgDEZo7YXEBUeaT4rs1Yjsi7MC0ScprvXFgLGVOa22+sxXo+VFteg7hfQPDcfkEz/ypFSxhBoaaqqL3I93hGRvRchXhD0ZsZpeEh46a5VXBRxyKq40F1RNSJB3UiomYe1ExEHXlQRyLKrnwX1wqYAVb/+C7m9MQzgH3k8hKBV7AOu85tWKMRzJ898AIfUst9+Nug2FsqVZJhNI/7JGY5nhYs8QRqc7UC7TYq3KT4OqEVFoNk3PO+jvHxCXMbc73m2Aqf5jt5lGdMwukMSJ5+Tge9xYjWUz06d6jllLw7rtXD387XvanVw2+Rxk/Ji+daPfxUSz89g+xNjW2eAduA1TTW2rf1ujQ4/8I0TP0C7bpocfGtDvWcQXrHNenv6Dezc4b3skE11o+t16OROePLCuOrQ8PqOXP0XI8Kek/s9ZpaVHskIx332npdGVLaRUdaDvtU981gn55+M6Zej8YeeFwbFHPPnXrd2TvOR2Pr9WgcKM57npInb+r1aPTpmfVh6/VoYLalreN8W69r2VEDHDvbel2rPqIsMOaAeM5zi/WKJuQnzTS1AfkH1dka1+df3scwZ/MsjxGqKVnftpxOJ9/LqiUy/kIMVm1aUw70L2aOD1akMVdrYnzFMkwL+/syHbvHo+Z3QYsRrH4+A5By5glIaHISaL0ToHhdjLqKIzO4NRGHs+RwAdXSrVPRW7R8OWtUbHtOrVJcZkdr9dgie53R3BuTT7hLmpX0sFv6hssoShraLWhIpldHd2/1ei1qf1XEjRcQ43ymdelEiE/SquNUn9Ybjo4v61OeKRQ+87HzF7PNh9raYMyTki1CWap4uv1MHsltw331qrI5bv4sojeK9uqIrMaATqQyMQo12WL2xuf0bGnv05kc8mAaXXiPkaYyVnxqhll0zKdHZFFdeyvxRn2ZDB3XM7K6xh5Xo/sOuu9B149xNmDHuAe1JsQM+/DUDIhyLuS6SknjE/Wr/HQ0pTdYHdEnBQtpaLC9iQsWsirKflGg8gbQOBs4Sg+nsUjH4FtLlOSo3yePjV2Llv8yndya8+02zfHy2VyeiekR1zXiGtGq4VNdflrkwBLMvZ+skf9aPUrkV4cj2lCJ6zOHM+tlRCf+MUWwY/KME1pt0uoo9nbzU4ufGE57ypyd42l2ShYyIvsXwf6U0pyM6Me9O2BO0NkiJGQjQ+zOIPdufL7OQJxj1o8bKL7VYOdbTLZsRvwNXXd1ZTQXOWLgfeB0YW4bneySLxgT14m27nZtV+8+iLT3JNxZwhTtXLlC/D+i3+bHzJOVpRmBGsY3kGlb53sfKcUsqKM27fLVNsj0daW8lMvwTEtt9z8r06WCZJsUcaE8uFv3gHOXnpkXzpIJyZ0t9eF9tCqbi5THC3rE0R5SFM92v693YJT7Ku2SK7TmWjRL+jALpnkUYfpKWeRFvtW8itTDaGf/F+pW10WtIcVI2Qwua0jK78cUrblSJjCref6+otXk1/pkoVc1nxHNxaGzlr+B1g/ht5HbPIfR6RSswk2aA0zBPlmNcEu01COM180CLzMzDS37bPnZOWl6uS1nia/ZutkY+6g2lT2aNcc6a2HqZ6Hx0qHxMlCHTTprtFo07cYSPRdji6Y+rQzlV4dbswblmUhZ9sgMahAgpRtLhVHtiVTlGN+g3oq0VkVabVit7mmAu+ZDkP61vri6v8l390jdIt+mSx4Yxy89WqUD8rlMa3WkxhSQ8w1tX93V36IW5N4hC4qU+R4nrhg+depSOc0l/YXe2VKy89YimHtLb3QfY2NbVP94CTmkNZHRujSIG9Qj1vK7ckQLFuma43NElPlvk0/Ffkd1zOz2tu8kKvgTNt7kVWV5caQwIv1Lmbedpeh1x4lfI4oJZ9q77gCt+m8YKTDGZBL8nmVGbwh3OT5JYI+2Q/Zz2U7xKd7IkegaST1XnwfYGI567Vx355YZsRnbL6Enat2+dV8PmV8SzFHid5YTvTbtakPto84Xns9Gq613ueJzlR5mC3ytPmbUx40sbJRXxLTUZ8FcWKJ6XBgTwqXeKOrIX0/yOjLz6VQoZdPbUC5mGtjGvKB4SboHigifd3fF6819JIyjs0SvQ1iXGrdIlDAbl+r8gGtpMSt1fmkf4tbzlbtR4uxEZTuFoe7uFtZ+s4WMyfolSsrZcG9X9lYhSpGzMEyhq/hGb1l86NL8DAr+jpQvOjQcQ3KHDfBv19WG2noHtyFe6zpnNCNqQVvQW4i923qcxR7VOnrtUHfph3AI5zEAXUvSD2gnrSs7U5Yld6mH039DVmCiYlF627P+GFwu8kiWOdUZz4AsmzyagTLfxak7FsMhZCRFLuF8+FxDGsWhMt9pqjcGQ10eQZFDHR7mHkPYO7e96/NyOVXra5lLKA/eBcyJi8HhyV95rGL7hVioifNG3j0HtA6HFdTNbvG/jsPwsZzq8wrlltF3zV4GvHXuF+uMLPrD9deM5RYym8s5hvNM89FZb8nPj/2+qNabSp3RvHv66I/aOWB4zRXnQWXpGO/OIitvKBU8F/DJkKr/qL+ek7+N8DqnUSZHHUrmnKKcmukhUzPfuPSNznwWIpOlUyZTkZqNIxp0I3ZD7ahb8LORe4B1b4fydyn5L2L935/tQeshWQ+TRefMQYvaYsp+2FO0Hj3b+7NlEuNdXr7b24QWPAvfpVa853uP+uNd32ZhbOXfIOG1flelqleISBZP9+y66sAIiidvnAMy3/ON6C49Z7H45tkw4GzR3J9alGhOn8g3Czql+I4jZZfm6lif1ePJAd6wb+f5oUj9mtra2s7jnitx3ivlvLfAOSPtFDkcO59V380q47LhcOnlubMj3S+lONue51XnRjdLufAd9Gp8vwLfd6RskPZfUSQ8UdXZvFkFzZmWyT1hHSmTiWQ9YJzZzt93dWR7VMHrKGD8d0rRdxxJt0GWDuW/IzphmxC9ROtmi6Tnm47VmdTbFdLq71HS/27wKf2LuPLJDV359Hr+vxscrF27/ttrHz9YW/nipv5/Dt5XP1M/V1dgjX+ivgBqe2ofOPxB/U39Xf1j/WT9j+t/Wv8zd33vnMb8VBX+rf/lv5YmtlY=</latexit> if dX = || · ||, dY = || · ||: concave!
  22. Multi-Omics Integration <latexit sha1_base64="TWUy99pq29zJQ1hlbupNIlVDaH8=">AABEjnictVzddhu3EYbTv9j9iZNe9mZTxT1Oj+PKips0JyensUVZUqzYsknJTizbhz8rmvaSS3NJWjajV+lte90X6HP0DdqrvkLnB1hgSewOVnW1RyIWxDczmAUGMwOsOuNkkE3X1/957p0f/fgnP/3Zu+cv/PwXv/zVexff/+AwS2eTbnzQTZN08rDTzuJkMIoPpoNpEj8cT+L2sJPEDzovNvH7B/N4kg3SUWv6ehw/Hrb7o8HxoNueQtXTix9sT9JhOv/kQTvLoNk0HkDl2vrVdfqJVgvXdGFN6Z/99P0P/66OVE+lqqtmaqhiNVJTKCeqrTK4Hqlral2Noe6xWkDdBEoD+j5Wp+oCYGfQKoYWbah9AX/7cPdI147gHmlmhO4ClwR+J4CM1CXApNBuAmXkFtH3M6KMtWW0F0QTZXsNnx1Nawi1U/UMaiWcaRmKw75M1bH6E/VhAH0aUw32rqupzEgrKHnk9GoKFMZQh+UefD+BcpeQRs8RYTLqO+q2Td//i1piLd53dduZ+jdJeQmuSDV179OcQlvNiX5ET3MG37E8CXDuA4VY9xFLr0jXQ+r9CNovoP4OXKdUMjrpwLWg2tNK5CZcPuSmiNyGy4fcFpF7cPmQeyJyHy4fcl8jETshnfvxTbh8+KbI+R5cPuQ9EXkfLh/yvog8hMuHPBSR38PlQ34vIm/B5UPeEpG34fIhb4vIFlw+ZEtEHsDlQx6IyC24fMgtjSyfqRO4UqIzEGblDSgXeaClSKDmhijfTbKOPuzNgDndLcHKs7oBn35sI0CncQl2K2DcHZdg5ZG3DTbSj5Vt0Q6tJj7sjojdhRHgx+6K2G/U8xLsNwEz7UUJVp5re9DOj5Wt77dw58d+K2LvQMmPldeou1Djx94NWDHGJdh9EXtPvSzBhlj9SQlWtvtNsCt+rLxOtaC9HxtiTWclWNmeHoIH48fKq9UDqPVjH4jYh+qkBPtQxH4H1t2P/S5ghX1TgjVr7AVaQfrkj8QwY6uotfNZiaUxUGsL/JN8bUnIN+5AvYTp55g+YYYiYjtHbAci9nLEXrBcWW5HM/J3ZS7NHNEMRHTytQlLU7F9L2+PpSQA0cgRjSVElUeKz9r0ZU7ehamRkNN85cJSSJ/S3H5jKdbjodryGsTdAoLH9jMa+VcoWsIICjVVRe1ZvsYzMqL7KsQrit5MLw0PGTfNrYKLOhFRHQ+qI6Jee1CvRdTMg5qJqLkHNRdRdua7uKOAEWD1j89iQXc8AthHLr8i8ApuwKqzA3M0gvGzD17gfaq5C59Nir2lq0oyjOZxncQsx+OCJZ5AaaHWoN5GhQ2KrxOaYTFIxi3v6hgf7zC3sdBzjq3wab6SR3nGJJzOgOTp53TQW4xoPtWjc5tqTsm741I9/E4+702pHn6LNH5KXjyX6uGnWvrpGWRvaWzrDNgmzKax1r4t16XB+RemYcoXaNVFi4tPdajHDNI7qUl/Vz+Z3TM8l00qsX5suR6NzOlfVuhfHRpWz5mj53pU0Htir9eUoto9Gem415brypDSKjrScti7uk8G2/T0kzHlejT2wePapJh74ZTrjt5x3htbrkfjUHHe85Q8eVOuR6NP96wPW65HA7MtbR3n23Jdy44a4NjZluta9RFlgTEHxGOea6xXNCE/aaapDcg/qM7WuD7/6jqGOZsneYxQTcn6tuV0OvlaVi2R8RdisGrTmnKgfzFzfLAijYXaEOMrlmFaWN9X6dg1HjW/B1qMYPbzHoCUM09AQpOTQOudAMVrYtRV7JnBbYg4HCXHS6gjXTsVvUXLl7NGxbqnVCvFZba3Vo9HZK8zGntj8gn3SLOSHvZKn3AZRUlDewUNyfTq6O6Nnq9F7a+LuPESYpyPtC7tCPFOWnWc6tN609HxJb3LM4WL93zs+MVs87G2NhjzpGSLUJYqnm47k0dy63BdvaJsjpu/i+iJor2ak9UY0I5UJkahJlvM3viC7i3tA9qTQx5MowvPMdJUxop3zTCLjvn0iCyqa28l3qgvk6HjckZW19jjanTfQfc96PoxziasGHeg1IKY4QDuWgFRzoVcVylpfKI+yXdHU3qC1RF9UrCQhgbbm7hgIaui7GcFKq8AjaOBo/RwGst0DP5ohZIc9fvksbFr0fJfop1bs7/dpjFePprLMzE94rpBXCOaNbyry3fLHFiChfebDfJfq3uJ/OpwRBsqcX3icGa9jGjHP6YIdkyecUKzTZodxdZufmr5G8NpX5m9c9zNTslCRmT/IlifUhqTEf26ZwfMDjpbhIRsZIjdGeTejc/XGYhjzPpxA8WnGux4i8mWzYi/oevOrozGIkcMvA6cLo1to5M98gVj4jrR1t3O7erVB5H2nIQ7SpiiHSuXif/H9Nf8mnGytjIiUMP4BDJt63zPI6WYBXXUplW+2gaZtq6UH+UyPNFS2/XPyvRRQbIGRVwoD67WPeDcpXvmhaNkQnJnK214Ha3K5iLl8ZIesbfHFMWz3e/rFRjlvkKr5BrNuSMaJX0YBdM8ijBtpSzyMt9qXkXqYbSz/wt1q+ui1pBipGwGlzUk5fdjitZcKRMY1Tx+X9Bs8mt9stSqms+IxuLQmcs/QO2H8NfIbe7D6HQKVuEmjQGmYO+sRrgmWmkRxutmgZcZmYaWvbf87Jg0rdyas8TXbN1sjD2vTWWfRs2JzlqY8lloPHdoPA/UYYv2Gq0WTb2xRE/F2KKldytD+dXh1qpBeSZSlj0ygxoESOnGUmFUeyJVOcY3qDcirXWRVhtmq7sb4M75EKR/ri/P7h/y1T1St8i36ZIHxvFLj2bpgHwuU1sdqTEF5Hxd21d39h9RDXLvkAVFynyOE2cM7zp16TrNJf2dXtlSsvPWIphzS690G2Njj6j86QpySHMio3lpENepRazld+WIlizSVcfniCjz3yafiv2O6pjZbW2fSVTwJ2y8ybPK8uJIYUT6lzJvuyvR664Tv0YUE860d90BWvWfMFJgjMkk+D3LjJ4QrnK8k8AebYfs56qd4l28kSPRVZJ6ob4KsDEc9dqx7o4t02PTt99DS9S6feq+FjK/JJijxO8sO3ptWtWG2kddLN2fjVZbr3LF+yo9zJb4Wn3MqI0bWdgor4g5Ul8Gc2GJ6nFhTAiXer2oI389yevIzLtToZRNa0O5mGlgG/OM4iXpHCgifN7dZa8397HQj84KvQ5hXWpcI1HCbFyq8wOupcWs1PmVdYhrz1euRomzEpWtFIa6u1pY+80WMibrlygpZ8OtXdmPClGKnIVhCl3FJ3rL4kOX5pdw4d9I+aJDwzEkd9gE//aG2lRbb+E0xEtd5oxmRDVoC3pLsXdb97PYolpHLx3qLv0QDuE8BqBrSfoBraR1ZWfKsuQu9XD6r8gKTFQsSm9b1u+Dy0XuySqnOv0ZkGWTezNQ5l2cun0xHEJ6UuQSzof3NaReHCvzTlO9Phjqcg+KHOrwMOcYwp65bV2fl8upWl+rXEJ58CpgdlwMDnf+ymMV2y7EQk2cJ/L2OaB1OK6gblaL/7Ufho/lVJ9XKLeM3jV7HvDUuV2sM7LoD9efM5ZbyGgu5xjOM817Z70lPz/2+6JaTyp1evP26aM/aseA4bVQnAeVpWO8O4qsvKFUcF/AJ0Oq/qP+cU5+G+FlTqNMjjqUzD5FOTXTQqZm3rj09c58FyKTpVMmU5GajSOadCJ2U+2qW/C7mXuAdU+H8ruU/IlY//uzPag9JuthsuicOTiiupiyH3YXrUf39vxsmcR4lpfP9ragBvfC96gWz/neofZ41rdV6Fv5GyQ8179VqeoVIpLl3T07rzrQg+LOG+eAzHu+EZ2l5ywWnzwbBuwt8vkpjpDMW88LQvQoHlyWdEEIM1qqKHe8lDt0Fikuod0p9K1LI3ysd/hxvwHP5bfzrFKk/kB1bb064EotSbXvkeoRZQQ6pP91iND+qK7A5xVd9ku6vyJpRs+gKNGJ8131CbBT77iwbzFeovyXydDNdbuUonm7a1idgW2UcuGT7tX4fgW+70jZpKf1guLtiarOGc4qaM60TO4+7kiZfCfrAaPZdj4+quPneQWveUD/b5eibzuSboMsHcqyR7SPNyF6idbNFknP5ymr87U7FdKatzWZpj1RaceBORtZvReQ6HFXPvv5/KOUo4lL6LhznU9iSrsTsjyyNCGySFRmoiSzgHeE5wGyzAPoHAvSHIsU+qIkegbT/+X4gn4iLnx+XRe+uJb/X47DjavXPrv66b2Nta9v6v/Q8a76jfqtugyr0+fqaxih++oAOJ2ov6i/qr81LjY+a3zV+DM3feecxvxaFX4aO/8Fp+Mzxw==</latexit> Gromov-Wasserstein <latexit sha1_base64="XdaYYUiWyK0ZDFcgfwLFO/JhWEU=">AABEhnictVzrdhu3EYbTS2z3lqQ/+2dTxT1Oj6PKilM3J6fn2BZlWbFsyyYlOzFtH15WNO0Vl+aS9IXRa/Rv+wx9gT5H36D91VfoXIAFlsTuYFVXeyRiQXwzg1lgMDPAqjtOhtl0Y+OfZz740Y9/8tMPz547/7Of/+KXv/ro408Os3Q26cUHvTRJJ4+6nSxOhqP4YDqcJvGj8STuHHeT+GH35RZ+/3AeT7JhOmpN347jJ8edwWh4NOx1plDVnsQD4DGhm2cfrW2sb9BPtFq4rAtrSv/spx9/+nfVVn2Vqp6aqWMVq5GaQjlRHZXB9VhdVhtqDHVP1ALqJlAa0vexOlHnATuDVjG06EDtS/g7gLvHunYE90gzI3QPuCTwOwFkpC4AJoV2Eygjt4i+nxFlrC2jvSCaKNtb+OxqWsdQO1XPoVbCmZahOOzLVB2pP1EfhtCnMdVg73qayoy0gpJHTq+mQGEMdVjuw/cTKPcIafQcESajvqNuO/T9v6gl1uJ9T7edqX+TlBfgilRT9z7NKXTUnOhH9DRn8B3LkwDnAVCIdR+x9Jp0fUy9H0H7BdTfheuESkYnXbgWVHtSidyCy4fcEpE7cPmQOyJyDy4fck9E7sPlQ+5rJGInpHM/vgmXD98UOd+Hy4e8LyIfwOVDPhCRh3D5kIci8nu4fMjvReRNuHzImyLyNlw+5G0R2YLLh2yJyAO4fMgDEbkNlw+5rZHlM3UCV0p0hsKsvA7lIg+0FAnUXBflu0HW0Ye9ETCneyVYeVY34NOPbQToNC7BbgeMu6MSrDzydsBG+rGyLbpFq4kPe0vE7sII8GN3Rey36kUJ9tuAmfayBCvPtT1o58fK1vcO3Pmxd0TsXSj5sfIadQ9q/Nh7ASvGuAS7L2Lvq1cl2BCrPynByna/CXbFj5XXqRa092NDrOmsBCvb00PwYPxYebV6CLV+7EMR+0i9KcE+ErHfgXX3Y78LWGHflWDNGnueVpAB+SMxzNgqap18VmJpDNQ6Av8kX1sS8o27UC9hBjlmQJhjEbGTI3YCEXs5Yi9Yriy3oxn5uzKXZo5oBiK6+dqEpanYvp+3x1ISgGjkiMYSosojxWdt+jIn78LUSMhpvnJhKaRPaW6/sRTr8VBteQ3iXgHBY/s5jfxLFC1hBIWaqqL2PF/jGRnRfRXiNUVvppeGh4yb5lbBRb0RUV0Pqiui3npQb0XUzIOaiai5BzUXUXbmu7h2wAiw+sdnsaA7HgHsI5dfEXgF12HVuQVzNILxsw9e4AOquQefTYq9patKMozmcZ3ELMeTgiWeQGmh1qDeRoUNiq8TmmExSMYt7+kYH+8wt7HQc46t8Em+kkd5xiSczpDkGeR00FuMaD7Vo3Obak7Iu+NSPfytfN6bUj38Nmn8hLx4LtXDT7X001PI3tLY1imwTZhNY619W65Lg/MvTMOUz9OqixYXn+qxHjNI701N+rv6yeye4rlsUYn1Y8v1aGRO/7JC/+rQsHrOHD3Xo4LeE3u9phTV7slIx722XFeGlFbRkZbD3tV9Mtimr5+MKdejsQ8e1xbF3AunXHf0jvPe2HI9GoeK854n5Mmbcj0aA7pnfdhyPRqYbenoON+W61p21ADHzrZc16qPKAuMOSAe81xjvaIJ+UkzTW1I/kF1tsb1+VfXMczZPM1jhGpK1rctp9PN17JqiYy/EINVm9aUA/2LmeODFWks1KYYX7EM08L6vkrHrvGo+T3QYgSzn/cApJx5AhKanARa7wQoXhajrmLPDG5TxOEoOVpCtXXtVPQWLV/OGhXrnlGtFJfZ3lo9tsleZzT2xuQT7pFmJT3slT7hMoqShvYKGpLp1dHdOz1fi9rfEHHjJcQ4H2k92hHinbTqONWn9aaj4wt6l2cKF+/52PGL2eYjbW0w5knJFqEsVTzddiaP5NbhunpJ2Rw3fxfRE0V7NSerMaQdqUyMQk22mL3xBd1b2ge0J4c8mEYPnmOkqYwV75phFh3z6RFZVNfeSrxRXyZDx+WMrK6xx9XogYMeeND1Y5wtWDHuQqkFMcMB3LUCopzzua5S0vhEfZHvjqb0BKsj+qRgIQ0NtjdxwUJWRdnPC1ReAxpHA0fp4TSW6Rh8e4WSHPX75LGxa9HyX6CdW7O/3aExXj6ayzMxfeK6SVwjmjW8q8t3yxxYgoX3m03yX6t7ifzqcEQbKnF96nBmvYxoxz+mCHZMnnFCs02aHcXWbn5q+RvDaV+ZvXPczU7JQkZk/yJYn1IakxH9umcHzA46W4SEbGSI3Rnm3o3P1xmKY8z6cUPFpxrseIvJls2Iv6Hrzq6MxiJHDLwOnCyNbaOTPfIFY+I60dbdzu3q1QeR9pyEO0qYoh0rF4n/5/TX/JpxsrYyIlDD+AQybet8zyOlmAV11KFVvtoGmbaulJ/lMjzVUtv1z8r0WUGyBkVcKA+u1n3g3KN75oWjZEJyZytteB2tyuYi5fGSHrG3RxTFs90f6BUY5b5Eq+Qazbk2jZIBjIJpHkWYtlIWeZlvNa8i9TDa2f+FutV1UWtIMVI2g8sakvL7MUVrrpQJjGoevy9pNvm1PllqVc1nRGPx2JnLP0Dtp/DXyG3uw+h0C1bhBo0BpmDvrEa4JlppEcbrRoGXGZmGlr23/OyYNK3cmtPE12zdbIw9r01ln0bNG521MOXT0Hjh0HgRqMMW7TVaLZp6Y4meibFFS+9WhvKrw61Vg/JMpCx7ZAY1DJDSjaXCqPZFqnKMb1DvRFobIq0OzFZ3N8Cd8yFI/1xfnt0/5Kt7pG6Sb9MjD4zjlz7N0iH5XKa2OlJjCsj5irav7uxvUw1y75IFRcp8jhNnDO869eg6ySX9nV7ZUrLz1iKYc0uvdRtjY9tU/nIFeUxzIqN5aRBXqEWs5XfliJYs0rrjc0SU+e+QT8V+R3XM7La2zyQq+BM23uRZZXlxpDAi/UuZt92V6HXXiV8jigln2rvuAq36TxgpMMZkEvyeZUZPCFc53klgj7ZL9nPVTvEu3siRaJ2kXqg/B9gYjnrtWHfHlumx6dvvoSVq3T51XwuZXxLMUeJ3mh29Dq1qx9pHXSzdn45WR69yxfsqPcyW+Fp9zKiNG1nYKK+IaatvgrmwRPW4MCaES71e1JG/nuR1ZObdqVDKprWhXMw0sI15TvGSdA4UET7v7qLXm/tc6Ed3hV6XsC41rpEoYTYu1fkB19JiVurcyjrEtecqV6PEWYnKVgpD3V0trP1mCxmT9UuUlLPh1q7s7UKUImdhmEJP8YnesvjQpfkNXPg3Ur7o0HAMyR02wb+9rrbU9ns4DfFKlzmjGVEN2oL+Uuzd0f0stqjW0SuHuks/hEM4jyHoWpJ+SCtpXdmZsiy5Sz2c/muyAhMVi9LblvX74HKRe7LKqU5/hmTZ5N4MlXkXp25fDIeQnhS5hPPhfQ2pF0fKvNNUrw+GutyDIoc6PMw5hrBnblvX5+VyqtbXKpdQHrwKmB0Xg8Odv/JYxbYLsVAT54m8fw5oHY4qqJvV4n/th+FjOdXnFcoto3fNXgQ8dW4X64ws+sP154zlFjKayzmG80zz3llvyc+P/b6o1pNKnd68f/roj9oxYHgtFOdBZekY744iK28oFdwX8MmQqv+of5yR30Z4ldMok6MOJbNPUU7NtJCpmTcufb0z34XIZOmUyVSkZuOIJp2I3VK76ib8buUeYN3TofwuJX8i1v/+bB9qj8h6mCw6Zw7aVBdT9sPuovXp3p6fLZMYz/Ly2d4W1OBe+B7V4jnfu9Qez/q2Cn0rf4OE5/odlap+ISJZ3t2z86oLPSjuvHEOyLznG9FZes5i8cmz44C9RT4/xRGSeet5QYg+xYPLki4IYUZLFeWul3KXziLFJbS7hb71aISP9Q4/7jfgufxOnlWK1B+orqNXB1ypJan2PVI9poxAl/S/ARHaV+oSfF7SZb+k+yuSZvQMihK9cb6rPgF24h0X9i3GC5T/Mhm6uW6XUjRvdw2rM7CNUi580r0aP6jADxwpm/S0XlK8PVHVOcNZBc2Zlsndxx0pk+9kPWA028nHR3X8PK/gNQ/o/+1S9G1H0h2QpUtZ9oj28SZEL9G62Sbp+Txldb72VoW05m1NpmlPVNpxYM5GVu8FJHrclc9+Pv8o5WjiEjruXOeTmNLuhCyPLE2ILBKVmSjJLOAd4XmALPMAOkeCNEcihYEoiZ7B9H85vqafiAtXr+jC15fz/8txuLl++Y/rX97fXLt2Q/+HjrPqN+q36iKsTlfVNRih++oAOI3VX9Rf1d8aZxvrja8aV7npB2c05teq8NO49l/IOTE2</latexit> registration <latexit sha1_base64="aTWnS678CiWH1RbiLht47pmdz44=">AABB2XictVzNchu5EYY3f2vnz5sccshlEq1T3pTjSFpXNltbqVpZsmWttZZsUrJ3LdvFIUcU7SGH5pDyD1eH3FK55hFyTZ4hz5E3SE55hfQPMMCQmGmM4hglCQPi6270AI3uBuh4nA7y6erqPy+8961vf+e733v/4qXv/+CHP/rx5Q9+cphns0k3OehmaTZ5FHfyJB2MkoPpYJomj8aTpDOM0+Rh/GITP394mkzyQTZqT9+MkyfDTn80OB50O1Noenb5Z4/3pifDziiJWkkcZ7OTa9H66vrak2eXV1avr9K/aLmypisrSv/bzz6IDtSR6qlMddVMDVWiRmoK9VR1VA7lsVpTq2oMbU/UHNomUBvQ54k6U5cAO4NeCfToQOsL+N2Hp8e6dQTPSDMndBe4pPAzAWSkrgAmg34TqCO3iD6fEWVsraI9J5oo2xv4G2taQ2idqhNolXCmZygOxzJVx+r3NIYBjGlMLTi6rqYyI62g5JEzqilQGEMb1nvw+QTqXUIaPUeEyWnsqNsOff4v6omt+NzVfWfq3yTlFSiRaunRZwWFjjol+hG9zRl8xvKkwLkPFBI9Rqy9Il0PafQj6D+H9ntQzqhmdBJDmVPrWS1yE4oPuSkit6H4kNsicheKD7krIveh+JD7GonYCencj29B8eFbIuf7UHzI+yLyARQf8oGIPITiQx6KyK+h+JBfi8jbUHzI2yLyLhQf8q6IbEPxIdsi8gCKD3kgIm9B8SFvaWT1Sp1AyYjOQFiVG1Av80BLkULLhijfTbKOPuzNgDXdrcDKq3oL/vqxWwE6TSqwtwLm3XEFVp5522Aj/VjZFt2h3cSHvSNid2AG+LE7IvYL9bwC+0XASntRgZXX2i7082Nl6/slPPmxX4rYe1DzY+U9ag9a/Ni9gB1jXIHdF7H31csKbIjVn1RgZbvfArvix8r7VBv6+7Eh1nRWgZXt6SF4MH6svFs9hFY/9qGIfaReV2AfidivwLr7sV8F7LBvK7Bmj71EO0if/JEEVmwdtU6xKrE2BmodgX9a7C0p+cYxtEuYfoHpE2YoIrYLxHYgYrdA7AbLlRd2NCd/V+bSKhCtQERc7E1Ym4r9e0V/rKUBiK0CsbWAqPNI8V2bsZySd2FaJOS02LmwFjKmrLDfWEv0fKi3vAaxV0Lw3D6hmX+NoiWMoFBTddROij2ekRE91yFeUfRmRml4yLhpYRVc1GsRFXtQsYh640G9EVEzD2omok49qFMRZVe+izsKmAFW//gu5vTEM4B95OoSgVewAbvOHVijEcyfffACH1DLHvxtUewtlTrJMJrHfRKzHE9KlngCtblagXYbFW5RfJ3SCktAMu65p2N8fMLcxlyvObbCZ8VOHhUZk3A6A5KnX9BBbzGi9dSMzl1qOSPvjmvN8HeKdW9qzfC3SONn5MVzrRl+qqWfnkP2tsa2z4FtwWoaa+3belManH9hGqZ+iXZdtLj4Vod6ziC91w3p7+g3s3OO97JJNdaPrTejkTvjy0vja0LD6jl39NyMCnpP7PWaWtR4JCMd99p6Uxky2kVHWg771PTNYJ+efjOm3ozGPnhcmxRzz51609k7LkZj681oHCrOe56RJ2/qzWj06Zn1YevNaGC2paPjfFtvatlRAxw723pTqz6iLDDmgHjOc4v1iibkJ800tQH5B/XZGtfnX97HMGfztIgR6ilZ37aaTlzsZfUSGX8hAas2bSgH+hczxwcr05irdTG+Yhmmpf19mY7d41Hzu6DFCFY/nwFIOfMUJDQ5CbTeKVBcE6Ou8sgMbl3E4Sw5XkAd6dap6C1avpw1Krc9o1YpLrOjtXo8Inud09wbk0+4S5qV9LBb+YarKEoa2i1pSKbXRHdv9Xota39VxI0XEONipnXpRIhP0urjVJ/WW46Or+hTnikUPvOx8xezzcfa2mDMk5EtQlnqeLr9TB7JbcN99ZqyOW7+LKI3ivbqlKzGgE6kcjEKNdli9sbn9GxpH9CZHPJgGl14j5GmMlZ8aoZZdMynR2RRXXsr8UZ9mQwd13OyusYe16P7DrrvQTePcTZhx7gHtTbEDAfw1A6Ici4VuspI4xP1m+J0NKM3WB/RpyULaWiwvUlKFrIuyj4pUXkFaJwNHKWH01ikY/BHS5TkqN8nj41dy5b/Cp3cmvPtDs3x6tlcnYnpEdd14hrRquFTXX5a5MASzL2frJP/Wj9K5NeEI9pQietThzPrZUQn/glFsGPyjFNabdLqKPd281OLnxhO+8qcneNpdkYWMiL7F8H+lNGcjOjHvTtgTtDZIqRkI0PszqDwbny+zkCcY9aPGyi+1WDnW0K2bEb8DV13deU0Fzli4H3gbGFuG53ski+YENeJtu52bdfvPoi09yTcWcIU7Vy5Svw/ot/mx8yTlaUZgRrGN5BrW+d7HxnFLKijDu3y9TbI9HWl/LCQ4amW2u5/VqYPS5JtUcSF8uBu3QPOXXpmXjhLJiR3vtSH99G6bC5SHi/oEUd7TFE82/2+3oFR7mu0S67QmjuiWdKHWTAtogjTV8oiL/Kt51WmHkY7/79Qt7ouaw0pRspmcFlDUn4/oWjNlTKFWc3z9wWtJr/WJwu96vmMaC4OnbX8DbT+An4buc1zGJ24ZBVu0hxgCvbJaoRboqUeYbxulniZmWlo2WfLz85J08ttOU98zdbNxtinjans06x5rbMWpn4eGs8dGs8Dddims0arRdNuLNEzMbZo69PKUH5NuLUbUJ6JlGWPzKAGAVK6sVQY1Z5IVY7xDeqtSGtVpNWB1eqeBrhrPgTpX+uLq/ubYneP1G3ybbrkgXH80qNVOiCfy7TWR2pMATnf0PbVXf1H1ILcY7KgSJnvceKK4VOnLpWzQtJf6Z0tIztvLYK5t/RK9zE29ojqHy8hh7QmclqXBnGDeiRafleOaMEiXXd8jogy/x3yqdjvqI+Z3d72nUQlf8LGm7yqLC+OFEakfynztrMUve448WtEMeFMe9cx0Gr+hpECY0wmwe9Z5vSGcJfjkwT2aGOyn8t2ik/xRo5E10nqufpDgI3hqNfOdXdumRGbsf0aeqLW7Vv39ZD5pcEcJX7nOdHr0K421D7qfOH5fLQ6epcrP9fpYbbA1+pjRn3cyMJGeWXMkfosmAtL1IwLY0K4NBtFE/mbSd5EZj6dCqVsehvK5UwD25gTipeke6CI8Hl3V73e3EfCOOIlejFhXWrcIlHCbFym8wOupcWs1MWlfYhbL9buRqmzE1XtFIa6u1tY+80WMiHrlyopZ8O9XdmPSlGKnIVhCl3FN3qr4kOX5mdQ8HekfNGh4RiSO2yBf7uhNtWtd3Ab4qWuc0Yzoha0Bb2F2Lujx1nuUa+jlw51l34Ih3AeA9C1JP2AdtKmsjNlWXKXejj9V2QFJioRpbc9m4/B5SKPZJlTk/EMyLLJoxko812cpmMxHEJGUuYSzofPNaRRHCvznaZmYzDU5RGUOTThYe4xhL1z27s5L5dTvb6WuYTy4F3AnLgYHJ78Vccqtl+IhZo4b+Tdc0DrcFxD3ewW/+s4DB/LqTmvUG45fdfsecBb536JzsiiP9x8zVhuIbO5mmM4z6wYnfWW/PzY74savanMGc27p4/+qJ0DhtdccR5Ulo7x7iyy8oZSwXMBnwyZ+o/6xwX52wgvCxpVcjShZM4pqqmZHjI1841L3+jMZyEyWTpVMpWp2TiiRTdiN9WOug0/m4UH2PR2KH+Xkv8i1v/92R60HpP1MFl0zhwcUVtC2Q97itajZ3t/tkpivMvLd3vb0IJn4bvUivd871F/vOvbLo2t+hskvNa/VJnqlSKSxdM9u65iGEH55I1zQOZ7vhHdpecsFt88GwacLZr7U4sSzekT+WZBXImPHSm7NFfH+qweTw7whn2nyA9F6rfU1tF2HvdcifN+Jef9Bc45aafM4bXzWf3drCoumw6XXpE7O9X9Moqz7XlefW50q5IL30Gvx/dr8H1HyhZp/wVFwhNVn82b1dCcaZncE9aRMplI1gPGmZ3ifddHtqc1vE4Dxn+3En3XkXQbZIkp/x3RCduE6KVaN7dIer7pWJ9JvVMjrf4eJf3vBp/Sv4grn9zQlU/Xiv/d4HD9+trvrn98f33l85v6/zl4X/1c/VJdhTX+ifocqO2rA7Kmf1V/U3/feLzxx40/bfyZu753QWN+qkr/Nv7yXzjTqUQ=</latexit>

    [Othmane Sebbouh, 2021] <latexit sha1_base64="vT0xGll5ZYO8gmdwavYy0Ckm65g=">AABB13ictVzbchu5EYU3t7Vz8yaVp7xMonXKu+V1JK0rm62tVK0sybLWtC2blGzv0nbxMqJpDzk0h5QvXFXeUnnNJ+Q1+Yh8R/4gecovpC/AAENipjGKY5QkDIjT3egBGt0N0N1JMsxm6+v/PPfed777ve//4P3zF374ox//5KcXP/jZUZbOp734sJcm6fRht5PFyXAcH86GsyR+OJnGnVE3iR90X2zj5w9O4mk2TMet2ZtJ/HjUGYyHx8NeZwZNTy/+ok00Ft1kHp9GW62t7U+y+OXTi2vrV9fpX7Ra2dCVNaX/HaQfRIeqrfoqVT01VyMVq7GaQT1RHZVB+UZtqHU1gbbHagFtU6gN6fNYnaoLgJ1Drxh6dKD1BfwewNM3unUMz0gzI3QPuCTwMwVkpC4BJoV+U6gjt4g+nxNlbC2jvSCaKNsb+NvVtEbQOlPPoFXCmZ6hOBzLTB2r39MYhjCmCbXg6Hqaypy0gpJHzqhmQGECbVjvw+dTqPcIafQcESajsaNuO/T5v6gntuJzT/edq3+TlJegRKqpR5/mFDrqhOhH9Dbn8BnLkwDnAVCI9Rix9op0PaLRj6H/AtrvQDmlmtFJF8qCWk8rkdtQfMhtEbkHxYfcE5ENKD5kQ0QeQPEhDzQSsVPSuR/fhOLDN0XO96D4kPdE5H0oPuR9EXkExYc8EpFfQ/EhvxaRN6D4kDdE5C0oPuQtEdmC4kO2ROQhFB/yUETuQvEhdzWyfKVOoaREZyisyi2oF3mgpUigZUuU7zpZRx/2esCa7pVg5VW9A3/92J0AncYl2N2AeXdcgpVn3h7YSD9WtkU3aTfxYW+K2H2YAX7svoj9Sj0vwX4VsNJelGDltdaAfn6sbH1vw5Mfe1vE3oGaHyvvUXehxY+9G7BjTEqwByL2nnpZgg2x+tMSrGz3m2BX/Fh5n2pBfz82xJrOS7CyPT0CD8aPlXerB9Dqxz4QsQ/V6xLsQxH7CKy7H/soYId9W4I1e+wF2kEG5I/EsGKrqHXyVYm1CVDrCPyTfG9JyDfuQruEGeSYAWFGImIvR+wFIho5ohEsV5bb0Yz8XZlLM0c0AxHdfG/C2kzs38/7Yy0JQOzkiJ0lRJVHiu/ajOWEvAvTIiFn+c6FtZAxpbn9xlqs50O15TWIuwUEz+1nNPOvULSEERRqqoras3yPZ2REz1WIVxS9mVEaHjJullsFF/VaRHU9qK6IeuNBvRFRcw9qLqJOPKgTEWVXvotrB8wAq398Fwt64hnAPnJ5icAr2IJd5yas0QjmzwF4gfep5S78bVLsLZUqyTCax30SsxyPC5Z4CrWFWoN2GxXuUHyd0AqLQTLueVfH+PiEuY2FXnNshU/znTzKMybhdIYkzyCng95iROupHp1b1HJK3h3X6uFv5uve1Orhd0njp+TFc60efqaln51B9pbGts6AbcJqmmjt23pdGpx/YRqmfoF2XbS4+FZHes4gvdc16e/rN7N/hveyTTXWj63Xo5E548sK46tDw+o5c/Rcjwp6T+z1mlpUeyRjHffael0ZUtpFx1oO+1T3zWCfvn4zpl6PxgF4XNsUcy+cet3ZO8lHY+v1aBwpznuekidv6vVoDOiZ9WHr9WhgtqWj43xbr2vZUQMcO9t6Xas+piww5oB4znOL9Yqm5CfNNbUh+QfV2RrX51/dxzBn8ySPEaopWd+2nE4338uqJTL+QgxWbVZTDvQv5o4PVqSxUJtifMUyzAr7+yodu8ej5hugxQhWP58BSDnzBCQ0OQm03glQ3BCjruLIDG5TxOEsOV5CtXXrTPQWLV/OGhXbnlKrFJfZ0Vo9tsleZzT3JuQTNkizkh4apW+4jKKkoUZBQzK9Orp7q9drUfvrIm6yhJjkM61HJ0J8klYdp/q03nR0fEmf8syg8JmPnb+YbT7W1gZjnpRsEcpSxdPtZ/JIbhvuq1eUzXHzZxG9UbRXJ2Q1hnQilYlRqMkWsze+oGdL+5DO5JAH0+jBe4w0lYniUzPMomM+PSKL6tpbiTfqy2TouJ6R1TX2uBo9cNADD7p+jLMNO8YdqLUgZjiEp1ZAlHMh11VKGp+qT/LT0ZTeYHVEnxQspKHB9iYuWMiqKPtZgcorQONs4Cg9nMYyHYNvr1CSo36fPDZ2LVr+S3Rya863OzTHy2dzeSamT1w3iWtEq4ZPdflpmQNLsPB+skn+a/UokV8djmhDJa5PHM6slzGd+McUwU7IM05otUmro9jbzU8tf2I4HShzdo6n2SlZyIjsXwT7U0pzMqIf9+6AOUFni5CQjQyxO8Pcu/H5OkNxjlk/bqj4VoOdbzHZsjnxN3Td1ZXRXOSIgfeB06W5bXTSIF8wJq5Tbd3t2q7efRBp70m4s4Qp2rlymfh/RL/Nj5knayszAjWMbyDTts73PlKKWVBHHdrlq22Q6etK+WEuwxMttd3/rEwfFiTboYgL5cHdug+ce/TMvHCWTEnubKUP76NV2VykPFnSI472mKJ4tvsDvQOj3Fdol1yjNdemWTKAWTDLowjTV8oiL/Ot5lWkHkY7+79Qt7ouag0pRspmcFlDUn4/pmjNlTKBWc3z9wWtJr/Wp0u9qvmMaS6OnLX8LbT+Cn4buc1zGJ1uwSpcpznAFOyT1Qi3RCs9wnhdL/AyM9PQss+Wn52Tppfbcpb4mq2bjbFPalM5oFnzWmctTP0sNJ47NJ4H6rBFZ41Wi6bdWKKnYmzR0qeVofzqcGvVoDwXKcsemUENA6R0Y6kwqn2RqhzjG9Rbkda6SKsDq9U9DXDXfAjSv9aXV/e3+e4eqRvk2/TIA+P4pU+rdEg+l2mtjtSYAnK+pu2ru/rb1ILcu2RBkTLf48QVw6dOPSqnuaS/0TtbSnbeWgRzb+mV7mNsbJvqn64gR7QmMlqXBnGNesRafleOaMkiXXV8jogy/x3yqdjvqI6Z3d72nUQFf8LGm7yqLC+OFMakfynztr8Sve478WtEMeFce9ddoFX/DSMFxphMgt+zzOgN4S7HJwns0XbJfq7aKT7FGzsSXSWpF+oPATaGo1471925ZUZsxvYx9ESt27fu6yHzS4I5SvzOcqLXoV1tpH3UxdLz2Wh19C5XfK7Sw3yJr9XHnPq4kYWN8oqYtvoimAtLVI8LY0K41BtFHfnrSV5HZj6dCqVsehvKxUwD25hnFC9J90AR4fPuLnu9uY+EcXRX6HUJ61LjFokSZuNSnR9wLS1mpc6v7EPcer5yN0qcnahspzDU3d3C2m+2kDFZv0RJORvu7creLkQpchaGKfQU3+gtiw9dml9Awd+R8kWHhmNI7rAJ/u2W2la77+A2xEtd54xmRC1oC/pLsXdHj7PYo1pHLx3qLv0QDuE8hqBrSfoh7aR1ZWfKsuQu9XD6r8gKTFUsSm971h+Dy0UeySqnOuMZkmWTRzNU5rs4dcdiOISMpMglnA+fa0ijOFbmO031xmCoyyMocqjDw9xjCHvntnd9Xi6nan2tcgnlwbuAOXExODz5K49VbL8QCzV13si754DW4biCutkt/tdxGD6WU31eodwy+q7Z84C3zv1inZFFf7j+mrHcQmZzOcdwnmk+Oust+fmx3xfVelOpM5p3Tx/9UTsHDK+F4jyoLB3j3Vlk5Q2lgucCPhlS9R/1j3PytxFe5jTK5KhDyZxTlFMzPWRq5huXvtGZz0JksnTKZCpSs3FEk27Ebqt9dQN+tnMPsO7tUP4uJf9FrP/7s31oPSbrYbLonDloU1tM2Q97itanZ3t/tkxivMvLd3tb0IJn4Q1qxXu+d6g/3vVtFcZW/g0SXuu3Var6hYhk+XTPrqsujKB48sY5IPM934ju0nMWi2+ejQLOFs39qWWJFvSJfLOgW4rvOlL2aK5O9Fk9nhzgDftOnh+K1G+praPtPO65EueDUs4HS5wz0k6Rw2vns+q7WWVcth0u/Tx3dqL7pRRn2/O86tzoTikXvoNejR9U4AeOlE3S/guKhKeqOps3r6A51zK5J6xjZTKRrAeMMzv5+66ObE8qeJ0EjP9WKfqWI+keyNKl/HdEJ2xTopdo3eyS9HzTsTqTerNCWv09SvrfDT6nfxFXPrumK59v5P+7wdHm1Y3fXf303ubal9f1/3Pwvvql+rW6DGv8M/UlUDtQh3Tq/Vf1N/X3rUdbf9z609afuet75zTm56rwb+sv/wUQUKl9</latexit> ATAC-seq <latexit sha1_base64="Wj0OMwR3nfFhlvYpHXA5RaQnHKk=">AABB1XictVxbcxu3FYbTW+zenOaxL9sq7jgdx5UVT9NMpjORJVlWTNuySclOQtvDy4qmveTSXFK+MHzr9LU/oa/tr+jv6D9on/oXei7AAkti92BV1xhJWBDfOQdngYNzDkB3J8kwm21u/vPce9/7/g9++KP3z1/48U9++rOfX/zgF8dZOp/24qNemqTTR91OFifDcXw0G86S+NFkGndG3SR+2H2xg58/PI2n2TAdt2ZvJvHjUWcwHp4Me50ZND29+GGbaCymcX8ZPbi7/UkWv3x6cWPz6ib9i9Yr13RlQ+l/h+kH0ZFqq75KVU/N1UjFaqxmUE9UR2VQvlXX1KaaQNtjtYC2KdSG9HmsluoCYOfQK4YeHWh9Ab8H8PStbh3DM9LMCN0DLgn8TAEZqUuASaHfFOrILaLP50QZW8toL4gmyvYG/nY1rRG0ztQzaJVwpmcoDscyUyfqDzSGIYxpQi04up6mMietoOSRM6oZUJhAG9b78PkU6j1CGj1HhMlo7KjbDn3+L+qJrfjc033n6t8k5SUokWrq0ac5hY46JfoRvc05fMbyJMB5ABRiPUasvSJdj2j0Y+i/gPa7UJZUMzrpQllQ67ISuQPFh9wRkftQfMh9EdmA4kM2ROQhFB/yUCMROyWd+/FNKD58U+R8H4oPeV9EPoDiQz4QkcdQfMhjEfkNFB/yGxF5E4oPeVNE3obiQ94WkS0oPmRLRB5B8SGPROQeFB9yTyPLV+oUSkp0hsKq3IZ6kQdaigRatkX5bpB19GFvBKzpXglWXtW78NeP3Q3QaVyC3QuYdyclWHnm7YON9GNlW3SLdhMf9paIPYAZ4MceiNiv1PMS7FcBK+1FCVZeaw3o58fK1vcOPPmxd0TsXaj5sfIedQ9a/Nh7ATvGpAR7KGLvq5cl2BCrPy3Byna/CXbFj5X3qRb092NDrOm8BCvb02PwYPxYebd6CK1+7EMR+0i9LsE+ErFfg3X3Y78O2GHflmDNHnuBdpAB+SMxrNgqap18VWJtAtQ6Av8k31sS8o270C5hBjlmQJiRiNjPEfuBiEaOaATLleV2NCN/V+bSzBHNQEQ335uwNhP79/P+WEsCELs5YncFUeWR4rs2Yzkl78K0SMhZvnNhLWRMaW6/sRbr+VBteQ3iXgHBc/sZzfwrFC1hBIWaqqL2LN/jGRnRcxXiFUVvZpSGh4yb5VbBRb0WUV0Pqiui3nhQb0TU3IOai6hTD+pURNmV7+LaATPA6h/fxYKeeAawj1xeIvAKtmHXuQVrNIL5cwhe4ANquQd/mxR7S6VKMozmcZ/ELMfjgiWeQm2hNqDdRoW7FF8ntMJikIx73tMxPj5hbmOh1xxb4WW+k0d5xiSczpDkGeR00FuMaD3Vo3ObWpbk3XGtHv5Wvu5NrR5+jzS+JC+ea/XwMy397AyytzS2dQZsE1bTRGvf1uvS4PwL0zD1C7TrosXFtzrScwbpva5J/0C/mYMzvJcdqrF+bL0ejcwZX1YYXx0aVs+Zo+d6VNB7Yq/X1KLaIxnruNfW68qQ0i461nLYp7pvBvv09Zsx9Xo0DsHj2qGYe+HU687eST4aW69H41hx3nNJnryp16MxoGfWh63Xo4HZlo6O8229rmVHDXDsbOt1rfqYssCYA+I5zy3WK5qSnzTX1IbkH1Rna1yff30fw5zNkzxGqKZkfdtyOt18L6uWyPgLMVi1WU050L+YOz5YkcZCbYnxFcswK+zv63TsHo+ab4AWI1j9fAYg5cwTkNDkJNB6J0Dxmhh1FUdmcFsiDmfJyQqqrVtnordo+XLWqNj2lFqluMyO1uqxTfY6o7k3IZ+wQZqV9NAofcNlFCUNNQoakunV0d1bvV6L2t8UcZMVxCSfaT06EeKTtOo41af1pqPjS/qUZwaFz3zs/MVs84m2NhjzpGSLUJYqnm4/k0dy23BfvaJsjps/i+iNor06JasxpBOpTIxCTbaYvfEFPVvaR3QmhzyYRg/eY6SpTBSfmmEWHfPpEVlU195KvFFfJkPH9YysrrHH1eiBgx540PVjnB3YMe5CrQUxwxE8tQKinAu5rlLS+FR9kp+OpvQGqyP6pGAhDQ22N3HBQlZF2c8KVF4BGmcDR+nhNFbpGHx7jZIc9fvksbFr0fJfopNbc77doTlePpvLMzF94rpFXCNaNXyqy0+rHFiChfeTLfJfq0eJ/OpwRBsqcX3icGa9jOnEP6YIdkKecUKrTVodxd5ufmr1E8PpUJmzczzNTslCRmT/ItifUpqTEf24dwfMCTpbhIRsZIjdGebejc/XGYpzzPpxQ8W3Gux8i8mWzYm/oeuurozmIkcMvA8sV+a20UmDfMGYuE61dbdru3r3QaS9J+HOEqZo58pl4v8x/TY/Zp5srM0I1DC+gUzbOt/7SClmQR11aJevtkGmryvlR7kMT7TUdv+zMn1UkGyXIi6UB3frPnDu0TPzwlkyJbmztT68j1Zlc5HyZEWPONoTiuLZ7g/0DoxyX6FdcoPWXJtmyQBmwSyPIkxfKYu8yreaV5F6GO3s/0Ld6rqoNaQYKZvBZQ1J+f2YojVXygRmNc/fF7Sa/FqfrvSq5jOmuThy1vJ30Por+G3kNs9hdLoFq3CD5gBTsE9WI9wSrfUI43WjwMvMTEPLPlt+dk6aXm7LWeJrtm42xj6tTeWQZs1rnbUw9bPQeO7QeB6owxadNVotmnZjiZ6KsUVLn1aG8qvDrVWD8lykLHtkBjUMkNKNpcKo9kWqcoxvUG9FWpsirQ6sVvc0wF3zIUj/Wl9d3d/lu3ukbpJv0yMPjOOXPq3SIflcprU6UmMKyPm6tq/u6m9TC3LvkgVFynyPE1cMnzr1qCxzSX+jd7aU7Ly1CObe0ivdx9jYNtU/XUOOaE1ktC4N4jr1iLX8rhzRikW66vgcEWX+O+RTsd9RHTO7ve07iQr+hI03eVVZXhwpjEn/UubtYC16PXDi14hiwrn2rrtAq/4bRgqMMZkEv2eZ0RvCXY5PEtij7ZL9XLdTfIo3diS6SlIv1B8DbAxHvXauu3PLjNiM7bfQE7Vu37qvh8wvCeYo8TvLiV6HdrWR9lEXK89no9XRu1zxuUoP8xW+Vh9z6uNGFjbKK2La6otgLixRPS6MCeFSbxR15K8neR2Z+XQqlLLpbSgXMw1sY55RvCTdA0WEz7u77PXmPhbG0V2j1yWsS41bJEqYjUt1fsC1tJiVOr+2D3Hr+crdKHF2orKdwlB3dwtrv9lCxmT9EiXlbLi3K3u7EKXIWRim0FN8o7csPnRpfgEFf0fKFx0ajiG5wyb4t9tqR+29g9sQL3WdM5oRtaAt6K/E3h09zmKPah29dKi79EM4hPMYgq4l6Ye0k9aVnSnLkrvUw+m/IiswVbEove1ZfwwuF3kk65zqjGdIlk0ezVCZ7+LUHYvhEDKSIpdwPnyuIY3iRJnvNNUbg6Euj6DIoQ4Pc48h7J3b3vV5uZyq9bXOJZQH7wLmxMXg8OSvPFax/UIs1NR5I++eA1qHkwrqZrf4X8dh+FhO9XmFcsvou2bPA94694t1Rhb94fprxnILmc3lHMN5pvnorLfk58d+X1TrTaXOaN49ffRH7RwwvBaK86CydIx3Z5GVN5QKngv4ZEjVf9Q/zsnfRniZ0yiTow4lc05RTs30kKmZb1z6Rmc+C5HJ0imTqUjNxhFNuhG7ow7UTfjZyT3AurdD+buU/Bex/u/P9qH1hKyHyaJz5qBNbTFlP+wpWp+e7f3ZMonxLi/f7W1BC56FN6gV7/nepf5417dVGFv5N0h4rd9RqeoXIpLV0z27rrowguLJG+eAzPd8I7pLz1ksvnk2CjhbNPenViVa0CfyzYJuKb7rSNmjuTrRZ/V4coA37Dt5fihSv6O2jrbzuOdKnA9LOR+ucM5IO0UOr53Pqu9mlXHZcbj089zZqe6XUpxtz/Oqc6O7pVz4Dno1flCBHzhSNkn7LygSnqrqbN68guZcy+SesI6VyUSyHjDO7OTvuzqyPa3gdRow/tul6NuOpPsgS5fy3xGdsE2JXqJ1s0fS803H6kzqrQpp9fco6X83+Jz+RVz57LqufH4t/98NjreuXvv91U/vb218eUP/Pwfvq1+qX6vLsMY/U18CtUN1BBzeqL+qv6m/bz/cXm7/afvP3PW9cxrzoSr82/7LfwEUDqjE</latexit> RNA-seq <latexit sha1_base64="W74EXqFW3XURCc80loqvrEriNGE=">AABB0XictVzbchvHER05N0u5WE4e87IJrZSckhlKVsVxuVJliqQoWpAECSAl25BUuCwhSAsshAWoC8yqVF7zCXlNviPfkT9InvIL6cvMziwwuz3LKJwiODs7p7und6anu2fB3jQZZfOtrX+ee+973//BD3/0/vkLP/7JT3/2wcUPf36UpYtZPz7sp0k6e9TrZnEymsSH89E8iR9NZ3F33Evih70XO3j/4Uk8y0bppD1/M40fj7vDyeh41O/OoenpxQ86RGM5iwenUaebPL24sbW5RT/ReuWqrmwo/dNMP4wOVUcNVKr6aqHGKlYTNYd6oroqg/Ktuqq21BTaHqsltM2gNqL7sTpVFwC7gF4x9OhC6wv4HMLVt7p1AtdIMyN0H7gk8DsDZKQuASaFfjOoI7eI7i+IMraW0V4STZTtDfztaVpjaJ2rZ9Aq4UzPUByOZa6O1R9oDCMY05RacHR9TWVBWkHJI2dUc6AwhTasD+D+DOp9Qho9R4TJaOyo2y7d/xf1xFa87uu+C/VvkvISlEi19OjTnEJXnRD9iJ7mAu6xPAlwHgKFWI8Ra69I12Ma/QT6L6H9LpRTqhmd9KAsqfW0ErkDxYfcEZH7UHzIfRHZgOJDNkRkE4oP2dRIxM5I5358C4oP3xI534fiQ94XkQ+g+JAPROQRFB/ySER+A8WH/EZE3oTiQ94Ukbeh+JC3RWQbig/ZFpGHUHzIQxG5B8WH3NPI8pU6g5ISnZGwKrehXuSBliKBlm1RvhtkHX3YGwFrul+ClVf1Lvz1Y3cDdBqXYPcC5t1xCVaeeftgI/1Y2Rbdot3Eh70lYg9gBvixByL2K/W8BPtVwEp7UYKV11oD+vmxsvW9A1d+7B0Rexdqfqy8R92DFj/2XsCOMS3BNkXsffWyBBti9WclWNnut8Cu+LHyPtWG/n5siDVdlGBle3oEHowfK+9WD6HVj30oYh+p1yXYRyL2a7DufuzXATvs2xKs2WMv0A4yJH8khhVbRa2br0qsTYFaV+Cf5HtLQr5xD9olzDDHDAkzFhH7OWI/ENHIEY1gubLcjmbk78pcWjmiFYjo5XsT1uZi/0HeH2tJAGI3R+yuIKo8UnzWZiwn5F2YFgk5z3curIWMKc3tN9ZiPR+qLa9B3CsgeG4/o5l/haIljKBQU1XUnuV7PCMjuq5CvKLozYzS8JBx89wquKjXIqrnQfVE1BsP6o2IWnhQCxF14kGdiCi78l1cJ2AGWP3js1jSFc8A9pHLSwRewTbsOrdgjUYwf5rgBT6glnvwt0Wxt1SqJMNoHvdJzHI8LljiGdSWagPabVS4S/F1QissBsm45z0d4+MV5jaWes2xFT7Nd/Ioz5iE0xmRPMOcDnqLEa2nenRuU8speXdcq4e/la97U6uH3yONn5IXz7V6+LmWfn4G2dsa2z4DtgWraaq1b+t1aXD+hWmY+gXaddHi4lMd6zmD9F7XpH+gn8zBGZ7LDtVYP7Zej0bmjC8rjK8ODavnzNFzPSroPbHXa2pR7ZFMdNxr63VlSGkXnWg57FXdJ4N9BvrJmHo9Gk3wuHYo5l469bqzd5qPxtbr0ThSnPc8JU/e1OvRGNI168PW69HAbEtXx/m2XteyowY4drb1ulZ9QllgzAHxnOcW6xXNyE9aaGoj8g+qszWuz7++j2HO5kkeI1RTsr5tOZ1evpdVS2T8hRis2rymHOhfLBwfrEhjqa6J8RXLMC/s7+t07B6Pmm+AFiNY/XwGIOXME5DQ5CTQeidA8aoYdRVHZnDXRBzOkuMVVEe3zkVv0fLlrFGx7Sm1SnGZHa3VY4fsdUZzb0o+YYM0K+mhUfqEyyhKGmoUNCTTq6O7t3q9FrW/JeKmK4hpPtP6dCLEJ2nVcapP6y1Hx5f0Kc8cCp/52PmL2eZjbW0w5knJFqEsVTzdfiaP5LbhvnpF2Rw334voiaK9OiGrMaITqUyMQk22mL3xJV1b2od0Joc8mEYfnmOkqUwVn5phFh3z6RFZVNfeSrxRXyZDx/WMrK6xx9XooYMeetD1Y5wd2DHuQq0NMcMhXLUDopwLua5S0vhMfZKfjqb0BKsj+qRgIQ0NtjdxwUJWRdnPClReARpnA0fp4TRW6Rh8Z42SHPX75LGxa9HyX6KTW3O+3aU5Xj6byzMxA+J6jbhGtGr4VJevVjmwBEvvnWvkv1aPEvnV4Yg2VOL6xOHMepnQiX9MEeyUPOOEVpu0Ooq93fzU6h3DqanM2TmeZqdkISOyfxHsTynNyYh+3XcHzAk6W4SEbGSI3Rnl3o3P1xmJc8z6cSPFbzXY+RaTLVsQf0PXXV0ZzUWOGHgfOF2Z20YnDfIFY+I609bdru3q3QeR9j0Jd5YwRTtXLhP/j+nT/Jp5srE2I1DD+AQybet8zyOlmAV11KVdvtoGmb6ulB/lMjzRUtv9z8r0UUGyXYq4UB7crQfAuU/XzAtnyYzkztb68D5alc1FytMVPeJojymKZ7s/1Dswyn2FdskNWnMdmiVDmAXzPIowfaUs8irfal5F6mG0s/8LdavrotaQYqRsBpc1JOX3Y4rWXCkTmNU8f1/QavJrfbbSq5rPhObi2FnL30Hrr+DTyG2uw+j0ClbhBs0BpmCvrEa4JVrrEcbrRoGXmZmGlr22/OycNL3clrPE12zdbIx9UptKk2bNa521MPWz0Hju0HgeqMM2nTVaLZp2Y4meirFFW59WhvKrw61dg/JCpCx7ZAY1CpDSjaXCqA5EqnKMb1BvRVpbIq0urFb3NMBd8yFI/1pfXd3f5bt7pG6Sb9MnD4zjlwGt0hH5XKa1OlJjCsj5urav7urvUAty75EFRcr8HieuGD516lM5zSX9jd7ZUrLz1iKY95Ze6T7Gxnao/ukackxrIqN1aRDXqUes5XfliFYs0qbjc0SU+e+ST8V+R3XM7Pa2zyQq+BM23uRVZXlxpDAh/UuZt4O16PXAiV8jigkX2rvuAa36TxgpMMZkEvyeZUZPCHc5Pklgj7ZH9nPdTvEp3sSRaJOkXqo/BtgYjnrtXHfnlhmxGdtvoSdq3T51Xw+ZXxLMUeJ3lhO9Lu1qY+2jLleuz0arq3e54nWVHhYrfK0+FtTHjSxslFfEdNQXwVxYonpcGBPCpd4o6shfT/I6MvPpVChl09tQLmYa2MY8o3hJeg8UET7v7rLXm/tYGEdvjV6PsC41bpEoYTYu1fkB19JiVur82j7Erecrd6PE2YnKdgpD3d0trP1mCxmT9UuUlLPh3q7snUKUImdhmEJf8Ru9ZfGhS/MLKPgZKV90aDiG5A5b4N9uqx219w7ehnip65zRjKgFbcFgJfbu6nEWe1Tr6KVD3aUfwiGcxwh0LUk/op20ruxMWZbcpR5O/xVZgZmKReltz/pjcLnII1nnVGc8I7Js8mhGynwXp+5YDIeQkRS5hPPhcw1pFMfKfKep3hgMdXkERQ51eJj3GMKeue1dn5fLqVpf61xCefAuYE5cDA5P/spjFdsvxELNnCfy7jmgdTiuoG52i/91HIaP5VSfVyi3jL5r9jzgqXO/WGdk0R+uv2Yst5DZXM4xnGeaj856S35+7PdFtZ5U6ozm3dNHf9TOAcNrqTgPKkvHeHcWWXlDqeC5gE+GVP1H/eOc/G2ElzmNMjnqUDLnFOXUTA+ZmvnGpW905l6ITJZOmUxFajaOaNEbsTvqQN2E353cA6z7dih/l5L/Itb//dkBtB6T9TBZdM4cdKgtpuyHPUUb0LV9f7ZMYnyXl9/tbUMLnoU3qBXf871L/fFd33ZhbOXfIOG1fkelalCISFZP9+y66sEIiidvnAMy3/ON6F16zmLxm2fjgLNF8/7UqkRLuiO/WdArxfccKfs0V6f6rB5PDvAN+26eH4rU76itq+087rkS52Yp5+YK54y0U+Tw2rlX/W5WGZcdh8sgz52d6H4pxdn2PK86N7pbyoXfQa/GDyvwQ0fKFmn/BUXCM1WdzVtU0FxomdwT1okymUjWA8aZ3fx5V0e2JxW8TgLGf7sUfduRdB9k6VH+O6ITthnRS7Ru9kh6ftOxOpN6q0Ja/T1K+u8Gn9NPxJXPruvK51fz/25wdG3z6u83P71/fePLG/r/HLyvfql+rS7DGv9MfQnUmupQ4f87+Kv6m/r7dmv7zfaftv/MXd87pzG/UIWf7b/8F0gEp3A=</latexit> ↵ <latexit sha1_base64="ao+90+/803QfjeCPU72oPx91kcA=">AABB0nictVzNchu5EYY3f2vnz5scc5lE65Q35Tiy15XN1laqVpZkWWutTZuU7N2l7eKQI5r2iENzSPqHq0Mq1zxCrslr5DnyBskpr5D+AQYYEjONURyjJGFAfN2NHqDR3QAdT9JRPtvc/Oe5977z3e99/wfvn7/wwx/9+Cc/vfjBz47ybD7tJ4f9LM2mj+JenqSjcXI4G83S5NFkmvRO4jR5GL/Yxs8fLpJpPsrGndmbSfL4pDccj45H/d4Mmp5evNglGss4nSenUTdOnl7c2Ly6Sf+i9co1XdlQ+l8r+yA6VF01UJnqq7k6UYkaqxnUU9VTOZRv1DW1qSbQ9lgtoW0KtRF9nqhTdQGwc+iVQI8etL6A30N4+ka3juEZaeaE7gOXFH6mgIzUJcBk0G8KdeQW0edzooytVbSXRBNlewN/Y03rBFpn6hm0SjjTMxSHY5mpY/UHGsMIxjShFhxdX1OZk1ZQ8sgZ1QwoTKAN6wP4fAr1PiGNniPC5DR21G2PPv8X9cRWfO7rvnP1b5LyEpRItfXos4JCTy2IfkRvcw6fsTwpcB4ChUSPEWuvSNcnNPox9F9C+10op1QzOomhLKn1tBa5DcWH3BaRe1B8yD0ReQDFhzwQkS0oPmRLIxE7JZ378W0oPnxb5Hwfig95X0Q+gOJDPhCRR1B8yCMR+TUUH/JrEXkLig95S0TegeJD3hGRHSg+ZEdEHkLxIQ9F5C4UH3JXI6tX6hRKRnRGwqrcgnqZB1qKFFq2RPluknX0YW8GrOl+BVZe1Tvw14/dCdBpUoHdDZh3xxVYeebtgY30Y2VbdJt2Ex/2tojdhxngx+6L2C/U8wrsFwEr7UUFVl5rB9DPj5Wt75fw5Md+KWLvQs2Plfeoe9Dix94L2DEmFdiWiL2vXlZgQ6z+tAIr2/022BU/Vt6nOtDfjw2xpvMKrGxPj8CD8WPl3eohtPqxD0XsI/W6AvtIxH4F1t2P/Spgh31bgTV77AXaQYbkjySwYuuo9YpVibUJUOsJ/NNib0nJN46hXcIMC8yQMCciYq9A7AUiDgrEQbBceWFHc/J3ZS7tAtEORMTF3oS1mdh/UPTHWhqA2CkQOyuIOo8U37UZy4K8C9MiIWfFzoW1kDFlhf3GWqLnQ73lNYh7JQTP7Wc0869QtIQRFGqqjtqzYo9nZETPdYhXFL2ZURoeMm5WWAUX9VpExR5ULKLeeFBvRNTcg5qLqIUHtRBRduW7uG7ADLD6x3expCeeAewjV5cIvIIt2HVuwxqNYP60wAt8QC334G+bYm+p1EmG0Tzuk5jleFyyxFOoLdUGtNuocIfi65RWWAKScc97OsbHJ8xtLPWaYyt8WuzkUZExCaczInmGBR30FiNaT83o3KGWU/LuuNYMf7tY96bWDL9LGj8lL55rzfAzLf3sDLJ3NLZzBmwbVtNEa9/Wm9Lg/AvTMPULtOuixcW3eqLnDNJ73ZD+vn4z+2d4L9tUY/3YejMauTO+vDS+JjSsnnNHz82ooPfEXq+pRY1HMtZxr603lSGjXXSs5bBPTd8M9hnoN2PqzWi0wOPapph76dSbzt5JMRpbb0bjSHHe85Q8eVNvRmNIz6wPW29GA7MtPR3n23pTy44a4NjZ1pta9TFlgTEHxHOeW6xXNCU/aa6pjcg/qM/WuD7/+j6GOZsnRYxQT8n6ttV04mIvq5fI+AsJWLVZQznQv5g7PliZxlJdF+MrlmFW2t/X6dg9HjV/AFqMYPXzGYCUM09BQpOTQOudAsVrYtRVHpnBXRdxOEuOV1Bd3ToTvUXLl7NG5ban1CrFZXa0Vo9dstc5zb0J+YQHpFlJDweVb7iKoqShg5KGZHpNdPdWr9ey9jdF3GQFMSlmWp9OhPgkrT5O9Wm97ej4kj7lmUHhMx87fzHbfKytDcY8GdkilKWOp9vP5JHcNtxXryib4+bPInqjaK8WZDVGdCKVi1GoyRazN76kZ0v7kM7kkAfT6MN7jDSVieJTM8yiYz49Iovq2luJN+rLZOi4npPVNfa4Hj100EMPunmMsw07xl2odSBmOISnTkCUc6HQVUYan6rfFqejGb3B+og+LVlIQ4PtTVKykHVR9rMSlVeAxtnAUXo4jVU6Bt9doyRH/T55bOxatvyX6OTWnG/3aI5Xz+bqTMyAuF4nrhGtGj7V5adVDizB0vvJdfJf60eJ/JpwRBsqcX3icGa9jOnEP6EIdkKecUqrTVod5d5ufmr1E8OppczZOZ5mZ2QhI7J/EexPGc3JiH7cuwPmBJ0tQko2MsTujArvxufrjMQ5Zv24keJbDXa+JWTL5sTf0HVXV05zkSMG3gdOV+a20ckB+YIJcZ1q627Xdv3ug0h7T8KdJUzRzpXLxP8j+m1+zDzZWJsRqGF8A7m2db73kVHMgjrq0S5fb4NMX1fKDwsZnmip7f5nZfqwJNkORVwoD+7WA+Dcp2fmhbNkSnLna314H63L5iLlyYoecbTHFMWz3R/qHRjlvkK75AatuS7NkiHMglkRRZi+UhZ5lW89rzL1MNr5/4W61XVZa0gxUjaDyxqS8vsJRWuulCnMap6/L2g1+bU+XelVz2dMc/HEWcvfQusv4beR2zyH0YlLVuEmzQGmYJ+sRrglWusRxutmiZeZmYaWfbb87Jw0vdyWs8TXbN1sjL1oTKVFs+a1zlqY+lloPHdoPA/UYYfOGq0WTbuxRE/F2KKjTytD+TXh1mlAeS5Slj0ygxoFSOnGUmFUByJVOcY3qLcirU2RVg9Wq3sa4K75EKR/ra+u7m+L3T1St8i36ZMHxvHLgFbpiHwu01ofqTEF5HxD21d39XepBbnHZEGRMt/jxBXDp059KqeFpL/WO1tGdt5aBHNv6ZXuY2xsl+ofryFPaE3ktC4N4gb1SLT8rhzRikW66vgcEWX+e+RTsd9RHzO7ve07iUr+hI03eVVZXhwpjEn/UuZtfy163Xfi14hiwrn2rmOg1fwNIwXGmEyC37PM6Q3hLscnCezRxmQ/1+0Un+KNHYmuktRL9ccAG8NRr53r7twyIzZj+w30RK3bt+7rIfNLgzlK/M5yotejXe1E+6jLleez0erpXa78XKeH+Qpfq4859XEjCxvllTFd9VkwF5aoGRfGhHBpNoom8jeTvInMfDoVStn0NpTLmQa2Mc8oXpLugSLC591d9npzHwnjiNfoxYR1qXGLRAmzcZnOD7iWFrNS59f2IW49X7sbpc5OVLVTGOrubmHtN1vIhKxfqqScDfd2Ze+WohQ5C8MU+opv9FbFhy7Nz6Dg70j5okPDMSR32Ab/dkttq913cBvipa5zRjOiFrQFg5XYu6fHWe5Rr6OXDnWXfgiHcB4j0LUk/Yh20qayM2VZcpd6OP1XZAWmKhGltz2bj8HlIo9knVOT8YzIssmjGSnzXZymYzEcQkZS5hLOh881pFEcK/OdpmZjMNTlEZQ5NOFh7jGEvXPbuzkvl1O9vta5hPLgXcCcuBgcnvxVxyq2X4iFmjpv5N1zQOtwXEPd7Bb/6zgMH8upOa9Qbjl91+x5wFvnfonOyKI/3HzNWG4hs7maYzjPrBid9Zb8/Njvixq9qcwZzbunj/6onQOG11JxHlSWjvHuLLLyhlLBcwGfDJn6j/rHOfnbCC8LGlVyNKFkzimqqZkeMjXzjUvf6MxnITJZOlUylanZOKJNN2K31b66BT/bhQfY9HYof5eS/yLW//3ZAbQek/UwWXTOHHSpLaHshz1FG9CzvT9bJTHe5eW7vR1owbPwA2rFe753qT/e9e2Uxlb9DRJe61+qTA1KEcnq6Z5dVzGMoHzyxjkg8z3fiO7ScxaLb56dBJwtmvtTqxIt6RP5ZkFciY8dKfs0Vyf6rB5PDvCGfa/ID0Xqd9TW03Ye91yJc6uSc2uFc07aKXN47XxWfzerisu2w2VQ5M4Wul9GcbY9z6vPje5UcuE76PX4YQ1+6EjZJu2/oEh4quqzefMamnMtk3vCOlYmE8l6wDizV7zv+sh2UcNrETD+O5XoO46keyBLTPnviE7YpkQv1brZJen5pmN9JvV2jbT6e5T0vxt8Sv8irnxyQ1c+vVb87wZH169e+/3Vj+/f2Pj8pv5/Dt5Xv1C/UpdhjX+iPgdqLXUIHBbqr+pv6u9bna23W3/a+jN3fe+cxvxclf5t/eW/AT6n4Q==</latexit> <latexit sha1_base64="8H4xN4xGPG5ztU4N+maxzHTbjXo=">AAAC9HicjVHLLgRBFD3aa7wHS5uOiYTN6GaC5YSNJYlBYpDunjIq+pWqaiGT+Qw7O7H1A7Z8g/gD/sKtUhKPCNXp7lPn3nOq7r1hHnOpPO+5x+nt6x8YLA0Nj4yOjU+UJ6d2ZVaIiDWiLM7EfhhIFvOUNRRXMdvPBQuSMGZ74dmGju+dMyF5lu6oy5wdJkE75Sc8ChRRx+XFpvHoCNbquk3FLlSnxROCkieu7x0tW3K+zVImF7rH5YpX9cxyfwLfggrs2srKT2iihQwRCiRgSKEIxwgg6TmADw85cYfoECcIcRNn6GKYtAVlMcoIiD2jb5t2B5ZNaa89pVFHdEpMryCliznSZJQnCOvTXBMvjLNmf/PuGE99t0v6h9YrIVbhlNi/dB+Z/9XpWhROsGZq4FRTbhhdXWRdCtMVfXP3U1WKHHLiNG5RXBCOjPKjz67RSFO77m1g4i8mU7N6H9ncAq/6ljRg//s4f4Ldpaq/Uq1t1yr1dTvqEmYwi3ma5yrq2MQWGuR9hXs84NE5d66dG+f2PdXpsZppfFnO3RsbbaKf</latexit> dim ⇠ 103(genes) <latexit sha1_base64="NRLid9ocOcEHNQq7hjUXkZi7pNg=">AAAC9XicjVHLSsNAFD3GV31HXboJFqFuSiKiLkU3LitYLdgqSTrq0LzITNRS+hvu3Ilbf8Ct/oL4B/oX3hlH8IHohCRnzr3nzNx7gyziQrru84A1ODQ8MloaG5+YnJqesWfn9kVa5CGrh2mU5o3AFyziCatLLiPWyHLmx0HEDoLOtoofnLNc8DTZk92MtWL/NOEnPPQlUce229QevSAqWN9pSnYpe20eExQ8djz3aMWQlYz5HbHcP7bLbtXVy/kJPAPKMKuW2k9ooo0UIQrEYEggCUfwIeg5hAcXGXEt9IjLCXEdZ+hjnLQFZTHK8Int0PeUdoeGTWivPIVWh3RKRG9OSgdLpEkpLyesTnN0vNDOiv3Nu6c91d269A+MV0ysxBmxf+k+Mv+rU7VInGBD18CppkwzqrrQuBS6K+rmzqeqJDlkxCncpnhOONTKjz47WiN07aq3vo6/6EzFqn1ocgu8qlvSgL3v4/wJ9leq3lp1dXe1vLllRl3CAhZRoXmuYxM7qKFO3le4xwMerQvr2rqxbt9TrQGjmceXZd29AVrdoxc=</latexit> dim ⇠ 102(peaks) <latexit sha1_base64="SMZnFdBIvXrGaOn22tljzC0pXcE=">AABFi3ictVxbdxPJEW42l92QbMImD3nIy2QNOewe4jVecjnZ5JwFWxgvBgySDSwCjkYaywJJI3TjotWvyWvyG/I78g+Sp/yF1KV7ukfqmepxCHNs9/T0V1Vd011dVd1DPOr3JtOtrX+e++B73//BDz/86Efnf/yTj3/6swuf/Px4ks7G7eSonfbT8aO4NUn6vWFyNO1N+8mj0ThpDeJ+8jB+uYPPH86T8aSXDhvTt6Pk6aDVHfZOeu3WFKqeX/jlxSYRWYyTzrI5aE1P43jxaHnx+YWNrc0t+hetF67qwobS/w7TTz7dVE3VUalqq5kaqEQN1RTKfdVSE7ieqKtqS42g7qlaQN0YSj16nqilOg/YGbRKoEULal/C7y7cPdG1Q7hHmhNCt4FLH37GgIzUJcCk0G4MZeQW0fMZUcbaItoLoomyvYW/saY1gNqpOoVaCWdahuKwL1N1ov5IfehBn0ZUg71rayoz0gpKHjm9mgKFEdRhuQPPx1BuE9LoOSLMhPqOum3R839RS6zF+7ZuO1P/JikvwRWpuu59mlFoqTnRj+htzuAZy9MHzl2gkOg+Yuk16XpAvR9C+wXU34VrSSWjkxiuBdUuS5E7cPmQOyJyDy4fck9EHsDlQx6IyEO4fMhDjUTsmHTux9fh8uHrIuf7cPmQ90XkA7h8yAci8hguH/JYRH4Llw/5rYi8CZcPeVNE3obLh7wtIhtw+ZANEXkElw95JCJrcPmQNY0snqljuFKi0xNm5XUo53mgpehDzXVRvhtkHX3YGwFzul2AlWf1Lvz1Y3cDdJoUYGsB4+6kACuPvD2wkX6sbItu0Wriw94SsfswAvzYfRH7jXpRgP0mYKa9LMDKc+0A2vmxsvW9A3d+7B0RexdKfqy8Rt2DGj/2XsCKMSrAHorY++pVATbE6o8LsLLdr4Nd8WPldaoB7f3YEGs6K8DK9vQYPBg/Vl6tHkKtH/tQxD5Sbwqwj0TsY7DufuzjgBX2XQHWrLHnaQXpkj+SwIwto9bKZiWWRkCtJfDvZ2tLn3zjGOolTDfDdAkzEBF7GWIvEHGQIQ6C5ZpkdnRC/q7MpZ4h6oGIOFubsDQV23ey9ljqByB2M8TuCqLMI8V3bfoyJ+/C1EjIabZyYSmkT2lmv7GU6PFQbnkN4l4OwWP7lEb+FYqWMIJCTZVRO83WeEZGdF+GeE3Rm+ml4SHjpplVcFFvRFTsQcUi6q0H9VZEzTyomYiae1BzEWVnvotrBowAq398Fwu64xHAPnLxFYFXcB1WnVswRyMYP4fgBT6gmnvwt06xt3SVSYbRPK6TmOV4mrPEYygt1AbU26hwl+LrPs2wBCTjlvd0jI93mNtY6DnHVniZreRRljEJp9MjeboZHfQWI5pP1ejcppoleXdcqoa/lc17U6qGr5HGl+TFc6kafqqln55B9obGNs6ArcNsGmnt23JVGpx/YRqmfJ5WXbS4+FYHeswgvTcV6e/rN7N/hveyQyXWjy1XozFx+jfJ9a8KDavniaPnalTQe2Kv15Siyj0Z6rjXlqvKkNIqOtRy2LuqbwbbdPSbMeVqNA7B49qhmHvhlKuO3lHWG1uuRuNYcd5zSZ68KVej0aV71octV6OB2ZaWjvNtuaplRw1w7GzLVa36kLLAmAPiMc811isak58009R65B+UZ2tcn399HcOczbMsRiinZH3bYjpxtpaVS2T8hQSs2rSiHOhfzBwfLE9jobbF+IplmObW93U6do1HzR+AFiOY/bwHIOXM+yChyUmg9e4Dxati1JXvmcFtizgcJScrqKaunYreouXLWaN83XOqleIy21urxybZ6wmNvRH5hAekWUkPB4VvuIiipKGDnIZkelV0907P17z2t0TcaAUxykZam3aEeCetPE71ab3u6PiS3uWZwsV7Pnb8Yrb5RFsbjHlSskUoSxlPt53JI7l1uK5eUTbHzc8ieqNor+ZkNXq0IzURo1CTLWZvfEH3lvYR7ckhD6bRhvcYaSojxbtmmEXHfHpEFtW1txJv1JfJ0HF5QlbX2ONydNdBdz3o6jHODqwYd6HUgJjhCO4aAVHO+UxXKWl8rH6b7Y6m9AbLI/p+zkIaGmxvkpyFLIuyT3NUXgMaRwNH6eE0VukYfHONkhz1++SxsWve8l+inVuzv92iMV48moszMR3iuk1cI5o1vKvLd6scWIKF98k2+a/lvUR+VTiiDZW4PnM4s16GtOOfUAQ7Is+4T7NNmh351m5+avWJ4XSozN457manZCEjsn8RrE8pjcmIftyzA2YHnS1Cn2xkiN3pZd6Nz9fpiWPM+nE9xaca7HhLyJbNiL+h686uCY1Fjhh4HViujG2jkwPyBRPiOtbW3c7t8tUHkfachDtKmKIdK5eJ/2f02/yYcbKxNiJQw/gGJtrW+d5HSjEL6qhFq3y5DTJtXSkvZjI801Lb9c/KdDEn2S5FXCgPrtYd4Nyme+aFo2RMck/W2vA6WpbNRcqjFT1ib08oime739UrMMp9hVbJDZpzTRolXRgF0yyKMG2lLPIq33JeeephtCf/F+pW13mtIcVI2Qwua0jK7ycUrblS9mFU8/h9SbPJr/XxSqtyPkMaiwNnLn8Htb+G30Zucx9GJ85ZhRs0BpiCvbMa4ZporUUYrxs5XmZkGlr23vKzY9K0cmvOEl+zdbMx9rwylUMaNW901sKUz0LjhUPjRaAOG7TXaLVo6o0lei7GFg29WxnKrwq3RgXKM5Gy7JEZVC9ASjeWCqPaEanKMb5BvRNpbYm0WjBb3d0Ad86HIP1zfXV2f5et7pG6Sb5Nmzwwjl86NEt75HOZ2vJIjSkg52vavrqzv0k1yD0mC4qU+RwnzhjedWrTtcwk/Y1e2VKy89YimHNLr3UbY2ObVP5yDTmgOTGheWkQ16hFouV35YhWLNKm43NElPlvkU/Ffkd5zOy2tu8kyvkTNt7kWWV5caQwJP1Lmbf9teh134lfI4oJZ9q7joFW9TeMFBhjMgl+z3JCbwhXOd5JYI82Jvu5bqd4F2/oSLRJUi/UXwJsDEe9dqy7Y8v02PTtc2iJWrdv3ddC5tcP5ijxO8uOXotWtYH2URcr92ej1dKrXP6+TA+zFb5WHzNq40YWNsrLY5rqq2AuLFE1LowJ4VKtF1XkryZ5FZl5dyqUsmltKOczDWxjTileks6BIsLn3V32enOfCf2I1+jFhHWpcY1ECbNxqc4PuJYWs1LRSoTk1ktrUt9Zj4rWC8vDXTWsHWdLmZAV7Cspd8Ot3T40c9GKnI1hCm3FJ3uL4kSX5ldw4e9I+aJEwzEkh1gHP/e62lG193Aq4pUuc2Yzohq0CZ2VGLyl+5lvUa6jVw51l34Ih3AePdC1JH2PVtSqsjNlWXKXejj912QNxioRpbctq/fB5SL3ZJ1Tlf70yMLJvekp801O1b4YDiE9yXMJ58P7G1IvTpT5tqlaHwx1uQd5DlV4mPMMYe/ctq7Oy+VUrq91LqE8eB0wOy8GhzuAxTGLbRdiocbOG3n/HNA6nJRQN6vF/9oPw8dyqs4rlNuEvjl7EfDWuV2iM7PoF1efM5ZbyGgu5hjOM816Z70mPz/2/6JKbyp1evP+6aNfaseA4bVQnA+VpWO8O4qsvKFUcH/AJ0Oq/qP+cU7+KuFVRqNIjiqUzH5FMTXTQqZmvrz09c48C5HJ0imSKU/NxhN1Ohm7o/bVTfjZyTzAqqdE+ZtK/otY/3e0Hag9IethsumcQWhSXUJZELub1qF7e462SGI808tnfBtQg3viB1SL533vUns889vI9a34SxKe63dUqjq5yGR1l8/Oqxh6kN+B41yQ+d43ojP1nM3iE2iDgD1GPkfFkZL5+nlBiA7FhauSLghhRksZ5dhLOaYzSUkB7TjXtzaN8JHe6cd9Bzyf38qyS5H6gupaenXAlVqS6tAj1RPKDMSk/y2I0H6nrsDfK7rsl/RwTdIJvYO8RG+cZ+UnwZbecWG/ZrxEeTCTqZvrdilF9Xb3sDwTu1vIhU+8l+O7JfiuI2Wd3tZLirvHqjx3OCuhOdMyufu5Q2XynqwHjGZb2fgoj5/nJbzmAf2/XYi+7Ui6B7LElG2PaD9vTPT6Wjc1kp7PVZbnbW+VSGu+2mSa9mSlHQfmjGQZB/yqbEeY/fzlWfnKgF+Y+em4c/1xwL4L9kSSiE9mStmjJEAiPiMqnV/peSnJFmMUcD6jFdBbua8hPZWozERJZgHfRs8DZJkH0DkRpDkRKXRFSbTFen5h4+rq/z6yXjje3rz6+81r97c3vr6h/2eSj9Sv1KfqMqzGf1Bfw4w8VEfk9/xV/U39vfZx7cvan2p/5qYfnNOYX6jcv1rtv5SpZJo=</latexit> X <latexit sha1_base64="6BJT1KqHhGMFrQVN2NpkLlRoRO0=">AABFjHictVzpchu5EYY318ZJNt7kT6ryZ7KyU7spR5EV56hybdXakixrLduySflY03ZxyBFFe8ihefngMk+Tv8kr5DnyBsmvvEL6AAYYEjONURxPScJg8HU3eoBGdwPjeJT2J9OtrX+e++g73/3e93/w8Q/P/+jHP/nkpxc+/dnDSTYbd5LjTpZm48dxe5Kk/WFyPO1P0+TxaJy0B3GaPIpf7eDzR/NkPOlnw+b03Sh5Nmj3hv2Tfqc9haoXF35xsUVEFnE6S5atQXt6GseLJ8uLLy5sbG1u0b9ovXBFFzaU/neUffrZpmqprspUR83UQCVqqKZQTlVbTeB6qq6oLTWCumdqAXVjKPXpeaKW6jxgZ9AqgRZtqH0Fv3tw91TXDuEeaU4I3QEuKfyMARmpS4DJoN0Yysgtouczooy1ZbQXRBNlewd/Y01rALVTdQq1Es60DMVhX6bqRP2Z+tCHPo2oBnvX0VRmpBWUPHJ6NQUKI6jDcheej6HcIaTRc0SYCfUdddum5/+illiL9x3ddqb+TVJegitSDd37LKfQVnOiH9HbnMEzlicFzj2gkOg+YukN6XpAvR9C+wXU34VrSSWjkxiuBdUuK5E7cPmQOyJyHy4fcl9EHsLlQx6KyCO4fMgjjUTsmHTuxzfg8uEbIuf7cPmQ90XkA7h8yAci8iFcPuRDEfkNXD7kNyLyJlw+5E0ReRsuH/K2iGzC5UM2ReQxXD7ksYjcg8uH3NPI8pk6hisjOn1hVl6HcpEHWooUaq6L8t0g6+jD3giY050SrDyrd+GvH7sboNOkBLsXMO5OSrDyyNsHG+nHyrboFq0mPuwtEXsAI8CPPRCxX6uXJdivA2baqxKsPNcOoZ0fK1vfO3Dnx94RsXeh5MfKa9Q9qPFj7wWsGKMS7JGIva9el2BDrP64BCvb/QbYFT9WXqea0N6PDbGmsxKsbE8fggfjx8qr1SOo9WMfidjH6m0J9rGIfQLW3Y99ErDCvi/BmjX2PK0gPfJHEpixVdTa+azE0giotQX+ab62pOQbx1AvYXo5pkeYgYjYzxH7gYjDHHEYLNckt6MT8ndlLo0c0QhExPnahKWp2L6bt8dSGoDYzRG7K4gqjxTftenLnLwLUyMhp/nKhaWQPmW5/cZSosdDteU1iHsFBI/tUxr5lylawggKNVVF7TRf4xkZ0X0V4g1Fb6aXhoeMm+ZWwUW9FVGxBxWLqHce1DsRNfOgZiJq7kHNRZSd+S6uFTACrP7xXSzojkcA+8jlVwRewXVYdW7BHI1g/ByBF/iAau7B3wbF3tJVJRlG87hOYpbjWcESj6G0UBtQb6PCXYqvU5phCUjGLe/pGB/vMLex0HOOrfAyX8mjPGMSTqdP8vRyOugtRjSf6tG5TTVL8u64VA9/K5/3plQPv0caX5IXz6V6+KmWfnoG2Zsa2zwDtgGzaaS1b8t1aXD+hWmY8nladdHi4lsd6DGD9N7WpH+g38zBGd7LDpVYP7Zcj8bE6d+k0L86NKyeJ46e61FB74m9XlOKavdkqONeW64rQ0ar6FDLYe/qvhls09VvxpTr0TgCj2uHYu6FU647ekd5b2y5Ho2HivOeS/LkTbkejR7dsz5suR4NzLa0dZxvy3UtO2qAY2dbrmvVh5QFxhwQj3musV7RmPykmabWJ/+gOlvj+vzr6xjmbJ7nMUI1JevbltOJ87WsWiLjLyRg1aY15UD/Yub4YEUaC7Utxlcsw7Swvq/TsWs8av4QtBjB7Oc9AClnnoKEJieB1jsFilfEqKvYM4PbFnE4Sk5WUC1dOxW9RcuXs0bFuhdUK8VltrdWjy2y1xMaeyPyCQ9Js5IeDkvfcBlFSUOHBQ3J9Oro7r2er0Xtb4m40QpilI+0Du0I8U5adZzq03rD0fElvcszhYv3fOz4xWzzibY2GPNkZItQliqebjuTR3LrcF29rGyOm59F9EbRXs3JavRpR2oiRqEmW8ze+ILuLe1j2pNDHkyjA+8x0lRGinfNMIuO+fSILKprbyXeqC+ToePyhKyuscfV6J6D7nnQ9WOcHVgx7kKpCTHDMdw1A6Kc87muMtL4WP023x3N6A1WR/RpwUIaGmxvkoKFrIqyTwtU3gAaRwNH6eE0VukYfGuNkhz1++SxsWvR8l+inVuzv92mMV4+msszMV3iuk1cI5o1vKvLd6scWIKF98k2+a/VvUR+dTiiDZW4Pnc4s16GtOOfUAQ7Is84pdkmzY5iazc/tfrEcDpSZu8cd7MzspAR2b8I1qeMxmREP+7ZAbODzhYhJRsZYnf6uXfj83X64hizflxf8akGO94SsmUz4m/ourNrQmORIwZeB5YrY9vo5JB8wYS4jrV1t3O7evVBpD0n4Y4SpmjHyufE/wv6bX7MONlYGxGoYXwDE23rfO8jo5gFddSmVb7aBpm2rpQXcxmea6nt+mdluliQbJciLpQHV+sucO7QPfPCUTImuSdrbXgdrcrmIuXRih6xtycUxbPd7+kVGOW+TKvkBs25Fo2SHoyCaR5FmLZSFnmVbzWvIvUw2pP/C3Wr66LWkGKkbAaXNSTl9xOK1lwpUxjVPH5f0Wzya3280qqaz5DG4sCZy99C7a/gt5Hb3IfRiQtW4QaNAaZg76xGuCZaaxHG60aBlxmZhpa9t/zsmDSt3JqzxNds3WyMPa9N5YhGzVudtTDls9B46dB4GajDJu01Wi2aemOJXoixRVPvVobyq8OtWYPyTKQse2QG1Q+Q0o2lwqh2RapyjG9Q70VaWyKtNsxWdzfAnfMhSP9cX53d3+are6Rukm/TIQ+M45cuzdI++VymtjpSYwrI+aq2r+7sb1ENco/JgiJlPseJM4Z3nTp0LXNJf61XtozsvLUI5tzSG93G2NgWlX+/hhzQnJjQvDSIq9Qi0fK7ckQrFmnT8Tkiyvy3yadiv6M6ZnZb23cSFfwJG2/yrLK8OFIYkv6lzNvBWvR64MSvEcWEM+1dx0Cr/htGCowxmQS/ZzmhN4SrHO8ksEcbk/1ct1O8izd0JNokqRfqywAbw1GvHevu2DI9Nn37DbRErdu37msh80uDOUr8zrKj16ZVbaB91MXK/dlotfUqV7yv0sNsha/Vx4zauJGFjfKKmJa6FsyFJarHhTEhXOr1oo789SSvIzPvToVSNq0N5WKmgW3MKcVL0jlQRPi8u8+93twXQj/iNXoxYV1qXCNRwmxcpvMDrqXFrFS0EiG59dKalDrrUdl6YXm4q4a142wpE7KCqZJyN9za7UOrEK3I2Rim0FF8srcsTnRpXoMLf0fKFyUajiE5xAb4udfVjtr7AKciXusyZzYjqkGb0F2Jwdu6n8UW1Tp67VB36YdwCOfRB11L0vdpRa0rO1OWJXeph9N/Q9ZgrBJRetuyfh9cLnJP1jnV6U+fLJzcm74y3+TU7YvhENKTIpdwPry/IfXiRJlvm+r1wVCXe1DkUIeHOc8Q9s5t6/q8XE7V+lrnEsqD1wGz82JwuANYHrPYdiEWauy8kQ/PAa3DSQV1s1r8r/0wfCyn+rxCuU3om7OXAW+d2yU6M4t+cf05Y7mFjOZyjuE8s7x31mvy82P/L6r1pjKnNx+ePvqldgwYXgvF+VBZOsa7o8jKG0oF9wd8MmTqP+of5+SvEl7nNMrkqEPJ7FeUUzMtZGrmy0tf78yzEJksnTKZitRsPNGgk7E76kDdhJ+d3AOse0qUv6nkv4j1f0fbhdoTsh4mm84ZhBbVJZQFsbtpXbq352jLJMYzvXzGtwk1uCd+SLV43vcutcczv81C38q/JOG5fkdlqluITFZ3+ey8iqEHxR04zgWZ730jOlPP2Sw+gTYI2GPkc1QcKZmvnxeE6FJcuCrpghBmtFRRjr2UYzqTlJTQjgt969AIH+mdftx3wPP57Ty7FKnfUV1brw64UktSHXmkekqZgZj0vwUR2h/UZfh7WZf9kh6tSTqhd1CU6K3zrPok2NI7LuzXjJcoD2YydXPdLqOo3u4eVmdid0u58In3anyvAt9zpGzQ23pFcfdYVecOZxU0Z1omdz93qEzek/WA0Ww7Hx/V8fO8gtc8oP+3S9G3HUn3QZaYsu0R7eeNiV6qdbNH0vO5yuq87a0Kac1Xm0zTnqy048CckazigF+V7Qizn788q14Z8AszPx13rj8J2HfBnkgS8clMKXuUBEjEZ0Sl8yt9LyXZYowCzme0A3or9zWkpxKVmSjJLODb6HmALPMAOieCNCcihZ4oibZYLy5sXFn930fWCw+3N6/8cfPq/e2Nr27o/5nkY/VL9Zn6HFbjP6mvYEYeqWPg9Bf1V/U39fe9T/au7l3b+5KbfnROY36uCv/2bv4XtPllEg==</latexit> Y Unbalanced Gromov-Wasserstein « Monge map » → SCOT: single-cell alignment with optimal transport [Demetci et al 2022] Pinar Demetci
  23. Gromov-Wasserstein as Metric Learning inf π1 =α,π2 =β 𝒬 (π)

    := ⟨Qπ, π⟩ local minimizer π⋆ ⟺ Q(π)(x, y) := ∫ |dX (x, x′  )p − dY (y, y′  )p |2 dπ(x′  , y′  ) π⋆ ∈ argmin π1 =α,π2 =β ∫ c⋆dπ c⋆ = Qπ⋆ X <latexit sha1_base64="/59ZCDJZPBrZfCS8zgReJB0hTeY=">AABFdnictVxfcxPJER8u/y7kH5c8piq1OR8JlyKOTUglVVepOrCN8WHAINnAIaC00loI1lqhlYRB56+Q1+Tb5HPkGyRPec1j+s/Mzqw0uz3rELZsz87Or7und6anu2eWeJwO8+nGxj8ufPStb3/nu9/7+PsXf/DDH/34J5c++elRns0mveSwl6XZ5HHczZN0OEoOp8NpmjweT5LuSZwmj+LXW/j80TyZ5MNs1J6+GyfPTrqD0fB42OtOsarz+HTrxaW1jfUN+hetFjZ1YU3pfwfZJ5+uq47qq0z11EydqESN1BTKqeqqHK6nalNtqDHUPVMLqJtAaUjPE3WmLgJ2Bq0SaNGF2tfwewB3T3XtCO6RZk7oHnBJ4WcCyEhdBkwG7SZQRm4RPZ8RZaytor0gmijbO/gba1onUDtVL6FWwpmWoTjsy1Qdqz9RH4bQpzHVYO96msqMtIKSR06vpkBhDHVY7sPzCZR7hDR6jgiTU99Rt116/k9qibV439NtZ+pfJOVluCLV0r3PCgpdNSf6Eb3NGTxjeVLgPAAKie4jlt6Srk+o9yNov4D6e3CdUcnoJIZrQbVntcgtuHzILRG5C5cPuSsi9+HyIfdF5AFcPuSBRiJ2Qjr341tw+fAtkfMDuHzIByLyIVw+5EMReQSXD3kkIr+Gy4f8WkTegsuHvCUi78DlQ94RkW24fMi2iDyEy4c8FJE7cPmQOxpZPVMncGVEZyjMyhtQLvNAS5FCzQ1RvptkHX3YmwFzuleBlWf1Nvz1Y7cDdJpUYHcCxt1xBVYeebtgI/1Y2RbdptXEh70tYvdgBPixeyL2K/WqAvtVwEx7XYGV59o+tPNjZet7F+782Lsi9h6U/Fh5jboPNX7s/YAVY1yBPRCxD9SbCmyI1Z9UYGW73wK74sfK61Qb2vuxIdZ0VoGV7ekReDB+rLxaPYJaP/aRiH2sTiuwj0XsE7DufuyTgBX2fQXWrLEXaQUZkD+SwIyto9YtZiWWxkCtK/BPi7UlJd84hnoJMygwA8KciIjdArEbiNgvEPvBcuWFHc3J35W5tApEKxARF2sTlqZi+37RHktpAGK7QGwvIeo8UnzXpi9z8i5MjYScFisXlkL6lBX2G0uJHg/1ltcg7pcQPLZf0si/StESRlCoqTpqL4s1npER3dch3lL0ZnppeMi4aWEVXNSpiIo9qFhEvfOg3omomQc1E1FzD2ououzMd3GdgBFg9Y/vYkF3PALYR66+IvAKbsCqcxvmaATj5wC8wIdUcx/+tij2lq46yTCax3USsxzPSpZ4AqWFWoN6GxVuU3yd0gxLQDJueV/H+HiHuY2FnnNshc+KlTwqMibhdIYkz6Cgg95iRPOpGZ07VHNG3h2XmuFvF/PelJrhd0jjZ+TFc6kZfqqln55D9rbGts+BbcFsGmvt23JTGpx/YRqmfJFWXbS4+FZP9JhBeqcN6e/pN7N3jveyRSXWjy03o5E7/ctL/WtCw+o5d/TcjAp6T+z1mlLUuCcjHffaclMZMlpFR1oOe9f0zWCbvn4zptyMxgF4XFsUcy+cctPROy56Y8vNaBwpznuekSdvys1oDOie9WHLzWhgtqWr43xbbmrZUQMcO9tyU6s+oiww5oB4zHON9Yom5CfNNLUh+Qf12RrX519dxzBn87yIEeopWd+2mk5crGX1Ehl/IQGrNm0oB/oXM8cHK9NYqGtifMUyTEvr+yodu8aj5vdBixHMft4DkHLmKUhochJovVOguClGXeWeGdw1EYej5HgJ1dG1U9FbtHw5a1Sue0G1Ulxme2v12CF7ndPYG5NPuE+alfSwX/mGqyhKGtovaUim10R37/V8LWt/Q8SNlxDjYqT1aEeId9Lq41Sf1luOji/rXZ4pXLznY8cvZpuPtbXBmCcjW4Sy1PF025k8kluH6+pVZXPc/CyiN4r2ak5WY0g7UrkYhZpsMXvjC7q3tA9pTw55MI0evMdIUxkr3jXDLDrm0yOyqK69lXijvkyGjss5WV1jj+vRAwc98KCbxzhbsGLcg1IbYoZDuGsHRDkXC11lpPGJ+m2xO5rRG6yP6NOShTQ02N4kJQtZF2W/LFF5C2gcDRylh9NYpmPwnRVKctTvk8fGrmXLf5l2bs3+dpfGePVors7E9InrNeIa0azhXV2+W+bAEiy8T66R/1rfS+TXhCPaUInrc4cz62VEO/4JRbBj8oxTmm3S7Ci3dvNTy08MpwNl9s5xNzsjCxmR/YtgfcpoTEb0454dMDvobBFSspEhdmdYeDc+X2cojjHrxw0Vn2qw4y0hWzYj/oauO7tyGoscMfA6cLY0to1O9skXTIjrRFt3O7frVx9E2nMS7ihhinasXCH+n9Nv82PGydrKiEAN4xvIta3zvY+MYhbUUZdW+XobZNq6Un5WyPBcS23XPyvTZyXJtiniQnlwte4D5x7dMy8cJROSO19pw+toXTYXKY+X9Ii9PaYonu3+QK/AKPdVWiXXaM51aJQMYBRMiyjCtJWyyMt863mVqYfRzv8v1K2uy1pDipGyGVzWkJTfTyhac6VMYVTz+H1Ns8mv9clSq3o+IxqLJ85c/gZqfwm/jdzmPoxOXLIKN2kMMAV7ZzXCNdFKizBeN0u8zMg0tOy95WfHpGnl1pwnvmbrZmPseWMqBzRqTnXWwpTPQ+OVQ+NVoA7btNdotWjqjSV6IcYWbb1bGcqvCbd2A8ozkbLskRnUMEBKN5YKo9oXqcoxvkG9F2ltiLS6MFvd3QB3zocg/XN9eXZ/U6zukbpFvk2PPDCOX/o0S4fkc5na+kiNKSDn69q+urO/QzXIPSYLipT5HCfOGN516tF1Vkj6K72yZWTnrUUw55be6jbGxnao/PsV5AnNiZzmpUFcpxaJlt+VI1qySOuOzxFR5r9LPhX7HfUxs9vavpOo5E/YeJNnleXFkcKI9C9l3vZWotc9J36NKCacae86BlrN3zBSYIzJJPg9y5zeEK5yvJPAHm1M9nPVTvEu3siRaJ2kXqg/B9gYjnrtWHfHlumx6dtvoCVq3b51XwuZXxrMUeJ3nh29Lq1qJ9pHXSzdn49WV69y5fs6PcyW+Fp9zKiNG1nYKK+M6agvgrmwRM24MCaES7NeNJG/meRNZObdqVDKprWhXM40sI15SfGSdA4UET7v7orXm/tc6Ee8Qi8mrEuNayRKmI3LdH7AtbSYlYqWIiS3XlqTUmc9qlovLA931bB2nC1lQlYwVVLuhlu7feiUohU5G8MUeopP9lbFiS7NL+DC35HyRYmGY0gOsQV+7g21pXY+wKmIN7rMmc2IatAm9Jdi8K7uZ7lFvY7eONRd+iEcwnkMQdeS9ENaUZvKzpRlyV3q4fTfkjWYqESU3rZs3geXi9yTVU5N+jMkCyf3ZqjMNzlN+2I4hPSkzCWcD+9vSL04VubbpmZ9MNTlHpQ5NOFhzjOEvXPbujkvl1O9vla5hPLgdcDsvBgc7gBWxyy2XYiFmjhv5MNzQOtwXEPdrBb/az8MH8upOa9Qbjl9c/Yq4K1zu0RnZtEvbj5nLLeQ0VzNMZxnVvTOek1+fuz/RY3eVOb05sPTR7/UjgHDa6E4HypLx3h3FFl5Q6ng/oBPhkz9W/39gvxVwpuCRpUcTSiZ/YpqaqaFTM18eenrnXkWIpOlUyVTmZqNJ1p0MnZL7alb8LNVeIBNT4nyN5X8F7H+72j7UHtM1sNk0zmD0KG6hLIgdjetT/f2HG2VxHiml8/4tqEG98T3qRbP+96j9njmt13qW/WXJDzX76pM9UuRyfIun51XMfSgvAPHuSDzvW9EZ+o5m8Un0E4C9hj5HBVHSubr5wUh+hQXLku6IIQZLXWUYy/lmM4kJRW041LfejTCx3qnH/cd8Hx+t8guRep3VNfVqwOu1JJUBx6pnlJmICb9b0CE9gd1Ff5e1WW/pAcrkub0DsoSnTrP6k+CnXnHhf2a8TLlwUymbq7bZRTV293D+kzsdiUXPvFejx/U4AeOlC16W68p7p6o+tzhrIbmTMvk7ueOlMl7sh4wmu0W46M+fp7X8JoH9P9OJfqOI+kuyBJTtj2i/bwJ0Uu1bnZIej5XWZ+3vV0jrflqk2nak5V2HJgzknUc8KuyLWH285dn9SsDfmHmp+PO9ScB+y7YE0kiPpkpZY+SAIn4jKh0fmXopSRbjHHA+YxuQG/lvob0VKIyEyWZBXwbPQ+QZR5A51iQ5likMBAl0RbrxaW1zeX/fWS1cHRtfXNjffPB9bUvb+r/meRj9XP1qboCq/Ef1ZcwIw/UIeUa/6L+qv62/Z+dX+xc3vk1N/3ogsb8TJX+7Wz8F/gjXQI=</latexit> <latexit sha1_base64="/59ZCDJZPBrZfCS8zgReJB0hTeY=">AABFdnictVxfcxPJER8u/y7kH5c8piq1OR8JlyKOTUglVVepOrCN8WHAINnAIaC00loI1lqhlYRB56+Q1+Tb5HPkGyRPec1j+s/Mzqw0uz3rELZsz87Or7und6anu2eWeJwO8+nGxj8ufPStb3/nu9/7+PsXf/DDH/34J5c++elRns0mveSwl6XZ5HHczZN0OEoOp8NpmjweT5LuSZwmj+LXW/j80TyZ5MNs1J6+GyfPTrqD0fB42OtOsarz+HTrxaW1jfUN+hetFjZ1YU3pfwfZJ5+uq47qq0z11EydqESN1BTKqeqqHK6nalNtqDHUPVMLqJtAaUjPE3WmLgJ2Bq0SaNGF2tfwewB3T3XtCO6RZk7oHnBJ4WcCyEhdBkwG7SZQRm4RPZ8RZaytor0gmijbO/gba1onUDtVL6FWwpmWoTjsy1Qdqz9RH4bQpzHVYO96msqMtIKSR06vpkBhDHVY7sPzCZR7hDR6jgiTU99Rt116/k9qibV439NtZ+pfJOVluCLV0r3PCgpdNSf6Eb3NGTxjeVLgPAAKie4jlt6Srk+o9yNov4D6e3CdUcnoJIZrQbVntcgtuHzILRG5C5cPuSsi9+HyIfdF5AFcPuSBRiJ2Qjr341tw+fAtkfMDuHzIByLyIVw+5EMReQSXD3kkIr+Gy4f8WkTegsuHvCUi78DlQ94RkW24fMi2iDyEy4c8FJE7cPmQOxpZPVMncGVEZyjMyhtQLvNAS5FCzQ1RvptkHX3YmwFzuleBlWf1Nvz1Y7cDdJpUYHcCxt1xBVYeebtgI/1Y2RbdptXEh70tYvdgBPixeyL2K/WqAvtVwEx7XYGV59o+tPNjZet7F+782Lsi9h6U/Fh5jboPNX7s/YAVY1yBPRCxD9SbCmyI1Z9UYGW73wK74sfK61Qb2vuxIdZ0VoGV7ekReDB+rLxaPYJaP/aRiH2sTiuwj0XsE7DufuyTgBX2fQXWrLEXaQUZkD+SwIyto9YtZiWWxkCtK/BPi7UlJd84hnoJMygwA8KciIjdArEbiNgvEPvBcuWFHc3J35W5tApEKxARF2sTlqZi+37RHktpAGK7QGwvIeo8UnzXpi9z8i5MjYScFisXlkL6lBX2G0uJHg/1ltcg7pcQPLZf0si/StESRlCoqTpqL4s1npER3dch3lL0ZnppeMi4aWEVXNSpiIo9qFhEvfOg3omomQc1E1FzD2ououzMd3GdgBFg9Y/vYkF3PALYR66+IvAKbsCqcxvmaATj5wC8wIdUcx/+tij2lq46yTCax3USsxzPSpZ4AqWFWoN6GxVuU3yd0gxLQDJueV/H+HiHuY2FnnNshc+KlTwqMibhdIYkz6Cgg95iRPOpGZ07VHNG3h2XmuFvF/PelJrhd0jjZ+TFc6kZfqqln55D9rbGts+BbcFsGmvt23JTGpx/YRqmfJFWXbS4+FZP9JhBeqcN6e/pN7N3jveyRSXWjy03o5E7/ctL/WtCw+o5d/TcjAp6T+z1mlLUuCcjHffaclMZMlpFR1oOe9f0zWCbvn4zptyMxgF4XFsUcy+cctPROy56Y8vNaBwpznuekSdvys1oDOie9WHLzWhgtqWr43xbbmrZUQMcO9tyU6s+oiww5oB4zHON9Yom5CfNNLUh+Qf12RrX519dxzBn87yIEeopWd+2mk5crGX1Ehl/IQGrNm0oB/oXM8cHK9NYqGtifMUyTEvr+yodu8aj5vdBixHMft4DkHLmKUhochJovVOguClGXeWeGdw1EYej5HgJ1dG1U9FbtHw5a1Sue0G1Ulxme2v12CF7ndPYG5NPuE+alfSwX/mGqyhKGtovaUim10R37/V8LWt/Q8SNlxDjYqT1aEeId9Lq41Sf1luOji/rXZ4pXLznY8cvZpuPtbXBmCcjW4Sy1PF025k8kluH6+pVZXPc/CyiN4r2ak5WY0g7UrkYhZpsMXvjC7q3tA9pTw55MI0evMdIUxkr3jXDLDrm0yOyqK69lXijvkyGjss5WV1jj+vRAwc98KCbxzhbsGLcg1IbYoZDuGsHRDkXC11lpPGJ+m2xO5rRG6yP6NOShTQ02N4kJQtZF2W/LFF5C2gcDRylh9NYpmPwnRVKctTvk8fGrmXLf5l2bs3+dpfGePVors7E9InrNeIa0azhXV2+W+bAEiy8T66R/1rfS+TXhCPaUInrc4cz62VEO/4JRbBj8oxTmm3S7Ci3dvNTy08MpwNl9s5xNzsjCxmR/YtgfcpoTEb0454dMDvobBFSspEhdmdYeDc+X2cojjHrxw0Vn2qw4y0hWzYj/oauO7tyGoscMfA6cLY0to1O9skXTIjrRFt3O7frVx9E2nMS7ihhinasXCH+n9Nv82PGydrKiEAN4xvIta3zvY+MYhbUUZdW+XobZNq6Un5WyPBcS23XPyvTZyXJtiniQnlwte4D5x7dMy8cJROSO19pw+toXTYXKY+X9Ii9PaYonu3+QK/AKPdVWiXXaM51aJQMYBRMiyjCtJWyyMt863mVqYfRzv8v1K2uy1pDipGyGVzWkJTfTyhac6VMYVTz+H1Ns8mv9clSq3o+IxqLJ85c/gZqfwm/jdzmPoxOXLIKN2kMMAV7ZzXCNdFKizBeN0u8zMg0tOy95WfHpGnl1pwnvmbrZmPseWMqBzRqTnXWwpTPQ+OVQ+NVoA7btNdotWjqjSV6IcYWbb1bGcqvCbd2A8ozkbLskRnUMEBKN5YKo9oXqcoxvkG9F2ltiLS6MFvd3QB3zocg/XN9eXZ/U6zukbpFvk2PPDCOX/o0S4fkc5na+kiNKSDn69q+urO/QzXIPSYLipT5HCfOGN516tF1Vkj6K72yZWTnrUUw55be6jbGxnao/PsV5AnNiZzmpUFcpxaJlt+VI1qySOuOzxFR5r9LPhX7HfUxs9vavpOo5E/YeJNnleXFkcKI9C9l3vZWotc9J36NKCacae86BlrN3zBSYIzJJPg9y5zeEK5yvJPAHm1M9nPVTvEu3siRaJ2kXqg/B9gYjnrtWHfHlumx6dtvoCVq3b51XwuZXxrMUeJ3nh29Lq1qJ9pHXSzdn49WV69y5fs6PcyW+Fp9zKiNG1nYKK+M6agvgrmwRM24MCaES7NeNJG/meRNZObdqVDKprWhXM40sI15SfGSdA4UET7v7orXm/tc6Ee8Qi8mrEuNayRKmI3LdH7AtbSYlYqWIiS3XlqTUmc9qlovLA931bB2nC1lQlYwVVLuhlu7feiUohU5G8MUeopP9lbFiS7NL+DC35HyRYmGY0gOsQV+7g21pXY+wKmIN7rMmc2IatAm9Jdi8K7uZ7lFvY7eONRd+iEcwnkMQdeS9ENaUZvKzpRlyV3q4fTfkjWYqESU3rZs3geXi9yTVU5N+jMkCyf3ZqjMNzlN+2I4hPSkzCWcD+9vSL04VubbpmZ9MNTlHpQ5NOFhzjOEvXPbujkvl1O9vla5hPLgdcDsvBgc7gBWxyy2XYiFmjhv5MNzQOtwXEPdrBb/az8MH8upOa9Qbjl9c/Yq4K1zu0RnZtEvbj5nLLeQ0VzNMZxnVvTOek1+fuz/RY3eVOb05sPTR7/UjgHDa6E4HypLx3h3FFl5Q6ng/oBPhkz9W/39gvxVwpuCRpUcTSiZ/YpqaqaFTM18eenrnXkWIpOlUyVTmZqNJ1p0MnZL7alb8LNVeIBNT4nyN5X8F7H+72j7UHtM1sNk0zmD0KG6hLIgdjetT/f2HG2VxHiml8/4tqEG98T3qRbP+96j9njmt13qW/WXJDzX76pM9UuRyfIun51XMfSgvAPHuSDzvW9EZ+o5m8Un0E4C9hj5HBVHSubr5wUh+hQXLku6IIQZLXWUYy/lmM4kJRW041LfejTCx3qnH/cd8Hx+t8guRep3VNfVqwOu1JJUBx6pnlJmICb9b0CE9gd1Ff5e1WW/pAcrkub0DsoSnTrP6k+CnXnHhf2a8TLlwUymbq7bZRTV293D+kzsdiUXPvFejx/U4AeOlC16W68p7p6o+tzhrIbmTMvk7ueOlMl7sh4wmu0W46M+fp7X8JoH9P9OJfqOI+kuyBJTtj2i/bwJ0Uu1bnZIej5XWZ+3vV0jrflqk2nak5V2HJgzknUc8KuyLWH285dn9SsDfmHmp+PO9ScB+y7YE0kiPpkpZY+SAIn4jKh0fmXopSRbjHHA+YxuQG/lvob0VKIyEyWZBXwbPQ+QZR5A51iQ5likMBAl0RbrxaW1zeX/fWS1cHRtfXNjffPB9bUvb+r/meRj9XP1qboCq/Ef1ZcwIw/UIeUa/6L+qv62/Z+dX+xc3vk1N/3ogsb8TJX+7Wz8F/gjXQI=</latexit> <latexit sha1_base64="/59ZCDJZPBrZfCS8zgReJB0hTeY=">AABFdnictVxfcxPJER8u/y7kH5c8piq1OR8JlyKOTUglVVepOrCN8WHAINnAIaC00loI1lqhlYRB56+Q1+Tb5HPkGyRPec1j+s/Mzqw0uz3rELZsz87Or7und6anu2eWeJwO8+nGxj8ufPStb3/nu9/7+PsXf/DDH/34J5c++elRns0mveSwl6XZ5HHczZN0OEoOp8NpmjweT5LuSZwmj+LXW/j80TyZ5MNs1J6+GyfPTrqD0fB42OtOsarz+HTrxaW1jfUN+hetFjZ1YU3pfwfZJ5+uq47qq0z11EydqESN1BTKqeqqHK6nalNtqDHUPVMLqJtAaUjPE3WmLgJ2Bq0SaNGF2tfwewB3T3XtCO6RZk7oHnBJ4WcCyEhdBkwG7SZQRm4RPZ8RZaytor0gmijbO/gba1onUDtVL6FWwpmWoTjsy1Qdqz9RH4bQpzHVYO96msqMtIKSR06vpkBhDHVY7sPzCZR7hDR6jgiTU99Rt116/k9qibV439NtZ+pfJOVluCLV0r3PCgpdNSf6Eb3NGTxjeVLgPAAKie4jlt6Srk+o9yNov4D6e3CdUcnoJIZrQbVntcgtuHzILRG5C5cPuSsi9+HyIfdF5AFcPuSBRiJ2Qjr341tw+fAtkfMDuHzIByLyIVw+5EMReQSXD3kkIr+Gy4f8WkTegsuHvCUi78DlQ94RkW24fMi2iDyEy4c8FJE7cPmQOxpZPVMncGVEZyjMyhtQLvNAS5FCzQ1RvptkHX3YmwFzuleBlWf1Nvz1Y7cDdJpUYHcCxt1xBVYeebtgI/1Y2RbdptXEh70tYvdgBPixeyL2K/WqAvtVwEx7XYGV59o+tPNjZet7F+782Lsi9h6U/Fh5jboPNX7s/YAVY1yBPRCxD9SbCmyI1Z9UYGW73wK74sfK61Qb2vuxIdZ0VoGV7ekReDB+rLxaPYJaP/aRiH2sTiuwj0XsE7DufuyTgBX2fQXWrLEXaQUZkD+SwIyto9YtZiWWxkCtK/BPi7UlJd84hnoJMygwA8KciIjdArEbiNgvEPvBcuWFHc3J35W5tApEKxARF2sTlqZi+37RHktpAGK7QGwvIeo8UnzXpi9z8i5MjYScFisXlkL6lBX2G0uJHg/1ltcg7pcQPLZf0si/StESRlCoqTpqL4s1npER3dch3lL0ZnppeMi4aWEVXNSpiIo9qFhEvfOg3omomQc1E1FzD2ououzMd3GdgBFg9Y/vYkF3PALYR66+IvAKbsCqcxvmaATj5wC8wIdUcx/+tij2lq46yTCax3USsxzPSpZ4AqWFWoN6GxVuU3yd0gxLQDJueV/H+HiHuY2FnnNshc+KlTwqMibhdIYkz6Cgg95iRPOpGZ07VHNG3h2XmuFvF/PelJrhd0jjZ+TFc6kZfqqln55D9rbGts+BbcFsGmvt23JTGpx/YRqmfJFWXbS4+FZP9JhBeqcN6e/pN7N3jveyRSXWjy03o5E7/ctL/WtCw+o5d/TcjAp6T+z1mlLUuCcjHffaclMZMlpFR1oOe9f0zWCbvn4zptyMxgF4XFsUcy+cctPROy56Y8vNaBwpznuekSdvys1oDOie9WHLzWhgtqWr43xbbmrZUQMcO9tyU6s+oiww5oB4zHON9Yom5CfNNLUh+Qf12RrX519dxzBn87yIEeopWd+2mk5crGX1Ehl/IQGrNm0oB/oXM8cHK9NYqGtifMUyTEvr+yodu8aj5vdBixHMft4DkHLmKUhochJovVOguClGXeWeGdw1EYej5HgJ1dG1U9FbtHw5a1Sue0G1Ulxme2v12CF7ndPYG5NPuE+alfSwX/mGqyhKGtovaUim10R37/V8LWt/Q8SNlxDjYqT1aEeId9Lq41Sf1luOji/rXZ4pXLznY8cvZpuPtbXBmCcjW4Sy1PF025k8kluH6+pVZXPc/CyiN4r2ak5WY0g7UrkYhZpsMXvjC7q3tA9pTw55MI0evMdIUxkr3jXDLDrm0yOyqK69lXijvkyGjss5WV1jj+vRAwc98KCbxzhbsGLcg1IbYoZDuGsHRDkXC11lpPGJ+m2xO5rRG6yP6NOShTQ02N4kJQtZF2W/LFF5C2gcDRylh9NYpmPwnRVKctTvk8fGrmXLf5l2bs3+dpfGePVors7E9InrNeIa0azhXV2+W+bAEiy8T66R/1rfS+TXhCPaUInrc4cz62VEO/4JRbBj8oxTmm3S7Ci3dvNTy08MpwNl9s5xNzsjCxmR/YtgfcpoTEb0454dMDvobBFSspEhdmdYeDc+X2cojjHrxw0Vn2qw4y0hWzYj/oauO7tyGoscMfA6cLY0to1O9skXTIjrRFt3O7frVx9E2nMS7ihhinasXCH+n9Nv82PGydrKiEAN4xvIta3zvY+MYhbUUZdW+XobZNq6Un5WyPBcS23XPyvTZyXJtiniQnlwte4D5x7dMy8cJROSO19pw+toXTYXKY+X9Ii9PaYonu3+QK/AKPdVWiXXaM51aJQMYBRMiyjCtJWyyMt863mVqYfRzv8v1K2uy1pDipGyGVzWkJTfTyhac6VMYVTz+H1Ns8mv9clSq3o+IxqLJ85c/gZqfwm/jdzmPoxOXLIKN2kMMAV7ZzXCNdFKizBeN0u8zMg0tOy95WfHpGnl1pwnvmbrZmPseWMqBzRqTnXWwpTPQ+OVQ+NVoA7btNdotWjqjSV6IcYWbb1bGcqvCbd2A8ozkbLskRnUMEBKN5YKo9oXqcoxvkG9F2ltiLS6MFvd3QB3zocg/XN9eXZ/U6zukbpFvk2PPDCOX/o0S4fkc5na+kiNKSDn69q+urO/QzXIPSYLipT5HCfOGN516tF1Vkj6K72yZWTnrUUw55be6jbGxnao/PsV5AnNiZzmpUFcpxaJlt+VI1qySOuOzxFR5r9LPhX7HfUxs9vavpOo5E/YeJNnleXFkcKI9C9l3vZWotc9J36NKCacae86BlrN3zBSYIzJJPg9y5zeEK5yvJPAHm1M9nPVTvEu3siRaJ2kXqg/B9gYjnrtWHfHlumx6dtvoCVq3b51XwuZXxrMUeJ3nh29Lq1qJ9pHXSzdn49WV69y5fs6PcyW+Fp9zKiNG1nYKK+M6agvgrmwRM24MCaES7NeNJG/meRNZObdqVDKprWhXM40sI15SfGSdA4UET7v7orXm/tc6Ee8Qi8mrEuNayRKmI3LdH7AtbSYlYqWIiS3XlqTUmc9qlovLA931bB2nC1lQlYwVVLuhlu7feiUohU5G8MUeopP9lbFiS7NL+DC35HyRYmGY0gOsQV+7g21pXY+wKmIN7rMmc2IatAm9Jdi8K7uZ7lFvY7eONRd+iEcwnkMQdeS9ENaUZvKzpRlyV3q4fTfkjWYqESU3rZs3geXi9yTVU5N+jMkCyf3ZqjMNzlN+2I4hPSkzCWcD+9vSL04VubbpmZ9MNTlHpQ5NOFhzjOEvXPbujkvl1O9vla5hPLgdcDsvBgc7gBWxyy2XYiFmjhv5MNzQOtwXEPdrBb/az8MH8upOa9Qbjl9c/Yq4K1zu0RnZtEvbj5nLLeQ0VzNMZxnVvTOek1+fuz/RY3eVOb05sPTR7/UjgHDa6E4HypLx3h3FFl5Q6ng/oBPhkz9W/39gvxVwpuCRpUcTSiZ/YpqaqaFTM18eenrnXkWIpOlUyVTmZqNJ1p0MnZL7alb8LNVeIBNT4nyN5X8F7H+72j7UHtM1sNk0zmD0KG6hLIgdjetT/f2HG2VxHiml8/4tqEG98T3qRbP+96j9njmt13qW/WXJDzX76pM9UuRyfIun51XMfSgvAPHuSDzvW9EZ+o5m8Un0E4C9hj5HBVHSubr5wUh+hQXLku6IIQZLXWUYy/lmM4kJRW041LfejTCx3qnH/cd8Hx+t8guRep3VNfVqwOu1JJUBx6pnlJmICb9b0CE9gd1Ff5e1WW/pAcrkub0DsoSnTrP6k+CnXnHhf2a8TLlwUymbq7bZRTV293D+kzsdiUXPvFejx/U4AeOlC16W68p7p6o+tzhrIbmTMvk7ueOlMl7sh4wmu0W46M+fp7X8JoH9P9OJfqOI+kuyBJTtj2i/bwJ0Uu1bnZIej5XWZ+3vV0jrflqk2nak5V2HJgzknUc8KuyLWH285dn9SsDfmHmp+PO9ScB+y7YE0kiPpkpZY+SAIn4jKh0fmXopSRbjHHA+YxuQG/lvob0VKIyEyWZBXwbPQ+QZR5A51iQ5likMBAl0RbrxaW1zeX/fWS1cHRtfXNjffPB9bUvb+r/meRj9XP1qboCq/Ef1ZcwIw/UIeUa/6L+qv62/Z+dX+xc3vk1N/3ogsb8TJX+7Wz8F/gjXQI=</latexit> <latexit sha1_base64="/59ZCDJZPBrZfCS8zgReJB0hTeY=">AABFdnictVxfcxPJER8u/y7kH5c8piq1OR8JlyKOTUglVVepOrCN8WHAINnAIaC00loI1lqhlYRB56+Q1+Tb5HPkGyRPec1j+s/Mzqw0uz3rELZsz87Or7und6anu2eWeJwO8+nGxj8ufPStb3/nu9/7+PsXf/DDH/34J5c++elRns0mveSwl6XZ5HHczZN0OEoOp8NpmjweT5LuSZwmj+LXW/j80TyZ5MNs1J6+GyfPTrqD0fB42OtOsarz+HTrxaW1jfUN+hetFjZ1YU3pfwfZJ5+uq47qq0z11EydqESN1BTKqeqqHK6nalNtqDHUPVMLqJtAaUjPE3WmLgJ2Bq0SaNGF2tfwewB3T3XtCO6RZk7oHnBJ4WcCyEhdBkwG7SZQRm4RPZ8RZaytor0gmijbO/gba1onUDtVL6FWwpmWoTjsy1Qdqz9RH4bQpzHVYO96msqMtIKSR06vpkBhDHVY7sPzCZR7hDR6jgiTU99Rt116/k9qibV439NtZ+pfJOVluCLV0r3PCgpdNSf6Eb3NGTxjeVLgPAAKie4jlt6Srk+o9yNov4D6e3CdUcnoJIZrQbVntcgtuHzILRG5C5cPuSsi9+HyIfdF5AFcPuSBRiJ2Qjr341tw+fAtkfMDuHzIByLyIVw+5EMReQSXD3kkIr+Gy4f8WkTegsuHvCUi78DlQ94RkW24fMi2iDyEy4c8FJE7cPmQOxpZPVMncGVEZyjMyhtQLvNAS5FCzQ1RvptkHX3YmwFzuleBlWf1Nvz1Y7cDdJpUYHcCxt1xBVYeebtgI/1Y2RbdptXEh70tYvdgBPixeyL2K/WqAvtVwEx7XYGV59o+tPNjZet7F+782Lsi9h6U/Fh5jboPNX7s/YAVY1yBPRCxD9SbCmyI1Z9UYGW73wK74sfK61Qb2vuxIdZ0VoGV7ekReDB+rLxaPYJaP/aRiH2sTiuwj0XsE7DufuyTgBX2fQXWrLEXaQUZkD+SwIyto9YtZiWWxkCtK/BPi7UlJd84hnoJMygwA8KciIjdArEbiNgvEPvBcuWFHc3J35W5tApEKxARF2sTlqZi+37RHktpAGK7QGwvIeo8UnzXpi9z8i5MjYScFisXlkL6lBX2G0uJHg/1ltcg7pcQPLZf0si/StESRlCoqTpqL4s1npER3dch3lL0ZnppeMi4aWEVXNSpiIo9qFhEvfOg3omomQc1E1FzD2ououzMd3GdgBFg9Y/vYkF3PALYR66+IvAKbsCqcxvmaATj5wC8wIdUcx/+tij2lq46yTCax3USsxzPSpZ4AqWFWoN6GxVuU3yd0gxLQDJueV/H+HiHuY2FnnNshc+KlTwqMibhdIYkz6Cgg95iRPOpGZ07VHNG3h2XmuFvF/PelJrhd0jjZ+TFc6kZfqqln55D9rbGts+BbcFsGmvt23JTGpx/YRqmfJFWXbS4+FZP9JhBeqcN6e/pN7N3jveyRSXWjy03o5E7/ctL/WtCw+o5d/TcjAp6T+z1mlLUuCcjHffaclMZMlpFR1oOe9f0zWCbvn4zptyMxgF4XFsUcy+cctPROy56Y8vNaBwpznuekSdvys1oDOie9WHLzWhgtqWr43xbbmrZUQMcO9tyU6s+oiww5oB4zHON9Yom5CfNNLUh+Qf12RrX519dxzBn87yIEeopWd+2mk5crGX1Ehl/IQGrNm0oB/oXM8cHK9NYqGtifMUyTEvr+yodu8aj5vdBixHMft4DkHLmKUhochJovVOguClGXeWeGdw1EYej5HgJ1dG1U9FbtHw5a1Sue0G1Ulxme2v12CF7ndPYG5NPuE+alfSwX/mGqyhKGtovaUim10R37/V8LWt/Q8SNlxDjYqT1aEeId9Lq41Sf1luOji/rXZ4pXLznY8cvZpuPtbXBmCcjW4Sy1PF025k8kluH6+pVZXPc/CyiN4r2ak5WY0g7UrkYhZpsMXvjC7q3tA9pTw55MI0evMdIUxkr3jXDLDrm0yOyqK69lXijvkyGjss5WV1jj+vRAwc98KCbxzhbsGLcg1IbYoZDuGsHRDkXC11lpPGJ+m2xO5rRG6yP6NOShTQ02N4kJQtZF2W/LFF5C2gcDRylh9NYpmPwnRVKctTvk8fGrmXLf5l2bs3+dpfGePVors7E9InrNeIa0azhXV2+W+bAEiy8T66R/1rfS+TXhCPaUInrc4cz62VEO/4JRbBj8oxTmm3S7Ci3dvNTy08MpwNl9s5xNzsjCxmR/YtgfcpoTEb0454dMDvobBFSspEhdmdYeDc+X2cojjHrxw0Vn2qw4y0hWzYj/oauO7tyGoscMfA6cLY0to1O9skXTIjrRFt3O7frVx9E2nMS7ihhinasXCH+n9Nv82PGydrKiEAN4xvIta3zvY+MYhbUUZdW+XobZNq6Un5WyPBcS23XPyvTZyXJtiniQnlwte4D5x7dMy8cJROSO19pw+toXTYXKY+X9Ii9PaYonu3+QK/AKPdVWiXXaM51aJQMYBRMiyjCtJWyyMt863mVqYfRzv8v1K2uy1pDipGyGVzWkJTfTyhac6VMYVTz+H1Ns8mv9clSq3o+IxqLJ85c/gZqfwm/jdzmPoxOXLIKN2kMMAV7ZzXCNdFKizBeN0u8zMg0tOy95WfHpGnl1pwnvmbrZmPseWMqBzRqTnXWwpTPQ+OVQ+NVoA7btNdotWjqjSV6IcYWbb1bGcqvCbd2A8ozkbLskRnUMEBKN5YKo9oXqcoxvkG9F2ltiLS6MFvd3QB3zocg/XN9eXZ/U6zukbpFvk2PPDCOX/o0S4fkc5na+kiNKSDn69q+urO/QzXIPSYLipT5HCfOGN516tF1Vkj6K72yZWTnrUUw55be6jbGxnao/PsV5AnNiZzmpUFcpxaJlt+VI1qySOuOzxFR5r9LPhX7HfUxs9vavpOo5E/YeJNnleXFkcKI9C9l3vZWotc9J36NKCacae86BlrN3zBSYIzJJPg9y5zeEK5yvJPAHm1M9nPVTvEu3siRaJ2kXqg/B9gYjnrtWHfHlumx6dtvoCVq3b51XwuZXxrMUeJ3nh29Lq1qJ9pHXSzdn49WV69y5fs6PcyW+Fp9zKiNG1nYKK+M6agvgrmwRM24MCaES7NeNJG/meRNZObdqVDKprWhXM40sI15SfGSdA4UET7v7orXm/tc6Ee8Qi8mrEuNayRKmI3LdH7AtbSYlYqWIiS3XlqTUmc9qlovLA931bB2nC1lQlYwVVLuhlu7feiUohU5G8MUeopP9lbFiS7NL+DC35HyRYmGY0gOsQV+7g21pXY+wKmIN7rMmc2IatAm9Jdi8K7uZ7lFvY7eONRd+iEcwnkMQdeS9ENaUZvKzpRlyV3q4fTfkjWYqESU3rZs3geXi9yTVU5N+jMkCyf3ZqjMNzlN+2I4hPSkzCWcD+9vSL04VubbpmZ9MNTlHpQ5NOFhzjOEvXPbujkvl1O9vla5hPLgdcDsvBgc7gBWxyy2XYiFmjhv5MNzQOtwXEPdrBb/az8MH8upOa9Qbjl9c/Yq4K1zu0RnZtEvbj5nLLeQ0VzNMZxnVvTOek1+fuz/RY3eVOb05sPTR7/UjgHDa6E4HypLx3h3FFl5Q6ng/oBPhkz9W/39gvxVwpuCRpUcTSiZ/YpqaqaFTM18eenrnXkWIpOlUyVTmZqNJ1p0MnZL7alb8LNVeIBNT4nyN5X8F7H+72j7UHtM1sNk0zmD0KG6hLIgdjetT/f2HG2VxHiml8/4tqEG98T3qRbP+96j9njmt13qW/WXJDzX76pM9UuRyfIun51XMfSgvAPHuSDzvW9EZ+o5m8Un0E4C9hj5HBVHSubr5wUh+hQXLku6IIQZLXWUYy/lmM4kJRW041LfejTCx3qnH/cd8Hx+t8guRep3VNfVqwOu1JJUBx6pnlJmICb9b0CE9gd1Ff5e1WW/pAcrkub0DsoSnTrP6k+CnXnHhf2a8TLlwUymbq7bZRTV293D+kzsdiUXPvFejx/U4AeOlC16W68p7p6o+tzhrIbmTMvk7ueOlMl7sh4wmu0W46M+fp7X8JoH9P9OJfqOI+kuyBJTtj2i/bwJ0Uu1bnZIej5XWZ+3vV0jrflqk2nak5V2HJgzknUc8KuyLWH285dn9SsDfmHmp+PO9ScB+y7YE0kiPpkpZY+SAIn4jKh0fmXopSRbjHHA+YxuQG/lvob0VKIyEyWZBXwbPQ+QZR5A51iQ5likMBAl0RbrxaW1zeX/fWS1cHRtfXNjffPB9bUvb+r/meRj9XP1qboCq/Ef1ZcwIw/UIeUa/6L+qv62/Z+dX+xc3vk1N/3ogsb8TJX+7Wz8F/gjXQI=</latexit> <latexit sha1_base64="/59ZCDJZPBrZfCS8zgReJB0hTeY=">AABFdnictVxfcxPJER8u/y7kH5c8piq1OR8JlyKOTUglVVepOrCN8WHAINnAIaC00loI1lqhlYRB56+Q1+Tb5HPkGyRPec1j+s/Mzqw0uz3rELZsz87Or7und6anu2eWeJwO8+nGxj8ufPStb3/nu9/7+PsXf/DDH/34J5c++elRns0mveSwl6XZ5HHczZN0OEoOp8NpmjweT5LuSZwmj+LXW/j80TyZ5MNs1J6+GyfPTrqD0fB42OtOsarz+HTrxaW1jfUN+hetFjZ1YU3pfwfZJ5+uq47qq0z11EydqESN1BTKqeqqHK6nalNtqDHUPVMLqJtAaUjPE3WmLgJ2Bq0SaNGF2tfwewB3T3XtCO6RZk7oHnBJ4WcCyEhdBkwG7SZQRm4RPZ8RZaytor0gmijbO/gba1onUDtVL6FWwpmWoTjsy1Qdqz9RH4bQpzHVYO96msqMtIKSR06vpkBhDHVY7sPzCZR7hDR6jgiTU99Rt116/k9qibV439NtZ+pfJOVluCLV0r3PCgpdNSf6Eb3NGTxjeVLgPAAKie4jlt6Srk+o9yNov4D6e3CdUcnoJIZrQbVntcgtuHzILRG5C5cPuSsi9+HyIfdF5AFcPuSBRiJ2Qjr341tw+fAtkfMDuHzIByLyIVw+5EMReQSXD3kkIr+Gy4f8WkTegsuHvCUi78DlQ94RkW24fMi2iDyEy4c8FJE7cPmQOxpZPVMncGVEZyjMyhtQLvNAS5FCzQ1RvptkHX3YmwFzuleBlWf1Nvz1Y7cDdJpUYHcCxt1xBVYeebtgI/1Y2RbdptXEh70tYvdgBPixeyL2K/WqAvtVwEx7XYGV59o+tPNjZet7F+782Lsi9h6U/Fh5jboPNX7s/YAVY1yBPRCxD9SbCmyI1Z9UYGW73wK74sfK61Qb2vuxIdZ0VoGV7ekReDB+rLxaPYJaP/aRiH2sTiuwj0XsE7DufuyTgBX2fQXWrLEXaQUZkD+SwIyto9YtZiWWxkCtK/BPi7UlJd84hnoJMygwA8KciIjdArEbiNgvEPvBcuWFHc3J35W5tApEKxARF2sTlqZi+37RHktpAGK7QGwvIeo8UnzXpi9z8i5MjYScFisXlkL6lBX2G0uJHg/1ltcg7pcQPLZf0si/StESRlCoqTpqL4s1npER3dch3lL0ZnppeMi4aWEVXNSpiIo9qFhEvfOg3omomQc1E1FzD2ououzMd3GdgBFg9Y/vYkF3PALYR66+IvAKbsCqcxvmaATj5wC8wIdUcx/+tij2lq46yTCax3USsxzPSpZ4AqWFWoN6GxVuU3yd0gxLQDJueV/H+HiHuY2FnnNshc+KlTwqMibhdIYkz6Cgg95iRPOpGZ07VHNG3h2XmuFvF/PelJrhd0jjZ+TFc6kZfqqln55D9rbGts+BbcFsGmvt23JTGpx/YRqmfJFWXbS4+FZP9JhBeqcN6e/pN7N3jveyRSXWjy03o5E7/ctL/WtCw+o5d/TcjAp6T+z1mlLUuCcjHffaclMZMlpFR1oOe9f0zWCbvn4zptyMxgF4XFsUcy+cctPROy56Y8vNaBwpznuekSdvys1oDOie9WHLzWhgtqWr43xbbmrZUQMcO9tyU6s+oiww5oB4zHON9Yom5CfNNLUh+Qf12RrX519dxzBn87yIEeopWd+2mk5crGX1Ehl/IQGrNm0oB/oXM8cHK9NYqGtifMUyTEvr+yodu8aj5vdBixHMft4DkHLmKUhochJovVOguClGXeWeGdw1EYej5HgJ1dG1U9FbtHw5a1Sue0G1Ulxme2v12CF7ndPYG5NPuE+alfSwX/mGqyhKGtovaUim10R37/V8LWt/Q8SNlxDjYqT1aEeId9Lq41Sf1luOji/rXZ4pXLznY8cvZpuPtbXBmCcjW4Sy1PF025k8kluH6+pVZXPc/CyiN4r2ak5WY0g7UrkYhZpsMXvjC7q3tA9pTw55MI0evMdIUxkr3jXDLDrm0yOyqK69lXijvkyGjss5WV1jj+vRAwc98KCbxzhbsGLcg1IbYoZDuGsHRDkXC11lpPGJ+m2xO5rRG6yP6NOShTQ02N4kJQtZF2W/LFF5C2gcDRylh9NYpmPwnRVKctTvk8fGrmXLf5l2bs3+dpfGePVors7E9InrNeIa0azhXV2+W+bAEiy8T66R/1rfS+TXhCPaUInrc4cz62VEO/4JRbBj8oxTmm3S7Ci3dvNTy08MpwNl9s5xNzsjCxmR/YtgfcpoTEb0454dMDvobBFSspEhdmdYeDc+X2cojjHrxw0Vn2qw4y0hWzYj/oauO7tyGoscMfA6cLY0to1O9skXTIjrRFt3O7frVx9E2nMS7ihhinasXCH+n9Nv82PGydrKiEAN4xvIta3zvY+MYhbUUZdW+XobZNq6Un5WyPBcS23XPyvTZyXJtiniQnlwte4D5x7dMy8cJROSO19pw+toXTYXKY+X9Ii9PaYonu3+QK/AKPdVWiXXaM51aJQMYBRMiyjCtJWyyMt863mVqYfRzv8v1K2uy1pDipGyGVzWkJTfTyhac6VMYVTz+H1Ns8mv9clSq3o+IxqLJ85c/gZqfwm/jdzmPoxOXLIKN2kMMAV7ZzXCNdFKizBeN0u8zMg0tOy95WfHpGnl1pwnvmbrZmPseWMqBzRqTnXWwpTPQ+OVQ+NVoA7btNdotWjqjSV6IcYWbb1bGcqvCbd2A8ozkbLskRnUMEBKN5YKo9oXqcoxvkG9F2ltiLS6MFvd3QB3zocg/XN9eXZ/U6zukbpFvk2PPDCOX/o0S4fkc5na+kiNKSDn69q+urO/QzXIPSYLipT5HCfOGN516tF1Vkj6K72yZWTnrUUw55be6jbGxnao/PsV5AnNiZzmpUFcpxaJlt+VI1qySOuOzxFR5r9LPhX7HfUxs9vavpOo5E/YeJNnleXFkcKI9C9l3vZWotc9J36NKCacae86BlrN3zBSYIzJJPg9y5zeEK5yvJPAHm1M9nPVTvEu3siRaJ2kXqg/B9gYjnrtWHfHlumx6dtvoCVq3b51XwuZXxrMUeJ3nh29Lq1qJ9pHXSzdn49WV69y5fs6PcyW+Fp9zKiNG1nYKK+M6agvgrmwRM24MCaES7NeNJG/meRNZObdqVDKprWhXM40sI15SfGSdA4UET7v7orXm/tc6Ee8Qi8mrEuNayRKmI3LdH7AtbSYlYqWIiS3XlqTUmc9qlovLA931bB2nC1lQlYwVVLuhlu7feiUohU5G8MUeopP9lbFiS7NL+DC35HyRYmGY0gOsQV+7g21pXY+wKmIN7rMmc2IatAm9Jdi8K7uZ7lFvY7eONRd+iEcwnkMQdeS9ENaUZvKzpRlyV3q4fTfkjWYqESU3rZs3geXi9yTVU5N+jMkCyf3ZqjMNzlN+2I4hPSkzCWcD+9vSL04VubbpmZ9MNTlHpQ5NOFhzjOEvXPbujkvl1O9vla5hPLgdcDsvBgc7gBWxyy2XYiFmjhv5MNzQOtwXEPdrBb/az8MH8upOa9Qbjl9c/Yq4K1zu0RnZtEvbj5nLLeQ0VzNMZxnVvTOek1+fuz/RY3eVOb05sPTR7/UjgHDa6E4HypLx3h3FFl5Q6ng/oBPhkz9W/39gvxVwpuCRpUcTSiZ/YpqaqaFTM18eenrnXkWIpOlUyVTmZqNJ1p0MnZL7alb8LNVeIBNT4nyN5X8F7H+72j7UHtM1sNk0zmD0KG6hLIgdjetT/f2HG2VxHiml8/4tqEG98T3qRbP+96j9njmt13qW/WXJDzX76pM9UuRyfIun51XMfSgvAPHuSDzvW9EZ+o5m8Un0E4C9hj5HBVHSubr5wUh+hQXLku6IIQZLXWUYy/lmM4kJRW041LfejTCx3qnH/cd8Hx+t8guRep3VNfVqwOu1JJUBx6pnlJmICb9b0CE9gd1Ff5e1WW/pAcrkub0DsoSnTrP6k+CnXnHhf2a8TLlwUymbq7bZRTV293D+kzsdiUXPvFejx/U4AeOlC16W68p7p6o+tzhrIbmTMvk7ueOlMl7sh4wmu0W46M+fp7X8JoH9P9OJfqOI+kuyBJTtj2i/bwJ0Uu1bnZIej5XWZ+3vV0jrflqk2nak5V2HJgzknUc8KuyLWH285dn9SsDfmHmp+PO9ScB+y7YE0kiPpkpZY+SAIn4jKh0fmXopSRbjHHA+YxuQG/lvob0VKIyEyWZBXwbPQ+QZR5A51iQ5likMBAl0RbrxaW1zeX/fWS1cHRtfXNjffPB9bUvb+r/meRj9XP1qboCq/Ef1ZcwIw/UIeUa/6L+qv62/Z+dX+xc3vk1N/3ogsb8TJX+7Wz8F/gjXQI=</latexit> <latexit sha1_base64="O+fT+UDZYhoqifeIw6Ke6DTBAFc=">AAA/fXiczVtbdxu3EUbSW6ze7PSxD91WUWPnuDqy4lM3J6d1bEmWFdOWbFGykzB2eVlRG1NcepfUxazyT/raPvQn9Jf0H9Q/oU/tzABYYEnsDqAm50Q4krAgvpnBAJgLsOyMBkk+Xln511tvf+/7P/jhj965tPDjn/z0Zz+/fOXd/TydZN14r5sO0uxZp53Hg2QY742T8SB+Nsri9lFnED/tvFzDz58ex1mepMPm+GwUf3nU7g+Tg6TbHkPTi8tXWkRjmsW986j3ovXs9MXlxZXlFfqJ5is3VGVRqJ+d9MqvPhAt0ROp6IqJOBKxGIox1AeiLXIoX4gbYkWMoO1LMYW2DGoJfR6Lc7EA2An0iqFHG1pfwt8+PH2hWofwjDRzQneBywB+M0BGYgkwKfTLoI7cIvp8QpSxtYr2lGiibGfwv6NoHUHrWBxCK4fTPf1xPWg9ANlQM/VjHkO/P9BYE+g9ohbUQldxm5D2cISRNfoxUBhBG9Z78HkG9S4h9XxEhMlJRzgHbfr839QTW/G5q/pOxBsazXdFf989vSwFlEhsiUdiTTTEnlgXG2KX5K0vC4Rbg3GMQMcZSN4HDaG0V0Gaa/B/FfbUirgFtU2QsUN9YhhLJHbg/xnJv6BkjcRDcUc0xX3ifRXqD6F2LWCeuJ56bec0G/7rZoFZZRnNyFmtBGMa/4QsQCZOa/vi2ump2Tyg9ZCrHVk/p1KDa+KJ2K6dP+Q8BPonZImOSIPIcQrtfZAJV+gA+KFNxLX8D/G1WIT61+Kfah1HIFemVvYh0ZNP/jT/DAVpvg/lXFwimnsg9UIxygie5Aykxepvi2PaGxFZ8gl8JvfSgNbekHrVje4RlHOq6VXTgTKl1vNa5BoUF3KNRW5CcSE3WWQDigvZYJE7UFzIHYWswz6G4sI+Zrk+geJCPmGRTSguZJNF7kNxIfdZ5OdQXMjPWeQ9KC7kPRb5AIoL+YBF7kFxIfdY5AYUF3JDIav3Gtq1lOgkzL66A/UyD/RTA2i5w8p3l2ysC3vXY1d2K7D8vlyH/27suodO4wrshsfqOajA8utnE6ycG8tbk/vkI13Y+yx2C1aAG7vFYj8VX1VgP/XYLy8rsPyOaZC/cWF5+/kQntzYhyz2EdTcWN7LbEOLG7vtYfNHFdgdFvtYvKrA+lj9rALL2/1disVc2F0PnzGuwPJeYw9iBzeWt6f7EIO4sbzPeQqtbuxTFvuMokYX9hmL/YyiUxf2Mw8/+boCqz2ljN77FAPGsGPrqLWLXYm1EVBrM/wHhW/BGvqoHovpF5g+YY5YxGaB2PRENApEw1uuvLCjOUWsPJfdArHriegUvglrY7Z/r+jfo9yMR6wXiPUZRF0WgHOtx3JM0YVu4ZDjwnNhzWdMaWG/sRar9VBveTViu4SQa/uQVv51ytUxk+lR3lpN7bDw8RIZ0XMd4oRyPT1KzYPHjQurYKNOWVTHgeqwqDMH6oxFTRyoCYs6dqCOWZTZ+Tau5bECjP5xLqb0pHN/7iylfHaxDR53A7wftmzDf5+zlPqsHE8E0FPq7NnY4gxqU8qkTWa3TjmyPGmIQTLZc1udMeETnk1O1a6Tdvi88OWR0Cee/nQSkqdf0MF4MaIdFUbnAbWcU3wna2H4+8XO17Uw/AZp/JzieFkLw4+V9OMLyN5U2OYFsLuwn0ZK+6YeSkOeoUgaus7Z5q3CbuJ55SntHNkWyn+NalIHph5GI7fGkJfGEELD6DK3dBlGBWMkGdvqWhQ8kqHKbk09VIaUfOVQyWGeQmcG+/TUzOh6GI0diKvWKLOeWvXQFToqRmPqYTT2hTxbP6d4XdfDaPTpWerD1MNo4JlKW2Xzph5qvVEDMkM2dR2zZBTF6BPnhLx3/VmKHZHP+xg8UXleRPD1lEzkWU2nU/iZeolmrUuIHOj9J1aEVKYxFats9iNlGJd87zwd439R8w3QYgS7Vp7rc2fSA5BQnxjEdEr+nKjVY8oj07hVFoeW5GAG1VKtYzaWM3zlmU657QW1clmTGa3RY4vsbE5rb0QRW4M0y+mhUTnDVRQ5DTVKGuLphejuNe3gdEb7KyxuNIMYFSutS7dD8pa6Pot0aX3X0vGSukUZQ5F3Kmb94lnwAeEyykhSsjYoSx1Pu58+5bHb0B9eF+YEWn4W0YyivTomq5HQjU/OxiH6LFdGylN6NrT36J6tfGsVKSojIW9U8YwbT7sjus+0bS3HG/Wlz89kPSera+7R62/HDLrvQIdmH2vgKx5BrQnR/B48NT3yD3PnlpK+M/G74v4zpfmrz7btm71WQUNam7hkH+sy4MMSlRNA41qQGbQ/jVk6Gt+ao8Rn5C55TF5ZtvtLdKev3xxp0wqvXsvVpyQ94rpKXCPaM/K+Xz7NcpASTJ2frFLUWT9K5BfCES0ox/W5xVnqZUjv0sSUW44onh3QXuP2Rrm3fXY0+4nmtCP0WxV4V5ySfYzI+kXgnVJakxH92m/l6HcrpD0YkIX0sTpJEdu4Ip2EXWMJ7XK5RuT7Qma9xWTJJsRf07V3V05rUcb50gucz6xtrZMGRYIxcc2UbTd7u973INK8CWGvEknRrJWrxP8a/dW/ep0szq0I1DDOQK4snWs+Uso0UEdt8vH1Nkj3taV8r5DhuZLaeD8j03slydYpT0J50Ff3gHOXniUvXCUZyZ3P9ZFetO6kFSmPZvSIo0Xv2lJWv6/8L8p9nXzkIu25ljBv2OjYX/flTnhn+dbzKlP3o51/K9SNrstaQ4qRMKerUkPc2XtMOZYt5YDeSZJv38SK0rzWs5le9XyGtBaPrL38F2j9NfzVcutnPzqdklW4S2tAUjBPRiOyJZrr4cfrbomXXpmalnk2/Mya1L3slotkxdK6mcz4OJjKDq2aU3XWoOs+42/SHZ7RgG7XVuTFTATdVHd+vtTDaPtTnrCU+dhJoxIPKe2cx49qj6XK5+Ia9ZqltcLSwrfx7BN1e3favvMexQ5dinBkdtCjXZBQTKNb6/MgSQF53VT2y95dLWrBvdQhC4WUy28V4tldV8h3SKWMv1WeIyU7anacfmfnRPXRNqxF9Q/nkEeUzea0dzTiJvWIlfy2HNHMjl+2fHpEZ95tilmkX6/PSO3eZhaikr822ZzcC4bXQLyvovEhzcFYvKnltjWXH25ZGWIk5H3foIjgcZbfBM0y5m1yZehc3R295TRL6Ekyyudl1NghGzV/yiBvsYagfb3ulknqqfijh3WQeaXZKfb6ws8mKivBsX0APVHzZuZdPXh+A2+OHL+L3Ge1yXMcqThwOvN8MVpt5UnKz3V6mMzwNfqYiKHKCXX0bjKpMqYlPvbmIiUK4yIxPlzCRhEif5jkITLLextfyrq3plzO5qWNOaSchHsPEhGuCOqqM2K6xoyjM0evQ1ibmmzhKOF5V6pycNva4snPpTlfJFsv1XqkgeWNqryFpm57DGPDpYWMyfoNBHcuInt3hXwftSqDsnODj6Hg30i48iftTXxO13YhisT36v2+FVF/k/9K1eWJX0QtuJN7M9lpW42z3KN+ll9Z1G36Phz8eSSga076hPxgqOySMi+5Td2f/gnt4UzErPSmZ/gYbC78SOY5hYwnIbvEjyYR+ntMoWPRHHxGUubiz0ee+3OjOBD6+3RhY9DU+RGUOYTw0PfzfnNueofzsjnV62ueiy8PacP1jYTG4c1YdbZh+vlYqMyakW+eA1qHgxrq2lv8v+PQfAyncF6+3HL6rtNXHrMu+8XqzBKj2fA9Y7j5rOZqjv4802J0JtZx85NRWxQ0U6k1mm+ePkaTZg1oXlMhTwp56STeXkVGXl8qeHLukiEV//GSQeKrZPClok/wqynpHjw1/U0/16j0Zz4yGTpVMpWpIT2ZabdoD8d0WmBudnr0XLxtSd9D/4h+Ilm5dVNVPrpRfA99f3X5xu+XP3x8c/GTu+ob6e+IX4rfQCR/Q9wSn4j7EGHugQwn4q/ib+Lvf/rv7aXb128vy65vv6UwvxCln9u3/gfA1CcO</latexit> dX Y <latexit sha1_base64="6tOGw6FSQVfHa06oZqSaTlaRZAo=">AABFdnictVxtc9u4EUaub9f0Ldd+7EyHPZ/bXCd17TSdduamM5fYjuOLkziR7CQXJRlRohUltKiIkvKi81/o1/bf9Hf0H7Sf+rUfuy8AAUogF3TTcGyDIJ7dxRJY7C7AxON0mE83N/9x4aNvffs73/3ex9+/+IMf/ujHP7n0yU+P82w26SVHvSzNJo/ibp6kw1FyNB1O0+TReJJ0T+M0eRi/2sbnD+fJJB9mo/b03Th5etodjIYnw153ilWdx++2n19a29zYpH/RamFLF9aU/neYffLphuqovspUT83UqUrUSE2hnKquyuF6orbUphpD3VO1gLoJlIb0PFFn6iJgZ9AqgRZdqH0Fvwdw90TXjuAeaeaE7gGXFH4mgIzUOmAyaDeBMnKL6PmMKGNtFe0F0UTZ3sHfWNM6hdqpegG1Es60DMVhX6bqRP2J+jCEPo2pBnvX01RmpBWUPHJ6NQUKY6jDch+eT6DcI6TRc0SYnPqOuu3S839SS6zF+55uO1P/IinX4YpUS/c+Kyh01ZzoR/Q2Z/CM5UmB8wAoJLqPWHpDuj6l3o+g/QLq78J1RiWjkxiuBdWe1SK34fIht0XkHlw+5J6IPIDLhzwQkYdw+ZCHGonYCencj2/B5cO3RM734fIh74vIB3D5kA9E5DFcPuSxiPwaLh/yaxF5Ey4f8qaIvA2XD3lbRLbh8iHbIvIILh/ySETuwuVD7mpk9UydwJURnaEwK69DucwDLUUKNddF+W6QdfRhbwTM6V4FVp7VO/DXj90J0GlSgd0NGHcnFVh55O2BjfRjZVt0i1YTH/aWiN2HEeDH7ovYr9TLCuxXATPtVQVWnmsH0M6Pla3vHbjzY++I2LtQ8mPlNeoe1Pix9wJWjHEF9lDE3levK7AhVn9SgZXtfgvsih8rr1NtaO/HhljTWQVWtqfH4MH4sfJq9RBq/diHIvaReluBfSRiH4N192MfB6yw7yuwZo29SCvIgPyRBGZsHbVuMSuxNAZqXYF/WqwtKfnGMdRLmEGBGRDmVETsFYi9QMRBgTgIlisv7GhO/q7MpVUgWoGIuFibsDQV2/eL9lhKAxA7BWJnCVHnkeK7Nn2Zk3dhaiTktFi5sBTSp6yw31hK9Hiot7wGca+E4LH9gkb+FYqWMIJCTdVRe1Gs8YyM6L4O8YaiN9NLw0PGTQur4KLeiqjYg4pF1DsP6p2ImnlQMxE196DmIsrOfBfXCRgBVv/4LhZ0xyOAfeTqKwKv4DqsOrdgjkYwfg7BC3xANffgb4tib+mqkwyjeVwnMcvxtGSJJ1BaqDWot1HhDsXXKc2wBCTjlvd0jI93mNtY6DnHVvisWMmjImMSTmdI8gwKOugtRjSfmtG5TTVn5N1xqRn+VjHvTakZfpc0fkZePJea4ada+uk5ZG9rbPsc2BbMprHWvi03pcH5F6Zhyhdp1UWLi2/1VI8ZpPe2If19/Wb2z/FetqnE+rHlZjRyp395qX9NaFg9546em1FB74m9XlOKGvdkpONeW24qQ0ar6EjLYe+avhls09dvxpSb0TgEj2ubYu6FU246esdFb2y5GY1jxXnPM/LkTbkZjQHdsz5suRkNzLZ0dZxvy00tO2qAY2dbbmrVR5QFxhwQj3musV7RhPykmaY2JP+gPlvj+vyr6xjmbJ4VMUI9JevbVtOJi7WsXiLjLyRg1aYN5UD/Yub4YGUaC3VVjK9YhmlpfV+lY9d41PwBaDGC2c97AFLOPAUJTU4CrXcKFLfEqKvcM4O7KuJwlJwsoTq6dip6i5YvZ43Kdc+pVorLbG+tHjtkr3Mae2PyCQ9Is5IeDirfcBVFSUMHJQ3J9Jro7r2er2Xtb4q48RJiXIy0Hu0I8U5afZzq03rL0fG63uWZwsV7Pnb8Yrb5RFsbjHkyskUoSx1Pt53JI7l1uK5eUTbHzc8ieqNor+ZkNYa0I5WLUajJFrM3vqB7S/uI9uSQB9PowXuMNJWx4l0zzKJjPj0ii+raW4k36stk6Lick9U19rgePXDQAw+6eYyzDSvGXSi1IWY4grt2QJRzsdBVRhqfqN8Wu6MZvcH6iD4tWUhDg+1NUrKQdVH2ixKVN4DG0cBRejiNZToG31mhJEf9Pnls7Fq2/Ou0c2v2t7s0xqtHc3Umpk9crxLXiGYN7+ry3TIHlmDhfXKV/Nf6XiK/JhzRhkpcnzmcWS8j2vFPKIIdk2ec0myTZke5tZufWn5iOB0qs3eOu9kZWciI7F8E61NGYzKiH/fsgNlBZ4uQko0MsTvDwrvx+TpDcYxZP26o+FSDHW8J2bIZ8Td03dmV01jkiIHXgbOlsW10ckC+YEJcJ9q627ldv/og0p6TcEcJU7Rj5TLx/5x+mx8zTtZWRgRqGN9Arm2d731kFLOgjrq0ytfbINPWlfKzQoZnWmq7/lmZPitJtkMRF8qDq3UfOPfonnnhKJmQ3PlKG15H67K5SHm8pEfs7QlF8Wz3B3oFRrmv0Cq5RnOuQ6NkAKNgWkQRpq2URV7mW8+rTD2Mdv5/oW51XdYaUoyUzeCyhqT8fkLRmitlCqOax+8rmk1+rU+WWtXzGdFYPHXm8jdQ+0v4beQ292F04pJVuEFjgCnYO6sRrolWWoTxulHiZUamoWXvLT87Jk0rt+Y88TVbNxtjzxtTOaRR81ZnLUz5PDReOjReBuqwTXuNVoum3lii52Js0da7laH8mnBrN6A8EynLHplBDQOkdGOpMKp9kaoc4xvUe5HWpkirC7PV3Q1w53wI0j/Xl2f3N8XqHqmb5Nv0yAPj+KVPs3RIPpeprY/UmAJyvqbtqzv7O1SD3GOyoEiZz3HijOFdpx5dZ4Wkv9IrW0Z23loEc27pjW5jbGyHyr9fQZ7SnMhpXhrENWqRaPldOaIli7Th+BwRZf675FOx31EfM7ut7TuJSv6EjTd5VlleHCmMSP9S5m1/JXrdd+LXiGLCmfauY6DV/A0jBcaYTILfs8zpDeEqxzsJ7NHGZD9X7RTv4o0ciTZI6oX6c4CN4ajXjnV3bJkem779Blqi1u1b97WQ+aXBHCV+59nR69Kqdqp91MXS/flodfUqV76v08Nsia/Vx4zauJGFjfLKmI76IpgLS9SMC2NCuDTrRRP5m0neRGbenQqlbFobyuVMA9uYFxQvSedAEeHz7i57vbnPhX7EK/RiwrrUuEaihNm4TOcHXEuLWaloKUJy66U1KXXWo6r1wvJwVw1rx9lSJmQFUyXlbri124dOKVqRszFMoaf4ZG9VnOjS/AIu/B0pX5RoOIbkEFvg515X22r3A5yKeK3LnNmMqAZtQn8pBu/qfpZb1OvotUPdpR/CIZzHEHQtST+kFbWp7ExZltylHk7/DVmDiUpE6W3L5n1wucg9WeXUpD9DsnByb4bKfJPTtC+GQ0hPylzC+fD+htSLE2W+bWrWB0Nd7kGZQxMe5jxD2Du3rZvzcjnV62uVSygPXgfMzovB4Q5gdcxi24VYqInzRj48B7QOJzXUzWrxv/bD8LGcmvMK5ZbTN2cvA946t0t0Zhb94uZzxnILGc3VHMN5ZkXvrNfk58f+X9ToTWVObz48ffRL7RgwvBaK86GydIx3R5GVN5QK7g/4ZMjUv9XfL8hfJbwuaFTJ0YSS2a+opmZayNTMl5e+3plnITJZOlUylanZeKJFJ2O31b66CT/bhQfY9JQof1PJfxHr/462D7UnZD1MNp0zCB2qSygLYnfT+nRvz9FWSYxnevmMbxtqcE/8gGrxvO9dao9nftulvlV/ScJz/Y7KVL8UmSzv8tl5FUMPyjtwnAsy3/tGdKaes1l8Au00YI+Rz1FxpGS+fl4Qok9x4bKkC0KY0VJHOfZSjulMUlJBOy71rUcjfKx3+nHfAc/nd4vsUqR+R3VdvTrgSi1JdeiR6gllBmLS/yZEaH9QV+DvFV32S3q4ImlO76As0VvnWf1JsDPvuLBfM65THsxk6ua6XUZRvd09rM/E7lRy4RPv9fhBDX7gSNmit/WK4u6Jqs8dzmpozrRM7n7uSJm8J+sBo9luMT7q4+d5Da95QP9vV6JvO5LugSwxZdsj2s+bEL1U62aXpOdzlfV521s10pqvNpmmPVlpx4E5I1nHAb8q2xZmP395Vr8y4BdmfjruXH8csO+CPZEk4pOZUvYoCZCIz4hK51eGXkqyxRgHnM/oBvRW7mtITyUqM1GSWcC30fMAWeYBdE4EaU5ECgNREm2xnl9a21r+30dWC8dXN7Y2N7buX1v78ob+n0k+Vj9Xn6rLsBr/UX0JM/JQHVGu8S/qr+pvO//Z/cXu+u6vuelHFzTmZ6r0b3fzv4JTXQQ=</latexit> <latexit sha1_base64="6tOGw6FSQVfHa06oZqSaTlaRZAo=">AABFdnictVxtc9u4EUaub9f0Ldd+7EyHPZ/bXCd17TSdduamM5fYjuOLkziR7CQXJRlRohUltKiIkvKi81/o1/bf9Hf0H7Sf+rUfuy8AAUogF3TTcGyDIJ7dxRJY7C7AxON0mE83N/9x4aNvffs73/3ex9+/+IMf/ujHP7n0yU+P82w26SVHvSzNJo/ibp6kw1FyNB1O0+TReJJ0T+M0eRi/2sbnD+fJJB9mo/b03Th5etodjIYnw153ilWdx++2n19a29zYpH/RamFLF9aU/neYffLphuqovspUT83UqUrUSE2hnKquyuF6orbUphpD3VO1gLoJlIb0PFFn6iJgZ9AqgRZdqH0Fvwdw90TXjuAeaeaE7gGXFH4mgIzUOmAyaDeBMnKL6PmMKGNtFe0F0UTZ3sHfWNM6hdqpegG1Es60DMVhX6bqRP2J+jCEPo2pBnvX01RmpBWUPHJ6NQUKY6jDch+eT6DcI6TRc0SYnPqOuu3S839SS6zF+55uO1P/IinX4YpUS/c+Kyh01ZzoR/Q2Z/CM5UmB8wAoJLqPWHpDuj6l3o+g/QLq78J1RiWjkxiuBdWe1SK34fIht0XkHlw+5J6IPIDLhzwQkYdw+ZCHGonYCencj2/B5cO3RM734fIh74vIB3D5kA9E5DFcPuSxiPwaLh/yaxF5Ey4f8qaIvA2XD3lbRLbh8iHbIvIILh/ySETuwuVD7mpk9UydwJURnaEwK69DucwDLUUKNddF+W6QdfRhbwTM6V4FVp7VO/DXj90J0GlSgd0NGHcnFVh55O2BjfRjZVt0i1YTH/aWiN2HEeDH7ovYr9TLCuxXATPtVQVWnmsH0M6Pla3vHbjzY++I2LtQ8mPlNeoe1Pix9wJWjHEF9lDE3levK7AhVn9SgZXtfgvsih8rr1NtaO/HhljTWQVWtqfH4MH4sfJq9RBq/diHIvaReluBfSRiH4N192MfB6yw7yuwZo29SCvIgPyRBGZsHbVuMSuxNAZqXYF/WqwtKfnGMdRLmEGBGRDmVETsFYi9QMRBgTgIlisv7GhO/q7MpVUgWoGIuFibsDQV2/eL9lhKAxA7BWJnCVHnkeK7Nn2Zk3dhaiTktFi5sBTSp6yw31hK9Hiot7wGca+E4LH9gkb+FYqWMIJCTdVRe1Gs8YyM6L4O8YaiN9NLw0PGTQur4KLeiqjYg4pF1DsP6p2ImnlQMxE196DmIsrOfBfXCRgBVv/4LhZ0xyOAfeTqKwKv4DqsOrdgjkYwfg7BC3xANffgb4tib+mqkwyjeVwnMcvxtGSJJ1BaqDWot1HhDsXXKc2wBCTjlvd0jI93mNtY6DnHVvisWMmjImMSTmdI8gwKOugtRjSfmtG5TTVn5N1xqRn+VjHvTakZfpc0fkZePJea4ada+uk5ZG9rbPsc2BbMprHWvi03pcH5F6Zhyhdp1UWLi2/1VI8ZpPe2If19/Wb2z/FetqnE+rHlZjRyp395qX9NaFg9546em1FB74m9XlOKGvdkpONeW24qQ0ar6EjLYe+avhls09dvxpSb0TgEj2ubYu6FU246esdFb2y5GY1jxXnPM/LkTbkZjQHdsz5suRkNzLZ0dZxvy00tO2qAY2dbbmrVR5QFxhwQj3musV7RhPykmaY2JP+gPlvj+vyr6xjmbJ4VMUI9JevbVtOJi7WsXiLjLyRg1aYN5UD/Yub4YGUaC3VVjK9YhmlpfV+lY9d41PwBaDGC2c97AFLOPAUJTU4CrXcKFLfEqKvcM4O7KuJwlJwsoTq6dip6i5YvZ43Kdc+pVorLbG+tHjtkr3Mae2PyCQ9Is5IeDirfcBVFSUMHJQ3J9Jro7r2er2Xtb4q48RJiXIy0Hu0I8U5afZzq03rL0fG63uWZwsV7Pnb8Yrb5RFsbjHkyskUoSx1Pt53JI7l1uK5eUTbHzc8ieqNor+ZkNYa0I5WLUajJFrM3vqB7S/uI9uSQB9PowXuMNJWx4l0zzKJjPj0ii+raW4k36stk6Lick9U19rgePXDQAw+6eYyzDSvGXSi1IWY4grt2QJRzsdBVRhqfqN8Wu6MZvcH6iD4tWUhDg+1NUrKQdVH2ixKVN4DG0cBRejiNZToG31mhJEf9Pnls7Fq2/Ou0c2v2t7s0xqtHc3Umpk9crxLXiGYN7+ry3TIHlmDhfXKV/Nf6XiK/JhzRhkpcnzmcWS8j2vFPKIIdk2ec0myTZke5tZufWn5iOB0qs3eOu9kZWciI7F8E61NGYzKiH/fsgNlBZ4uQko0MsTvDwrvx+TpDcYxZP26o+FSDHW8J2bIZ8Td03dmV01jkiIHXgbOlsW10ckC+YEJcJ9q627ldv/og0p6TcEcJU7Rj5TLx/5x+mx8zTtZWRgRqGN9Arm2d731kFLOgjrq0ytfbINPWlfKzQoZnWmq7/lmZPitJtkMRF8qDq3UfOPfonnnhKJmQ3PlKG15H67K5SHm8pEfs7QlF8Wz3B3oFRrmv0Cq5RnOuQ6NkAKNgWkQRpq2URV7mW8+rTD2Mdv5/oW51XdYaUoyUzeCyhqT8fkLRmitlCqOax+8rmk1+rU+WWtXzGdFYPHXm8jdQ+0v4beQ292F04pJVuEFjgCnYO6sRrolWWoTxulHiZUamoWXvLT87Jk0rt+Y88TVbNxtjzxtTOaRR81ZnLUz5PDReOjReBuqwTXuNVoum3lii52Js0da7laH8mnBrN6A8EynLHplBDQOkdGOpMKp9kaoc4xvUe5HWpkirC7PV3Q1w53wI0j/Xl2f3N8XqHqmb5Nv0yAPj+KVPs3RIPpeprY/UmAJyvqbtqzv7O1SD3GOyoEiZz3HijOFdpx5dZ4Wkv9IrW0Z23loEc27pjW5jbGyHyr9fQZ7SnMhpXhrENWqRaPldOaIli7Th+BwRZf675FOx31EfM7ut7TuJSv6EjTd5VlleHCmMSP9S5m1/JXrdd+LXiGLCmfauY6DV/A0jBcaYTILfs8zpDeEqxzsJ7NHGZD9X7RTv4o0ciTZI6oX6c4CN4ajXjnV3bJkem779Blqi1u1b97WQ+aXBHCV+59nR69Kqdqp91MXS/flodfUqV76v08Nsia/Vx4zauJGFjfLKmI76IpgLS9SMC2NCuDTrRRP5m0neRGbenQqlbFobyuVMA9uYFxQvSedAEeHz7i57vbnPhX7EK/RiwrrUuEaihNm4TOcHXEuLWaloKUJy66U1KXXWo6r1wvJwVw1rx9lSJmQFUyXlbri124dOKVqRszFMoaf4ZG9VnOjS/AIu/B0pX5RoOIbkEFvg515X22r3A5yKeK3LnNmMqAZtQn8pBu/qfpZb1OvotUPdpR/CIZzHEHQtST+kFbWp7ExZltylHk7/DVmDiUpE6W3L5n1wucg9WeXUpD9DsnByb4bKfJPTtC+GQ0hPylzC+fD+htSLE2W+bWrWB0Nd7kGZQxMe5jxD2Du3rZvzcjnV62uVSygPXgfMzovB4Q5gdcxi24VYqInzRj48B7QOJzXUzWrxv/bD8LGcmvMK5ZbTN2cvA946t0t0Zhb94uZzxnILGc3VHMN5ZkXvrNfk58f+X9ToTWVObz48ffRL7RgwvBaK86GydIx3R5GVN5QK7g/4ZMjUv9XfL8hfJbwuaFTJ0YSS2a+opmZayNTMl5e+3plnITJZOlUylanZeKJFJ2O31b66CT/bhQfY9JQof1PJfxHr/462D7UnZD1MNp0zCB2qSygLYnfT+nRvz9FWSYxnevmMbxtqcE/8gGrxvO9dao9nftulvlV/ScJz/Y7KVL8UmSzv8tl5FUMPyjtwnAsy3/tGdKaes1l8Au00YI+Rz1FxpGS+fl4Qok9x4bKkC0KY0VJHOfZSjulMUlJBOy71rUcjfKx3+nHfAc/nd4vsUqR+R3VdvTrgSi1JdeiR6gllBmLS/yZEaH9QV+DvFV32S3q4ImlO76As0VvnWf1JsDPvuLBfM65THsxk6ua6XUZRvd09rM/E7lRy4RPv9fhBDX7gSNmit/WK4u6Jqs8dzmpozrRM7n7uSJm8J+sBo9luMT7q4+d5Da95QP9vV6JvO5LugSwxZdsj2s+bEL1U62aXpOdzlfV521s10pqvNpmmPVlpx4E5I1nHAb8q2xZmP395Vr8y4BdmfjruXH8csO+CPZEk4pOZUvYoCZCIz4hK51eGXkqyxRgHnM/oBvRW7mtITyUqM1GSWcC30fMAWeYBdE4EaU5ECgNREm2xnl9a21r+30dWC8dXN7Y2N7buX1v78ob+n0k+Vj9Xn6rLsBr/UX0JM/JQHVGu8S/qr+pvO//Z/cXu+u6vuelHFzTmZ6r0b3fzv4JTXQQ=</latexit> <latexit sha1_base64="6tOGw6FSQVfHa06oZqSaTlaRZAo=">AABFdnictVxtc9u4EUaub9f0Ldd+7EyHPZ/bXCd17TSdduamM5fYjuOLkziR7CQXJRlRohUltKiIkvKi81/o1/bf9Hf0H7Sf+rUfuy8AAUogF3TTcGyDIJ7dxRJY7C7AxON0mE83N/9x4aNvffs73/3ex9+/+IMf/ujHP7n0yU+P82w26SVHvSzNJo/ibp6kw1FyNB1O0+TReJJ0T+M0eRi/2sbnD+fJJB9mo/b03Th5etodjIYnw153ilWdx++2n19a29zYpH/RamFLF9aU/neYffLphuqovspUT83UqUrUSE2hnKquyuF6orbUphpD3VO1gLoJlIb0PFFn6iJgZ9AqgRZdqH0Fvwdw90TXjuAeaeaE7gGXFH4mgIzUOmAyaDeBMnKL6PmMKGNtFe0F0UTZ3sHfWNM6hdqpegG1Es60DMVhX6bqRP2J+jCEPo2pBnvX01RmpBWUPHJ6NQUKY6jDch+eT6DcI6TRc0SYnPqOuu3S839SS6zF+55uO1P/IinX4YpUS/c+Kyh01ZzoR/Q2Z/CM5UmB8wAoJLqPWHpDuj6l3o+g/QLq78J1RiWjkxiuBdWe1SK34fIht0XkHlw+5J6IPIDLhzwQkYdw+ZCHGonYCencj2/B5cO3RM734fIh74vIB3D5kA9E5DFcPuSxiPwaLh/yaxF5Ey4f8qaIvA2XD3lbRLbh8iHbIvIILh/ySETuwuVD7mpk9UydwJURnaEwK69DucwDLUUKNddF+W6QdfRhbwTM6V4FVp7VO/DXj90J0GlSgd0NGHcnFVh55O2BjfRjZVt0i1YTH/aWiN2HEeDH7ovYr9TLCuxXATPtVQVWnmsH0M6Pla3vHbjzY++I2LtQ8mPlNeoe1Pix9wJWjHEF9lDE3levK7AhVn9SgZXtfgvsih8rr1NtaO/HhljTWQVWtqfH4MH4sfJq9RBq/diHIvaReluBfSRiH4N192MfB6yw7yuwZo29SCvIgPyRBGZsHbVuMSuxNAZqXYF/WqwtKfnGMdRLmEGBGRDmVETsFYi9QMRBgTgIlisv7GhO/q7MpVUgWoGIuFibsDQV2/eL9lhKAxA7BWJnCVHnkeK7Nn2Zk3dhaiTktFi5sBTSp6yw31hK9Hiot7wGca+E4LH9gkb+FYqWMIJCTdVRe1Gs8YyM6L4O8YaiN9NLw0PGTQur4KLeiqjYg4pF1DsP6p2ImnlQMxE196DmIsrOfBfXCRgBVv/4LhZ0xyOAfeTqKwKv4DqsOrdgjkYwfg7BC3xANffgb4tib+mqkwyjeVwnMcvxtGSJJ1BaqDWot1HhDsXXKc2wBCTjlvd0jI93mNtY6DnHVvisWMmjImMSTmdI8gwKOugtRjSfmtG5TTVn5N1xqRn+VjHvTakZfpc0fkZePJea4ada+uk5ZG9rbPsc2BbMprHWvi03pcH5F6Zhyhdp1UWLi2/1VI8ZpPe2If19/Wb2z/FetqnE+rHlZjRyp395qX9NaFg9546em1FB74m9XlOKGvdkpONeW24qQ0ar6EjLYe+avhls09dvxpSb0TgEj2ubYu6FU246esdFb2y5GY1jxXnPM/LkTbkZjQHdsz5suRkNzLZ0dZxvy00tO2qAY2dbbmrVR5QFxhwQj3musV7RhPykmaY2JP+gPlvj+vyr6xjmbJ4VMUI9JevbVtOJi7WsXiLjLyRg1aYN5UD/Yub4YGUaC3VVjK9YhmlpfV+lY9d41PwBaDGC2c97AFLOPAUJTU4CrXcKFLfEqKvcM4O7KuJwlJwsoTq6dip6i5YvZ43Kdc+pVorLbG+tHjtkr3Mae2PyCQ9Is5IeDirfcBVFSUMHJQ3J9Jro7r2er2Xtb4q48RJiXIy0Hu0I8U5afZzq03rL0fG63uWZwsV7Pnb8Yrb5RFsbjHkyskUoSx1Pt53JI7l1uK5eUTbHzc8ieqNor+ZkNYa0I5WLUajJFrM3vqB7S/uI9uSQB9PowXuMNJWx4l0zzKJjPj0ii+raW4k36stk6Lick9U19rgePXDQAw+6eYyzDSvGXSi1IWY4grt2QJRzsdBVRhqfqN8Wu6MZvcH6iD4tWUhDg+1NUrKQdVH2ixKVN4DG0cBRejiNZToG31mhJEf9Pnls7Fq2/Ou0c2v2t7s0xqtHc3Umpk9crxLXiGYN7+ry3TIHlmDhfXKV/Nf6XiK/JhzRhkpcnzmcWS8j2vFPKIIdk2ec0myTZke5tZufWn5iOB0qs3eOu9kZWciI7F8E61NGYzKiH/fsgNlBZ4uQko0MsTvDwrvx+TpDcYxZP26o+FSDHW8J2bIZ8Td03dmV01jkiIHXgbOlsW10ckC+YEJcJ9q627ldv/og0p6TcEcJU7Rj5TLx/5x+mx8zTtZWRgRqGN9Arm2d731kFLOgjrq0ytfbINPWlfKzQoZnWmq7/lmZPitJtkMRF8qDq3UfOPfonnnhKJmQ3PlKG15H67K5SHm8pEfs7QlF8Wz3B3oFRrmv0Cq5RnOuQ6NkAKNgWkQRpq2URV7mW8+rTD2Mdv5/oW51XdYaUoyUzeCyhqT8fkLRmitlCqOax+8rmk1+rU+WWtXzGdFYPHXm8jdQ+0v4beQ292F04pJVuEFjgCnYO6sRrolWWoTxulHiZUamoWXvLT87Jk0rt+Y88TVbNxtjzxtTOaRR81ZnLUz5PDReOjReBuqwTXuNVoum3lii52Js0da7laH8mnBrN6A8EynLHplBDQOkdGOpMKp9kaoc4xvUe5HWpkirC7PV3Q1w53wI0j/Xl2f3N8XqHqmb5Nv0yAPj+KVPs3RIPpeprY/UmAJyvqbtqzv7O1SD3GOyoEiZz3HijOFdpx5dZ4Wkv9IrW0Z23loEc27pjW5jbGyHyr9fQZ7SnMhpXhrENWqRaPldOaIli7Th+BwRZf675FOx31EfM7ut7TuJSv6EjTd5VlleHCmMSP9S5m1/JXrdd+LXiGLCmfauY6DV/A0jBcaYTILfs8zpDeEqxzsJ7NHGZD9X7RTv4o0ciTZI6oX6c4CN4ajXjnV3bJkem779Blqi1u1b97WQ+aXBHCV+59nR69Kqdqp91MXS/flodfUqV76v08Nsia/Vx4zauJGFjfLKmI76IpgLS9SMC2NCuDTrRRP5m0neRGbenQqlbFobyuVMA9uYFxQvSedAEeHz7i57vbnPhX7EK/RiwrrUuEaihNm4TOcHXEuLWaloKUJy66U1KXXWo6r1wvJwVw1rx9lSJmQFUyXlbri124dOKVqRszFMoaf4ZG9VnOjS/AIu/B0pX5RoOIbkEFvg515X22r3A5yKeK3LnNmMqAZtQn8pBu/qfpZb1OvotUPdpR/CIZzHEHQtST+kFbWp7ExZltylHk7/DVmDiUpE6W3L5n1wucg9WeXUpD9DsnByb4bKfJPTtC+GQ0hPylzC+fD+htSLE2W+bWrWB0Nd7kGZQxMe5jxD2Du3rZvzcjnV62uVSygPXgfMzovB4Q5gdcxi24VYqInzRj48B7QOJzXUzWrxv/bD8LGcmvMK5ZbTN2cvA946t0t0Zhb94uZzxnILGc3VHMN5ZkXvrNfk58f+X9ToTWVObz48ffRL7RgwvBaK86GydIx3R5GVN5QK7g/4ZMjUv9XfL8hfJbwuaFTJ0YSS2a+opmZayNTMl5e+3plnITJZOlUylanZeKJFJ2O31b66CT/bhQfY9JQof1PJfxHr/462D7UnZD1MNp0zCB2qSygLYnfT+nRvz9FWSYxnevmMbxtqcE/8gGrxvO9dao9nftulvlV/ScJz/Y7KVL8UmSzv8tl5FUMPyjtwnAsy3/tGdKaes1l8Au00YI+Rz1FxpGS+fl4Qok9x4bKkC0KY0VJHOfZSjulMUlJBOy71rUcjfKx3+nHfAc/nd4vsUqR+R3VdvTrgSi1JdeiR6gllBmLS/yZEaH9QV+DvFV32S3q4ImlO76As0VvnWf1JsDPvuLBfM65THsxk6ua6XUZRvd09rM/E7lRy4RPv9fhBDX7gSNmit/WK4u6Jqs8dzmpozrRM7n7uSJm8J+sBo9luMT7q4+d5Da95QP9vV6JvO5LugSwxZdsj2s+bEL1U62aXpOdzlfV521s10pqvNpmmPVlpx4E5I1nHAb8q2xZmP395Vr8y4BdmfjruXH8csO+CPZEk4pOZUvYoCZCIz4hK51eGXkqyxRgHnM/oBvRW7mtITyUqM1GSWcC30fMAWeYBdE4EaU5ECgNREm2xnl9a21r+30dWC8dXN7Y2N7buX1v78ob+n0k+Vj9Xn6rLsBr/UX0JM/JQHVGu8S/qr+pvO//Z/cXu+u6vuelHFzTmZ6r0b3fzv4JTXQQ=</latexit> <latexit sha1_base64="6tOGw6FSQVfHa06oZqSaTlaRZAo=">AABFdnictVxtc9u4EUaub9f0Ldd+7EyHPZ/bXCd17TSdduamM5fYjuOLkziR7CQXJRlRohUltKiIkvKi81/o1/bf9Hf0H7Sf+rUfuy8AAUogF3TTcGyDIJ7dxRJY7C7AxON0mE83N/9x4aNvffs73/3ex9+/+IMf/ujHP7n0yU+P82w26SVHvSzNJo/ibp6kw1FyNB1O0+TReJJ0T+M0eRi/2sbnD+fJJB9mo/b03Th5etodjIYnw153ilWdx++2n19a29zYpH/RamFLF9aU/neYffLphuqovspUT83UqUrUSE2hnKquyuF6orbUphpD3VO1gLoJlIb0PFFn6iJgZ9AqgRZdqH0Fvwdw90TXjuAeaeaE7gGXFH4mgIzUOmAyaDeBMnKL6PmMKGNtFe0F0UTZ3sHfWNM6hdqpegG1Es60DMVhX6bqRP2J+jCEPo2pBnvX01RmpBWUPHJ6NQUKY6jDch+eT6DcI6TRc0SYnPqOuu3S839SS6zF+55uO1P/IinX4YpUS/c+Kyh01ZzoR/Q2Z/CM5UmB8wAoJLqPWHpDuj6l3o+g/QLq78J1RiWjkxiuBdWe1SK34fIht0XkHlw+5J6IPIDLhzwQkYdw+ZCHGonYCencj2/B5cO3RM734fIh74vIB3D5kA9E5DFcPuSxiPwaLh/yaxF5Ey4f8qaIvA2XD3lbRLbh8iHbIvIILh/ySETuwuVD7mpk9UydwJURnaEwK69DucwDLUUKNddF+W6QdfRhbwTM6V4FVp7VO/DXj90J0GlSgd0NGHcnFVh55O2BjfRjZVt0i1YTH/aWiN2HEeDH7ovYr9TLCuxXATPtVQVWnmsH0M6Pla3vHbjzY++I2LtQ8mPlNeoe1Pix9wJWjHEF9lDE3levK7AhVn9SgZXtfgvsih8rr1NtaO/HhljTWQVWtqfH4MH4sfJq9RBq/diHIvaReluBfSRiH4N192MfB6yw7yuwZo29SCvIgPyRBGZsHbVuMSuxNAZqXYF/WqwtKfnGMdRLmEGBGRDmVETsFYi9QMRBgTgIlisv7GhO/q7MpVUgWoGIuFibsDQV2/eL9lhKAxA7BWJnCVHnkeK7Nn2Zk3dhaiTktFi5sBTSp6yw31hK9Hiot7wGca+E4LH9gkb+FYqWMIJCTdVRe1Gs8YyM6L4O8YaiN9NLw0PGTQur4KLeiqjYg4pF1DsP6p2ImnlQMxE196DmIsrOfBfXCRgBVv/4LhZ0xyOAfeTqKwKv4DqsOrdgjkYwfg7BC3xANffgb4tib+mqkwyjeVwnMcvxtGSJJ1BaqDWot1HhDsXXKc2wBCTjlvd0jI93mNtY6DnHVvisWMmjImMSTmdI8gwKOugtRjSfmtG5TTVn5N1xqRn+VjHvTakZfpc0fkZePJea4ada+uk5ZG9rbPsc2BbMprHWvi03pcH5F6Zhyhdp1UWLi2/1VI8ZpPe2If19/Wb2z/FetqnE+rHlZjRyp395qX9NaFg9546em1FB74m9XlOKGvdkpONeW24qQ0ar6EjLYe+avhls09dvxpSb0TgEj2ubYu6FU246esdFb2y5GY1jxXnPM/LkTbkZjQHdsz5suRkNzLZ0dZxvy00tO2qAY2dbbmrVR5QFxhwQj3musV7RhPykmaY2JP+gPlvj+vyr6xjmbJ4VMUI9JevbVtOJi7WsXiLjLyRg1aYN5UD/Yub4YGUaC3VVjK9YhmlpfV+lY9d41PwBaDGC2c97AFLOPAUJTU4CrXcKFLfEqKvcM4O7KuJwlJwsoTq6dip6i5YvZ43Kdc+pVorLbG+tHjtkr3Mae2PyCQ9Is5IeDirfcBVFSUMHJQ3J9Jro7r2er2Xtb4q48RJiXIy0Hu0I8U5afZzq03rL0fG63uWZwsV7Pnb8Yrb5RFsbjHkyskUoSx1Pt53JI7l1uK5eUTbHzc8ieqNor+ZkNYa0I5WLUajJFrM3vqB7S/uI9uSQB9PowXuMNJWx4l0zzKJjPj0ii+raW4k36stk6Lick9U19rgePXDQAw+6eYyzDSvGXSi1IWY4grt2QJRzsdBVRhqfqN8Wu6MZvcH6iD4tWUhDg+1NUrKQdVH2ixKVN4DG0cBRejiNZToG31mhJEf9Pnls7Fq2/Ou0c2v2t7s0xqtHc3Umpk9crxLXiGYN7+ry3TIHlmDhfXKV/Nf6XiK/JhzRhkpcnzmcWS8j2vFPKIIdk2ec0myTZke5tZufWn5iOB0qs3eOu9kZWciI7F8E61NGYzKiH/fsgNlBZ4uQko0MsTvDwrvx+TpDcYxZP26o+FSDHW8J2bIZ8Td03dmV01jkiIHXgbOlsW10ckC+YEJcJ9q627ldv/og0p6TcEcJU7Rj5TLx/5x+mx8zTtZWRgRqGN9Arm2d731kFLOgjrq0ytfbINPWlfKzQoZnWmq7/lmZPitJtkMRF8qDq3UfOPfonnnhKJmQ3PlKG15H67K5SHm8pEfs7QlF8Wz3B3oFRrmv0Cq5RnOuQ6NkAKNgWkQRpq2URV7mW8+rTD2Mdv5/oW51XdYaUoyUzeCyhqT8fkLRmitlCqOax+8rmk1+rU+WWtXzGdFYPHXm8jdQ+0v4beQ292F04pJVuEFjgCnYO6sRrolWWoTxulHiZUamoWXvLT87Jk0rt+Y88TVbNxtjzxtTOaRR81ZnLUz5PDReOjReBuqwTXuNVoum3lii52Js0da7laH8mnBrN6A8EynLHplBDQOkdGOpMKp9kaoc4xvUe5HWpkirC7PV3Q1w53wI0j/Xl2f3N8XqHqmb5Nv0yAPj+KVPs3RIPpeprY/UmAJyvqbtqzv7O1SD3GOyoEiZz3HijOFdpx5dZ4Wkv9IrW0Z23loEc27pjW5jbGyHyr9fQZ7SnMhpXhrENWqRaPldOaIli7Th+BwRZf675FOx31EfM7ut7TuJSv6EjTd5VlleHCmMSP9S5m1/JXrdd+LXiGLCmfauY6DV/A0jBcaYTILfs8zpDeEqxzsJ7NHGZD9X7RTv4o0ciTZI6oX6c4CN4ajXjnV3bJkem779Blqi1u1b97WQ+aXBHCV+59nR69Kqdqp91MXS/flodfUqV76v08Nsia/Vx4zauJGFjfLKmI76IpgLS9SMC2NCuDTrRRP5m0neRGbenQqlbFobyuVMA9uYFxQvSedAEeHz7i57vbnPhX7EK/RiwrrUuEaihNm4TOcHXEuLWaloKUJy66U1KXXWo6r1wvJwVw1rx9lSJmQFUyXlbri124dOKVqRszFMoaf4ZG9VnOjS/AIu/B0pX5RoOIbkEFvg515X22r3A5yKeK3LnNmMqAZtQn8pBu/qfpZb1OvotUPdpR/CIZzHEHQtST+kFbWp7ExZltylHk7/DVmDiUpE6W3L5n1wucg9WeXUpD9DsnByb4bKfJPTtC+GQ0hPylzC+fD+htSLE2W+bWrWB0Nd7kGZQxMe5jxD2Du3rZvzcjnV62uVSygPXgfMzovB4Q5gdcxi24VYqInzRj48B7QOJzXUzWrxv/bD8LGcmvMK5ZbTN2cvA946t0t0Zhb94uZzxnILGc3VHMN5ZkXvrNfk58f+X9ToTWVObz48ffRL7RgwvBaK86GydIx3R5GVN5QK7g/4ZMjUv9XfL8hfJbwuaFTJ0YSS2a+opmZayNTMl5e+3plnITJZOlUylanZeKJFJ2O31b66CT/bhQfY9JQof1PJfxHr/462D7UnZD1MNp0zCB2qSygLYnfT+nRvz9FWSYxnevmMbxtqcE/8gGrxvO9dao9nftulvlV/ScJz/Y7KVL8UmSzv8tl5FUMPyjtwnAsy3/tGdKaes1l8Au00YI+Rz1FxpGS+fl4Qok9x4bKkC0KY0VJHOfZSjulMUlJBOy71rUcjfKx3+nHfAc/nd4vsUqR+R3VdvTrgSi1JdeiR6gllBmLS/yZEaH9QV+DvFV32S3q4ImlO76As0VvnWf1JsDPvuLBfM65THsxk6ua6XUZRvd09rM/E7lRy4RPv9fhBDX7gSNmit/WK4u6Jqs8dzmpozrRM7n7uSJm8J+sBo9luMT7q4+d5Da95QP9vV6JvO5LugSwxZdsj2s+bEL1U62aXpOdzlfV521s10pqvNpmmPVlpx4E5I1nHAb8q2xZmP395Vr8y4BdmfjruXH8csO+CPZEk4pOZUvYoCZCIz4hK51eGXkqyxRgHnM/oBvRW7mtITyUqM1GSWcC30fMAWeYBdE4EaU5ECgNREm2xnl9a21r+30dWC8dXN7Y2N7buX1v78ob+n0k+Vj9Xn6rLsBr/UX0JM/JQHVGu8S/qr+pvO//Z/cXu+u6vuelHFzTmZ6r0b3fzv4JTXQQ=</latexit> <latexit sha1_base64="6tOGw6FSQVfHa06oZqSaTlaRZAo=">AABFdnictVxtc9u4EUaub9f0Ldd+7EyHPZ/bXCd17TSdduamM5fYjuOLkziR7CQXJRlRohUltKiIkvKi81/o1/bf9Hf0H7Sf+rUfuy8AAUogF3TTcGyDIJ7dxRJY7C7AxON0mE83N/9x4aNvffs73/3ex9+/+IMf/ujHP7n0yU+P82w26SVHvSzNJo/ibp6kw1FyNB1O0+TReJJ0T+M0eRi/2sbnD+fJJB9mo/b03Th5etodjIYnw153ilWdx++2n19a29zYpH/RamFLF9aU/neYffLphuqovspUT83UqUrUSE2hnKquyuF6orbUphpD3VO1gLoJlIb0PFFn6iJgZ9AqgRZdqH0Fvwdw90TXjuAeaeaE7gGXFH4mgIzUOmAyaDeBMnKL6PmMKGNtFe0F0UTZ3sHfWNM6hdqpegG1Es60DMVhX6bqRP2J+jCEPo2pBnvX01RmpBWUPHJ6NQUKY6jDch+eT6DcI6TRc0SYnPqOuu3S839SS6zF+55uO1P/IinX4YpUS/c+Kyh01ZzoR/Q2Z/CM5UmB8wAoJLqPWHpDuj6l3o+g/QLq78J1RiWjkxiuBdWe1SK34fIht0XkHlw+5J6IPIDLhzwQkYdw+ZCHGonYCencj2/B5cO3RM734fIh74vIB3D5kA9E5DFcPuSxiPwaLh/yaxF5Ey4f8qaIvA2XD3lbRLbh8iHbIvIILh/ySETuwuVD7mpk9UydwJURnaEwK69DucwDLUUKNddF+W6QdfRhbwTM6V4FVp7VO/DXj90J0GlSgd0NGHcnFVh55O2BjfRjZVt0i1YTH/aWiN2HEeDH7ovYr9TLCuxXATPtVQVWnmsH0M6Pla3vHbjzY++I2LtQ8mPlNeoe1Pix9wJWjHEF9lDE3levK7AhVn9SgZXtfgvsih8rr1NtaO/HhljTWQVWtqfH4MH4sfJq9RBq/diHIvaReluBfSRiH4N192MfB6yw7yuwZo29SCvIgPyRBGZsHbVuMSuxNAZqXYF/WqwtKfnGMdRLmEGBGRDmVETsFYi9QMRBgTgIlisv7GhO/q7MpVUgWoGIuFibsDQV2/eL9lhKAxA7BWJnCVHnkeK7Nn2Zk3dhaiTktFi5sBTSp6yw31hK9Hiot7wGca+E4LH9gkb+FYqWMIJCTdVRe1Gs8YyM6L4O8YaiN9NLw0PGTQur4KLeiqjYg4pF1DsP6p2ImnlQMxE196DmIsrOfBfXCRgBVv/4LhZ0xyOAfeTqKwKv4DqsOrdgjkYwfg7BC3xANffgb4tib+mqkwyjeVwnMcvxtGSJJ1BaqDWot1HhDsXXKc2wBCTjlvd0jI93mNtY6DnHVvisWMmjImMSTmdI8gwKOugtRjSfmtG5TTVn5N1xqRn+VjHvTakZfpc0fkZePJea4ada+uk5ZG9rbPsc2BbMprHWvi03pcH5F6Zhyhdp1UWLi2/1VI8ZpPe2If19/Wb2z/FetqnE+rHlZjRyp395qX9NaFg9546em1FB74m9XlOKGvdkpONeW24qQ0ar6EjLYe+avhls09dvxpSb0TgEj2ubYu6FU246esdFb2y5GY1jxXnPM/LkTbkZjQHdsz5suRkNzLZ0dZxvy00tO2qAY2dbbmrVR5QFxhwQj3musV7RhPykmaY2JP+gPlvj+vyr6xjmbJ4VMUI9JevbVtOJi7WsXiLjLyRg1aYN5UD/Yub4YGUaC3VVjK9YhmlpfV+lY9d41PwBaDGC2c97AFLOPAUJTU4CrXcKFLfEqKvcM4O7KuJwlJwsoTq6dip6i5YvZ43Kdc+pVorLbG+tHjtkr3Mae2PyCQ9Is5IeDirfcBVFSUMHJQ3J9Jro7r2er2Xtb4q48RJiXIy0Hu0I8U5afZzq03rL0fG63uWZwsV7Pnb8Yrb5RFsbjHkyskUoSx1Pt53JI7l1uK5eUTbHzc8ieqNor+ZkNYa0I5WLUajJFrM3vqB7S/uI9uSQB9PowXuMNJWx4l0zzKJjPj0ii+raW4k36stk6Lick9U19rgePXDQAw+6eYyzDSvGXSi1IWY4grt2QJRzsdBVRhqfqN8Wu6MZvcH6iD4tWUhDg+1NUrKQdVH2ixKVN4DG0cBRejiNZToG31mhJEf9Pnls7Fq2/Ou0c2v2t7s0xqtHc3Umpk9crxLXiGYN7+ry3TIHlmDhfXKV/Nf6XiK/JhzRhkpcnzmcWS8j2vFPKIIdk2ec0myTZke5tZufWn5iOB0qs3eOu9kZWciI7F8E61NGYzKiH/fsgNlBZ4uQko0MsTvDwrvx+TpDcYxZP26o+FSDHW8J2bIZ8Td03dmV01jkiIHXgbOlsW10ckC+YEJcJ9q627ldv/og0p6TcEcJU7Rj5TLx/5x+mx8zTtZWRgRqGN9Arm2d731kFLOgjrq0ytfbINPWlfKzQoZnWmq7/lmZPitJtkMRF8qDq3UfOPfonnnhKJmQ3PlKG15H67K5SHm8pEfs7QlF8Wz3B3oFRrmv0Cq5RnOuQ6NkAKNgWkQRpq2URV7mW8+rTD2Mdv5/oW51XdYaUoyUzeCyhqT8fkLRmitlCqOax+8rmk1+rU+WWtXzGdFYPHXm8jdQ+0v4beQ292F04pJVuEFjgCnYO6sRrolWWoTxulHiZUamoWXvLT87Jk0rt+Y88TVbNxtjzxtTOaRR81ZnLUz5PDReOjReBuqwTXuNVoum3lii52Js0da7laH8mnBrN6A8EynLHplBDQOkdGOpMKp9kaoc4xvUe5HWpkirC7PV3Q1w53wI0j/Xl2f3N8XqHqmb5Nv0yAPj+KVPs3RIPpeprY/UmAJyvqbtqzv7O1SD3GOyoEiZz3HijOFdpx5dZ4Wkv9IrW0Z23loEc27pjW5jbGyHyr9fQZ7SnMhpXhrENWqRaPldOaIli7Th+BwRZf675FOx31EfM7ut7TuJSv6EjTd5VlleHCmMSP9S5m1/JXrdd+LXiGLCmfauY6DV/A0jBcaYTILfs8zpDeEqxzsJ7NHGZD9X7RTv4o0ciTZI6oX6c4CN4ajXjnV3bJkem779Blqi1u1b97WQ+aXBHCV+59nR69Kqdqp91MXS/flodfUqV76v08Nsia/Vx4zauJGFjfLKmI76IpgLS9SMC2NCuDTrRRP5m0neRGbenQqlbFobyuVMA9uYFxQvSedAEeHz7i57vbnPhX7EK/RiwrrUuEaihNm4TOcHXEuLWaloKUJy66U1KXXWo6r1wvJwVw1rx9lSJmQFUyXlbri124dOKVqRszFMoaf4ZG9VnOjS/AIu/B0pX5RoOIbkEFvg515X22r3A5yKeK3LnNmMqAZtQn8pBu/qfpZb1OvotUPdpR/CIZzHEHQtST+kFbWp7ExZltylHk7/DVmDiUpE6W3L5n1wucg9WeXUpD9DsnByb4bKfJPTtC+GQ0hPylzC+fD+htSLE2W+bWrWB0Nd7kGZQxMe5jxD2Du3rZvzcjnV62uVSygPXgfMzovB4Q5gdcxi24VYqInzRj48B7QOJzXUzWrxv/bD8LGcmvMK5ZbTN2cvA946t0t0Zhb94uZzxnILGc3VHMN5ZkXvrNfk58f+X9ToTWVObz48ffRL7RgwvBaK86GydIx3R5GVN5QK7g/4ZMjUv9XfL8hfJbwuaFTJ0YSS2a+opmZayNTMl5e+3plnITJZOlUylanZeKJFJ2O31b66CT/bhQfY9JQof1PJfxHr/462D7UnZD1MNp0zCB2qSygLYnfT+nRvz9FWSYxnevmMbxtqcE/8gGrxvO9dao9nftulvlV/ScJz/Y7KVL8UmSzv8tl5FUMPyjtwnAsy3/tGdKaes1l8Au00YI+Rz1FxpGS+fl4Qok9x4bKkC0KY0VJHOfZSjulMUlJBOy71rUcjfKx3+nHfAc/nd4vsUqR+R3VdvTrgSi1JdeiR6gllBmLS/yZEaH9QV+DvFV32S3q4ImlO76As0VvnWf1JsDPvuLBfM65THsxk6ua6XUZRvd09rM/E7lRy4RPv9fhBDX7gSNmit/WK4u6Jqs8dzmpozrRM7n7uSJm8J+sBo9luMT7q4+d5Da95QP9vV6JvO5LugSwxZdsj2s+bEL1U62aXpOdzlfV521s10pqvNpmmPVlpx4E5I1nHAb8q2xZmP395Vr8y4BdmfjruXH8csO+CPZEk4pOZUvYoCZCIz4hK51eGXkqyxRgHnM/oBvRW7mtITyUqM1GSWcC30fMAWeYBdE4EaU5ECgNREm2xnl9a21r+30dWC8dXN7Y2N7buX1v78ob+n0k+Vj9Xn6rLsBr/UX0JM/JQHVGu8S/qr+pvO//Z/cXu+u6vuelHFzTmZ6r0b3fzv4JTXQQ=</latexit> <latexit sha1_base64="kVF27gTIsbauBCqg40Iqh1v4D6s=">AAA/fniczVvbchy3EYXtXCzmYtl5zEMmoWVLLlmhaFVklytFSyRF0VqJlHiRZK9F72W4HGu4s5rZpURt6E/Ja1KVT8iX5A+iT8hbuhvAALOLmQYUp8pEkcRgcbobDaAvwGx3lCbFeGnpX2+8+dZPfvqzn799buEXv/zVr985/+57+0U2yXvxXi9Ls/xRt1PEaTKM98bJOI0fjfK4c9xN44fdp6v4+cOTOC+SbLg7Ph3F3xx3BsPkMOl1xtB0cP69NtGYdtNJfBb1D9qPTw/OLy5dWaKfaL5yVVUWhfrZzt793UeiLfoiEz0xEcciFkMxhnoqOqKA8rW4KpbECNq+EVNoy6GW0OexOBMLgJ1Arxh6dKD1KfwdwNPXqnUIz0izIHQPuKTwmwMyEhcAk0G/HOrILaLPJ0QZW+toT4kmynYK/7uK1jG0jsURtHI43dMf14fWQ5ANNdM85jH0+5TGmkDvEbWgFnqK24S0hyOMrNGPgcII2rDeh89zqPcIqecjIkxBOsI56NDn/6ae2IrPPdV3Il7RaH4s+vvx6eVCQInEprgnVkVL7Ik1sS52SN7mskC4VRjHCHScg+QD0BBKexGkuQT/l2FPLYnrUNsAGbvUJ4axRGIb/p+S/AtK1kjcFTfErrhNvC9C/S7ULgXME9dTr+2CZsN/3SwwqyynGTltlGBM45+QBcjFi8a+uHb6ajYPaT0Uakc2z6nU4Kp4ILYa5w85D4H+c7JEx6RB5DiF9gHIhCs0BX5oE3Et/0N8Lxah/r34p1rHEciVq5V9RPTkkz/Nb6EgzQ+hnIlzRHMPpF4oRxnBk5yBrFz9HXFCeyMiSz6Bz+ReSmntDalX0+juQTmjml41XShTaj1rRK5CcSFXWeQGFBdyg0W2oLiQLRa5DcWF3FbIJux9KC7sfZbrAygu5AMWuQvFhdxlkftQXMh9FvkVFBfyKxZ5C4oLeYtF3oHiQt5hkXtQXMg9FrkOxYVcV8j6vYZ2LSM6CbOvbkC9ygP9VAotN1j5bpKNdWFveuzKXg2W35dr8N+NXfPQaVyDXfdYPYc1WH79bICVc2N5a3KbfKQLe5vFbsIKcGM3WeyX4rsa7Jce++VpDZbfMS3yNy4sbz/vwpMbe5fF3oOaG8t7mS1ocWO3PGz+qAa7zWLvi2c1WB+rn9dgebu/Q7GYC7vj4TPGNVjea+xB7ODG8vZ0H2IQN5b3OQ+h1Y19yGIfUdTowj5isY8pOnVhH3v4yZc1WO0pZfQ+oBgwhh3bRK1T7kqsjYBah+Gflr4Fa+ij+ixmUGIGhDlmERslYsMT0SoRLW+5itKOFhSx8lx2SsSOJ6Jb+iasjdn+/bJ/n3IzHrFWItZmEE1ZAM61HssJRRe6hUOOS8+FNZ8xZaX9xlqs1kOz5dWIrQpCru0jWvmXKVfHTKZPeWs9taPSx0tkRM9NiOeU6+lRah48blxaBRv1gkV1Haguizp1oE5Z1MSBmrCoEwfqhEWZnW/j2h4rwOgf52JKTzr3585SqmcXW+Bx18H7YcsW/Pc5S2nOyvFEAD2lzp6NLc6hNqVM2mR2a5Qjy5OGGCSTPbfUGRM+4dnkVO06aYfPSl8eCX3i6U8nIXkGJR2MFyPaUWF07lDLGcV3shaGv13ufF0Lw6+Txs8ojpe1MPxYST9+Ddl3FXb3NbA7sJ9GSvumHkpDnqFIGrrO2ebN0m7ieeUL2jmyLZT/KtWkDkw9jEZhjaGojCGEhtFlYekyjArGSDK21bUoeCRDld2aeqgMGfnKoZLDPIXODPbpq5nR9TAa2xBXrVJmPbXqoSt0VI7G1MNo7At5tn5G8bquh9EY0LPUh6mH0cAzlY7K5k091HqjBmSGbOo6ZskpitEnzgl57+azFDsin/cxeKLypIzgmymZyLOeTrf0M80SzVqXEDnQ+0+sCKlKYyqW2exHyjCu+N55Osb/ouZboMUIdq081+fOpFOQUJ8YxHRK/oSoNWOqI9O4ZRaHluRwBtVWrWM2ljN85ZlOte2AWrmsyYzW6LFNdragtTeiiK1FmuX00Kqd4TqKnIZaFQ3x9EJ095J2cDaj/SUWN5pBjMqV1qPbIXlL3ZxFurS+Y+n4grpFGUORdypm/eJZ8CHhcspIMrI2KEsTT7ufPuWx29AfXhbmBFp+FtGMor06IauR0I1PwcYh+ixXRspTeja09+ierXprFSkqIyFvVPGMG0+7I7rPtG0txxv1pc/PZL0gq2vu0Ztvxwx64ECHZh+r4CvuQW0Xovk9eNr1yD/MnVtG+s7Fx+X9Z0bz15xt2zd77ZKGtDZxxT42ZcBHFSrPAY1rQWbQ/jRm6Wh8e44Sn5G75DF5ZdXuX6A7ff3mSIdWeP1arj8l6RPXZeIa0Z6R9/3yaZaDlGDq/GSZos7mUSK/EI5oQTmuTyzOUi9DepcmptxyRPFsSnuN2xvV3vbZ0ewnmtO20G9V4F1xRvYxIusXgXfKaE1G9Gu/laPfrZD2ICUL6WN1kjK2cUU6CbvGEtrlco3I94XMeovJkk2Iv6Zr766C1qKM86UXOJtZ21onLYoEY+KaK9tu9naz70GkeRPCXiWSolkrF4n/Jfqrf/U6WZxbEahhnIFCWTrXfGSUaaCOOuTjm22Q7mtL+X4pwxMltfF+Rqb3K5KtUZ6E8qCv7gPnHj1LXrhKcpK7mOsjvWjTSStSHs3oEUeL3rWtrP5A+V+U+zL5yEXac21h3rDRsb/uy53wzvJt5lWl7ke7+L9QN7quag0pRsKcrkoNcWfvMeVYtpQpvZMk376JFaV5reczvZr5DGktHlt7+S/Q+nv4q+XWz350uhWrcJPWgKRgnoxGZEs018OP180KL70yNS3zbPiZNal72S2vkxVL62Yy45NgKtu0al6oswZd9xn/Lt3hGQ3odm1FDmYi6F115+dLPYy2P+UJS5mPnTQq8ZDSznn8qPZZqnwurlEvWVpLLC18G88+Ubd3p+07b1Hs0KMIR2YHfdoFCcU0urU5D5IUkNc1Zb/s3dWmFtxLXbJQSLn6ViGe3fWEfIdUyviB8hwZ2VGz4/Q7O89VH23D2lT/ZA55TNlsQXtHI65Rj1jJb8sRzez4K5ZPj+jMu0Mxi/TrzRmp3dvMQlTx1yabk3vB8ErFhyoaH9IcjMWrRm6bc/nhppUhRkLe96VlBI+z/CpoljFvkytD5+ru6K2gWUJPklM+L6PGLtmo+VMGeYs1BO3rdXeFpJ6KP3tYB5lXmp1iry/8bKKyEhzbR9ATNW9m3tWD55d6c+T4vc59Voc8x7GKA6czz69Hq6M8SfW5SQ+TGb5GHxMxVDmhjt5NJlXFtMXn3lykRGFcJMaHS9goQuQPkzxEZnlv40tZ99aUq9m8tDFHlJNw70EiwhVBXXRGTJeYcXTn6HUJa1OTLRwlPO/KVA5uW1s8+Tk354tk67lGj5Ra3qjOW2jqtscwNlxayJisXyq4cxHZuyfk+6h1GZSdG3wOBf9GwpU/aW/ic7q2A1Ekvlfv962I5pv8Z6ouT/wiasGd3J/JTjtqnNUezbP8zKJu0/fh4M8jAV1z0ifkB0Nll5R5yW3q/vSf0x7ORcxKb3qGj8Hmwo9knlPIeBKyS/xoEqG/xxQ6Fs3BZyRVLv585Lk/N4pDob9PFzYGTZ0fQZVDCA99P+8356Z3OC+bU7O+5rn48pA2XN9IaBzejNVnG6afj4XKrRn54TmgdThsoK69xf86Ds3HcArn5cutoO86fecx67JfrM4sMZoN3zOGm89qrufozzMrR2diHTc/GbVFQTOVWaP54eljNGnWgOY1FfKkkJdO4u1VZOT1pYIn5y4ZMvEfLxkkvk4GXyr6BL+eku7BU9Pf9HONSn/mI5OhUydTlRrSk5l2m/ZwTKcF5manT8/l25b0PfTP6CeSlevXVOWzq+X30PeXr1z905VP7l9b/OKm+kb62+K34g8QyV8V18UX4jZEmHsgwwvxV/E38fcVsfLByscrf5Rd33xDYX4jKj8rn/4XWWsmiA==</latexit> dY <latexit sha1_base64="Uu/jGzHimifAQUBslloJGY6wA84=">AABFdnictVzbchy3EYWcm6Pc7OQxVamJaSayS2EoWYnjcqXKEklRtCiJ0i4pyVpJtbM7XI003FntTZc1fyGvyd/kO/IHyVNe85i+AAPMLmYawyicIheDxelu9ACN7gaG8ShLJ9PNzX+ce+873/3e93/w/g/P/+jHP/npzz748OdHk3w27iWHvTzLxw/i7iTJ0mFyOE2nWfJgNE66J3GW3I9fbOH39+fJeJLmw/b0zSh5fNIdDNPjtNedYlVnlG49/WBtc2OTfqLVwiVdWFP65yD/8KMN1VF9lauemqkTlaihmkI5U101geuRuqQ21QjqHqsF1I2hlNL3iTpV5wE7g1YJtOhC7Qv4O4C7R7p2CPdIc0LoHnDJ4HcMyEitAyaHdmMoI7eIvp8RZaytor0gmijbG/iMNa0TqJ2qZ1Ar4UzLUBz2ZaqO1Z+oDyn0aUQ12LuepjIjraDkkdOrKVAYQR2W+/D9GMo9Qho9R4SZUN9Rt136/p/UEmvxvqfbztS/SMp1uCLV0r3PCwpdNSf6ET3NGXzH8mTAeQAUEt1HLL0iXZ9Q74fQfgH1t+E6pZLRSQzXgmpPa5FbcPmQWyJyFy4fcldE7sPlQ+6LyAO4fMgDjUTsmHTux7fg8uFbIue7cPmQd0XkPbh8yHsi8gguH/JIRH4Dlw/5jYi8DpcPeV1E3oTLh7wpIttw+ZBtEXkIlw95KCJ34PIhdzSyeqaO4cqJTirMyqtQLvNAS5FBzVVRvmtkHX3YawFzuleBlWf1Nnz6sdsBOk0qsDsB4+64AiuPvF2wkX6sbItu0Griw94QsXswAvzYPRH7tXpegf06YKa9qMDKc20f2vmxsvW9BXd+7C0RextKfqy8Rt2BGj/2TsCKMarAHojYu+plBTbE6o8rsLLdb4Fd8WPldaoN7f3YEGs6q8DK9vQIPBg/Vl6t7kOtH3tfxD5QryuwD0TsQ7DufuzDgBX2bQXWrLHnaQUZkD+SwIyto9YtZiWWRkCtK/DPirUlI984hnoJMygwA8KciIjdArEbiNgvEPvBck0KOzohf1fm0ioQrUBEXKxNWJqK7ftFeyxlAYjtArG9hKjzSPFZm77MybswNRJyWqxcWArpU17YbywlejzUW16DuFNC8Nh+RiP/IkVLGEGhpuqoPSvWeEZGdF+HeEXRm+ml4SHjpoVVcFGvRVTsQcUi6o0H9UZEzTyomYiae1BzEWVnvovrBIwAq398Fgu64xHAPnL1FYFXcBVWnRswRyMYPwfgBd6jmjvw2aLYW7rqJMNoHtdJzHI8LlniMZQWag3qbVS4TfF1RjMsAcm45R0d4+Md5jYWes6xFT4tVvKoyJiE00lJnkFBB73FiOZTMzo3qeaUvDsuNcPfKOa9KTXD75DGT8mL51Iz/FRLPz2D7G2NbZ8B24LZNNLat+WmNDj/wjRM+Tytumhx8ame6DGD9F43pL+nn8zeGZ7LFpVYP7bcjMbE6d+k1L8mNKyeJ46em1FB74m9XlOKGvdkqONeW24qQ06r6FDLYe+aPhls09dPxpSb0TgAj2uLYu6FU246ekdFb2y5GY0jxXnPU/LkTbkZjQHdsz5suRkNzLZ0dZxvy00tO2qAY2dbbmrVh5QFxhwQj3musV7RmPykmaaWkn9Qn61xff7VdQxzNk+KGKGekvVtq+nExVpWL5HxFxKwatOGcqB/MXN8sDKNhbosxlcsw7S0vq/SsWs8an4ftBjB7Oc9AClnnoGEJieB1jsDipfEqKvcM4O7LOJwlBwvoTq6dip6i5YvZ43KdU+pVorLbG+tHjtkryc09kbkE+6TZiU97Fc+4SqKkob2SxqS6TXR3Vs9X8va3xRxoyXEqBhpPdoR4p20+jjVp/WWo+N1vcszhYv3fOz4xWzzsbY2GPPkZItQljqebjuTR3LrcF29qGyOm7+L6ImivZqT1UhpR2oiRqEmW8ze+ILuLe1D2pNDHkyjB88x0lRGinfNMIuO+fSILKprbyXeqC+ToePyhKyuscf16IGDHnjQzWOcLVgxbkOpDTHDIdy1A6Kc84WuctL4WP2u2B3N6QnWR/RZyUIaGmxvkpKFrIuyn5WovAI0jgaO0sNpLNMx+M4KJTnq98ljY9ey5V+nnVuzv92lMV49mqszMX3iepm4RjRreFeX75Y5sAQL7zeXyX+t7yXya8IRbajE9YnDmfUypB3/hCLYEXnGGc02aXaUW7v5qeVvDKcDZfbOcTc7JwsZkf2LYH3KaUxG9OueHTA76GwRMrKRIXYnLbwbn6+TimPM+nGp4lMNdrwlZMtmxN/QdWfXhMYiRwy8DpwujW2jk33yBRPiOtbW3c7t+tUHkfachDtKmKIdKxeI/yf01/yacbK2MiJQw/gEJtrW+Z5HTjEL6qhLq3y9DTJtXSk/LmR4oqW265+V6eOSZNsUcaE8uFr3gXOP7pkXjpIxyT1ZacPraF02FymPlvSIvT2mKJ7t/kCvwCj3RVol12jOdWiUDGAUTIsowrSVssjLfOt5lamH0Z78X6hbXZe1hhQjZTO4rCEpv59QtOZKmcGo5vH7gmaTX+vjpVb1fIY0Fk+cufwt1P4a/hq5zX0YnbhkFa7RGGAK9s5qhGuilRZhvK6VeJmRaWjZe8vPjknTyq05S3zN1s3G2PPGVA5o1LzWWQtTPguN5w6N54E6bNNeo9WiqTeW6KkYW7T1bmUovybc2g0oz0TKskdmUGmAlG4sFUa1L1KVY3yDeivS2hRpdWG2ursB7pwPQfrn+vLs/rZY3SN1nXybHnlgHL/0aZam5HOZ2vpIjSkg5yvavrqzv0M1yD0mC4qU+RwnzhjederRdVpI+hu9suVk561FMOeWXuk2xsZ2qPzZCvKE5sSE5qVBXKEWiZbflSNaskgbjs8RUea/Sz4V+x31MbPb2j6TqORP2HiTZ5XlxZHCkPQvZd72VqLXPSd+jSgmnGnvOgZazZ8wUmCMyST4PcsJPSFc5XgngT3amOznqp3iXbyhI9EGSb1Qfw6wMRz12rHuji3TY9O3T6Elat0+dV8LmV8WzFHid5YdvS6taifaR10s3Z+NVlevcuX7Oj3MlvhafcyojRtZ2CivjOmoL4O5sETNuDAmhEuzXjSRv5nkTWTm3alQyqa1oVzONLCNeUbxknQOFBE+7+6C15v7ROhHvEIvJqxLjWskSpiNy3V+wLW0mJWKliIkt15akzJnPapaLywPd9WwdpwtZUJWMFNS7oZbu33olKIVORvDFHqKT/ZWxYkuzS/hwr+R8kWJhmNIDrEFfu5VtaV23sGpiJe6zJnNiGrQJvSXYvCu7me5Rb2OXjrUXfohHMJ5pKBrSfqUVtSmsjNlWXKXejj9V2QNxioRpbctm/fB5SL3ZJVTk/6kZOHk3qTKvJPTtC+GQ0hPylzC+fD+htSLY2XebWrWB0Nd7kGZQxMe5jxD2DO3rZvzcjnV62uVSygPXgfMzovB4Q5gdcxi24VYqLHzRN49B7QOxzXUzWrxv/bD8LGcmvMK5Tahd86eBzx1bpfozCz6xc3njOUWMpqrOYbzzIveWa/Jz4/9v6jRk8qd3rx7+uiX2jFgeC0U50Nl6RjvjiIrbygV3B/wyZCrf6u/n5PfSnhZ0KiSowkls19RTc20kKmZNy99vTPfhchk6VTJVKZm44kWnYzdUnvqOvxuFR5g01Oi/E4lfyLW/x5tH2qPyXqYbDpnEDpUl1AWxO6m9enenqOtkhjP9PIZ3zbU4J74PtXied/b1B7P/LZLfat+k4Tn+i2Vq34pMlne5bPzKoYelHfgOBdk3veN6Ew9Z7P4BNpJwB4jn6PiSMm8/bwgRJ/iwmVJF4Qwo6WOcuylHNOZpKSCdlzqW49G+Ejv9OO+A57P7xbZpUj9nuq6enXAlVqS6sAj1SPKDMSk/02I0P6gLsLnRV32S3qwIumEnkFZotfOd/UnwU6948K+zbhOeTCTqZvrdjlF9Xb3sD4Tu13JhU+81+MHNfiBI2WLntYLirvHqj53OKuhOdMyufu5Q2XynqwHjGa7xfioj5/nNbzmAf2/WYm+6Ui6C7LElG2PaD9vTPQyrZsdkp7PVdbnbW/USGve2mSa9mSlHQfmjGQdB3yrbEuY/fzmWf3KgG+Y+em4c/1hwL4L9kSSiE9mStmjJEAiPiMqnV9JvZRkizEKOJ/RDeit3NeQnkpUZqIks4B3o+cBsswD6BwL0hyLFAaiJNpi0f8j+YJ+Ii58fkUXvrhU/D+So8sbl/648dndK2tfXdP/meR99Uv1kboAq/Hn6iuYkQfqkHKNf1F/VX/b/s/Or3bWd37LTd87pzG/UKWfnc3/AqaKXaM=</latexit> ⇡ <latexit sha1_base64="Ov2LTKTmb98Skpojd3G2ltsOy/U=">AAA/eHiczVvbchy3EYWdm8Xc7OQxD5mEViS6FBZFq6K4XIkskRRJayVS4kWyvZayl+FyrOHOamaXErWhvyOvyWs+IV+SP4g+IXlKdwMYYHYx0wDjVJkokhgsTnfj1jfMdkdpUoxXVv751tvf+e73vv+Ddy4t/PBHP/7JT99972eHRTbJe/FBL0uz/Em3U8RpMowPxsk4jZ+M8rhz0k3jx93na/j549M4L5JsuD8+G8VfnnQGw+Qo6XXG0PS0TRSm3XQSn0dnz95dXFleoZ9ovnJdVRaF+tnN3vvlB6It+iITPTERJyIWQzGGeio6ooDyhbguVsQI2r4UU2jLoZbQ57E4FwuAnUCvGHp0oPU5/B3A0xeqdQjPSLMgdA+4pPCbAzISlwGTQb8c6sgtos8nRBlb62hPiSbKdgb/u4rWCbSOxTG0cjjd0x/Xh9YjkA1npnnMY+j3exprAr1H1IKz0FPcJjR7OMLIGv0YKIygDet9+DyHeo+Qej0iwhQ0R7gGHfr8X9QTW/G5p/pOxBsazbdl/r5983I5oERiWzwQa6IlDsS62BB7JG9zWSDcGoxjBHOcg+QDmCGU9ipIswT/V+FMrYibUNsEGbvUJ4axRGIX/p+R/AtK1kjcF7fFvtgi3lehfh9qSwHrxPXUe7ug1fDfNwvMLstpRc4aJRjT+CekAXLxqrEv7p2+Ws0j2g+FOpHNaypncE08EjuN64ech0D/JWmiE5pB5DiF9gHIhDs0BX6oE3Ev/118LRah/rX4h9rHEciVq519TPTkkz/NP0FBmlegnItLRPMApF4oRxnBk1yBrNz9HXFKZyMiTT6Bz+RZSmnvDalX0+geQDmnmt41XShTaj1vRK5BcSHXWOQmFBdyk0W2oLiQLRa5C8WF3FXIJuxDKC7sQ5brIygu5CMWuQ/FhdxnkYdQXMhDFvk5FBfycxZ5F4oLeZdF3oPiQt5jkQdQXMgDFrkBxYXcUMj6s4Z6LSM6CXOubkO9ygPtVAott1n57pCOdWHveJzKXg2WP5fr8N+NXfeY07gGu+Gxe45qsPz+2QQt58by2mSLbKQLu8Vit2EHuLHbLPZT8VUN9lOP8/K8BsufmBbZGxeW15/34cmNvc9iH0DNjeWtzA60uLE7Hjp/VIPdZbEPxYsarI/Wz2uwvN7fI1/Mhd3zsBnjGixvNQ7Ad3BjeX16CD6IG8vbnMfQ6sY+ZrFPyGt0YZ+w2M/IO3VhP/Owk69rsNpSSu99QD5gDCe2iVqnPJVYGwG1DsM/LW0L1tBG9VnMoMQMCHPCIjZLxKYnolUiWt5yFaUeLchj5bnslYg9T0S3tE1YG7P9+2X/PsVmPGK9RKzPIJqiAFxrPZZT8i50C4ccl5YLaz5jykr9jbVY7YdmzasROxWE3NvHtPOvUayOkUyf4tZ6aseljZfIiJ6bEC8p1tOj1Dx43LjUCjbqFYvqOlBdFnXmQJ2xqIkDNWFRpw7UKYsyJ9/GtT12gJl/XIspPenYn8ulVHMXO2BxN8D6YcsO/PfJpTRH5ZgRQEupo2eji3OoTSmSNpHdOsXIMtMQg2Sy547KMeET5ian6tRJPXxe2vJI6IynP52E5BmUdNBfjOhEhdG5Ry3n5N/JWhh+qzz5uhaG36AZPyc/XtbC8GMl/fgCsu8r7P4FsHtwnkZq9k09lIbMoUgaus7p5u1Sb2K+8hWdHNkWyn+NanIOTD2MRmGNoaiMIYSGmcvCmsswKugjSd9W16LgkQxVdGvqoTJkZCuHSg7zFLoy2KevVkbXw2jsgl+1RpH11KqH7tBRORpTD6NxKGRu/Zz8dV0PozGgZzkfph5GA3MqHRXNm3qo9sYZkBGyqWufJScvRmecE7LezbkU2yOftzGYUXlaevDNlIznWU+nW9qZZolmtUuIHGj9J5aHVKUxFats9CNlGFds7zwdY39x5lswixGcWpnX53LSKUioMwYxZcmfErVmTHVkGrfK4lCTHM2g2qp1zPpyhq/M6VTbnlErFzWZ0Zp5bJOeLWjvjchja9HMcvPQql3hOorcDLUqM8TTC5m713SCs5nZX2FxoxnEqNxpPbodkrfUzVGka9b3rDm+rG5RxlDknYrZv5gLPiJcThFJRtoGZWniaffTWR67De3hNWEy0PKziFYU9dUpaY2EbnwK1g/RuVzpKU/p2dA+oHu26q1VpKiMhLxRxRw3Zrsjus+0dS3HG+dL589kvSCta+7Rm2/HDHrgQIdGH2tgKx5AbR+8+QN42veIP8ydW0bznYvflvefGa1fc7Rt3+y1SxpS28QV/dgUAR9XqLwENO4FGUH705ilo/HtOUp8RO6Sx8SVVb1/me709ZsjHdrh9Xu5PkvSJ66rxDWiMyPv++XTLAcpwdT5ySp5nc2jRH4hHFGDclyfWpzlvAzpXZqYYssR+bMpnTXubFR727mj2U80p12h36rAu+KM9GNE2i8C65TRnozo134rR79bIfVBShrSR+skpW/j8nQSdo8ldMrlHpHvC5n9FpMmmxB/Tdc+XQXtRennSytwPrO39Zy0yBOMiWuudLs52822B5HmTQh7l0iKZq9cJf5L9Ff/6n2yOLcjcIZxBQql6VzrkVGkgXPUIRvfrIN0X1vK90sZniqpjfUzMr1fkWyd4iSUB211Hzj36Fnywl2Sk9zFXB9pRZsyrUh5NDOPOFq0rm2l9QfK/qLc18hGLtKZawvzho32/XVfLsM7y7eZV5W6H+3i/0LdzHV11pBiJEx2Vc4Ql3uPKcaypUzpnST59k2sKM3Pej7Tq5nPkPbiiXWW/wytv4K/Wm797EenW9EKd2gPSArmycyIbInmevjxulPhpXempmWeDT+zJ3Uvu+UiUbHUbiYyPg2msku75pXKNei6z/j36Q7PzIBu11rk2YwHva/u/Hyph9H2pzxhKfO+k0YlHlLaMY8f1T5LlY/FNeo1S2uFpYVv49kZdft02rbzLvkOPfJwZHTQp1OQkE+jW5vjIEkBed1Q+ss+XW1qwbPUJQ2FlKtvFWLurifkO6RSxt8oy5GRHjUnTr+z81L10TqsTfUP55AnFM0WdHY04gb1iJX8thzRzIlftmx6RDnvDvks0q43R6R2b7MKUcVem2hOngXDKxVXlDc+pDUYizeN3Lbn4sNtK0KMhLzvS0sPHlf5TdAqY9wmd4aO1d3eW0GrhJYkp3heeo1d0lHzWQZ5izWE2df7bpmknoo/eGgHGVeak2LvL/xsoqISHNsH0BNn3qy8qwfPL/XmyPG7yH1WhyzHifIDpzPPF6PVUZak+tw0D5MZvmY+JmKoYkLtvZtIqoppi4+9uUiJwrhIjA+XsFGEyB8meYjM8t7Gl7LurSlXo3mpY44pJuHeg0SEy4O66vSYlphxdOfodQlrU5MtHCXMd2UqBre1LWZ+Ls3ZItl6qdEipZY1qrMWmrptMYwOlxoyJu2XCi4vInv3hHwftS6CsmODj6Hg30i44idtTXyya3vgReJ79X7fimi+yX+h6jLjF1ELnuT+THTaUeOs9mhe5RcWdZu+Dwd/HgnMNSd9QnYwVHZJmZfcpu5P/yWd4VzErPSmZ/gYbC78SOY5hYwnIb3EjyYR+ntMoWPRHHxGUuXiz0fm/blRHAn9fbqwMWjq/AiqHEJ46Pt5vzU3vcN52Zya52ueiy8PqcP1jYTG4c1YfbRh+vloqNxakW+eA2qHowbq2lr8r+PQfAyncF6+3Ar6rtNXHqsu+8UqZ4nebPiZMdx8dnM9R3+eWTk64+u4+UmvLQpaqcwazTdPH71Jswc0r6mQmUJeOom3d5GR15cKZs5dMmTi314ySHydDL5UdAa/npLuwVPT3/RzjUp/5iOToVMnU5Ua0pORdpvOcEzZAnOz06fn8m1L+h76R/QTycrNG6ry0fXye+iHq8vXf7f84cMbi5/cUd9If0f8QvwaPPnr4qb4RGyBh3lA2e6/iL+Kv/3xP7eiW1duLcmub7+lMD8XlZ9bq/8FWlgltg==</latexit> y <latexit sha1_base64="LvFcuviAqZAdjSTE/PqtKDzG1pU=">AAA/e3iczVvbchy3EYXtXCzmYtl5zEMmoRVdSmGRtBLF5UpkiaQoWiuREi+S7bWUvQyXYw13VjO7lKgN/SN5TZ7yCfmS/EH0CXlIVbobwACzi5kGFKfKRJHEYHG6Gw2gL8Bsd5QmxXh5+Z9vvf3O977/gx++e27hRz/+yU/fO//+BwdFNsl78X4vS7P8cbdTxGkyjPfHyTiNH4/yuHPcTeNH3Wdr+Pmjkzgvkmy4Nz4dxV8ddwbD5DDpdcbQ9PT8e22iMe2mk/gsOr349Pzi8tIy/UTzlRVVWRTqZyd7/xdXRFv0RSZ6YiKORSyGYgz1VHREAeVLsSKWxQjavhJTaMuhltDnsTgTC4CdQK8YenSg9Rn8HcDTl6p1CM9IsyB0D7ik8JsDMhIXAJNBvxzqyC2izydEGVvraE+JJsp2Cv+7itYxtI7FEbRyON3TH9eH1kOQDTXTPOYx9Ps9jTWB3iNqQS30FLcJaQ9HGFmjHwOFEbRhvQ+f51DvEVLPR0SYgnSEc9Chz/9FPbEVn3uq70S8ptF8V/T33dPLhYASiS1xX6yJltgX62JD7JK8zWWBcGswjhHoOAfJB6AhlPYSSHMZ/q/CnloW16G2CTJ2qU8MY4nEDvw/JfkXlKyRuCduij1xh3hfgvo9qF0OmCeup17bBc2G/7pZYFZZTjNy2ijBmMY/IQuQi5eNfXHt9NVsHtJ6KNSObJ5TqcE18VBsN84fch4C/RdkiY5Jg8hxCu0DkAlXaAr80CbiWv67+EYsQv0b8Q+1jiOQK1cr+4joySd/mn+CgjQvQjkT54jmPki9UI4ygic5A1m5+jvihPZGRJZ8Ap/JvZTS2htSr6bR3YdyRjW9arpQptR61ohcg+JCrrHITSgu5CaLbEFxIVsscgeKC7mjkE3YB1Bc2Acs14dQXMiHLHIPigu5xyIPoLiQByzyCygu5Bcs8jYUF/I2i7wLxYW8yyL3obiQ+yxyA4oLuaGQ9XsN7VpGdBJmX92EepUH+qkUWm6y8t0iG+vC3vLYlb0aLL8v1+G/G7vuodO4BrvhsXoOa7D8+tkEK+fG8tbkDvlIF/YOi92CFeDGbrHYz8TXNdjPPPbLsxosv2Na5G9cWN5+3oMnN/Yei70PNTeW9zLb0OLGbnvY/FENdofFPhDPa7A+Vj+vwfJ2f5diMRd218NnjGuwvNfYh9jBjeXt6QHEIG4s73MeQasb+4jFPqao0YV9zGI/p+jUhf3cw0++qsFqTymj9wHFgDHs2CZqnXJXYm0E1DoM/7T0LVhDH9VnMYMSMyDMMYvYLBGbnohWiWh5y1WUdrSgiJXnslsidj0R3dI3YW3M9u+X/fuUm/GI9RKxPoNoygJwrvVYTii60C0cclx6Lqz5jCkr7TfWYrUemi2vRmxXEHJtH9HKv0q5OmYyfcpb66kdlT5eIiN6bkK8oFxPj1Lz4HHj0irYqJcsqutAdVnUqQN1yqImDtSERZ04UCcsyux8G9f2WAFG/zgXU3rSuT93llI9u9gGj7sB3g9btuG/z1lKc1aOJwLoKXX2bGxxDrUpZdIms1unHFmeNMQgmey5rc6Y8AnPJqdq10k7fFb68kjoE09/OgnJMyjpYLwY0Y4Ko3OXWs4ovpO1MPydcufrWhh+gzR+RnG8rIXhx0r68RvIvqewe2+A3YX9NFLaN/VQGvIMRdLQdc42b5V2E88rX9LOkW2h/NeoJnVg6mE0CmsMRWUMITSMLgtLl2FUMEaSsa2uRcEjGars1tRDZcjIVw6VHOYpdGawT1/NjK6H0diBuGqNMuupVQ9doaNyNKYeRuNAyLP1M4rXdT2MxoCepT5MPYwGnql0VDZv6qHWGzUgM2RT1zFLTlGMPnFOyHs3n6XYEfm8j8ETlSdlBN9MyUSe9XS6pZ9plmjWuoTIgd5/YkVIVRpTscpmP1KGccX3ztMx/hc13wItRrBr5bk+dyadgoT6xCCmU/InRK0ZUx2Zxq2yOLQkhzOotmods7Gc4SvPdKptT6mVy5rMaI0e22RnC1p7I4rYWqRZTg+t2hmuo8hpqFXREE8vRHevaAdnM9pfZnGjGcSoXGk9uh2St9TNWaRL67uWji+oW5QxFHmnYtYvngUfEi6njCQja4OyNPG0++lTHrsN/eFVYU6g5WcRzSjaqxOyGgnd+BRsHKLPcmWkPKVnQ3uf7tmqt1aRojIS8kYVz7jxtDui+0zb1nK8UV/6/EzWC7K65h69+XbMoAcOdGj2sQa+4j7U9iCa34enPY/8w9y5ZaTvXPymvP/MaP6as237Zq9d0pDWJq7Yx6YM+KhC5QWgcS3IDNqfxiwdjW/PUeIzcpc8Jq+s2v0LdKev3xzp0AqvX8v1pyR94rpKXCPaM/K+Xz7NcpASTJ2frFLU2TxK5BfCES0ox/WJxVnqZUjv0sSUW44onk1pr3F7o9rbPjua/URz2hH6rQq8K87IPkZk/SLwThmtyYh+7bdy9LsV0h6kZCF9rE5SxjauSCdh11hCu1yuEfm+kFlvMVmyCfHXdO3dVdBalHG+9AJnM2tb66RFkWBMXHNl283ebvY9iDRvQtirRFI0a+US8b9Mf/WvXieLcysCNYwzUChL55qPjDIN1FGHfHyzDdJ9bSk/LGV4oqQ23s/I9GFFsnXKk1Ae9NV94NyjZ8kLV0lOchdzfaQXbTppRcqjGT3iaNG7tpXVHyj/i3JfJR+5SHuuLcwbNjr21325E95Zvs28qtT9aBf/F+pG11WtIcVImNNVqSHu7D2mHMuWMqV3kuTbN7GiNK/1fKZXM58hrcVjay//GVp/CX+13PrZj063YhVu0RqQFMyT0YhsieZ6+PG6VeGlV6amZZ4NP7MmdS+75U2yYmndTGZ8Ekxlh1bNS3XWoOs+49+jOzyjAd2urcjTmQh6T935+VIPo+1PecJS5mMnjUo8pLRzHj+qfZYqn4tr1CuW1jJLC9/Gs0/U7d1p+87bFDv0KMKR2UGfdkFCMY1ubc6DJAXkdU3ZL3t3takF91KXLBRSrr5ViGd3PSHfIZUy/lp5jozsqNlx+p2dF6qPtmFtqn80hzymbLagvaMR16hHrOS35YhmdvyS5dMjOvPuUMwi/XpzRmr3NrMQVfy1yebkXjC8UnFRReNDmoOxeN3IbWsuP9yyMsRIyPu+tIzgcZZfB80y5m1yZehc3R29FTRL6Elyyudl1NglGzV/yiBvsYagfb3ulkjqqfiDh3WQeaXZKfb6ws8mKivBsV2Bnqh5M/OuHjy/1Jsjx+9N7rM65DmOVRw4nXl+M1od5Umqz016mMzwNfqYiKHKCXX0bjKpKqYtPvHmIiUK4yIxPlzCRhEif5jkITLLextfyrq3plzN5qWNOaKchHsPEhGuCOqSM2K6zIyjO0evS1ibmmzhKOF5V6ZycNva4snPuTlfJFvPNXqk1PJGdd5CU7c9hrHh0kLGZP1SwZ2LyN49Id9Hrcug7NzgEyj4NxKu/El7E5/TtV2IIvG9er9vRTTf5D9XdXniF1EL7uT+THbaUeOs9mie5ecWdZu+Dwd/HgnompM+IT8YKrukzEtuU/en/4L2cC5iVnrTM3wMNhd+JPOcQsaTkF3iR5MI/T2m0LFoDj4jqXLx5yPP/blRHAr9fbqwMWjq/AiqHEJ46Pt5vzk3vcN52Zya9TXPxZeHtOH6RkLj8GasPtsw/XwsVG7NyLfPAa3DYQN17S3+13FoPoZTOC9fbgV91+lrj1mX/WJ1ZonRbPieMdx8VnM9R3+eWTk6E+u4+cmoLQqaqcwazbdPH6NJswY0r6mQJ4W8dBJvryIjry8VPDl3yZCJf3vJIPF1MvhS0Sf49ZR0D56a/qafa1T6Mx+ZDJ06marUkJ7MtNu0h2M6LTA3O316Lt+2pO+hf0w/kaxcv6YqH6+U30M/WF1a+d3SRw+uLX56S30j/V3xc/EriORXxHXxqbgDEea+wG+m/0X8Vfztj/+5sXjjyo2rsuvbbynMz0Tl58Zv/wtIPiYY</latexit> y0 <latexit sha1_base64="P6ma5GbrGzlp3Azs8/N4GutUeUg=">AAA/d3iczVtZcxy3EYady2Iu23nMgyehZUsuhUXSqiguVyKLh0haK5ESD8n2Ssoew+VYy53VzC4Pbei/kdfkOT8hvyT/IPoJfkt3AxhgdjHTAGNXmSiSGCy+7kYD6AOYbQ/7ST5aXPzPG2/+6Mc/+enP3roy9/Nf/PJXv377nXcP8nScdeL9TtpPsyftVh73k0G8P0pG/fjJMItbx+1+/Lj9YhU/f3wSZ3mSDvZG58P46XGrN0gOk05rBE1Pm0RhksXdi+js+dvziwuL9BPNVpZUZV6on530nfc+Ek3RFanoiLE4FrEYiBHU+6IlcihfiSWxKIbQ9lRMoC2DWkKfx+JCzAF2DL1i6NGC1hfwtwdPX6nWATwjzZzQHeDSh98MkJG4CpgU+mVQR24RfT4mythaRXtCNFG2c/jfVrSOoXUkjqCVw+me/rgutB6CbKiZ+jGPoN+faKwJ9B5SC2qho7iNSXs4wsga/QgoDKEN6134PIN6h5B6PiLC5KQjnIMWff5f6omt+NxRfcfiNY3mh6K/H55ergaUSGyJB2JVNMS+WBPrYpfkrS9zhFuFcQxBxxlI3gMNobTXQJrr8H8Z9tSiuAW1DZCxTX1iGEskduD/Ock/p2SNxH1xR+yJTeJ9Der3oXY9YJ64nnpt5zQb/utmjlllGc3Iea0EIxr/mCxAJs5q++La6arZPKT1kKsdWT+nUoOr4pHYrp0/5DwA+qdkiY5Jg8hxAu09kAlXaB/4oU3Etfwv8Y2Yh/o34t9qHUcgV6ZW9hHRk0/+NP8KBWl+COVCXCGa+yD1XDHKCJ7kDKTF6m+JE9obEVnyMXwm91Kf1t6AetWN7gGUC6rpVdOGMqHWi1rkKhQXcpVFbkBxITdYZAOKC9lgkTtQXMgdhazDPoTiwj5kuT6C4kI+YpF7UFzIPRZ5AMWFPGCRX0JxIb9kkXehuJB3WeQ9KC7kPRa5D8WF3GeR61BcyHWFrN5raNdSopMw++oO1Ms80E/1oeUOK98K2VgXdsVjV3YqsPy+XIP/buyah07jCuy6x+o5rMDy62cDrJwby1uTTfKRLuwmi92CFeDGbrHYz8XXFdjPPfbLiwosv2Ma5G9cWN5+3ocnN/Y+i30ANTeW9zLb0OLGbnvY/GEFdofFPhQvK7A+Vj+rwPJ2f5diMRd218NnjCqwvNfYh9jBjeXt6QHEIG4s73MeQ6sb+5jFPqGo0YV9wmK/oOjUhf3Cw0++qsBqTymj9x7FgDHs2DpqrWJXYm0I1FoM/37hW7CGPqrLYnoFpkeYYxaxUSA2PBGNAtHwlisv7GhOESvPZbdA7Hoi2oVvwtqI7d8t+ncpN+MRawVibQpRlwXgXOuxnFB0oVs45KjwXFjzGVNa2G+sxWo91FtejdguIeTaPqKVf4NydcxkupS3VlM7Kny8REb0XIc4pVxPj1Lz4HGjwirYqDMW1Xag2izq3IE6Z1FjB2rMok4cqBMWZXa+jWt6rACjf5yLCT3p3J87SymfXWyDx10H74ct2/Df5yylPivHEwH0lDp7NrY4g9qEMmmT2a1RjixPGmKQTPbcVmdM+IRnkxO166Qdvih8eST0iac/nYTk6RV0MF6MaEeF0blHLRcU38laGH6z2Pm6FoZfJ41fUBwva2H4kZJ+dAnZ9xR27xLYXdhPQ6V9Uw+lIc9QJA1d52zzVmE38bzyjHaObAvlv0o1qQNTD6ORW2PIS2MIoWF0mVu6DKOCMZKMbXUtCh7JQGW3ph4qQ0q+cqDkME+hM4N9umpmdD2Mxg7EVauUWU+seugKHRajMfUwGgdCnq1fULyu62E0evQs9WHqYTTwTKWlsnlTD7XeqAGZIZu6jlkyimL0iXNC3rv+LMWOyGd9DJ6oPCsi+HpKJvKsptMu/Ey9RNPWJUQO9P5jK0Iq05iIZTb7kTKMSr53lo7xv6j5Bmgxgl0rz/W5M+k+SKhPDGI6JX9G1Oox5ZFp3DKLQ0tyOIVqqtYRG8sZvvJMp9z2nFq5rMmM1uixSXY2p7U3pIitQZrl9NConOEqipyGGiUN8fRCdPeKdnA6pf1FFjecQgyLldah2yF5S12fRbq0vmvp+Kq6RRlBkXcqZv3iWfAh4TLKSFKyNihLHU+7nz7lsdvQH94Q5gRafhbRjKK9OiGrkdCNT87GIfosV0bKE3o2tPfpnq18axUpKkMhb1TxjBtPuyO6z7RtLccb9aXPz2Q9J6tr7tHrb8cMuudAh2Yfq+ArHkBtD6L5fXja88g/zJ1bSvrOxB+K+8+U5q8+27Zv9poFDWlt4pJ9rMuAj0pUTgGNa0Fm0P40pulofHOGEp+Ru+QxeWXZ7l+lO3395kiLVnj1Wq4+JekS12XiGtGekff98mmag5Rg4vxkmaLO+lEivxCOaEE5rs8szlIvA3qXJqbcckjxbJ/2Grc3yr3ts6PpTzSnHaHfqsC74pTsY0TWLwLvlNKajOjXfitHv1sh7UGfLKSP1UmK2MYV6STsGktol8s1It8XMustJks2Jv6arr27clqLMs6XXuBiam1rnTQoEoyJa6Zsu9nb9b4HkeZNCHuVSIpmrVwj/tfpr/7V62R+ZkWghnEGcmXpXPORUqaBOmqRj6+3QbqvLeX7hQzPlNTG+xmZ3i9JtkZ5EsqDvroLnDv0LHnhKslI7nymj/SidSetSHk4pUccLXrXprL6PeV/Ue4b5CPnac81hXnDRsf+ui93wjvNt55Xmbof7fx7oW50XdYaUoyEOV2VGuLO3mPKsWwp+/ROknz7JlaUZrWeTfWq5zOgtXhs7eW/Qevv4K+WWz/70WmXrMIKrQFJwTwZjciWaKaHH6+VEi+9MjUt82z4mTWpe9ktl8mKpXUzmfFJMJUdWjVn6qxB133Gv0d3eEYDul1bkedTEfSeuvPzpR5G25/ymKXMx04alXhIaec8flS7LFU+F9eoVyytRZYWvo1nn6jbu9P2nXcpduhQhCOzgy7tgoRiGt1anwdJCsjrprJf9u5qUgvupTZZKKRcfqsQz+46Qr5DKmX8QHmOlOyo2XH6nZ1T1UfbsCbVP55BHlM2m9Pe0Yib1CNW8ttyRFM7fsHy6RGdebcoZpF+vT4jtXubWYhK/tpkc3IvGF598aGKxgc0ByPxupbb1kx+uGVliJGQ9339IoLHWX4dNMuYt8mVoXN1d/SW0yyhJ8kon5dRY5ts1Owpg7zFGoD29bpbIKkn4s8e1kHmlWan2OsLPxurrATH9hH0RM2bmXf14Pn1vTly/C5zn9Uiz3Gs4sDJ1PPlaLWUJyk/1+lhPMXX6GMsBion1NG7yaTKmKb41JuLlCiMi8T4cAkbRYj8YZKHyCzvbXwp696acjmblzbmiHIS7j1IRLgiqGvOiOk6M472DL02YW1qsoWjhOddqcrBbWuLJz9XZnyRbL1S65H6ljeq8haauu0xjA2XFjIm69cX3LmI7N0R8n3UqgzKzg0+hYJ/I+HKn7Q38Tld24UoEt+r9/tWRP1N/ktVlyd+EbXgTu5OZactNc5yj/pZfmlRt+n7cPDnkYCuOekT8oOhskvKvOQ2dX/6p7SHMxGz0pue4WOwufAjmeUUMp6E7BI/mkTo7zGFjkVz8BlJmYs/H3nuz43iUOjv04WNQVPnR1DmEMJD38/7zbnpHc7L5lSvr1kuvjykDdc3EhqHN2PV2Ybp52OhMmtGvnsOaB0Oa6hrb/H/jkPzMZzCeflyy+m7Tl97zLrsF6szS4xmw/eM4eazmqs5+vNMi9GZWMfNT0ZtUdBMpdZovnv6GE2aNaB5TYQ8KeSlk3h7FRl5fangyblLhlR86yWDxFfJ4EtFn+BXU9I9eGr6m36uUenPfGQydKpkKlNDejLTbtIejum0wNzsdOm5eNuSvof+Cf1EsnLrpqp8slR8D/1geWHpjwsfP7w5/9mK+kb6W+K34vcQyS+JW+IzsQkR5j5J+XfxD/HPv3x7+73bH9y+Jru++YbC/EaUfm4v/Q/bzCU+</latexit> x <latexit sha1_base64="lu4TI7OEyJXvtBBsg9Av3iRYKnI=">AAA/eHiczVtZcxy3EYady2IuO3nMQyahFYkuhUXSqiguVyKLhyhaK5ESD8n2msoew+VYy53VzC4PbejfkdfkNT8hvyT/IPoJyVO6G8AAs4uZBhinykSRxGDxdTeuvjDbHvaTfLS09M+33v7Od7/3/R+8c23uhz/68U9++u57PzvI03HWifc7aT/NnrdbedxPBvH+KBn14+fDLG6dtPvxs/bLNfz82Wmc5Uk62BtdDOMvT1q9QXKUdFojaDpsEoVJFncvo/MbL96dX1pcop9otrKsKvNC/eyk7/3yA9EUXZGKjhiLExGLgRhBvS9aIofyhVgWS2IIbV+KCbRlUEvo81hcijnAjqFXDD1a0PoS/vbg6QvVOoBnpJkTugNc+vCbATIS1wGTQr8M6sgtos/HRBlbq2hPiCbKdgH/24rWCbSOxDG0cjjd0x/XhdYjkA1npn7MI+j3exprAr2H1IKz0FHcxjR7OMLIGv0IKAyhDetd+DyDeoeQej0iwuQ0R7gGLfr8X9QTW/G5o/qOxRsazbdl/r5983I9oERiSzwWa6Ih9sW62BC7JG99mSPcGoxjCHOcgeQ9mCGU9iZIswD/V+BMLYk7UNsEGdvUJ4axRGIH/l+Q/HNK1kg8EvfEnnhAvG9C/RHUFgLWieup93ZOq+G/b+aYXZbRilzUSjCi8Y9JA2TivLYv7p2uWs0j2g+5OpH1aypncE08Fdu164ecB0D/jDTRCc0gcpxAew9kwh3aB36oE3Ev/118Leah/rX4h9rHEciVqZ19TPTkkz/NP0FBmjegXIprRHMfpJ4rRhnBk1yBtNj9LXFKZyMiTT6Gz+RZ6tPeG1CvutE9hnJJNb1r2lAm1HpZi1yD4kKuschNKC7kJotsQHEhGyxyB4oLuaOQddgnUFzYJyzXp1BcyKcscg+KC7nHIg+guJAHLPJzKC7k5yzyPhQX8j6LfAjFhXzIIvehuJD7LHIDigu5oZDVZw31Wkp0EuZc3YN6mQfaqT603GPlWyUd68KuepzKTgWWP5fr8N+NXfeY07gCu+Gxe44qsPz+2QQt58by2uQB2UgX9gGL3YId4MZusdhPxVcV2E89zsvLCix/Yhpkb1xYXn8+gic39hGLfQw1N5a3MtvQ4sZue+j8YQV2h8U+Ea8qsD5aP6vA8np/l3wxF3bXw2aMKrC81dgH38GN5fXpAfggbixvc55Bqxv7jMU+J6/RhX3OYj8j79SF/czDTr6uwGpLKb33HvmAMZzYOmqt4lRibQjUWgz/fmFbsIY2qstiegWmR5gTFrFZIDY9EY0C0fCWKy/0aE4eK89lt0DseiLahW3C2ojt3y36dyk24xHrBWJ9ClEXBeBa67GcknehWzjkqLBcWPMZU1rob6zFaj/Ua16N2C4h5N4+pp1/i2J1jGS6FLdWUzsubLxERvRchzijWE+PUvPgcaNCK9iocxbVdqDaLOrCgbpgUWMHasyiTh2oUxZlTr6Na3rsADP/uBYTetKxP5dLKecutsHiboD1w5Zt+O+TS6mPyjEjgJZSR89GF2dQm1AkbSK7dYqRZaYhBslkz22VY8InzE1O1KmTeviysOWR0BlPfzoJydMr6KC/GNGJCqPzkFouyb+TtTD8g+Lk61oYfoNm/JL8eFkLw4+U9KMryL6nsHtXwO7CeRqq2Tf1UBoyhyJp6Dqnm7cKvYn5ynM6ObItlP8a1eQcmHoYjdwaQ14aQwgNM5e5NZdhVNBHkr6trkXBIxmo6NbUQ2VIyVYOlBzmKXRlsE9XrYyuh9HYAb9qjSLriVUP3aHDYjSmHkbjQMjc+iX567oeRqNHz3I+TD2MBuZUWiqaN/VQ7Y0zICNkU9c+S0ZejM44J2S963Mptkc+a2Mwo3JYePD1lIznWU2nXdiZeommtUuIHGj9x5aHVKYxESts9CNlGJVs7ywdY39x5hswixGcWpnX53LSfZBQZwxiypIfErV6THlkGrfC4lCTHE2hmqp1xPpyhq/M6ZTbXlArFzWZ0Zp5bJKezWnvDclja9DMcvPQqFzhKorcDDVKM8TTC5m713SC06nZX2JxwynEsNhpHbodkrfU9VGka9Z3rTm+rm5RRlDknYrZv5gLPiJcRhFJStoGZanjaffTWR67De3hLWEy0PKziFYU9dUpaY2Ebnxy1g/RuVzpKU/o2dDep3u28q1VpKgMhbxRxRw3Zrsjus+0dS3HG+dL589kPSeta+7R62/HDLrnQIdGH2tgKx5DbQ+8+X142vOIP8ydW0rznYnfFvefKa1ffbRt3+w1CxpS28Ql/VgXAR+XqJwBGveCjKD9aUzT0fjmDCU+InfJY+LKst6/Tnf6+s2RFu3w6r1cnSXpEtcV4hrRmZH3/fJpmoOUYOL8ZIW8zvpRIr8QjqhBOa6HFmc5LwN6lyam2HJI/myfzhp3Nsq97dzR9Cea047Qb1XgXXFK+jEi7ReBdUppT0b0a7+Vo9+tkPqgTxrSR+skhW/j8nQSdo8ldMrlHpHvC5n9FpMmGxN/Tdc+XTntRennSytwObW39Zw0yBOMiWumdLs52/W2B5HmTQh7l0iKZq/cJP4L9Ff/6n0yP7MjcIZxBXKl6VzrkVKkgXPUIhtfr4N0X1vK9wsZDpXUxvoZmd4vSbZOcRLKg7a6C5w79Cx54S7JSO58po+0onWZVqQ8nJpHHC1a16bS+j1lf1HuW2Qj5+nMNYV5w0b7/rovl+Gd5lvPq0zdj3b+f6Fu5ro8a0gxEia7KmeIy73HFGPZUvbpnST59k2sKM3OejbVq57PgPbiiXWW/wytv4K/Wm797EenXdIKq7QHJAXzZGZEtkQzPfx4rZZ46Z2paZlnw8/sSd3LbrlKVCy1m4mMT4Op7NCuOVe5Bl33Gf8e3eGZGdDtWou8mPKg99Sdny/1MNr+lMcsZd530qjEQ0o75vGj2mWp8rG4Rr1maS2xtPBtPDujbp9O23beJ9+hQx6OjA66dAoS8ml0a30cJCkgr9tKf9mnq0kteJbapKGQcvmtQszddYR8h1TK+BtlOVLSo+bE6Xd2zlQfrcOaVP9wBnlC0WxOZ0cjblOPWMlvyxFNnfhFy6ZHlPNukc8i7Xp9RGr3NqsQley1iebkWTC8+uKG8sYHtAYj8aaW29ZMfLhlRYiRkPd9/cKDx1V+E7TKGLfJnaFjdbf3ltMqoSXJKJ6XXmObdNRslkHeYg1g9vW+WySpJ+IPHtpBxpXmpNj7Cz8bq6gEx/YB9MSZNyvv6sHz63tz5Phd5T6rRZbjRPmBk6nnq9FqKUtSfq6bh/EUXzMfYzFQMaH23k0kVcY0xcfeXKREYVwkxodL2ChC5A+TPERmeW/jS1n31pTL0bzUMccUk3DvQSLC5UHddHpMC8w42jP02oS1qckWjhLmu1IVg9vaFjM/12ZskWy9VmuR+pY1qrIWmrptMYwOlxoyJu3XF1xeRPbuCPk+alUEZccGH0PBv5FwxU/amvhk13bBi8T36v2+FVF/k/9K1WXGL6IWPMndqei0pcZZ7lG/yq8s6jZ9Hw7+PBKYa076hOxgqOySMi+5Td2f/hmd4UzErPSmZ/gYbC78SGY5hYwnIb3EjyYR+ntMoWPRHHxGUubiz0fm/blRHAn9fbqwMWjq/AjKHEJ46Pt5vzU3vcN52Zzq52uWiy8PqcP1jYTG4c1YdbRh+vloqMxakW+eA2qHoxrq2lr8r+PQfAyncF6+3HL6rtNXHqsu+8UqZ4nebPiZMdx8dnM1R3+eaTE64+u4+UmvLQpaqdQazTdPH71Jswc0r4mQmUJeOom3d5GR15cKZs5dMqTi314ySHyVDL5UdAa/mpLuwVPT3/RzjUp/5iOToVMlU5ka0pORdpPOcEzZAnOz06Xn4m1L+h76R/QTycqd26ry0XLxPfSDlcXl3y1++OT2/Cer6hvp74hfiF+DJ78s7ohPxAPwMPcp2/0X8Vfxtz/+525098bdBdn17bcU5uei9HN35b/eOCVv</latexit> x0 Quadratic minimization: Proposition:
  24. Gromov-Wasserstein as Metric Learning inf π1 =α,π2 =β 𝒬 (π)

    := ⟨Qπ, π⟩ local minimizer π⋆ ⟺ Q(π)(x, y) := ∫ |dX (x, x′  )p − dY (y, y′  )p |2 dπ(x′  , y′  ) π⋆ ∈ argmin π1 =α,π2 =β ∫ c⋆dπ c⋆ = Qπ⋆ X <latexit sha1_base64="/59ZCDJZPBrZfCS8zgReJB0hTeY=">AABFdnictVxfcxPJER8u/y7kH5c8piq1OR8JlyKOTUglVVepOrCN8WHAINnAIaC00loI1lqhlYRB56+Q1+Tb5HPkGyRPec1j+s/Mzqw0uz3rELZsz87Or7und6anu2eWeJwO8+nGxj8ufPStb3/nu9/7+PsXf/DDH/34J5c++elRns0mveSwl6XZ5HHczZN0OEoOp8NpmjweT5LuSZwmj+LXW/j80TyZ5MNs1J6+GyfPTrqD0fB42OtOsarz+HTrxaW1jfUN+hetFjZ1YU3pfwfZJ5+uq47qq0z11EydqESN1BTKqeqqHK6nalNtqDHUPVMLqJtAaUjPE3WmLgJ2Bq0SaNGF2tfwewB3T3XtCO6RZk7oHnBJ4WcCyEhdBkwG7SZQRm4RPZ8RZaytor0gmijbO/gba1onUDtVL6FWwpmWoTjsy1Qdqz9RH4bQpzHVYO96msqMtIKSR06vpkBhDHVY7sPzCZR7hDR6jgiTU99Rt116/k9qibV439NtZ+pfJOVluCLV0r3PCgpdNSf6Eb3NGTxjeVLgPAAKie4jlt6Srk+o9yNov4D6e3CdUcnoJIZrQbVntcgtuHzILRG5C5cPuSsi9+HyIfdF5AFcPuSBRiJ2Qjr341tw+fAtkfMDuHzIByLyIVw+5EMReQSXD3kkIr+Gy4f8WkTegsuHvCUi78DlQ94RkW24fMi2iDyEy4c8FJE7cPmQOxpZPVMncGVEZyjMyhtQLvNAS5FCzQ1RvptkHX3YmwFzuleBlWf1Nvz1Y7cDdJpUYHcCxt1xBVYeebtgI/1Y2RbdptXEh70tYvdgBPixeyL2K/WqAvtVwEx7XYGV59o+tPNjZet7F+782Lsi9h6U/Fh5jboPNX7s/YAVY1yBPRCxD9SbCmyI1Z9UYGW73wK74sfK61Qb2vuxIdZ0VoGV7ekReDB+rLxaPYJaP/aRiH2sTiuwj0XsE7DufuyTgBX2fQXWrLEXaQUZkD+SwIyto9YtZiWWxkCtK/BPi7UlJd84hnoJMygwA8KciIjdArEbiNgvEPvBcuWFHc3J35W5tApEKxARF2sTlqZi+37RHktpAGK7QGwvIeo8UnzXpi9z8i5MjYScFisXlkL6lBX2G0uJHg/1ltcg7pcQPLZf0si/StESRlCoqTpqL4s1npER3dch3lL0ZnppeMi4aWEVXNSpiIo9qFhEvfOg3omomQc1E1FzD2ououzMd3GdgBFg9Y/vYkF3PALYR66+IvAKbsCqcxvmaATj5wC8wIdUcx/+tij2lq46yTCax3USsxzPSpZ4AqWFWoN6GxVuU3yd0gxLQDJueV/H+HiHuY2FnnNshc+KlTwqMibhdIYkz6Cgg95iRPOpGZ07VHNG3h2XmuFvF/PelJrhd0jjZ+TFc6kZfqqln55D9rbGts+BbcFsGmvt23JTGpx/YRqmfJFWXbS4+FZP9JhBeqcN6e/pN7N3jveyRSXWjy03o5E7/ctL/WtCw+o5d/TcjAp6T+z1mlLUuCcjHffaclMZMlpFR1oOe9f0zWCbvn4zptyMxgF4XFsUcy+cctPROy56Y8vNaBwpznuekSdvys1oDOie9WHLzWhgtqWr43xbbmrZUQMcO9tyU6s+oiww5oB4zHON9Yom5CfNNLUh+Qf12RrX519dxzBn87yIEeopWd+2mk5crGX1Ehl/IQGrNm0oB/oXM8cHK9NYqGtifMUyTEvr+yodu8aj5vdBixHMft4DkHLmKUhochJovVOguClGXeWeGdw1EYej5HgJ1dG1U9FbtHw5a1Sue0G1Ulxme2v12CF7ndPYG5NPuE+alfSwX/mGqyhKGtovaUim10R37/V8LWt/Q8SNlxDjYqT1aEeId9Lq41Sf1luOji/rXZ4pXLznY8cvZpuPtbXBmCcjW4Sy1PF025k8kluH6+pVZXPc/CyiN4r2ak5WY0g7UrkYhZpsMXvjC7q3tA9pTw55MI0evMdIUxkr3jXDLDrm0yOyqK69lXijvkyGjss5WV1jj+vRAwc98KCbxzhbsGLcg1IbYoZDuGsHRDkXC11lpPGJ+m2xO5rRG6yP6NOShTQ02N4kJQtZF2W/LFF5C2gcDRylh9NYpmPwnRVKctTvk8fGrmXLf5l2bs3+dpfGePVors7E9InrNeIa0azhXV2+W+bAEiy8T66R/1rfS+TXhCPaUInrc4cz62VEO/4JRbBj8oxTmm3S7Ci3dvNTy08MpwNl9s5xNzsjCxmR/YtgfcpoTEb0454dMDvobBFSspEhdmdYeDc+X2cojjHrxw0Vn2qw4y0hWzYj/oauO7tyGoscMfA6cLY0to1O9skXTIjrRFt3O7frVx9E2nMS7ihhinasXCH+n9Nv82PGydrKiEAN4xvIta3zvY+MYhbUUZdW+XobZNq6Un5WyPBcS23XPyvTZyXJtiniQnlwte4D5x7dMy8cJROSO19pw+toXTYXKY+X9Ii9PaYonu3+QK/AKPdVWiXXaM51aJQMYBRMiyjCtJWyyMt863mVqYfRzv8v1K2uy1pDipGyGVzWkJTfTyhac6VMYVTz+H1Ns8mv9clSq3o+IxqLJ85c/gZqfwm/jdzmPoxOXLIKN2kMMAV7ZzXCNdFKizBeN0u8zMg0tOy95WfHpGnl1pwnvmbrZmPseWMqBzRqTnXWwpTPQ+OVQ+NVoA7btNdotWjqjSV6IcYWbb1bGcqvCbd2A8ozkbLskRnUMEBKN5YKo9oXqcoxvkG9F2ltiLS6MFvd3QB3zocg/XN9eXZ/U6zukbpFvk2PPDCOX/o0S4fkc5na+kiNKSDn69q+urO/QzXIPSYLipT5HCfOGN516tF1Vkj6K72yZWTnrUUw55be6jbGxnao/PsV5AnNiZzmpUFcpxaJlt+VI1qySOuOzxFR5r9LPhX7HfUxs9vavpOo5E/YeJNnleXFkcKI9C9l3vZWotc9J36NKCacae86BlrN3zBSYIzJJPg9y5zeEK5yvJPAHm1M9nPVTvEu3siRaJ2kXqg/B9gYjnrtWHfHlumx6dtvoCVq3b51XwuZXxrMUeJ3nh29Lq1qJ9pHXSzdn49WV69y5fs6PcyW+Fp9zKiNG1nYKK+M6agvgrmwRM24MCaES7NeNJG/meRNZObdqVDKprWhXM40sI15SfGSdA4UET7v7orXm/tc6Ee8Qi8mrEuNayRKmI3LdH7AtbSYlYqWIiS3XlqTUmc9qlovLA931bB2nC1lQlYwVVLuhlu7feiUohU5G8MUeopP9lbFiS7NL+DC35HyRYmGY0gOsQV+7g21pXY+wKmIN7rMmc2IatAm9Jdi8K7uZ7lFvY7eONRd+iEcwnkMQdeS9ENaUZvKzpRlyV3q4fTfkjWYqESU3rZs3geXi9yTVU5N+jMkCyf3ZqjMNzlN+2I4hPSkzCWcD+9vSL04VubbpmZ9MNTlHpQ5NOFhzjOEvXPbujkvl1O9vla5hPLgdcDsvBgc7gBWxyy2XYiFmjhv5MNzQOtwXEPdrBb/az8MH8upOa9Qbjl9c/Yq4K1zu0RnZtEvbj5nLLeQ0VzNMZxnVvTOek1+fuz/RY3eVOb05sPTR7/UjgHDa6E4HypLx3h3FFl5Q6ng/oBPhkz9W/39gvxVwpuCRpUcTSiZ/YpqaqaFTM18eenrnXkWIpOlUyVTmZqNJ1p0MnZL7alb8LNVeIBNT4nyN5X8F7H+72j7UHtM1sNk0zmD0KG6hLIgdjetT/f2HG2VxHiml8/4tqEG98T3qRbP+96j9njmt13qW/WXJDzX76pM9UuRyfIun51XMfSgvAPHuSDzvW9EZ+o5m8Un0E4C9hj5HBVHSubr5wUh+hQXLku6IIQZLXWUYy/lmM4kJRW041LfejTCx3qnH/cd8Hx+t8guRep3VNfVqwOu1JJUBx6pnlJmICb9b0CE9gd1Ff5e1WW/pAcrkub0DsoSnTrP6k+CnXnHhf2a8TLlwUymbq7bZRTV293D+kzsdiUXPvFejx/U4AeOlC16W68p7p6o+tzhrIbmTMvk7ueOlMl7sh4wmu0W46M+fp7X8JoH9P9OJfqOI+kuyBJTtj2i/bwJ0Uu1bnZIej5XWZ+3vV0jrflqk2nak5V2HJgzknUc8KuyLWH285dn9SsDfmHmp+PO9ScB+y7YE0kiPpkpZY+SAIn4jKh0fmXopSRbjHHA+YxuQG/lvob0VKIyEyWZBXwbPQ+QZR5A51iQ5likMBAl0RbrxaW1zeX/fWS1cHRtfXNjffPB9bUvb+r/meRj9XP1qboCq/Ef1ZcwIw/UIeUa/6L+qv62/Z+dX+xc3vk1N/3ogsb8TJX+7Wz8F/gjXQI=</latexit> <latexit sha1_base64="/59ZCDJZPBrZfCS8zgReJB0hTeY=">AABFdnictVxfcxPJER8u/y7kH5c8piq1OR8JlyKOTUglVVepOrCN8WHAINnAIaC00loI1lqhlYRB56+Q1+Tb5HPkGyRPec1j+s/Mzqw0uz3rELZsz87Or7und6anu2eWeJwO8+nGxj8ufPStb3/nu9/7+PsXf/DDH/34J5c++elRns0mveSwl6XZ5HHczZN0OEoOp8NpmjweT5LuSZwmj+LXW/j80TyZ5MNs1J6+GyfPTrqD0fB42OtOsarz+HTrxaW1jfUN+hetFjZ1YU3pfwfZJ5+uq47qq0z11EydqESN1BTKqeqqHK6nalNtqDHUPVMLqJtAaUjPE3WmLgJ2Bq0SaNGF2tfwewB3T3XtCO6RZk7oHnBJ4WcCyEhdBkwG7SZQRm4RPZ8RZaytor0gmijbO/gba1onUDtVL6FWwpmWoTjsy1Qdqz9RH4bQpzHVYO96msqMtIKSR06vpkBhDHVY7sPzCZR7hDR6jgiTU99Rt116/k9qibV439NtZ+pfJOVluCLV0r3PCgpdNSf6Eb3NGTxjeVLgPAAKie4jlt6Srk+o9yNov4D6e3CdUcnoJIZrQbVntcgtuHzILRG5C5cPuSsi9+HyIfdF5AFcPuSBRiJ2Qjr341tw+fAtkfMDuHzIByLyIVw+5EMReQSXD3kkIr+Gy4f8WkTegsuHvCUi78DlQ94RkW24fMi2iDyEy4c8FJE7cPmQOxpZPVMncGVEZyjMyhtQLvNAS5FCzQ1RvptkHX3YmwFzuleBlWf1Nvz1Y7cDdJpUYHcCxt1xBVYeebtgI/1Y2RbdptXEh70tYvdgBPixeyL2K/WqAvtVwEx7XYGV59o+tPNjZet7F+782Lsi9h6U/Fh5jboPNX7s/YAVY1yBPRCxD9SbCmyI1Z9UYGW73wK74sfK61Qb2vuxIdZ0VoGV7ekReDB+rLxaPYJaP/aRiH2sTiuwj0XsE7DufuyTgBX2fQXWrLEXaQUZkD+SwIyto9YtZiWWxkCtK/BPi7UlJd84hnoJMygwA8KciIjdArEbiNgvEPvBcuWFHc3J35W5tApEKxARF2sTlqZi+37RHktpAGK7QGwvIeo8UnzXpi9z8i5MjYScFisXlkL6lBX2G0uJHg/1ltcg7pcQPLZf0si/StESRlCoqTpqL4s1npER3dch3lL0ZnppeMi4aWEVXNSpiIo9qFhEvfOg3omomQc1E1FzD2ououzMd3GdgBFg9Y/vYkF3PALYR66+IvAKbsCqcxvmaATj5wC8wIdUcx/+tij2lq46yTCax3USsxzPSpZ4AqWFWoN6GxVuU3yd0gxLQDJueV/H+HiHuY2FnnNshc+KlTwqMibhdIYkz6Cgg95iRPOpGZ07VHNG3h2XmuFvF/PelJrhd0jjZ+TFc6kZfqqln55D9rbGts+BbcFsGmvt23JTGpx/YRqmfJFWXbS4+FZP9JhBeqcN6e/pN7N3jveyRSXWjy03o5E7/ctL/WtCw+o5d/TcjAp6T+z1mlLUuCcjHffaclMZMlpFR1oOe9f0zWCbvn4zptyMxgF4XFsUcy+cctPROy56Y8vNaBwpznuekSdvys1oDOie9WHLzWhgtqWr43xbbmrZUQMcO9tyU6s+oiww5oB4zHON9Yom5CfNNLUh+Qf12RrX519dxzBn87yIEeopWd+2mk5crGX1Ehl/IQGrNm0oB/oXM8cHK9NYqGtifMUyTEvr+yodu8aj5vdBixHMft4DkHLmKUhochJovVOguClGXeWeGdw1EYej5HgJ1dG1U9FbtHw5a1Sue0G1Ulxme2v12CF7ndPYG5NPuE+alfSwX/mGqyhKGtovaUim10R37/V8LWt/Q8SNlxDjYqT1aEeId9Lq41Sf1luOji/rXZ4pXLznY8cvZpuPtbXBmCcjW4Sy1PF025k8kluH6+pVZXPc/CyiN4r2ak5WY0g7UrkYhZpsMXvjC7q3tA9pTw55MI0evMdIUxkr3jXDLDrm0yOyqK69lXijvkyGjss5WV1jj+vRAwc98KCbxzhbsGLcg1IbYoZDuGsHRDkXC11lpPGJ+m2xO5rRG6yP6NOShTQ02N4kJQtZF2W/LFF5C2gcDRylh9NYpmPwnRVKctTvk8fGrmXLf5l2bs3+dpfGePVors7E9InrNeIa0azhXV2+W+bAEiy8T66R/1rfS+TXhCPaUInrc4cz62VEO/4JRbBj8oxTmm3S7Ci3dvNTy08MpwNl9s5xNzsjCxmR/YtgfcpoTEb0454dMDvobBFSspEhdmdYeDc+X2cojjHrxw0Vn2qw4y0hWzYj/oauO7tyGoscMfA6cLY0to1O9skXTIjrRFt3O7frVx9E2nMS7ihhinasXCH+n9Nv82PGydrKiEAN4xvIta3zvY+MYhbUUZdW+XobZNq6Un5WyPBcS23XPyvTZyXJtiniQnlwte4D5x7dMy8cJROSO19pw+toXTYXKY+X9Ii9PaYonu3+QK/AKPdVWiXXaM51aJQMYBRMiyjCtJWyyMt863mVqYfRzv8v1K2uy1pDipGyGVzWkJTfTyhac6VMYVTz+H1Ns8mv9clSq3o+IxqLJ85c/gZqfwm/jdzmPoxOXLIKN2kMMAV7ZzXCNdFKizBeN0u8zMg0tOy95WfHpGnl1pwnvmbrZmPseWMqBzRqTnXWwpTPQ+OVQ+NVoA7btNdotWjqjSV6IcYWbb1bGcqvCbd2A8ozkbLskRnUMEBKN5YKo9oXqcoxvkG9F2ltiLS6MFvd3QB3zocg/XN9eXZ/U6zukbpFvk2PPDCOX/o0S4fkc5na+kiNKSDn69q+urO/QzXIPSYLipT5HCfOGN516tF1Vkj6K72yZWTnrUUw55be6jbGxnao/PsV5AnNiZzmpUFcpxaJlt+VI1qySOuOzxFR5r9LPhX7HfUxs9vavpOo5E/YeJNnleXFkcKI9C9l3vZWotc9J36NKCacae86BlrN3zBSYIzJJPg9y5zeEK5yvJPAHm1M9nPVTvEu3siRaJ2kXqg/B9gYjnrtWHfHlumx6dtvoCVq3b51XwuZXxrMUeJ3nh29Lq1qJ9pHXSzdn49WV69y5fs6PcyW+Fp9zKiNG1nYKK+M6agvgrmwRM24MCaES7NeNJG/meRNZObdqVDKprWhXM40sI15SfGSdA4UET7v7orXm/tc6Ee8Qi8mrEuNayRKmI3LdH7AtbSYlYqWIiS3XlqTUmc9qlovLA931bB2nC1lQlYwVVLuhlu7feiUohU5G8MUeopP9lbFiS7NL+DC35HyRYmGY0gOsQV+7g21pXY+wKmIN7rMmc2IatAm9Jdi8K7uZ7lFvY7eONRd+iEcwnkMQdeS9ENaUZvKzpRlyV3q4fTfkjWYqESU3rZs3geXi9yTVU5N+jMkCyf3ZqjMNzlN+2I4hPSkzCWcD+9vSL04VubbpmZ9MNTlHpQ5NOFhzjOEvXPbujkvl1O9vla5hPLgdcDsvBgc7gBWxyy2XYiFmjhv5MNzQOtwXEPdrBb/az8MH8upOa9Qbjl9c/Yq4K1zu0RnZtEvbj5nLLeQ0VzNMZxnVvTOek1+fuz/RY3eVOb05sPTR7/UjgHDa6E4HypLx3h3FFl5Q6ng/oBPhkz9W/39gvxVwpuCRpUcTSiZ/YpqaqaFTM18eenrnXkWIpOlUyVTmZqNJ1p0MnZL7alb8LNVeIBNT4nyN5X8F7H+72j7UHtM1sNk0zmD0KG6hLIgdjetT/f2HG2VxHiml8/4tqEG98T3qRbP+96j9njmt13qW/WXJDzX76pM9UuRyfIun51XMfSgvAPHuSDzvW9EZ+o5m8Un0E4C9hj5HBVHSubr5wUh+hQXLku6IIQZLXWUYy/lmM4kJRW041LfejTCx3qnH/cd8Hx+t8guRep3VNfVqwOu1JJUBx6pnlJmICb9b0CE9gd1Ff5e1WW/pAcrkub0DsoSnTrP6k+CnXnHhf2a8TLlwUymbq7bZRTV293D+kzsdiUXPvFejx/U4AeOlC16W68p7p6o+tzhrIbmTMvk7ueOlMl7sh4wmu0W46M+fp7X8JoH9P9OJfqOI+kuyBJTtj2i/bwJ0Uu1bnZIej5XWZ+3vV0jrflqk2nak5V2HJgzknUc8KuyLWH285dn9SsDfmHmp+PO9ScB+y7YE0kiPpkpZY+SAIn4jKh0fmXopSRbjHHA+YxuQG/lvob0VKIyEyWZBXwbPQ+QZR5A51iQ5likMBAl0RbrxaW1zeX/fWS1cHRtfXNjffPB9bUvb+r/meRj9XP1qboCq/Ef1ZcwIw/UIeUa/6L+qv62/Z+dX+xc3vk1N/3ogsb8TJX+7Wz8F/gjXQI=</latexit> <latexit sha1_base64="/59ZCDJZPBrZfCS8zgReJB0hTeY=">AABFdnictVxfcxPJER8u/y7kH5c8piq1OR8JlyKOTUglVVepOrCN8WHAINnAIaC00loI1lqhlYRB56+Q1+Tb5HPkGyRPec1j+s/Mzqw0uz3rELZsz87Or7und6anu2eWeJwO8+nGxj8ufPStb3/nu9/7+PsXf/DDH/34J5c++elRns0mveSwl6XZ5HHczZN0OEoOp8NpmjweT5LuSZwmj+LXW/j80TyZ5MNs1J6+GyfPTrqD0fB42OtOsarz+HTrxaW1jfUN+hetFjZ1YU3pfwfZJ5+uq47qq0z11EydqESN1BTKqeqqHK6nalNtqDHUPVMLqJtAaUjPE3WmLgJ2Bq0SaNGF2tfwewB3T3XtCO6RZk7oHnBJ4WcCyEhdBkwG7SZQRm4RPZ8RZaytor0gmijbO/gba1onUDtVL6FWwpmWoTjsy1Qdqz9RH4bQpzHVYO96msqMtIKSR06vpkBhDHVY7sPzCZR7hDR6jgiTU99Rt116/k9qibV439NtZ+pfJOVluCLV0r3PCgpdNSf6Eb3NGTxjeVLgPAAKie4jlt6Srk+o9yNov4D6e3CdUcnoJIZrQbVntcgtuHzILRG5C5cPuSsi9+HyIfdF5AFcPuSBRiJ2Qjr341tw+fAtkfMDuHzIByLyIVw+5EMReQSXD3kkIr+Gy4f8WkTegsuHvCUi78DlQ94RkW24fMi2iDyEy4c8FJE7cPmQOxpZPVMncGVEZyjMyhtQLvNAS5FCzQ1RvptkHX3YmwFzuleBlWf1Nvz1Y7cDdJpUYHcCxt1xBVYeebtgI/1Y2RbdptXEh70tYvdgBPixeyL2K/WqAvtVwEx7XYGV59o+tPNjZet7F+782Lsi9h6U/Fh5jboPNX7s/YAVY1yBPRCxD9SbCmyI1Z9UYGW73wK74sfK61Qb2vuxIdZ0VoGV7ekReDB+rLxaPYJaP/aRiH2sTiuwj0XsE7DufuyTgBX2fQXWrLEXaQUZkD+SwIyto9YtZiWWxkCtK/BPi7UlJd84hnoJMygwA8KciIjdArEbiNgvEPvBcuWFHc3J35W5tApEKxARF2sTlqZi+37RHktpAGK7QGwvIeo8UnzXpi9z8i5MjYScFisXlkL6lBX2G0uJHg/1ltcg7pcQPLZf0si/StESRlCoqTpqL4s1npER3dch3lL0ZnppeMi4aWEVXNSpiIo9qFhEvfOg3omomQc1E1FzD2ououzMd3GdgBFg9Y/vYkF3PALYR66+IvAKbsCqcxvmaATj5wC8wIdUcx/+tij2lq46yTCax3USsxzPSpZ4AqWFWoN6GxVuU3yd0gxLQDJueV/H+HiHuY2FnnNshc+KlTwqMibhdIYkz6Cgg95iRPOpGZ07VHNG3h2XmuFvF/PelJrhd0jjZ+TFc6kZfqqln55D9rbGts+BbcFsGmvt23JTGpx/YRqmfJFWXbS4+FZP9JhBeqcN6e/pN7N3jveyRSXWjy03o5E7/ctL/WtCw+o5d/TcjAp6T+z1mlLUuCcjHffaclMZMlpFR1oOe9f0zWCbvn4zptyMxgF4XFsUcy+cctPROy56Y8vNaBwpznuekSdvys1oDOie9WHLzWhgtqWr43xbbmrZUQMcO9tyU6s+oiww5oB4zHON9Yom5CfNNLUh+Qf12RrX519dxzBn87yIEeopWd+2mk5crGX1Ehl/IQGrNm0oB/oXM8cHK9NYqGtifMUyTEvr+yodu8aj5vdBixHMft4DkHLmKUhochJovVOguClGXeWeGdw1EYej5HgJ1dG1U9FbtHw5a1Sue0G1Ulxme2v12CF7ndPYG5NPuE+alfSwX/mGqyhKGtovaUim10R37/V8LWt/Q8SNlxDjYqT1aEeId9Lq41Sf1luOji/rXZ4pXLznY8cvZpuPtbXBmCcjW4Sy1PF025k8kluH6+pVZXPc/CyiN4r2ak5WY0g7UrkYhZpsMXvjC7q3tA9pTw55MI0evMdIUxkr3jXDLDrm0yOyqK69lXijvkyGjss5WV1jj+vRAwc98KCbxzhbsGLcg1IbYoZDuGsHRDkXC11lpPGJ+m2xO5rRG6yP6NOShTQ02N4kJQtZF2W/LFF5C2gcDRylh9NYpmPwnRVKctTvk8fGrmXLf5l2bs3+dpfGePVors7E9InrNeIa0azhXV2+W+bAEiy8T66R/1rfS+TXhCPaUInrc4cz62VEO/4JRbBj8oxTmm3S7Ci3dvNTy08MpwNl9s5xNzsjCxmR/YtgfcpoTEb0454dMDvobBFSspEhdmdYeDc+X2cojjHrxw0Vn2qw4y0hWzYj/oauO7tyGoscMfA6cLY0to1O9skXTIjrRFt3O7frVx9E2nMS7ihhinasXCH+n9Nv82PGydrKiEAN4xvIta3zvY+MYhbUUZdW+XobZNq6Un5WyPBcS23XPyvTZyXJtiniQnlwte4D5x7dMy8cJROSO19pw+toXTYXKY+X9Ii9PaYonu3+QK/AKPdVWiXXaM51aJQMYBRMiyjCtJWyyMt863mVqYfRzv8v1K2uy1pDipGyGVzWkJTfTyhac6VMYVTz+H1Ns8mv9clSq3o+IxqLJ85c/gZqfwm/jdzmPoxOXLIKN2kMMAV7ZzXCNdFKizBeN0u8zMg0tOy95WfHpGnl1pwnvmbrZmPseWMqBzRqTnXWwpTPQ+OVQ+NVoA7btNdotWjqjSV6IcYWbb1bGcqvCbd2A8ozkbLskRnUMEBKN5YKo9oXqcoxvkG9F2ltiLS6MFvd3QB3zocg/XN9eXZ/U6zukbpFvk2PPDCOX/o0S4fkc5na+kiNKSDn69q+urO/QzXIPSYLipT5HCfOGN516tF1Vkj6K72yZWTnrUUw55be6jbGxnao/PsV5AnNiZzmpUFcpxaJlt+VI1qySOuOzxFR5r9LPhX7HfUxs9vavpOo5E/YeJNnleXFkcKI9C9l3vZWotc9J36NKCacae86BlrN3zBSYIzJJPg9y5zeEK5yvJPAHm1M9nPVTvEu3siRaJ2kXqg/B9gYjnrtWHfHlumx6dtvoCVq3b51XwuZXxrMUeJ3nh29Lq1qJ9pHXSzdn49WV69y5fs6PcyW+Fp9zKiNG1nYKK+M6agvgrmwRM24MCaES7NeNJG/meRNZObdqVDKprWhXM40sI15SfGSdA4UET7v7orXm/tc6Ee8Qi8mrEuNayRKmI3LdH7AtbSYlYqWIiS3XlqTUmc9qlovLA931bB2nC1lQlYwVVLuhlu7feiUohU5G8MUeopP9lbFiS7NL+DC35HyRYmGY0gOsQV+7g21pXY+wKmIN7rMmc2IatAm9Jdi8K7uZ7lFvY7eONRd+iEcwnkMQdeS9ENaUZvKzpRlyV3q4fTfkjWYqESU3rZs3geXi9yTVU5N+jMkCyf3ZqjMNzlN+2I4hPSkzCWcD+9vSL04VubbpmZ9MNTlHpQ5NOFhzjOEvXPbujkvl1O9vla5hPLgdcDsvBgc7gBWxyy2XYiFmjhv5MNzQOtwXEPdrBb/az8MH8upOa9Qbjl9c/Yq4K1zu0RnZtEvbj5nLLeQ0VzNMZxnVvTOek1+fuz/RY3eVOb05sPTR7/UjgHDa6E4HypLx3h3FFl5Q6ng/oBPhkz9W/39gvxVwpuCRpUcTSiZ/YpqaqaFTM18eenrnXkWIpOlUyVTmZqNJ1p0MnZL7alb8LNVeIBNT4nyN5X8F7H+72j7UHtM1sNk0zmD0KG6hLIgdjetT/f2HG2VxHiml8/4tqEG98T3qRbP+96j9njmt13qW/WXJDzX76pM9UuRyfIun51XMfSgvAPHuSDzvW9EZ+o5m8Un0E4C9hj5HBVHSubr5wUh+hQXLku6IIQZLXWUYy/lmM4kJRW041LfejTCx3qnH/cd8Hx+t8guRep3VNfVqwOu1JJUBx6pnlJmICb9b0CE9gd1Ff5e1WW/pAcrkub0DsoSnTrP6k+CnXnHhf2a8TLlwUymbq7bZRTV293D+kzsdiUXPvFejx/U4AeOlC16W68p7p6o+tzhrIbmTMvk7ueOlMl7sh4wmu0W46M+fp7X8JoH9P9OJfqOI+kuyBJTtj2i/bwJ0Uu1bnZIej5XWZ+3vV0jrflqk2nak5V2HJgzknUc8KuyLWH285dn9SsDfmHmp+PO9ScB+y7YE0kiPpkpZY+SAIn4jKh0fmXopSRbjHHA+YxuQG/lvob0VKIyEyWZBXwbPQ+QZR5A51iQ5likMBAl0RbrxaW1zeX/fWS1cHRtfXNjffPB9bUvb+r/meRj9XP1qboCq/Ef1ZcwIw/UIeUa/6L+qv62/Z+dX+xc3vk1N/3ogsb8TJX+7Wz8F/gjXQI=</latexit> <latexit sha1_base64="/59ZCDJZPBrZfCS8zgReJB0hTeY=">AABFdnictVxfcxPJER8u/y7kH5c8piq1OR8JlyKOTUglVVepOrCN8WHAINnAIaC00loI1lqhlYRB56+Q1+Tb5HPkGyRPec1j+s/Mzqw0uz3rELZsz87Or7und6anu2eWeJwO8+nGxj8ufPStb3/nu9/7+PsXf/DDH/34J5c++elRns0mveSwl6XZ5HHczZN0OEoOp8NpmjweT5LuSZwmj+LXW/j80TyZ5MNs1J6+GyfPTrqD0fB42OtOsarz+HTrxaW1jfUN+hetFjZ1YU3pfwfZJ5+uq47qq0z11EydqESN1BTKqeqqHK6nalNtqDHUPVMLqJtAaUjPE3WmLgJ2Bq0SaNGF2tfwewB3T3XtCO6RZk7oHnBJ4WcCyEhdBkwG7SZQRm4RPZ8RZaytor0gmijbO/gba1onUDtVL6FWwpmWoTjsy1Qdqz9RH4bQpzHVYO96msqMtIKSR06vpkBhDHVY7sPzCZR7hDR6jgiTU99Rt116/k9qibV439NtZ+pfJOVluCLV0r3PCgpdNSf6Eb3NGTxjeVLgPAAKie4jlt6Srk+o9yNov4D6e3CdUcnoJIZrQbVntcgtuHzILRG5C5cPuSsi9+HyIfdF5AFcPuSBRiJ2Qjr341tw+fAtkfMDuHzIByLyIVw+5EMReQSXD3kkIr+Gy4f8WkTegsuHvCUi78DlQ94RkW24fMi2iDyEy4c8FJE7cPmQOxpZPVMncGVEZyjMyhtQLvNAS5FCzQ1RvptkHX3YmwFzuleBlWf1Nvz1Y7cDdJpUYHcCxt1xBVYeebtgI/1Y2RbdptXEh70tYvdgBPixeyL2K/WqAvtVwEx7XYGV59o+tPNjZet7F+782Lsi9h6U/Fh5jboPNX7s/YAVY1yBPRCxD9SbCmyI1Z9UYGW73wK74sfK61Qb2vuxIdZ0VoGV7ekReDB+rLxaPYJaP/aRiH2sTiuwj0XsE7DufuyTgBX2fQXWrLEXaQUZkD+SwIyto9YtZiWWxkCtK/BPi7UlJd84hnoJMygwA8KciIjdArEbiNgvEPvBcuWFHc3J35W5tApEKxARF2sTlqZi+37RHktpAGK7QGwvIeo8UnzXpi9z8i5MjYScFisXlkL6lBX2G0uJHg/1ltcg7pcQPLZf0si/StESRlCoqTpqL4s1npER3dch3lL0ZnppeMi4aWEVXNSpiIo9qFhEvfOg3omomQc1E1FzD2ououzMd3GdgBFg9Y/vYkF3PALYR66+IvAKbsCqcxvmaATj5wC8wIdUcx/+tij2lq46yTCax3USsxzPSpZ4AqWFWoN6GxVuU3yd0gxLQDJueV/H+HiHuY2FnnNshc+KlTwqMibhdIYkz6Cgg95iRPOpGZ07VHNG3h2XmuFvF/PelJrhd0jjZ+TFc6kZfqqln55D9rbGts+BbcFsGmvt23JTGpx/YRqmfJFWXbS4+FZP9JhBeqcN6e/pN7N3jveyRSXWjy03o5E7/ctL/WtCw+o5d/TcjAp6T+z1mlLUuCcjHffaclMZMlpFR1oOe9f0zWCbvn4zptyMxgF4XFsUcy+cctPROy56Y8vNaBwpznuekSdvys1oDOie9WHLzWhgtqWr43xbbmrZUQMcO9tyU6s+oiww5oB4zHON9Yom5CfNNLUh+Qf12RrX519dxzBn87yIEeopWd+2mk5crGX1Ehl/IQGrNm0oB/oXM8cHK9NYqGtifMUyTEvr+yodu8aj5vdBixHMft4DkHLmKUhochJovVOguClGXeWeGdw1EYej5HgJ1dG1U9FbtHw5a1Sue0G1Ulxme2v12CF7ndPYG5NPuE+alfSwX/mGqyhKGtovaUim10R37/V8LWt/Q8SNlxDjYqT1aEeId9Lq41Sf1luOji/rXZ4pXLznY8cvZpuPtbXBmCcjW4Sy1PF025k8kluH6+pVZXPc/CyiN4r2ak5WY0g7UrkYhZpsMXvjC7q3tA9pTw55MI0evMdIUxkr3jXDLDrm0yOyqK69lXijvkyGjss5WV1jj+vRAwc98KCbxzhbsGLcg1IbYoZDuGsHRDkXC11lpPGJ+m2xO5rRG6yP6NOShTQ02N4kJQtZF2W/LFF5C2gcDRylh9NYpmPwnRVKctTvk8fGrmXLf5l2bs3+dpfGePVors7E9InrNeIa0azhXV2+W+bAEiy8T66R/1rfS+TXhCPaUInrc4cz62VEO/4JRbBj8oxTmm3S7Ci3dvNTy08MpwNl9s5xNzsjCxmR/YtgfcpoTEb0454dMDvobBFSspEhdmdYeDc+X2cojjHrxw0Vn2qw4y0hWzYj/oauO7tyGoscMfA6cLY0to1O9skXTIjrRFt3O7frVx9E2nMS7ihhinasXCH+n9Nv82PGydrKiEAN4xvIta3zvY+MYhbUUZdW+XobZNq6Un5WyPBcS23XPyvTZyXJtiniQnlwte4D5x7dMy8cJROSO19pw+toXTYXKY+X9Ii9PaYonu3+QK/AKPdVWiXXaM51aJQMYBRMiyjCtJWyyMt863mVqYfRzv8v1K2uy1pDipGyGVzWkJTfTyhac6VMYVTz+H1Ns8mv9clSq3o+IxqLJ85c/gZqfwm/jdzmPoxOXLIKN2kMMAV7ZzXCNdFKizBeN0u8zMg0tOy95WfHpGnl1pwnvmbrZmPseWMqBzRqTnXWwpTPQ+OVQ+NVoA7btNdotWjqjSV6IcYWbb1bGcqvCbd2A8ozkbLskRnUMEBKN5YKo9oXqcoxvkG9F2ltiLS6MFvd3QB3zocg/XN9eXZ/U6zukbpFvk2PPDCOX/o0S4fkc5na+kiNKSDn69q+urO/QzXIPSYLipT5HCfOGN516tF1Vkj6K72yZWTnrUUw55be6jbGxnao/PsV5AnNiZzmpUFcpxaJlt+VI1qySOuOzxFR5r9LPhX7HfUxs9vavpOo5E/YeJNnleXFkcKI9C9l3vZWotc9J36NKCacae86BlrN3zBSYIzJJPg9y5zeEK5yvJPAHm1M9nPVTvEu3siRaJ2kXqg/B9gYjnrtWHfHlumx6dtvoCVq3b51XwuZXxrMUeJ3nh29Lq1qJ9pHXSzdn49WV69y5fs6PcyW+Fp9zKiNG1nYKK+M6agvgrmwRM24MCaES7NeNJG/meRNZObdqVDKprWhXM40sI15SfGSdA4UET7v7orXm/tc6Ee8Qi8mrEuNayRKmI3LdH7AtbSYlYqWIiS3XlqTUmc9qlovLA931bB2nC1lQlYwVVLuhlu7feiUohU5G8MUeopP9lbFiS7NL+DC35HyRYmGY0gOsQV+7g21pXY+wKmIN7rMmc2IatAm9Jdi8K7uZ7lFvY7eONRd+iEcwnkMQdeS9ENaUZvKzpRlyV3q4fTfkjWYqESU3rZs3geXi9yTVU5N+jMkCyf3ZqjMNzlN+2I4hPSkzCWcD+9vSL04VubbpmZ9MNTlHpQ5NOFhzjOEvXPbujkvl1O9vla5hPLgdcDsvBgc7gBWxyy2XYiFmjhv5MNzQOtwXEPdrBb/az8MH8upOa9Qbjl9c/Yq4K1zu0RnZtEvbj5nLLeQ0VzNMZxnVvTOek1+fuz/RY3eVOb05sPTR7/UjgHDa6E4HypLx3h3FFl5Q6ng/oBPhkz9W/39gvxVwpuCRpUcTSiZ/YpqaqaFTM18eenrnXkWIpOlUyVTmZqNJ1p0MnZL7alb8LNVeIBNT4nyN5X8F7H+72j7UHtM1sNk0zmD0KG6hLIgdjetT/f2HG2VxHiml8/4tqEG98T3qRbP+96j9njmt13qW/WXJDzX76pM9UuRyfIun51XMfSgvAPHuSDzvW9EZ+o5m8Un0E4C9hj5HBVHSubr5wUh+hQXLku6IIQZLXWUYy/lmM4kJRW041LfejTCx3qnH/cd8Hx+t8guRep3VNfVqwOu1JJUBx6pnlJmICb9b0CE9gd1Ff5e1WW/pAcrkub0DsoSnTrP6k+CnXnHhf2a8TLlwUymbq7bZRTV293D+kzsdiUXPvFejx/U4AeOlC16W68p7p6o+tzhrIbmTMvk7ueOlMl7sh4wmu0W46M+fp7X8JoH9P9OJfqOI+kuyBJTtj2i/bwJ0Uu1bnZIej5XWZ+3vV0jrflqk2nak5V2HJgzknUc8KuyLWH285dn9SsDfmHmp+PO9ScB+y7YE0kiPpkpZY+SAIn4jKh0fmXopSRbjHHA+YxuQG/lvob0VKIyEyWZBXwbPQ+QZR5A51iQ5likMBAl0RbrxaW1zeX/fWS1cHRtfXNjffPB9bUvb+r/meRj9XP1qboCq/Ef1ZcwIw/UIeUa/6L+qv62/Z+dX+xc3vk1N/3ogsb8TJX+7Wz8F/gjXQI=</latexit> <latexit sha1_base64="/59ZCDJZPBrZfCS8zgReJB0hTeY=">AABFdnictVxfcxPJER8u/y7kH5c8piq1OR8JlyKOTUglVVepOrCN8WHAINnAIaC00loI1lqhlYRB56+Q1+Tb5HPkGyRPec1j+s/Mzqw0uz3rELZsz87Or7und6anu2eWeJwO8+nGxj8ufPStb3/nu9/7+PsXf/DDH/34J5c++elRns0mveSwl6XZ5HHczZN0OEoOp8NpmjweT5LuSZwmj+LXW/j80TyZ5MNs1J6+GyfPTrqD0fB42OtOsarz+HTrxaW1jfUN+hetFjZ1YU3pfwfZJ5+uq47qq0z11EydqESN1BTKqeqqHK6nalNtqDHUPVMLqJtAaUjPE3WmLgJ2Bq0SaNGF2tfwewB3T3XtCO6RZk7oHnBJ4WcCyEhdBkwG7SZQRm4RPZ8RZaytor0gmijbO/gba1onUDtVL6FWwpmWoTjsy1Qdqz9RH4bQpzHVYO96msqMtIKSR06vpkBhDHVY7sPzCZR7hDR6jgiTU99Rt116/k9qibV439NtZ+pfJOVluCLV0r3PCgpdNSf6Eb3NGTxjeVLgPAAKie4jlt6Srk+o9yNov4D6e3CdUcnoJIZrQbVntcgtuHzILRG5C5cPuSsi9+HyIfdF5AFcPuSBRiJ2Qjr341tw+fAtkfMDuHzIByLyIVw+5EMReQSXD3kkIr+Gy4f8WkTegsuHvCUi78DlQ94RkW24fMi2iDyEy4c8FJE7cPmQOxpZPVMncGVEZyjMyhtQLvNAS5FCzQ1RvptkHX3YmwFzuleBlWf1Nvz1Y7cDdJpUYHcCxt1xBVYeebtgI/1Y2RbdptXEh70tYvdgBPixeyL2K/WqAvtVwEx7XYGV59o+tPNjZet7F+782Lsi9h6U/Fh5jboPNX7s/YAVY1yBPRCxD9SbCmyI1Z9UYGW73wK74sfK61Qb2vuxIdZ0VoGV7ekReDB+rLxaPYJaP/aRiH2sTiuwj0XsE7DufuyTgBX2fQXWrLEXaQUZkD+SwIyto9YtZiWWxkCtK/BPi7UlJd84hnoJMygwA8KciIjdArEbiNgvEPvBcuWFHc3J35W5tApEKxARF2sTlqZi+37RHktpAGK7QGwvIeo8UnzXpi9z8i5MjYScFisXlkL6lBX2G0uJHg/1ltcg7pcQPLZf0si/StESRlCoqTpqL4s1npER3dch3lL0ZnppeMi4aWEVXNSpiIo9qFhEvfOg3omomQc1E1FzD2ououzMd3GdgBFg9Y/vYkF3PALYR66+IvAKbsCqcxvmaATj5wC8wIdUcx/+tij2lq46yTCax3USsxzPSpZ4AqWFWoN6GxVuU3yd0gxLQDJueV/H+HiHuY2FnnNshc+KlTwqMibhdIYkz6Cgg95iRPOpGZ07VHNG3h2XmuFvF/PelJrhd0jjZ+TFc6kZfqqln55D9rbGts+BbcFsGmvt23JTGpx/YRqmfJFWXbS4+FZP9JhBeqcN6e/pN7N3jveyRSXWjy03o5E7/ctL/WtCw+o5d/TcjAp6T+z1mlLUuCcjHffaclMZMlpFR1oOe9f0zWCbvn4zptyMxgF4XFsUcy+cctPROy56Y8vNaBwpznuekSdvys1oDOie9WHLzWhgtqWr43xbbmrZUQMcO9tyU6s+oiww5oB4zHON9Yom5CfNNLUh+Qf12RrX519dxzBn87yIEeopWd+2mk5crGX1Ehl/IQGrNm0oB/oXM8cHK9NYqGtifMUyTEvr+yodu8aj5vdBixHMft4DkHLmKUhochJovVOguClGXeWeGdw1EYej5HgJ1dG1U9FbtHw5a1Sue0G1Ulxme2v12CF7ndPYG5NPuE+alfSwX/mGqyhKGtovaUim10R37/V8LWt/Q8SNlxDjYqT1aEeId9Lq41Sf1luOji/rXZ4pXLznY8cvZpuPtbXBmCcjW4Sy1PF025k8kluH6+pVZXPc/CyiN4r2ak5WY0g7UrkYhZpsMXvjC7q3tA9pTw55MI0evMdIUxkr3jXDLDrm0yOyqK69lXijvkyGjss5WV1jj+vRAwc98KCbxzhbsGLcg1IbYoZDuGsHRDkXC11lpPGJ+m2xO5rRG6yP6NOShTQ02N4kJQtZF2W/LFF5C2gcDRylh9NYpmPwnRVKctTvk8fGrmXLf5l2bs3+dpfGePVors7E9InrNeIa0azhXV2+W+bAEiy8T66R/1rfS+TXhCPaUInrc4cz62VEO/4JRbBj8oxTmm3S7Ci3dvNTy08MpwNl9s5xNzsjCxmR/YtgfcpoTEb0454dMDvobBFSspEhdmdYeDc+X2cojjHrxw0Vn2qw4y0hWzYj/oauO7tyGoscMfA6cLY0to1O9skXTIjrRFt3O7frVx9E2nMS7ihhinasXCH+n9Nv82PGydrKiEAN4xvIta3zvY+MYhbUUZdW+XobZNq6Un5WyPBcS23XPyvTZyXJtiniQnlwte4D5x7dMy8cJROSO19pw+toXTYXKY+X9Ii9PaYonu3+QK/AKPdVWiXXaM51aJQMYBRMiyjCtJWyyMt863mVqYfRzv8v1K2uy1pDipGyGVzWkJTfTyhac6VMYVTz+H1Ns8mv9clSq3o+IxqLJ85c/gZqfwm/jdzmPoxOXLIKN2kMMAV7ZzXCNdFKizBeN0u8zMg0tOy95WfHpGnl1pwnvmbrZmPseWMqBzRqTnXWwpTPQ+OVQ+NVoA7btNdotWjqjSV6IcYWbb1bGcqvCbd2A8ozkbLskRnUMEBKN5YKo9oXqcoxvkG9F2ltiLS6MFvd3QB3zocg/XN9eXZ/U6zukbpFvk2PPDCOX/o0S4fkc5na+kiNKSDn69q+urO/QzXIPSYLipT5HCfOGN516tF1Vkj6K72yZWTnrUUw55be6jbGxnao/PsV5AnNiZzmpUFcpxaJlt+VI1qySOuOzxFR5r9LPhX7HfUxs9vavpOo5E/YeJNnleXFkcKI9C9l3vZWotc9J36NKCacae86BlrN3zBSYIzJJPg9y5zeEK5yvJPAHm1M9nPVTvEu3siRaJ2kXqg/B9gYjnrtWHfHlumx6dtvoCVq3b51XwuZXxrMUeJ3nh29Lq1qJ9pHXSzdn49WV69y5fs6PcyW+Fp9zKiNG1nYKK+M6agvgrmwRM24MCaES7NeNJG/meRNZObdqVDKprWhXM40sI15SfGSdA4UET7v7orXm/tc6Ee8Qi8mrEuNayRKmI3LdH7AtbSYlYqWIiS3XlqTUmc9qlovLA931bB2nC1lQlYwVVLuhlu7feiUohU5G8MUeopP9lbFiS7NL+DC35HyRYmGY0gOsQV+7g21pXY+wKmIN7rMmc2IatAm9Jdi8K7uZ7lFvY7eONRd+iEcwnkMQdeS9ENaUZvKzpRlyV3q4fTfkjWYqESU3rZs3geXi9yTVU5N+jMkCyf3ZqjMNzlN+2I4hPSkzCWcD+9vSL04VubbpmZ9MNTlHpQ5NOFhzjOEvXPbujkvl1O9vla5hPLgdcDsvBgc7gBWxyy2XYiFmjhv5MNzQOtwXEPdrBb/az8MH8upOa9Qbjl9c/Yq4K1zu0RnZtEvbj5nLLeQ0VzNMZxnVvTOek1+fuz/RY3eVOb05sPTR7/UjgHDa6E4HypLx3h3FFl5Q6ng/oBPhkz9W/39gvxVwpuCRpUcTSiZ/YpqaqaFTM18eenrnXkWIpOlUyVTmZqNJ1p0MnZL7alb8LNVeIBNT4nyN5X8F7H+72j7UHtM1sNk0zmD0KG6hLIgdjetT/f2HG2VxHiml8/4tqEG98T3qRbP+96j9njmt13qW/WXJDzX76pM9UuRyfIun51XMfSgvAPHuSDzvW9EZ+o5m8Un0E4C9hj5HBVHSubr5wUh+hQXLku6IIQZLXWUYy/lmM4kJRW041LfejTCx3qnH/cd8Hx+t8guRep3VNfVqwOu1JJUBx6pnlJmICb9b0CE9gd1Ff5e1WW/pAcrkub0DsoSnTrP6k+CnXnHhf2a8TLlwUymbq7bZRTV293D+kzsdiUXPvFejx/U4AeOlC16W68p7p6o+tzhrIbmTMvk7ueOlMl7sh4wmu0W46M+fp7X8JoH9P9OJfqOI+kuyBJTtj2i/bwJ0Uu1bnZIej5XWZ+3vV0jrflqk2nak5V2HJgzknUc8KuyLWH285dn9SsDfmHmp+PO9ScB+y7YE0kiPpkpZY+SAIn4jKh0fmXopSRbjHHA+YxuQG/lvob0VKIyEyWZBXwbPQ+QZR5A51iQ5likMBAl0RbrxaW1zeX/fWS1cHRtfXNjffPB9bUvb+r/meRj9XP1qboCq/Ef1ZcwIw/UIeUa/6L+qv62/Z+dX+xc3vk1N/3ogsb8TJX+7Wz8F/gjXQI=</latexit> <latexit sha1_base64="O+fT+UDZYhoqifeIw6Ke6DTBAFc=">AAA/fXiczVtbdxu3EUbSW6ze7PSxD91WUWPnuDqy4lM3J6d1bEmWFdOWbFGykzB2eVlRG1NcepfUxazyT/raPvQn9Jf0H9Q/oU/tzABYYEnsDqAm50Q4krAgvpnBAJgLsOyMBkk+Xln511tvf+/7P/jhj965tPDjn/z0Zz+/fOXd/TydZN14r5sO0uxZp53Hg2QY742T8SB+Nsri9lFnED/tvFzDz58ex1mepMPm+GwUf3nU7g+Tg6TbHkPTi8tXWkRjmsW986j3ovXs9MXlxZXlFfqJ5is3VGVRqJ+d9MqvPhAt0ROp6IqJOBKxGIox1AeiLXIoX4gbYkWMoO1LMYW2DGoJfR6Lc7EA2An0iqFHG1pfwt8+PH2hWofwjDRzQneBywB+M0BGYgkwKfTLoI7cIvp8QpSxtYr2lGiibGfwv6NoHUHrWBxCK4fTPf1xPWg9ANlQM/VjHkO/P9BYE+g9ohbUQldxm5D2cISRNfoxUBhBG9Z78HkG9S4h9XxEhMlJRzgHbfr839QTW/G5q/pOxBsazXdFf989vSwFlEhsiUdiTTTEnlgXG2KX5K0vC4Rbg3GMQMcZSN4HDaG0V0Gaa/B/FfbUirgFtU2QsUN9YhhLJHbg/xnJv6BkjcRDcUc0xX3ifRXqD6F2LWCeuJ56bec0G/7rZoFZZRnNyFmtBGMa/4QsQCZOa/vi2ump2Tyg9ZCrHVk/p1KDa+KJ2K6dP+Q8BPonZImOSIPIcQrtfZAJV+gA+KFNxLX8D/G1WIT61+Kfah1HIFemVvYh0ZNP/jT/DAVpvg/lXFwimnsg9UIxygie5Aykxepvi2PaGxFZ8gl8JvfSgNbekHrVje4RlHOq6VXTgTKl1vNa5BoUF3KNRW5CcSE3WWQDigvZYJE7UFzIHYWswz6G4sI+Zrk+geJCPmGRTSguZJNF7kNxIfdZ5OdQXMjPWeQ9KC7kPRb5AIoL+YBF7kFxIfdY5AYUF3JDIav3Gtq1lOgkzL66A/UyD/RTA2i5w8p3l2ysC3vXY1d2K7D8vlyH/27suodO4wrshsfqOajA8utnE6ycG8tbk/vkI13Y+yx2C1aAG7vFYj8VX1VgP/XYLy8rsPyOaZC/cWF5+/kQntzYhyz2EdTcWN7LbEOLG7vtYfNHFdgdFvtYvKrA+lj9rALL2/1disVc2F0PnzGuwPJeYw9iBzeWt6f7EIO4sbzPeQqtbuxTFvuMokYX9hmL/YyiUxf2Mw8/+boCqz2ljN77FAPGsGPrqLWLXYm1EVBrM/wHhW/BGvqoHovpF5g+YY5YxGaB2PRENApEw1uuvLCjOUWsPJfdArHriegUvglrY7Z/r+jfo9yMR6wXiPUZRF0WgHOtx3JM0YVu4ZDjwnNhzWdMaWG/sRar9VBveTViu4SQa/uQVv51ytUxk+lR3lpN7bDw8RIZ0XMd4oRyPT1KzYPHjQurYKNOWVTHgeqwqDMH6oxFTRyoCYs6dqCOWZTZ+Tau5bECjP5xLqb0pHN/7iylfHaxDR53A7wftmzDf5+zlPqsHE8E0FPq7NnY4gxqU8qkTWa3TjmyPGmIQTLZc1udMeETnk1O1a6Tdvi88OWR0Cee/nQSkqdf0MF4MaIdFUbnAbWcU3wna2H4+8XO17Uw/AZp/JzieFkLw4+V9OMLyN5U2OYFsLuwn0ZK+6YeSkOeoUgaus7Z5q3CbuJ55SntHNkWyn+NalIHph5GI7fGkJfGEELD6DK3dBlGBWMkGdvqWhQ8kqHKbk09VIaUfOVQyWGeQmcG+/TUzOh6GI0diKvWKLOeWvXQFToqRmPqYTT2hTxbP6d4XdfDaPTpWerD1MNo4JlKW2Xzph5qvVEDMkM2dR2zZBTF6BPnhLx3/VmKHZHP+xg8UXleRPD1lEzkWU2nU/iZeolmrUuIHOj9J1aEVKYxFats9iNlGJd87zwd439R8w3QYgS7Vp7rc2fSA5BQnxjEdEr+nKjVY8oj07hVFoeW5GAG1VKtYzaWM3zlmU657QW1clmTGa3RY4vsbE5rb0QRW4M0y+mhUTnDVRQ5DTVKGuLphejuNe3gdEb7KyxuNIMYFSutS7dD8pa6Pot0aX3X0vGSukUZQ5F3Kmb94lnwAeEyykhSsjYoSx1Pu58+5bHb0B9eF+YEWn4W0YyivTomq5HQjU/OxiH6LFdGylN6NrT36J6tfGsVKSojIW9U8YwbT7sjus+0bS3HG/Wlz89kPSera+7R62/HDLrvQIdmH2vgKx5BrQnR/B48NT3yD3PnlpK+M/G74v4zpfmrz7btm71WQUNam7hkH+sy4MMSlRNA41qQGbQ/jVk6Gt+ao8Rn5C55TF5ZtvtLdKev3xxp0wqvXsvVpyQ94rpKXCPaM/K+Xz7NcpASTJ2frFLUWT9K5BfCES0ox/W5xVnqZUjv0sSUW44onh3QXuP2Rrm3fXY0+4nmtCP0WxV4V5ySfYzI+kXgnVJakxH92m/l6HcrpD0YkIX0sTpJEdu4Ip2EXWMJ7XK5RuT7Qma9xWTJJsRf07V3V05rUcb50gucz6xtrZMGRYIxcc2UbTd7u973INK8CWGvEknRrJWrxP8a/dW/ep0szq0I1DDOQK4snWs+Uso0UEdt8vH1Nkj3taV8r5DhuZLaeD8j03slydYpT0J50Ff3gHOXniUvXCUZyZ3P9ZFetO6kFSmPZvSIo0Xv2lJWv6/8L8p9nXzkIu25ljBv2OjYX/flTnhn+dbzKlP3o51/K9SNrstaQ4qRMKerUkPc2XtMOZYt5YDeSZJv38SK0rzWs5le9XyGtBaPrL38F2j9NfzVcutnPzqdklW4S2tAUjBPRiOyJZrr4cfrbomXXpmalnk2/Mya1L3slotkxdK6mcz4OJjKDq2aU3XWoOs+42/SHZ7RgG7XVuTFTATdVHd+vtTDaPtTnrCU+dhJoxIPKe2cx49qj6XK5+Ia9ZqltcLSwrfx7BN1e3favvMexQ5dinBkdtCjXZBQTKNb6/MgSQF53VT2y95dLWrBvdQhC4WUy28V4tldV8h3SKWMv1WeIyU7anacfmfnRPXRNqxF9Q/nkEeUzea0dzTiJvWIlfy2HNHMjl+2fHpEZ95tilmkX6/PSO3eZhaikr822ZzcC4bXQLyvovEhzcFYvKnltjWXH25ZGWIk5H3foIjgcZbfBM0y5m1yZehc3R295TRL6Ekyyudl1NghGzV/yiBvsYagfb3ulknqqfijh3WQeaXZKfb6ws8mKivBsX0APVHzZuZdPXh+A2+OHL+L3Ge1yXMcqThwOvN8MVpt5UnKz3V6mMzwNfqYiKHKCXX0bjKpMqYlPvbmIiUK4yIxPlzCRhEif5jkITLLextfyrq3plzO5qWNOaSchHsPEhGuCOqqM2K6xoyjM0evQ1ibmmzhKOF5V6pycNva4snPpTlfJFsv1XqkgeWNqryFpm57DGPDpYWMyfoNBHcuInt3hXwftSqDsnODj6Hg30i48iftTXxO13YhisT36v2+FVF/k/9K1eWJX0QtuJN7M9lpW42z3KN+ll9Z1G36Phz8eSSga076hPxgqOySMi+5Td2f/gnt4UzErPSmZ/gYbC78SOY5hYwnIbvEjyYR+ntMoWPRHHxGUubiz0ee+3OjOBD6+3RhY9DU+RGUOYTw0PfzfnNueofzsjnV62ueiy8PacP1jYTG4c1YdbZh+vlYqMyakW+eA1qHgxrq2lv8v+PQfAyncF6+3HL6rtNXHrMu+8XqzBKj2fA9Y7j5rOZqjv4802J0JtZx85NRWxQ0U6k1mm+ePkaTZg1oXlMhTwp56STeXkVGXl8qeHLukiEV//GSQeKrZPClok/wqynpHjw1/U0/16j0Zz4yGTpVMpWpIT2ZabdoD8d0WmBudnr0XLxtSd9D/4h+Ilm5dVNVPrpRfA99f3X5xu+XP3x8c/GTu+ob6e+IX4rfQCR/Q9wSn4j7EGHugQwn4q/ib+Lvf/rv7aXb128vy65vv6UwvxCln9u3/gfA1CcO</latexit> dX Y <latexit sha1_base64="6tOGw6FSQVfHa06oZqSaTlaRZAo=">AABFdnictVxtc9u4EUaub9f0Ldd+7EyHPZ/bXCd17TSdduamM5fYjuOLkziR7CQXJRlRohUltKiIkvKi81/o1/bf9Hf0H7Sf+rUfuy8AAUogF3TTcGyDIJ7dxRJY7C7AxON0mE83N/9x4aNvffs73/3ex9+/+IMf/ujHP7n0yU+P82w26SVHvSzNJo/ibp6kw1FyNB1O0+TReJJ0T+M0eRi/2sbnD+fJJB9mo/b03Th5etodjIYnw153ilWdx++2n19a29zYpH/RamFLF9aU/neYffLphuqovspUT83UqUrUSE2hnKquyuF6orbUphpD3VO1gLoJlIb0PFFn6iJgZ9AqgRZdqH0Fvwdw90TXjuAeaeaE7gGXFH4mgIzUOmAyaDeBMnKL6PmMKGNtFe0F0UTZ3sHfWNM6hdqpegG1Es60DMVhX6bqRP2J+jCEPo2pBnvX01RmpBWUPHJ6NQUKY6jDch+eT6DcI6TRc0SYnPqOuu3S839SS6zF+55uO1P/IinX4YpUS/c+Kyh01ZzoR/Q2Z/CM5UmB8wAoJLqPWHpDuj6l3o+g/QLq78J1RiWjkxiuBdWe1SK34fIht0XkHlw+5J6IPIDLhzwQkYdw+ZCHGonYCencj2/B5cO3RM734fIh74vIB3D5kA9E5DFcPuSxiPwaLh/yaxF5Ey4f8qaIvA2XD3lbRLbh8iHbIvIILh/ySETuwuVD7mpk9UydwJURnaEwK69DucwDLUUKNddF+W6QdfRhbwTM6V4FVp7VO/DXj90J0GlSgd0NGHcnFVh55O2BjfRjZVt0i1YTH/aWiN2HEeDH7ovYr9TLCuxXATPtVQVWnmsH0M6Pla3vHbjzY++I2LtQ8mPlNeoe1Pix9wJWjHEF9lDE3levK7AhVn9SgZXtfgvsih8rr1NtaO/HhljTWQVWtqfH4MH4sfJq9RBq/diHIvaReluBfSRiH4N192MfB6yw7yuwZo29SCvIgPyRBGZsHbVuMSuxNAZqXYF/WqwtKfnGMdRLmEGBGRDmVETsFYi9QMRBgTgIlisv7GhO/q7MpVUgWoGIuFibsDQV2/eL9lhKAxA7BWJnCVHnkeK7Nn2Zk3dhaiTktFi5sBTSp6yw31hK9Hiot7wGca+E4LH9gkb+FYqWMIJCTdVRe1Gs8YyM6L4O8YaiN9NLw0PGTQur4KLeiqjYg4pF1DsP6p2ImnlQMxE196DmIsrOfBfXCRgBVv/4LhZ0xyOAfeTqKwKv4DqsOrdgjkYwfg7BC3xANffgb4tib+mqkwyjeVwnMcvxtGSJJ1BaqDWot1HhDsXXKc2wBCTjlvd0jI93mNtY6DnHVvisWMmjImMSTmdI8gwKOugtRjSfmtG5TTVn5N1xqRn+VjHvTakZfpc0fkZePJea4ada+uk5ZG9rbPsc2BbMprHWvi03pcH5F6Zhyhdp1UWLi2/1VI8ZpPe2If19/Wb2z/FetqnE+rHlZjRyp395qX9NaFg9546em1FB74m9XlOKGvdkpONeW24qQ0ar6EjLYe+avhls09dvxpSb0TgEj2ubYu6FU246esdFb2y5GY1jxXnPM/LkTbkZjQHdsz5suRkNzLZ0dZxvy00tO2qAY2dbbmrVR5QFxhwQj3musV7RhPykmaY2JP+gPlvj+vyr6xjmbJ4VMUI9JevbVtOJi7WsXiLjLyRg1aYN5UD/Yub4YGUaC3VVjK9YhmlpfV+lY9d41PwBaDGC2c97AFLOPAUJTU4CrXcKFLfEqKvcM4O7KuJwlJwsoTq6dip6i5YvZ43Kdc+pVorLbG+tHjtkr3Mae2PyCQ9Is5IeDirfcBVFSUMHJQ3J9Jro7r2er2Xtb4q48RJiXIy0Hu0I8U5afZzq03rL0fG63uWZwsV7Pnb8Yrb5RFsbjHkyskUoSx1Pt53JI7l1uK5eUTbHzc8ieqNor+ZkNYa0I5WLUajJFrM3vqB7S/uI9uSQB9PowXuMNJWx4l0zzKJjPj0ii+raW4k36stk6Lick9U19rgePXDQAw+6eYyzDSvGXSi1IWY4grt2QJRzsdBVRhqfqN8Wu6MZvcH6iD4tWUhDg+1NUrKQdVH2ixKVN4DG0cBRejiNZToG31mhJEf9Pnls7Fq2/Ou0c2v2t7s0xqtHc3Umpk9crxLXiGYN7+ry3TIHlmDhfXKV/Nf6XiK/JhzRhkpcnzmcWS8j2vFPKIIdk2ec0myTZke5tZufWn5iOB0qs3eOu9kZWciI7F8E61NGYzKiH/fsgNlBZ4uQko0MsTvDwrvx+TpDcYxZP26o+FSDHW8J2bIZ8Td03dmV01jkiIHXgbOlsW10ckC+YEJcJ9q627ldv/og0p6TcEcJU7Rj5TLx/5x+mx8zTtZWRgRqGN9Arm2d731kFLOgjrq0ytfbINPWlfKzQoZnWmq7/lmZPitJtkMRF8qDq3UfOPfonnnhKJmQ3PlKG15H67K5SHm8pEfs7QlF8Wz3B3oFRrmv0Cq5RnOuQ6NkAKNgWkQRpq2URV7mW8+rTD2Mdv5/oW51XdYaUoyUzeCyhqT8fkLRmitlCqOax+8rmk1+rU+WWtXzGdFYPHXm8jdQ+0v4beQ292F04pJVuEFjgCnYO6sRrolWWoTxulHiZUamoWXvLT87Jk0rt+Y88TVbNxtjzxtTOaRR81ZnLUz5PDReOjReBuqwTXuNVoum3lii52Js0da7laH8mnBrN6A8EynLHplBDQOkdGOpMKp9kaoc4xvUe5HWpkirC7PV3Q1w53wI0j/Xl2f3N8XqHqmb5Nv0yAPj+KVPs3RIPpeprY/UmAJyvqbtqzv7O1SD3GOyoEiZz3HijOFdpx5dZ4Wkv9IrW0Z23loEc27pjW5jbGyHyr9fQZ7SnMhpXhrENWqRaPldOaIli7Th+BwRZf675FOx31EfM7ut7TuJSv6EjTd5VlleHCmMSP9S5m1/JXrdd+LXiGLCmfauY6DV/A0jBcaYTILfs8zpDeEqxzsJ7NHGZD9X7RTv4o0ciTZI6oX6c4CN4ajXjnV3bJkem779Blqi1u1b97WQ+aXBHCV+59nR69Kqdqp91MXS/flodfUqV76v08Nsia/Vx4zauJGFjfLKmI76IpgLS9SMC2NCuDTrRRP5m0neRGbenQqlbFobyuVMA9uYFxQvSedAEeHz7i57vbnPhX7EK/RiwrrUuEaihNm4TOcHXEuLWaloKUJy66U1KXXWo6r1wvJwVw1rx9lSJmQFUyXlbri124dOKVqRszFMoaf4ZG9VnOjS/AIu/B0pX5RoOIbkEFvg515X22r3A5yKeK3LnNmMqAZtQn8pBu/qfpZb1OvotUPdpR/CIZzHEHQtST+kFbWp7ExZltylHk7/DVmDiUpE6W3L5n1wucg9WeXUpD9DsnByb4bKfJPTtC+GQ0hPylzC+fD+htSLE2W+bWrWB0Nd7kGZQxMe5jxD2Du3rZvzcjnV62uVSygPXgfMzovB4Q5gdcxi24VYqInzRj48B7QOJzXUzWrxv/bD8LGcmvMK5ZbTN2cvA946t0t0Zhb94uZzxnILGc3VHMN5ZkXvrNfk58f+X9ToTWVObz48ffRL7RgwvBaK86GydIx3R5GVN5QK7g/4ZMjUv9XfL8hfJbwuaFTJ0YSS2a+opmZayNTMl5e+3plnITJZOlUylanZeKJFJ2O31b66CT/bhQfY9JQof1PJfxHr/462D7UnZD1MNp0zCB2qSygLYnfT+nRvz9FWSYxnevmMbxtqcE/8gGrxvO9dao9nftulvlV/ScJz/Y7KVL8UmSzv8tl5FUMPyjtwnAsy3/tGdKaes1l8Au00YI+Rz1FxpGS+fl4Qok9x4bKkC0KY0VJHOfZSjulMUlJBOy71rUcjfKx3+nHfAc/nd4vsUqR+R3VdvTrgSi1JdeiR6gllBmLS/yZEaH9QV+DvFV32S3q4ImlO76As0VvnWf1JsDPvuLBfM65THsxk6ua6XUZRvd09rM/E7lRy4RPv9fhBDX7gSNmit/WK4u6Jqs8dzmpozrRM7n7uSJm8J+sBo9luMT7q4+d5Da95QP9vV6JvO5LugSwxZdsj2s+bEL1U62aXpOdzlfV521s10pqvNpmmPVlpx4E5I1nHAb8q2xZmP395Vr8y4BdmfjruXH8csO+CPZEk4pOZUvYoCZCIz4hK51eGXkqyxRgHnM/oBvRW7mtITyUqM1GSWcC30fMAWeYBdE4EaU5ECgNREm2xnl9a21r+30dWC8dXN7Y2N7buX1v78ob+n0k+Vj9Xn6rLsBr/UX0JM/JQHVGu8S/qr+pvO//Z/cXu+u6vuelHFzTmZ6r0b3fzv4JTXQQ=</latexit> <latexit sha1_base64="6tOGw6FSQVfHa06oZqSaTlaRZAo=">AABFdnictVxtc9u4EUaub9f0Ldd+7EyHPZ/bXCd17TSdduamM5fYjuOLkziR7CQXJRlRohUltKiIkvKi81/o1/bf9Hf0H7Sf+rUfuy8AAUogF3TTcGyDIJ7dxRJY7C7AxON0mE83N/9x4aNvffs73/3ex9+/+IMf/ujHP7n0yU+P82w26SVHvSzNJo/ibp6kw1FyNB1O0+TReJJ0T+M0eRi/2sbnD+fJJB9mo/b03Th5etodjIYnw153ilWdx++2n19a29zYpH/RamFLF9aU/neYffLphuqovspUT83UqUrUSE2hnKquyuF6orbUphpD3VO1gLoJlIb0PFFn6iJgZ9AqgRZdqH0Fvwdw90TXjuAeaeaE7gGXFH4mgIzUOmAyaDeBMnKL6PmMKGNtFe0F0UTZ3sHfWNM6hdqpegG1Es60DMVhX6bqRP2J+jCEPo2pBnvX01RmpBWUPHJ6NQUKY6jDch+eT6DcI6TRc0SYnPqOuu3S839SS6zF+55uO1P/IinX4YpUS/c+Kyh01ZzoR/Q2Z/CM5UmB8wAoJLqPWHpDuj6l3o+g/QLq78J1RiWjkxiuBdWe1SK34fIht0XkHlw+5J6IPIDLhzwQkYdw+ZCHGonYCencj2/B5cO3RM734fIh74vIB3D5kA9E5DFcPuSxiPwaLh/yaxF5Ey4f8qaIvA2XD3lbRLbh8iHbIvIILh/ySETuwuVD7mpk9UydwJURnaEwK69DucwDLUUKNddF+W6QdfRhbwTM6V4FVp7VO/DXj90J0GlSgd0NGHcnFVh55O2BjfRjZVt0i1YTH/aWiN2HEeDH7ovYr9TLCuxXATPtVQVWnmsH0M6Pla3vHbjzY++I2LtQ8mPlNeoe1Pix9wJWjHEF9lDE3levK7AhVn9SgZXtfgvsih8rr1NtaO/HhljTWQVWtqfH4MH4sfJq9RBq/diHIvaReluBfSRiH4N192MfB6yw7yuwZo29SCvIgPyRBGZsHbVuMSuxNAZqXYF/WqwtKfnGMdRLmEGBGRDmVETsFYi9QMRBgTgIlisv7GhO/q7MpVUgWoGIuFibsDQV2/eL9lhKAxA7BWJnCVHnkeK7Nn2Zk3dhaiTktFi5sBTSp6yw31hK9Hiot7wGca+E4LH9gkb+FYqWMIJCTdVRe1Gs8YyM6L4O8YaiN9NLw0PGTQur4KLeiqjYg4pF1DsP6p2ImnlQMxE196DmIsrOfBfXCRgBVv/4LhZ0xyOAfeTqKwKv4DqsOrdgjkYwfg7BC3xANffgb4tib+mqkwyjeVwnMcvxtGSJJ1BaqDWot1HhDsXXKc2wBCTjlvd0jI93mNtY6DnHVvisWMmjImMSTmdI8gwKOugtRjSfmtG5TTVn5N1xqRn+VjHvTakZfpc0fkZePJea4ada+uk5ZG9rbPsc2BbMprHWvi03pcH5F6Zhyhdp1UWLi2/1VI8ZpPe2If19/Wb2z/FetqnE+rHlZjRyp395qX9NaFg9546em1FB74m9XlOKGvdkpONeW24qQ0ar6EjLYe+avhls09dvxpSb0TgEj2ubYu6FU246esdFb2y5GY1jxXnPM/LkTbkZjQHdsz5suRkNzLZ0dZxvy00tO2qAY2dbbmrVR5QFxhwQj3musV7RhPykmaY2JP+gPlvj+vyr6xjmbJ4VMUI9JevbVtOJi7WsXiLjLyRg1aYN5UD/Yub4YGUaC3VVjK9YhmlpfV+lY9d41PwBaDGC2c97AFLOPAUJTU4CrXcKFLfEqKvcM4O7KuJwlJwsoTq6dip6i5YvZ43Kdc+pVorLbG+tHjtkr3Mae2PyCQ9Is5IeDirfcBVFSUMHJQ3J9Jro7r2er2Xtb4q48RJiXIy0Hu0I8U5afZzq03rL0fG63uWZwsV7Pnb8Yrb5RFsbjHkyskUoSx1Pt53JI7l1uK5eUTbHzc8ieqNor+ZkNYa0I5WLUajJFrM3vqB7S/uI9uSQB9PowXuMNJWx4l0zzKJjPj0ii+raW4k36stk6Lick9U19rgePXDQAw+6eYyzDSvGXSi1IWY4grt2QJRzsdBVRhqfqN8Wu6MZvcH6iD4tWUhDg+1NUrKQdVH2ixKVN4DG0cBRejiNZToG31mhJEf9Pnls7Fq2/Ou0c2v2t7s0xqtHc3Umpk9crxLXiGYN7+ry3TIHlmDhfXKV/Nf6XiK/JhzRhkpcnzmcWS8j2vFPKIIdk2ec0myTZke5tZufWn5iOB0qs3eOu9kZWciI7F8E61NGYzKiH/fsgNlBZ4uQko0MsTvDwrvx+TpDcYxZP26o+FSDHW8J2bIZ8Td03dmV01jkiIHXgbOlsW10ckC+YEJcJ9q627ldv/og0p6TcEcJU7Rj5TLx/5x+mx8zTtZWRgRqGN9Arm2d731kFLOgjrq0ytfbINPWlfKzQoZnWmq7/lmZPitJtkMRF8qDq3UfOPfonnnhKJmQ3PlKG15H67K5SHm8pEfs7QlF8Wz3B3oFRrmv0Cq5RnOuQ6NkAKNgWkQRpq2URV7mW8+rTD2Mdv5/oW51XdYaUoyUzeCyhqT8fkLRmitlCqOax+8rmk1+rU+WWtXzGdFYPHXm8jdQ+0v4beQ292F04pJVuEFjgCnYO6sRrolWWoTxulHiZUamoWXvLT87Jk0rt+Y88TVbNxtjzxtTOaRR81ZnLUz5PDReOjReBuqwTXuNVoum3lii52Js0da7laH8mnBrN6A8EynLHplBDQOkdGOpMKp9kaoc4xvUe5HWpkirC7PV3Q1w53wI0j/Xl2f3N8XqHqmb5Nv0yAPj+KVPs3RIPpeprY/UmAJyvqbtqzv7O1SD3GOyoEiZz3HijOFdpx5dZ4Wkv9IrW0Z23loEc27pjW5jbGyHyr9fQZ7SnMhpXhrENWqRaPldOaIli7Th+BwRZf675FOx31EfM7ut7TuJSv6EjTd5VlleHCmMSP9S5m1/JXrdd+LXiGLCmfauY6DV/A0jBcaYTILfs8zpDeEqxzsJ7NHGZD9X7RTv4o0ciTZI6oX6c4CN4ajXjnV3bJkem779Blqi1u1b97WQ+aXBHCV+59nR69Kqdqp91MXS/flodfUqV76v08Nsia/Vx4zauJGFjfLKmI76IpgLS9SMC2NCuDTrRRP5m0neRGbenQqlbFobyuVMA9uYFxQvSedAEeHz7i57vbnPhX7EK/RiwrrUuEaihNm4TOcHXEuLWaloKUJy66U1KXXWo6r1wvJwVw1rx9lSJmQFUyXlbri124dOKVqRszFMoaf4ZG9VnOjS/AIu/B0pX5RoOIbkEFvg515X22r3A5yKeK3LnNmMqAZtQn8pBu/qfpZb1OvotUPdpR/CIZzHEHQtST+kFbWp7ExZltylHk7/DVmDiUpE6W3L5n1wucg9WeXUpD9DsnByb4bKfJPTtC+GQ0hPylzC+fD+htSLE2W+bWrWB0Nd7kGZQxMe5jxD2Du3rZvzcjnV62uVSygPXgfMzovB4Q5gdcxi24VYqInzRj48B7QOJzXUzWrxv/bD8LGcmvMK5ZbTN2cvA946t0t0Zhb94uZzxnILGc3VHMN5ZkXvrNfk58f+X9ToTWVObz48ffRL7RgwvBaK86GydIx3R5GVN5QK7g/4ZMjUv9XfL8hfJbwuaFTJ0YSS2a+opmZayNTMl5e+3plnITJZOlUylanZeKJFJ2O31b66CT/bhQfY9JQof1PJfxHr/462D7UnZD1MNp0zCB2qSygLYnfT+nRvz9FWSYxnevmMbxtqcE/8gGrxvO9dao9nftulvlV/ScJz/Y7KVL8UmSzv8tl5FUMPyjtwnAsy3/tGdKaes1l8Au00YI+Rz1FxpGS+fl4Qok9x4bKkC0KY0VJHOfZSjulMUlJBOy71rUcjfKx3+nHfAc/nd4vsUqR+R3VdvTrgSi1JdeiR6gllBmLS/yZEaH9QV+DvFV32S3q4ImlO76As0VvnWf1JsDPvuLBfM65THsxk6ua6XUZRvd09rM/E7lRy4RPv9fhBDX7gSNmit/WK4u6Jqs8dzmpozrRM7n7uSJm8J+sBo9luMT7q4+d5Da95QP9vV6JvO5LugSwxZdsj2s+bEL1U62aXpOdzlfV521s10pqvNpmmPVlpx4E5I1nHAb8q2xZmP395Vr8y4BdmfjruXH8csO+CPZEk4pOZUvYoCZCIz4hK51eGXkqyxRgHnM/oBvRW7mtITyUqM1GSWcC30fMAWeYBdE4EaU5ECgNREm2xnl9a21r+30dWC8dXN7Y2N7buX1v78ob+n0k+Vj9Xn6rLsBr/UX0JM/JQHVGu8S/qr+pvO//Z/cXu+u6vuelHFzTmZ6r0b3fzv4JTXQQ=</latexit> <latexit sha1_base64="6tOGw6FSQVfHa06oZqSaTlaRZAo=">AABFdnictVxtc9u4EUaub9f0Ldd+7EyHPZ/bXCd17TSdduamM5fYjuOLkziR7CQXJRlRohUltKiIkvKi81/o1/bf9Hf0H7Sf+rUfuy8AAUogF3TTcGyDIJ7dxRJY7C7AxON0mE83N/9x4aNvffs73/3ex9+/+IMf/ujHP7n0yU+P82w26SVHvSzNJo/ibp6kw1FyNB1O0+TReJJ0T+M0eRi/2sbnD+fJJB9mo/b03Th5etodjIYnw153ilWdx++2n19a29zYpH/RamFLF9aU/neYffLphuqovspUT83UqUrUSE2hnKquyuF6orbUphpD3VO1gLoJlIb0PFFn6iJgZ9AqgRZdqH0Fvwdw90TXjuAeaeaE7gGXFH4mgIzUOmAyaDeBMnKL6PmMKGNtFe0F0UTZ3sHfWNM6hdqpegG1Es60DMVhX6bqRP2J+jCEPo2pBnvX01RmpBWUPHJ6NQUKY6jDch+eT6DcI6TRc0SYnPqOuu3S839SS6zF+55uO1P/IinX4YpUS/c+Kyh01ZzoR/Q2Z/CM5UmB8wAoJLqPWHpDuj6l3o+g/QLq78J1RiWjkxiuBdWe1SK34fIht0XkHlw+5J6IPIDLhzwQkYdw+ZCHGonYCencj2/B5cO3RM734fIh74vIB3D5kA9E5DFcPuSxiPwaLh/yaxF5Ey4f8qaIvA2XD3lbRLbh8iHbIvIILh/ySETuwuVD7mpk9UydwJURnaEwK69DucwDLUUKNddF+W6QdfRhbwTM6V4FVp7VO/DXj90J0GlSgd0NGHcnFVh55O2BjfRjZVt0i1YTH/aWiN2HEeDH7ovYr9TLCuxXATPtVQVWnmsH0M6Pla3vHbjzY++I2LtQ8mPlNeoe1Pix9wJWjHEF9lDE3levK7AhVn9SgZXtfgvsih8rr1NtaO/HhljTWQVWtqfH4MH4sfJq9RBq/diHIvaReluBfSRiH4N192MfB6yw7yuwZo29SCvIgPyRBGZsHbVuMSuxNAZqXYF/WqwtKfnGMdRLmEGBGRDmVETsFYi9QMRBgTgIlisv7GhO/q7MpVUgWoGIuFibsDQV2/eL9lhKAxA7BWJnCVHnkeK7Nn2Zk3dhaiTktFi5sBTSp6yw31hK9Hiot7wGca+E4LH9gkb+FYqWMIJCTdVRe1Gs8YyM6L4O8YaiN9NLw0PGTQur4KLeiqjYg4pF1DsP6p2ImnlQMxE196DmIsrOfBfXCRgBVv/4LhZ0xyOAfeTqKwKv4DqsOrdgjkYwfg7BC3xANffgb4tib+mqkwyjeVwnMcvxtGSJJ1BaqDWot1HhDsXXKc2wBCTjlvd0jI93mNtY6DnHVvisWMmjImMSTmdI8gwKOugtRjSfmtG5TTVn5N1xqRn+VjHvTakZfpc0fkZePJea4ada+uk5ZG9rbPsc2BbMprHWvi03pcH5F6Zhyhdp1UWLi2/1VI8ZpPe2If19/Wb2z/FetqnE+rHlZjRyp395qX9NaFg9546em1FB74m9XlOKGvdkpONeW24qQ0ar6EjLYe+avhls09dvxpSb0TgEj2ubYu6FU246esdFb2y5GY1jxXnPM/LkTbkZjQHdsz5suRkNzLZ0dZxvy00tO2qAY2dbbmrVR5QFxhwQj3musV7RhPykmaY2JP+gPlvj+vyr6xjmbJ4VMUI9JevbVtOJi7WsXiLjLyRg1aYN5UD/Yub4YGUaC3VVjK9YhmlpfV+lY9d41PwBaDGC2c97AFLOPAUJTU4CrXcKFLfEqKvcM4O7KuJwlJwsoTq6dip6i5YvZ43Kdc+pVorLbG+tHjtkr3Mae2PyCQ9Is5IeDirfcBVFSUMHJQ3J9Jro7r2er2Xtb4q48RJiXIy0Hu0I8U5afZzq03rL0fG63uWZwsV7Pnb8Yrb5RFsbjHkyskUoSx1Pt53JI7l1uK5eUTbHzc8ieqNor+ZkNYa0I5WLUajJFrM3vqB7S/uI9uSQB9PowXuMNJWx4l0zzKJjPj0ii+raW4k36stk6Lick9U19rgePXDQAw+6eYyzDSvGXSi1IWY4grt2QJRzsdBVRhqfqN8Wu6MZvcH6iD4tWUhDg+1NUrKQdVH2ixKVN4DG0cBRejiNZToG31mhJEf9Pnls7Fq2/Ou0c2v2t7s0xqtHc3Umpk9crxLXiGYN7+ry3TIHlmDhfXKV/Nf6XiK/JhzRhkpcnzmcWS8j2vFPKIIdk2ec0myTZke5tZufWn5iOB0qs3eOu9kZWciI7F8E61NGYzKiH/fsgNlBZ4uQko0MsTvDwrvx+TpDcYxZP26o+FSDHW8J2bIZ8Td03dmV01jkiIHXgbOlsW10ckC+YEJcJ9q627ldv/og0p6TcEcJU7Rj5TLx/5x+mx8zTtZWRgRqGN9Arm2d731kFLOgjrq0ytfbINPWlfKzQoZnWmq7/lmZPitJtkMRF8qDq3UfOPfonnnhKJmQ3PlKG15H67K5SHm8pEfs7QlF8Wz3B3oFRrmv0Cq5RnOuQ6NkAKNgWkQRpq2URV7mW8+rTD2Mdv5/oW51XdYaUoyUzeCyhqT8fkLRmitlCqOax+8rmk1+rU+WWtXzGdFYPHXm8jdQ+0v4beQ292F04pJVuEFjgCnYO6sRrolWWoTxulHiZUamoWXvLT87Jk0rt+Y88TVbNxtjzxtTOaRR81ZnLUz5PDReOjReBuqwTXuNVoum3lii52Js0da7laH8mnBrN6A8EynLHplBDQOkdGOpMKp9kaoc4xvUe5HWpkirC7PV3Q1w53wI0j/Xl2f3N8XqHqmb5Nv0yAPj+KVPs3RIPpeprY/UmAJyvqbtqzv7O1SD3GOyoEiZz3HijOFdpx5dZ4Wkv9IrW0Z23loEc27pjW5jbGyHyr9fQZ7SnMhpXhrENWqRaPldOaIli7Th+BwRZf675FOx31EfM7ut7TuJSv6EjTd5VlleHCmMSP9S5m1/JXrdd+LXiGLCmfauY6DV/A0jBcaYTILfs8zpDeEqxzsJ7NHGZD9X7RTv4o0ciTZI6oX6c4CN4ajXjnV3bJkem779Blqi1u1b97WQ+aXBHCV+59nR69Kqdqp91MXS/flodfUqV76v08Nsia/Vx4zauJGFjfLKmI76IpgLS9SMC2NCuDTrRRP5m0neRGbenQqlbFobyuVMA9uYFxQvSedAEeHz7i57vbnPhX7EK/RiwrrUuEaihNm4TOcHXEuLWaloKUJy66U1KXXWo6r1wvJwVw1rx9lSJmQFUyXlbri124dOKVqRszFMoaf4ZG9VnOjS/AIu/B0pX5RoOIbkEFvg515X22r3A5yKeK3LnNmMqAZtQn8pBu/qfpZb1OvotUPdpR/CIZzHEHQtST+kFbWp7ExZltylHk7/DVmDiUpE6W3L5n1wucg9WeXUpD9DsnByb4bKfJPTtC+GQ0hPylzC+fD+htSLE2W+bWrWB0Nd7kGZQxMe5jxD2Du3rZvzcjnV62uVSygPXgfMzovB4Q5gdcxi24VYqInzRj48B7QOJzXUzWrxv/bD8LGcmvMK5ZbTN2cvA946t0t0Zhb94uZzxnILGc3VHMN5ZkXvrNfk58f+X9ToTWVObz48ffRL7RgwvBaK86GydIx3R5GVN5QK7g/4ZMjUv9XfL8hfJbwuaFTJ0YSS2a+opmZayNTMl5e+3plnITJZOlUylanZeKJFJ2O31b66CT/bhQfY9JQof1PJfxHr/462D7UnZD1MNp0zCB2qSygLYnfT+nRvz9FWSYxnevmMbxtqcE/8gGrxvO9dao9nftulvlV/ScJz/Y7KVL8UmSzv8tl5FUMPyjtwnAsy3/tGdKaes1l8Au00YI+Rz1FxpGS+fl4Qok9x4bKkC0KY0VJHOfZSjulMUlJBOy71rUcjfKx3+nHfAc/nd4vsUqR+R3VdvTrgSi1JdeiR6gllBmLS/yZEaH9QV+DvFV32S3q4ImlO76As0VvnWf1JsDPvuLBfM65THsxk6ua6XUZRvd09rM/E7lRy4RPv9fhBDX7gSNmit/WK4u6Jqs8dzmpozrRM7n7uSJm8J+sBo9luMT7q4+d5Da95QP9vV6JvO5LugSwxZdsj2s+bEL1U62aXpOdzlfV521s10pqvNpmmPVlpx4E5I1nHAb8q2xZmP395Vr8y4BdmfjruXH8csO+CPZEk4pOZUvYoCZCIz4hK51eGXkqyxRgHnM/oBvRW7mtITyUqM1GSWcC30fMAWeYBdE4EaU5ECgNREm2xnl9a21r+30dWC8dXN7Y2N7buX1v78ob+n0k+Vj9Xn6rLsBr/UX0JM/JQHVGu8S/qr+pvO//Z/cXu+u6vuelHFzTmZ6r0b3fzv4JTXQQ=</latexit> <latexit sha1_base64="6tOGw6FSQVfHa06oZqSaTlaRZAo=">AABFdnictVxtc9u4EUaub9f0Ldd+7EyHPZ/bXCd17TSdduamM5fYjuOLkziR7CQXJRlRohUltKiIkvKi81/o1/bf9Hf0H7Sf+rUfuy8AAUogF3TTcGyDIJ7dxRJY7C7AxON0mE83N/9x4aNvffs73/3ex9+/+IMf/ujHP7n0yU+P82w26SVHvSzNJo/ibp6kw1FyNB1O0+TReJJ0T+M0eRi/2sbnD+fJJB9mo/b03Th5etodjIYnw153ilWdx++2n19a29zYpH/RamFLF9aU/neYffLphuqovspUT83UqUrUSE2hnKquyuF6orbUphpD3VO1gLoJlIb0PFFn6iJgZ9AqgRZdqH0Fvwdw90TXjuAeaeaE7gGXFH4mgIzUOmAyaDeBMnKL6PmMKGNtFe0F0UTZ3sHfWNM6hdqpegG1Es60DMVhX6bqRP2J+jCEPo2pBnvX01RmpBWUPHJ6NQUKY6jDch+eT6DcI6TRc0SYnPqOuu3S839SS6zF+55uO1P/IinX4YpUS/c+Kyh01ZzoR/Q2Z/CM5UmB8wAoJLqPWHpDuj6l3o+g/QLq78J1RiWjkxiuBdWe1SK34fIht0XkHlw+5J6IPIDLhzwQkYdw+ZCHGonYCencj2/B5cO3RM734fIh74vIB3D5kA9E5DFcPuSxiPwaLh/yaxF5Ey4f8qaIvA2XD3lbRLbh8iHbIvIILh/ySETuwuVD7mpk9UydwJURnaEwK69DucwDLUUKNddF+W6QdfRhbwTM6V4FVp7VO/DXj90J0GlSgd0NGHcnFVh55O2BjfRjZVt0i1YTH/aWiN2HEeDH7ovYr9TLCuxXATPtVQVWnmsH0M6Pla3vHbjzY++I2LtQ8mPlNeoe1Pix9wJWjHEF9lDE3levK7AhVn9SgZXtfgvsih8rr1NtaO/HhljTWQVWtqfH4MH4sfJq9RBq/diHIvaReluBfSRiH4N192MfB6yw7yuwZo29SCvIgPyRBGZsHbVuMSuxNAZqXYF/WqwtKfnGMdRLmEGBGRDmVETsFYi9QMRBgTgIlisv7GhO/q7MpVUgWoGIuFibsDQV2/eL9lhKAxA7BWJnCVHnkeK7Nn2Zk3dhaiTktFi5sBTSp6yw31hK9Hiot7wGca+E4LH9gkb+FYqWMIJCTdVRe1Gs8YyM6L4O8YaiN9NLw0PGTQur4KLeiqjYg4pF1DsP6p2ImnlQMxE196DmIsrOfBfXCRgBVv/4LhZ0xyOAfeTqKwKv4DqsOrdgjkYwfg7BC3xANffgb4tib+mqkwyjeVwnMcvxtGSJJ1BaqDWot1HhDsXXKc2wBCTjlvd0jI93mNtY6DnHVvisWMmjImMSTmdI8gwKOugtRjSfmtG5TTVn5N1xqRn+VjHvTakZfpc0fkZePJea4ada+uk5ZG9rbPsc2BbMprHWvi03pcH5F6Zhyhdp1UWLi2/1VI8ZpPe2If19/Wb2z/FetqnE+rHlZjRyp395qX9NaFg9546em1FB74m9XlOKGvdkpONeW24qQ0ar6EjLYe+avhls09dvxpSb0TgEj2ubYu6FU246esdFb2y5GY1jxXnPM/LkTbkZjQHdsz5suRkNzLZ0dZxvy00tO2qAY2dbbmrVR5QFxhwQj3musV7RhPykmaY2JP+gPlvj+vyr6xjmbJ4VMUI9JevbVtOJi7WsXiLjLyRg1aYN5UD/Yub4YGUaC3VVjK9YhmlpfV+lY9d41PwBaDGC2c97AFLOPAUJTU4CrXcKFLfEqKvcM4O7KuJwlJwsoTq6dip6i5YvZ43Kdc+pVorLbG+tHjtkr3Mae2PyCQ9Is5IeDirfcBVFSUMHJQ3J9Jro7r2er2Xtb4q48RJiXIy0Hu0I8U5afZzq03rL0fG63uWZwsV7Pnb8Yrb5RFsbjHkyskUoSx1Pt53JI7l1uK5eUTbHzc8ieqNor+ZkNYa0I5WLUajJFrM3vqB7S/uI9uSQB9PowXuMNJWx4l0zzKJjPj0ii+raW4k36stk6Lick9U19rgePXDQAw+6eYyzDSvGXSi1IWY4grt2QJRzsdBVRhqfqN8Wu6MZvcH6iD4tWUhDg+1NUrKQdVH2ixKVN4DG0cBRejiNZToG31mhJEf9Pnls7Fq2/Ou0c2v2t7s0xqtHc3Umpk9crxLXiGYN7+ry3TIHlmDhfXKV/Nf6XiK/JhzRhkpcnzmcWS8j2vFPKIIdk2ec0myTZke5tZufWn5iOB0qs3eOu9kZWciI7F8E61NGYzKiH/fsgNlBZ4uQko0MsTvDwrvx+TpDcYxZP26o+FSDHW8J2bIZ8Td03dmV01jkiIHXgbOlsW10ckC+YEJcJ9q627ldv/og0p6TcEcJU7Rj5TLx/5x+mx8zTtZWRgRqGN9Arm2d731kFLOgjrq0ytfbINPWlfKzQoZnWmq7/lmZPitJtkMRF8qDq3UfOPfonnnhKJmQ3PlKG15H67K5SHm8pEfs7QlF8Wz3B3oFRrmv0Cq5RnOuQ6NkAKNgWkQRpq2URV7mW8+rTD2Mdv5/oW51XdYaUoyUzeCyhqT8fkLRmitlCqOax+8rmk1+rU+WWtXzGdFYPHXm8jdQ+0v4beQ292F04pJVuEFjgCnYO6sRrolWWoTxulHiZUamoWXvLT87Jk0rt+Y88TVbNxtjzxtTOaRR81ZnLUz5PDReOjReBuqwTXuNVoum3lii52Js0da7laH8mnBrN6A8EynLHplBDQOkdGOpMKp9kaoc4xvUe5HWpkirC7PV3Q1w53wI0j/Xl2f3N8XqHqmb5Nv0yAPj+KVPs3RIPpeprY/UmAJyvqbtqzv7O1SD3GOyoEiZz3HijOFdpx5dZ4Wkv9IrW0Z23loEc27pjW5jbGyHyr9fQZ7SnMhpXhrENWqRaPldOaIli7Th+BwRZf675FOx31EfM7ut7TuJSv6EjTd5VlleHCmMSP9S5m1/JXrdd+LXiGLCmfauY6DV/A0jBcaYTILfs8zpDeEqxzsJ7NHGZD9X7RTv4o0ciTZI6oX6c4CN4ajXjnV3bJkem779Blqi1u1b97WQ+aXBHCV+59nR69Kqdqp91MXS/flodfUqV76v08Nsia/Vx4zauJGFjfLKmI76IpgLS9SMC2NCuDTrRRP5m0neRGbenQqlbFobyuVMA9uYFxQvSedAEeHz7i57vbnPhX7EK/RiwrrUuEaihNm4TOcHXEuLWaloKUJy66U1KXXWo6r1wvJwVw1rx9lSJmQFUyXlbri124dOKVqRszFMoaf4ZG9VnOjS/AIu/B0pX5RoOIbkEFvg515X22r3A5yKeK3LnNmMqAZtQn8pBu/qfpZb1OvotUPdpR/CIZzHEHQtST+kFbWp7ExZltylHk7/DVmDiUpE6W3L5n1wucg9WeXUpD9DsnByb4bKfJPTtC+GQ0hPylzC+fD+htSLE2W+bWrWB0Nd7kGZQxMe5jxD2Du3rZvzcjnV62uVSygPXgfMzovB4Q5gdcxi24VYqInzRj48B7QOJzXUzWrxv/bD8LGcmvMK5ZbTN2cvA946t0t0Zhb94uZzxnILGc3VHMN5ZkXvrNfk58f+X9ToTWVObz48ffRL7RgwvBaK86GydIx3R5GVN5QK7g/4ZMjUv9XfL8hfJbwuaFTJ0YSS2a+opmZayNTMl5e+3plnITJZOlUylanZeKJFJ2O31b66CT/bhQfY9JQof1PJfxHr/462D7UnZD1MNp0zCB2qSygLYnfT+nRvz9FWSYxnevmMbxtqcE/8gGrxvO9dao9nftulvlV/ScJz/Y7KVL8UmSzv8tl5FUMPyjtwnAsy3/tGdKaes1l8Au00YI+Rz1FxpGS+fl4Qok9x4bKkC0KY0VJHOfZSjulMUlJBOy71rUcjfKx3+nHfAc/nd4vsUqR+R3VdvTrgSi1JdeiR6gllBmLS/yZEaH9QV+DvFV32S3q4ImlO76As0VvnWf1JsDPvuLBfM65THsxk6ua6XUZRvd09rM/E7lRy4RPv9fhBDX7gSNmit/WK4u6Jqs8dzmpozrRM7n7uSJm8J+sBo9luMT7q4+d5Da95QP9vV6JvO5LugSwxZdsj2s+bEL1U62aXpOdzlfV521s10pqvNpmmPVlpx4E5I1nHAb8q2xZmP395Vr8y4BdmfjruXH8csO+CPZEk4pOZUvYoCZCIz4hK51eGXkqyxRgHnM/oBvRW7mtITyUqM1GSWcC30fMAWeYBdE4EaU5ECgNREm2xnl9a21r+30dWC8dXN7Y2N7buX1v78ob+n0k+Vj9Xn6rLsBr/UX0JM/JQHVGu8S/qr+pvO//Z/cXu+u6vuelHFzTmZ6r0b3fzv4JTXQQ=</latexit> <latexit sha1_base64="6tOGw6FSQVfHa06oZqSaTlaRZAo=">AABFdnictVxtc9u4EUaub9f0Ldd+7EyHPZ/bXCd17TSdduamM5fYjuOLkziR7CQXJRlRohUltKiIkvKi81/o1/bf9Hf0H7Sf+rUfuy8AAUogF3TTcGyDIJ7dxRJY7C7AxON0mE83N/9x4aNvffs73/3ex9+/+IMf/ujHP7n0yU+P82w26SVHvSzNJo/ibp6kw1FyNB1O0+TReJJ0T+M0eRi/2sbnD+fJJB9mo/b03Th5etodjIYnw153ilWdx++2n19a29zYpH/RamFLF9aU/neYffLphuqovspUT83UqUrUSE2hnKquyuF6orbUphpD3VO1gLoJlIb0PFFn6iJgZ9AqgRZdqH0Fvwdw90TXjuAeaeaE7gGXFH4mgIzUOmAyaDeBMnKL6PmMKGNtFe0F0UTZ3sHfWNM6hdqpegG1Es60DMVhX6bqRP2J+jCEPo2pBnvX01RmpBWUPHJ6NQUKY6jDch+eT6DcI6TRc0SYnPqOuu3S839SS6zF+55uO1P/IinX4YpUS/c+Kyh01ZzoR/Q2Z/CM5UmB8wAoJLqPWHpDuj6l3o+g/QLq78J1RiWjkxiuBdWe1SK34fIht0XkHlw+5J6IPIDLhzwQkYdw+ZCHGonYCencj2/B5cO3RM734fIh74vIB3D5kA9E5DFcPuSxiPwaLh/yaxF5Ey4f8qaIvA2XD3lbRLbh8iHbIvIILh/ySETuwuVD7mpk9UydwJURnaEwK69DucwDLUUKNddF+W6QdfRhbwTM6V4FVp7VO/DXj90J0GlSgd0NGHcnFVh55O2BjfRjZVt0i1YTH/aWiN2HEeDH7ovYr9TLCuxXATPtVQVWnmsH0M6Pla3vHbjzY++I2LtQ8mPlNeoe1Pix9wJWjHEF9lDE3levK7AhVn9SgZXtfgvsih8rr1NtaO/HhljTWQVWtqfH4MH4sfJq9RBq/diHIvaReluBfSRiH4N192MfB6yw7yuwZo29SCvIgPyRBGZsHbVuMSuxNAZqXYF/WqwtKfnGMdRLmEGBGRDmVETsFYi9QMRBgTgIlisv7GhO/q7MpVUgWoGIuFibsDQV2/eL9lhKAxA7BWJnCVHnkeK7Nn2Zk3dhaiTktFi5sBTSp6yw31hK9Hiot7wGca+E4LH9gkb+FYqWMIJCTdVRe1Gs8YyM6L4O8YaiN9NLw0PGTQur4KLeiqjYg4pF1DsP6p2ImnlQMxE196DmIsrOfBfXCRgBVv/4LhZ0xyOAfeTqKwKv4DqsOrdgjkYwfg7BC3xANffgb4tib+mqkwyjeVwnMcvxtGSJJ1BaqDWot1HhDsXXKc2wBCTjlvd0jI93mNtY6DnHVvisWMmjImMSTmdI8gwKOugtRjSfmtG5TTVn5N1xqRn+VjHvTakZfpc0fkZePJea4ada+uk5ZG9rbPsc2BbMprHWvi03pcH5F6Zhyhdp1UWLi2/1VI8ZpPe2If19/Wb2z/FetqnE+rHlZjRyp395qX9NaFg9546em1FB74m9XlOKGvdkpONeW24qQ0ar6EjLYe+avhls09dvxpSb0TgEj2ubYu6FU246esdFb2y5GY1jxXnPM/LkTbkZjQHdsz5suRkNzLZ0dZxvy00tO2qAY2dbbmrVR5QFxhwQj3musV7RhPykmaY2JP+gPlvj+vyr6xjmbJ4VMUI9JevbVtOJi7WsXiLjLyRg1aYN5UD/Yub4YGUaC3VVjK9YhmlpfV+lY9d41PwBaDGC2c97AFLOPAUJTU4CrXcKFLfEqKvcM4O7KuJwlJwsoTq6dip6i5YvZ43Kdc+pVorLbG+tHjtkr3Mae2PyCQ9Is5IeDirfcBVFSUMHJQ3J9Jro7r2er2Xtb4q48RJiXIy0Hu0I8U5afZzq03rL0fG63uWZwsV7Pnb8Yrb5RFsbjHkyskUoSx1Pt53JI7l1uK5eUTbHzc8ieqNor+ZkNYa0I5WLUajJFrM3vqB7S/uI9uSQB9PowXuMNJWx4l0zzKJjPj0ii+raW4k36stk6Lick9U19rgePXDQAw+6eYyzDSvGXSi1IWY4grt2QJRzsdBVRhqfqN8Wu6MZvcH6iD4tWUhDg+1NUrKQdVH2ixKVN4DG0cBRejiNZToG31mhJEf9Pnls7Fq2/Ou0c2v2t7s0xqtHc3Umpk9crxLXiGYN7+ry3TIHlmDhfXKV/Nf6XiK/JhzRhkpcnzmcWS8j2vFPKIIdk2ec0myTZke5tZufWn5iOB0qs3eOu9kZWciI7F8E61NGYzKiH/fsgNlBZ4uQko0MsTvDwrvx+TpDcYxZP26o+FSDHW8J2bIZ8Td03dmV01jkiIHXgbOlsW10ckC+YEJcJ9q627ldv/og0p6TcEcJU7Rj5TLx/5x+mx8zTtZWRgRqGN9Arm2d731kFLOgjrq0ytfbINPWlfKzQoZnWmq7/lmZPitJtkMRF8qDq3UfOPfonnnhKJmQ3PlKG15H67K5SHm8pEfs7QlF8Wz3B3oFRrmv0Cq5RnOuQ6NkAKNgWkQRpq2URV7mW8+rTD2Mdv5/oW51XdYaUoyUzeCyhqT8fkLRmitlCqOax+8rmk1+rU+WWtXzGdFYPHXm8jdQ+0v4beQ292F04pJVuEFjgCnYO6sRrolWWoTxulHiZUamoWXvLT87Jk0rt+Y88TVbNxtjzxtTOaRR81ZnLUz5PDReOjReBuqwTXuNVoum3lii52Js0da7laH8mnBrN6A8EynLHplBDQOkdGOpMKp9kaoc4xvUe5HWpkirC7PV3Q1w53wI0j/Xl2f3N8XqHqmb5Nv0yAPj+KVPs3RIPpeprY/UmAJyvqbtqzv7O1SD3GOyoEiZz3HijOFdpx5dZ4Wkv9IrW0Z23loEc27pjW5jbGyHyr9fQZ7SnMhpXhrENWqRaPldOaIli7Th+BwRZf675FOx31EfM7ut7TuJSv6EjTd5VlleHCmMSP9S5m1/JXrdd+LXiGLCmfauY6DV/A0jBcaYTILfs8zpDeEqxzsJ7NHGZD9X7RTv4o0ciTZI6oX6c4CN4ajXjnV3bJkem779Blqi1u1b97WQ+aXBHCV+59nR69Kqdqp91MXS/flodfUqV76v08Nsia/Vx4zauJGFjfLKmI76IpgLS9SMC2NCuDTrRRP5m0neRGbenQqlbFobyuVMA9uYFxQvSedAEeHz7i57vbnPhX7EK/RiwrrUuEaihNm4TOcHXEuLWaloKUJy66U1KXXWo6r1wvJwVw1rx9lSJmQFUyXlbri124dOKVqRszFMoaf4ZG9VnOjS/AIu/B0pX5RoOIbkEFvg515X22r3A5yKeK3LnNmMqAZtQn8pBu/qfpZb1OvotUPdpR/CIZzHEHQtST+kFbWp7ExZltylHk7/DVmDiUpE6W3L5n1wucg9WeXUpD9DsnByb4bKfJPTtC+GQ0hPylzC+fD+htSLE2W+bWrWB0Nd7kGZQxMe5jxD2Du3rZvzcjnV62uVSygPXgfMzovB4Q5gdcxi24VYqInzRj48B7QOJzXUzWrxv/bD8LGcmvMK5ZbTN2cvA946t0t0Zhb94uZzxnILGc3VHMN5ZkXvrNfk58f+X9ToTWVObz48ffRL7RgwvBaK86GydIx3R5GVN5QK7g/4ZMjUv9XfL8hfJbwuaFTJ0YSS2a+opmZayNTMl5e+3plnITJZOlUylanZeKJFJ2O31b66CT/bhQfY9JQof1PJfxHr/462D7UnZD1MNp0zCB2qSygLYnfT+nRvz9FWSYxnevmMbxtqcE/8gGrxvO9dao9nftulvlV/ScJz/Y7KVL8UmSzv8tl5FUMPyjtwnAsy3/tGdKaes1l8Au00YI+Rz1FxpGS+fl4Qok9x4bKkC0KY0VJHOfZSjulMUlJBOy71rUcjfKx3+nHfAc/nd4vsUqR+R3VdvTrgSi1JdeiR6gllBmLS/yZEaH9QV+DvFV32S3q4ImlO76As0VvnWf1JsDPvuLBfM65THsxk6ua6XUZRvd09rM/E7lRy4RPv9fhBDX7gSNmit/WK4u6Jqs8dzmpozrRM7n7uSJm8J+sBo9luMT7q4+d5Da95QP9vV6JvO5LugSwxZdsj2s+bEL1U62aXpOdzlfV521s10pqvNpmmPVlpx4E5I1nHAb8q2xZmP395Vr8y4BdmfjruXH8csO+CPZEk4pOZUvYoCZCIz4hK51eGXkqyxRgHnM/oBvRW7mtITyUqM1GSWcC30fMAWeYBdE4EaU5ECgNREm2xnl9a21r+30dWC8dXN7Y2N7buX1v78ob+n0k+Vj9Xn6rLsBr/UX0JM/JQHVGu8S/qr+pvO//Z/cXu+u6vuelHFzTmZ6r0b3fzv4JTXQQ=</latexit> <latexit sha1_base64="kVF27gTIsbauBCqg40Iqh1v4D6s=">AAA/fniczVvbchy3EYXtXCzmYtl5zEMmoWVLLlmhaFVklytFSyRF0VqJlHiRZK9F72W4HGu4s5rZpURt6E/Ja1KVT8iX5A+iT8hbuhvAALOLmQYUp8pEkcRgcbobDaAvwGx3lCbFeGnpX2+8+dZPfvqzn799buEXv/zVr985/+57+0U2yXvxXi9Ls/xRt1PEaTKM98bJOI0fjfK4c9xN44fdp6v4+cOTOC+SbLg7Ph3F3xx3BsPkMOl1xtB0cP69NtGYdtNJfBb1D9qPTw/OLy5dWaKfaL5yVVUWhfrZzt793UeiLfoiEz0xEcciFkMxhnoqOqKA8rW4KpbECNq+EVNoy6GW0OexOBMLgJ1Arxh6dKD1KfwdwNPXqnUIz0izIHQPuKTwmwMyEhcAk0G/HOrILaLPJ0QZW+toT4kmynYK/7uK1jG0jsURtHI43dMf14fWQ5ANNdM85jH0+5TGmkDvEbWgFnqK24S0hyOMrNGPgcII2rDeh89zqPcIqecjIkxBOsI56NDn/6ae2IrPPdV3Il7RaH4s+vvx6eVCQInEprgnVkVL7Ik1sS52SN7mskC4VRjHCHScg+QD0BBKexGkuQT/l2FPLYnrUNsAGbvUJ4axRGIb/p+S/AtK1kjcFTfErrhNvC9C/S7ULgXME9dTr+2CZsN/3SwwqyynGTltlGBM45+QBcjFi8a+uHb6ajYPaT0Uakc2z6nU4Kp4ILYa5w85D4H+c7JEx6RB5DiF9gHIhCs0BX5oE3Et/0N8Lxah/r34p1rHEciVq5V9RPTkkz/Nb6EgzQ+hnIlzRHMPpF4oRxnBk5yBrFz9HXFCeyMiSz6Bz+ReSmntDalX0+juQTmjml41XShTaj1rRK5CcSFXWeQGFBdyg0W2oLiQLRa5DcWF3FbIJux9KC7sfZbrAygu5AMWuQvFhdxlkftQXMh9FvkVFBfyKxZ5C4oLeYtF3oHiQt5hkXtQXMg9FrkOxYVcV8j6vYZ2LSM6CbOvbkC9ygP9VAotN1j5bpKNdWFveuzKXg2W35dr8N+NXfPQaVyDXfdYPYc1WH79bICVc2N5a3KbfKQLe5vFbsIKcGM3WeyX4rsa7Jce++VpDZbfMS3yNy4sbz/vwpMbe5fF3oOaG8t7mS1ocWO3PGz+qAa7zWLvi2c1WB+rn9dgebu/Q7GYC7vj4TPGNVjea+xB7ODG8vZ0H2IQN5b3OQ+h1Y19yGIfUdTowj5isY8pOnVhH3v4yZc1WO0pZfQ+oBgwhh3bRK1T7kqsjYBah+Gflr4Fa+ij+ixmUGIGhDlmERslYsMT0SoRLW+5itKOFhSx8lx2SsSOJ6Jb+iasjdn+/bJ/n3IzHrFWItZmEE1ZAM61HssJRRe6hUOOS8+FNZ8xZaX9xlqs1kOz5dWIrQpCru0jWvmXKVfHTKZPeWs9taPSx0tkRM9NiOeU6+lRah48blxaBRv1gkV1Haguizp1oE5Z1MSBmrCoEwfqhEWZnW/j2h4rwOgf52JKTzr3585SqmcXW+Bx18H7YcsW/Pc5S2nOyvFEAD2lzp6NLc6hNqVM2mR2a5Qjy5OGGCSTPbfUGRM+4dnkVO06aYfPSl8eCX3i6U8nIXkGJR2MFyPaUWF07lDLGcV3shaGv13ufF0Lw6+Txs8ojpe1MPxYST9+Ddl3FXb3NbA7sJ9GSvumHkpDnqFIGrrO2ebN0m7ieeUL2jmyLZT/KtWkDkw9jEZhjaGojCGEhtFlYekyjArGSDK21bUoeCRDld2aeqgMGfnKoZLDPIXODPbpq5nR9TAa2xBXrVJmPbXqoSt0VI7G1MNo7At5tn5G8bquh9EY0LPUh6mH0cAzlY7K5k091HqjBmSGbOo6ZskpitEnzgl57+azFDsin/cxeKLypIzgmymZyLOeTrf0M80SzVqXEDnQ+0+sCKlKYyqW2exHyjCu+N55Osb/ouZboMUIdq081+fOpFOQUJ8YxHRK/oSoNWOqI9O4ZRaHluRwBtVWrWM2ljN85ZlOte2AWrmsyYzW6LFNdragtTeiiK1FmuX00Kqd4TqKnIZaFQ3x9EJ095J2cDaj/SUWN5pBjMqV1qPbIXlL3ZxFurS+Y+n4grpFGUORdypm/eJZ8CHhcspIMrI2KEsTT7ufPuWx29AfXhbmBFp+FtGMor06IauR0I1PwcYh+ixXRspTeja09+ierXprFSkqIyFvVPGMG0+7I7rPtG0txxv1pc/PZL0gq2vu0Ztvxwx64ECHZh+r4CvuQW0Xovk9eNr1yD/MnVtG+s7Fx+X9Z0bz15xt2zd77ZKGtDZxxT42ZcBHFSrPAY1rQWbQ/jRm6Wh8e44Sn5G75DF5ZdXuX6A7ff3mSIdWeP1arj8l6RPXZeIa0Z6R9/3yaZaDlGDq/GSZos7mUSK/EI5oQTmuTyzOUi9DepcmptxyRPFsSnuN2xvV3vbZ0ewnmtO20G9V4F1xRvYxIusXgXfKaE1G9Gu/laPfrZD2ICUL6WN1kjK2cUU6CbvGEtrlco3I94XMeovJkk2Iv6Zr766C1qKM86UXOJtZ21onLYoEY+KaK9tu9naz70GkeRPCXiWSolkrF4n/Jfqrf/U6WZxbEahhnIFCWTrXfGSUaaCOOuTjm22Q7mtL+X4pwxMltfF+Rqb3K5KtUZ6E8qCv7gPnHj1LXrhKcpK7mOsjvWjTSStSHs3oEUeL3rWtrP5A+V+U+zL5yEXac21h3rDRsb/uy53wzvJt5lWl7ke7+L9QN7quag0pRsKcrkoNcWfvMeVYtpQpvZMk376JFaV5reczvZr5DGktHlt7+S/Q+nv4q+XWz350uhWrcJPWgKRgnoxGZEs018OP180KL70yNS3zbPiZNal72S2vkxVL62Yy45NgKtu0al6oswZd9xn/Lt3hGQ3odm1FDmYi6F115+dLPYy2P+UJS5mPnTQq8ZDSznn8qPZZqnwurlEvWVpLLC18G88+Ubd3p+07b1Hs0KMIR2YHfdoFCcU0urU5D5IUkNc1Zb/s3dWmFtxLXbJQSLn6ViGe3fWEfIdUyviB8hwZ2VGz4/Q7O89VH23D2lT/ZA55TNlsQXtHI65Rj1jJb8sRzez4K5ZPj+jMu0Mxi/TrzRmp3dvMQlTx1yabk3vB8ErFhyoaH9IcjMWrRm6bc/nhppUhRkLe96VlBI+z/CpoljFvkytD5+ru6K2gWUJPklM+L6PGLtmo+VMGeYs1BO3rdXeFpJ6KP3tYB5lXmp1iry/8bKKyEhzbR9ATNW9m3tWD55d6c+T4vc59Voc8x7GKA6czz69Hq6M8SfW5SQ+TGb5GHxMxVDmhjt5NJlXFtMXn3lykRGFcJMaHS9goQuQPkzxEZnlv40tZ99aUq9m8tDFHlJNw70EiwhVBXXRGTJeYcXTn6HUJa1OTLRwlPO/KVA5uW1s8+Tk354tk67lGj5Ra3qjOW2jqtscwNlxayJisXyq4cxHZuyfk+6h1GZSdG3wOBf9GwpU/aW/ic7q2A1Ekvlfv962I5pv8Z6ouT/wiasGd3J/JTjtqnNUezbP8zKJu0/fh4M8jAV1z0ifkB0Nll5R5yW3q/vSf0x7ORcxKb3qGj8Hmwo9knlPIeBKyS/xoEqG/xxQ6Fs3BZyRVLv585Lk/N4pDob9PFzYGTZ0fQZVDCA99P+8356Z3OC+bU7O+5rn48pA2XN9IaBzejNVnG6afj4XKrRn54TmgdThsoK69xf86Ds3HcArn5cutoO86fecx67JfrM4sMZoN3zOGm89qrufozzMrR2diHTc/GbVFQTOVWaP54eljNGnWgOY1FfKkkJdO4u1VZOT1pYIn5y4ZMvEfLxkkvk4GXyr6BL+eku7BU9Pf9HONSn/mI5OhUydTlRrSk5l2m/ZwTKcF5manT8/l25b0PfTP6CeSlevXVOWzq+X30PeXr1z905VP7l9b/OKm+kb62+K34g8QyV8V18UX4jZEmHsgwwvxV/E38fcVsfLByscrf5Rd33xDYX4jKj8rn/4XWWsmiA==</latexit> dY <latexit sha1_base64="Uu/jGzHimifAQUBslloJGY6wA84=">AABFdnictVzbchy3EYWcm6Pc7OQxVamJaSayS2EoWYnjcqXKEklRtCiJ0i4pyVpJtbM7XI003FntTZc1fyGvyd/kO/IHyVNe85i+AAPMLmYawyicIheDxelu9ACN7gaG8ShLJ9PNzX+ce+873/3e93/w/g/P/+jHP/npzz748OdHk3w27iWHvTzLxw/i7iTJ0mFyOE2nWfJgNE66J3GW3I9fbOH39+fJeJLmw/b0zSh5fNIdDNPjtNedYlVnlG49/WBtc2OTfqLVwiVdWFP65yD/8KMN1VF9lauemqkTlaihmkI5U101geuRuqQ21QjqHqsF1I2hlNL3iTpV5wE7g1YJtOhC7Qv4O4C7R7p2CPdIc0LoHnDJ4HcMyEitAyaHdmMoI7eIvp8RZaytor0gmijbG/iMNa0TqJ2qZ1Ar4UzLUBz2ZaqO1Z+oDyn0aUQ12LuepjIjraDkkdOrKVAYQR2W+/D9GMo9Qho9R4SZUN9Rt136/p/UEmvxvqfbztS/SMp1uCLV0r3PCwpdNSf6ET3NGXzH8mTAeQAUEt1HLL0iXZ9Q74fQfgH1t+E6pZLRSQzXgmpPa5FbcPmQWyJyFy4fcldE7sPlQ+6LyAO4fMgDjUTsmHTux7fg8uFbIue7cPmQd0XkPbh8yHsi8gguH/JIRH4Dlw/5jYi8DpcPeV1E3oTLh7wpIttw+ZBtEXkIlw95KCJ34PIhdzSyeqaO4cqJTirMyqtQLvNAS5FBzVVRvmtkHX3YawFzuleBlWf1Nnz6sdsBOk0qsDsB4+64AiuPvF2wkX6sbItu0Griw94QsXswAvzYPRH7tXpegf06YKa9qMDKc20f2vmxsvW9BXd+7C0RextKfqy8Rt2BGj/2TsCKMarAHojYu+plBTbE6o8rsLLdb4Fd8WPldaoN7f3YEGs6q8DK9vQIPBg/Vl6t7kOtH3tfxD5QryuwD0TsQ7DufuzDgBX2bQXWrLHnaQUZkD+SwIyto9YtZiWWRkCtK/DPirUlI984hnoJMygwA8KciIjdArEbiNgvEPvBck0KOzohf1fm0ioQrUBEXKxNWJqK7ftFeyxlAYjtArG9hKjzSPFZm77MybswNRJyWqxcWArpU17YbywlejzUW16DuFNC8Nh+RiP/IkVLGEGhpuqoPSvWeEZGdF+HeEXRm+ml4SHjpoVVcFGvRVTsQcUi6o0H9UZEzTyomYiae1BzEWVnvovrBIwAq398Fgu64xHAPnL1FYFXcBVWnRswRyMYPwfgBd6jmjvw2aLYW7rqJMNoHtdJzHI8LlniMZQWag3qbVS4TfF1RjMsAcm45R0d4+Md5jYWes6xFT4tVvKoyJiE00lJnkFBB73FiOZTMzo3qeaUvDsuNcPfKOa9KTXD75DGT8mL51Iz/FRLPz2D7G2NbZ8B24LZNNLat+WmNDj/wjRM+Tytumhx8ame6DGD9F43pL+nn8zeGZ7LFpVYP7bcjMbE6d+k1L8mNKyeJ46em1FB74m9XlOKGvdkqONeW24qQ06r6FDLYe+aPhls09dPxpSb0TgAj2uLYu6FU246ekdFb2y5GY0jxXnPU/LkTbkZjQHdsz5suRkNzLZ0dZxvy00tO2qAY2dbbmrVh5QFxhwQj3musV7RmPykmaaWkn9Qn61xff7VdQxzNk+KGKGekvVtq+nExVpWL5HxFxKwatOGcqB/MXN8sDKNhbosxlcsw7S0vq/SsWs8an4ftBjB7Oc9AClnnoGEJieB1jsDipfEqKvcM4O7LOJwlBwvoTq6dip6i5YvZ43KdU+pVorLbG+tHjtkryc09kbkE+6TZiU97Fc+4SqKkob2SxqS6TXR3Vs9X8va3xRxoyXEqBhpPdoR4p20+jjVp/WWo+N1vcszhYv3fOz4xWzzsbY2GPPkZItQljqebjuTR3LrcF29qGyOm7+L6ImivZqT1UhpR2oiRqEmW8ze+ILuLe1D2pNDHkyjB88x0lRGinfNMIuO+fSILKprbyXeqC+ToePyhKyuscf16IGDHnjQzWOcLVgxbkOpDTHDIdy1A6Kc84WuctL4WP2u2B3N6QnWR/RZyUIaGmxvkpKFrIuyn5WovAI0jgaO0sNpLNMx+M4KJTnq98ljY9ey5V+nnVuzv92lMV49mqszMX3iepm4RjRreFeX75Y5sAQL7zeXyX+t7yXya8IRbajE9YnDmfUypB3/hCLYEXnGGc02aXaUW7v5qeVvDKcDZfbOcTc7JwsZkf2LYH3KaUxG9OueHTA76GwRMrKRIXYnLbwbn6+TimPM+nGp4lMNdrwlZMtmxN/QdWfXhMYiRwy8DpwujW2jk33yBRPiOtbW3c7t+tUHkfachDtKmKIdKxeI/yf01/yacbK2MiJQw/gEJtrW+Z5HTjEL6qhLq3y9DTJtXSk/LmR4oqW265+V6eOSZNsUcaE8uFr3gXOP7pkXjpIxyT1ZacPraF02FymPlvSIvT2mKJ7t/kCvwCj3RVol12jOdWiUDGAUTIsowrSVssjLfOt5lamH0Z78X6hbXZe1hhQjZTO4rCEpv59QtOZKmcGo5vH7gmaTX+vjpVb1fIY0Fk+cufwt1P4a/hq5zX0YnbhkFa7RGGAK9s5qhGuilRZhvK6VeJmRaWjZe8vPjknTyq05S3zN1s3G2PPGVA5o1LzWWQtTPguN5w6N54E6bNNeo9WiqTeW6KkYW7T1bmUovybc2g0oz0TKskdmUGmAlG4sFUa1L1KVY3yDeivS2hRpdWG2ursB7pwPQfrn+vLs/rZY3SN1nXybHnlgHL/0aZam5HOZ2vpIjSkg5yvavrqzv0M1yD0mC4qU+RwnzhjederRdVpI+hu9suVk561FMOeWXuk2xsZ2qPzZCvKE5sSE5qVBXKEWiZbflSNaskgbjs8RUea/Sz4V+x31MbPb2j6TqORP2HiTZ5XlxZHCkPQvZd72VqLXPSd+jSgmnGnvOgZazZ8wUmCMyST4PcsJPSFc5XgngT3amOznqp3iXbyhI9EGSb1Qfw6wMRz12rHuji3TY9O3T6Elat0+dV8LmV8WzFHid5YdvS6taifaR10s3Z+NVlevcuX7Oj3MlvhafcyojRtZ2CivjOmoL4O5sETNuDAmhEuzXjSRv5nkTWTm3alQyqa1oVzONLCNeUbxknQOFBE+7+6C15v7ROhHvEIvJqxLjWskSpiNy3V+wLW0mJWKliIkt15akzJnPapaLywPd9WwdpwtZUJWMFNS7oZbu33olKIVORvDFHqKT/ZWxYkuzS/hwr+R8kWJhmNIDrEFfu5VtaV23sGpiJe6zJnNiGrQJvSXYvCu7me5Rb2OXjrUXfohHMJ5pKBrSfqUVtSmsjNlWXKXejj9V2QNxioRpbctm/fB5SL3ZJVTk/6kZOHk3qTKvJPTtC+GQ0hPylzC+fD+htSLY2XebWrWB0Nd7kGZQxMe5jxD2DO3rZvzcjnV62uVSygPXgfMzovB4Q5gdcxi24VYqLHzRN49B7QOxzXUzWrxv/bD8LGcmvMK5Tahd86eBzx1bpfozCz6xc3njOUWMpqrOYbzzIveWa/Jz4/9v6jRk8qd3rx7+uiX2jFgeC0U50Nl6RjvjiIrbygV3B/wyZCrf6u/n5PfSnhZ0KiSowkls19RTc20kKmZNy99vTPfhchk6VTJVKZm44kWnYzdUnvqOvxuFR5g01Oi/E4lfyLW/x5tH2qPyXqYbDpnEDpUl1AWxO6m9enenqOtkhjP9PIZ3zbU4J74PtXied/b1B7P/LZLfat+k4Tn+i2Vq34pMlne5bPzKoYelHfgOBdk3veN6Ew9Z7P4BNpJwB4jn6PiSMm8/bwgRJ/iwmVJF4Qwo6WOcuylHNOZpKSCdlzqW49G+Ejv9OO+A57P7xbZpUj9nuq6enXAlVqS6sAj1SPKDMSk/02I0P6gLsLnRV32S3qwIumEnkFZotfOd/UnwU6948K+zbhOeTCTqZvrdjlF9Xb3sD4Tu13JhU+81+MHNfiBI2WLntYLirvHqj53OKuhOdMyufu5Q2XynqwHjGa7xfioj5/nNbzmAf2/WYm+6Ui6C7LElG2PaD9vTPQyrZsdkp7PVdbnbW/USGve2mSa9mSlHQfmjGQdB3yrbEuY/fzmWf3KgG+Y+em4c/1hwL4L9kSSiE9mStmjJEAiPiMqnV9JvZRkizEKOJ/RDeit3NeQnkpUZqIks4B3o+cBsswD6BwL0hyLFAaiJNpi0f8j+YJ+Ii58fkUXvrhU/D+So8sbl/648dndK2tfXdP/meR99Uv1kboAq/Hn6iuYkQfqkHKNf1F/VX/b/s/Or3bWd37LTd87pzG/UKWfnc3/AqaKXaM=</latexit> ⇡ <latexit sha1_base64="Ov2LTKTmb98Skpojd3G2ltsOy/U=">AAA/eHiczVvbchy3EYWdm8Xc7OQxD5mEViS6FBZFq6K4XIkskRRJayVS4kWyvZayl+FyrOHOamaXErWhvyOvyWs+IV+SP4g+IXlKdwMYYHYx0wDjVJkokhgsTnfj1jfMdkdpUoxXVv751tvf+e73vv+Ddy4t/PBHP/7JT99972eHRTbJe/FBL0uz/Em3U8RpMowPxsk4jZ+M8rhz0k3jx93na/j549M4L5JsuD8+G8VfnnQGw+Qo6XXG0PS0TRSm3XQSn0dnz95dXFleoZ9ovnJdVRaF+tnN3vvlB6It+iITPTERJyIWQzGGeio6ooDyhbguVsQI2r4UU2jLoZbQ57E4FwuAnUCvGHp0oPU5/B3A0xeqdQjPSLMgdA+4pPCbAzISlwGTQb8c6sgtos8nRBlb62hPiSbKdgb/u4rWCbSOxTG0cjjd0x/Xh9YjkA1npnnMY+j3exprAr1H1IKz0FPcJjR7OMLIGv0YKIygDet9+DyHeo+Qej0iwhQ0R7gGHfr8X9QTW/G5p/pOxBsazbdl/r5983I5oERiWzwQa6IlDsS62BB7JG9zWSDcGoxjBHOcg+QDmCGU9ipIswT/V+FMrYibUNsEGbvUJ4axRGIX/p+R/AtK1kjcF7fFvtgi3lehfh9qSwHrxPXUe7ug1fDfNwvMLstpRc4aJRjT+CekAXLxqrEv7p2+Ws0j2g+FOpHNaypncE08EjuN64ech0D/JWmiE5pB5DiF9gHIhDs0BX6oE3Ev/118LRah/rX4h9rHEciVq519TPTkkz/NP0FBmlegnItLRPMApF4oRxnBk1yBrNz9HXFKZyMiTT6Bz+RZSmnvDalX0+geQDmnmt41XShTaj1vRK5BcSHXWOQmFBdyk0W2oLiQLRa5C8WF3FXIJuxDKC7sQ5brIygu5CMWuQ/FhdxnkYdQXMhDFvk5FBfycxZ5F4oLeZdF3oPiQt5jkQdQXMgDFrkBxYXcUMj6s4Z6LSM6CXOubkO9ygPtVAott1n57pCOdWHveJzKXg2WP5fr8N+NXfeY07gGu+Gxe45qsPz+2QQt58by2mSLbKQLu8Vit2EHuLHbLPZT8VUN9lOP8/K8BsufmBbZGxeW15/34cmNvc9iH0DNjeWtzA60uLE7Hjp/VIPdZbEPxYsarI/Wz2uwvN7fI1/Mhd3zsBnjGixvNQ7Ad3BjeX16CD6IG8vbnMfQ6sY+ZrFPyGt0YZ+w2M/IO3VhP/Owk69rsNpSSu99QD5gDCe2iVqnPJVYGwG1DsM/LW0L1tBG9VnMoMQMCHPCIjZLxKYnolUiWt5yFaUeLchj5bnslYg9T0S3tE1YG7P9+2X/PsVmPGK9RKzPIJqiAFxrPZZT8i50C4ccl5YLaz5jykr9jbVY7YdmzasROxWE3NvHtPOvUayOkUyf4tZ6aseljZfIiJ6bEC8p1tOj1Dx43LjUCjbqFYvqOlBdFnXmQJ2xqIkDNWFRpw7UKYsyJ9/GtT12gJl/XIspPenYn8ulVHMXO2BxN8D6YcsO/PfJpTRH5ZgRQEupo2eji3OoTSmSNpHdOsXIMtMQg2Sy547KMeET5ian6tRJPXxe2vJI6IynP52E5BmUdNBfjOhEhdG5Ry3n5N/JWhh+qzz5uhaG36AZPyc/XtbC8GMl/fgCsu8r7P4FsHtwnkZq9k09lIbMoUgaus7p5u1Sb2K+8hWdHNkWyn+NanIOTD2MRmGNoaiMIYSGmcvCmsswKugjSd9W16LgkQxVdGvqoTJkZCuHSg7zFLoy2KevVkbXw2jsgl+1RpH11KqH7tBRORpTD6NxKGRu/Zz8dV0PozGgZzkfph5GA3MqHRXNm3qo9sYZkBGyqWufJScvRmecE7LezbkU2yOftzGYUXlaevDNlIznWU+nW9qZZolmtUuIHGj9J5aHVKUxFats9CNlGFds7zwdY39x5lswixGcWpnX53LSKUioMwYxZcmfErVmTHVkGrfK4lCTHM2g2qp1zPpyhq/M6VTbnlErFzWZ0Zp5bJOeLWjvjchja9HMcvPQql3hOorcDLUqM8TTC5m713SCs5nZX2FxoxnEqNxpPbodkrfUzVGka9b3rDm+rG5RxlDknYrZv5gLPiJcThFJRtoGZWniaffTWR67De3hNWEy0PKziFYU9dUpaY2EbnwK1g/RuVzpKU/p2dA+oHu26q1VpKiMhLxRxRw3Zrsjus+0dS3HG+dL589kvSCta+7Rm2/HDHrgQIdGH2tgKx5AbR+8+QN42veIP8ydW0bznYvflvefGa1fc7Rt3+y1SxpS28QV/dgUAR9XqLwENO4FGUH705ilo/HtOUp8RO6Sx8SVVb1/me709ZsjHdrh9Xu5PkvSJ66rxDWiMyPv++XTLAcpwdT5ySp5nc2jRH4hHFGDclyfWpzlvAzpXZqYYssR+bMpnTXubFR727mj2U80p12h36rAu+KM9GNE2i8C65TRnozo134rR79bIfVBShrSR+skpW/j8nQSdo8ldMrlHpHvC5n9FpMmmxB/Tdc+XQXtRennSytwPrO39Zy0yBOMiWuudLs52822B5HmTQh7l0iKZq9cJf5L9Ff/6n2yOLcjcIZxBQql6VzrkVGkgXPUIRvfrIN0X1vK90sZniqpjfUzMr1fkWyd4iSUB211Hzj36Fnywl2Sk9zFXB9pRZsyrUh5NDOPOFq0rm2l9QfK/qLc18hGLtKZawvzho32/XVfLsM7y7eZV5W6H+3i/0LdzHV11pBiJEx2Vc4Ql3uPKcaypUzpnST59k2sKM3Pej7Tq5nPkPbiiXWW/wytv4K/Wm797EenW9EKd2gPSArmycyIbInmevjxulPhpXempmWeDT+zJ3Uvu+UiUbHUbiYyPg2msku75pXKNei6z/j36Q7PzIBu11rk2YwHva/u/Hyph9H2pzxhKfO+k0YlHlLaMY8f1T5LlY/FNeo1S2uFpYVv49kZdft02rbzLvkOPfJwZHTQp1OQkE+jW5vjIEkBed1Q+ss+XW1qwbPUJQ2FlKtvFWLurifkO6RSxt8oy5GRHjUnTr+z81L10TqsTfUP55AnFM0WdHY04gb1iJX8thzRzIlftmx6RDnvDvks0q43R6R2b7MKUcVem2hOngXDKxVXlDc+pDUYizeN3Lbn4sNtK0KMhLzvS0sPHlf5TdAqY9wmd4aO1d3eW0GrhJYkp3heeo1d0lHzWQZ5izWE2df7bpmknoo/eGgHGVeak2LvL/xsoqISHNsH0BNn3qy8qwfPL/XmyPG7yH1WhyzHifIDpzPPF6PVUZak+tw0D5MZvmY+JmKoYkLtvZtIqoppi4+9uUiJwrhIjA+XsFGEyB8meYjM8t7Gl7LurSlXo3mpY44pJuHeg0SEy4O66vSYlphxdOfodQlrU5MtHCXMd2UqBre1LWZ+Ls3ZItl6qdEipZY1qrMWmrptMYwOlxoyJu2XCi4vInv3hHwftS6CsmODj6Hg30i44idtTXyya3vgReJ79X7fimi+yX+h6jLjF1ELnuT+THTaUeOs9mhe5RcWdZu+Dwd/HgnMNSd9QnYwVHZJmZfcpu5P/yWd4VzErPSmZ/gYbC78SOY5hYwnIb3EjyYR+ntMoWPRHHxGUuXiz0fm/blRHAn9fbqwMWjq/AiqHEJ46Pt5vzU3vcN52Zya52ueiy8PqcP1jYTG4c1YfbRh+vloqNxakW+eA2qHowbq2lr8r+PQfAyncF6+3Ar6rtNXHqsu+8UqZ4nebPiZMdx8dnM9R3+eWTk64+u4+UmvLQpaqcwazTdPH71Jswc0r6mQmUJeOom3d5GR15cKZs5dMmTi314ySHydDL5UdAa/npLuwVPT3/RzjUp/5iOToVMnU5Ua0pORdpvOcEzZAnOz06fn8m1L+h76R/QTycrNG6ry0fXye+iHq8vXf7f84cMbi5/cUd9If0f8QvwaPPnr4qb4RGyBh3lA2e6/iL+Kv/3xP7eiW1duLcmub7+lMD8XlZ9bq/8FWlgltg==</latexit> y <latexit sha1_base64="LvFcuviAqZAdjSTE/PqtKDzG1pU=">AAA/e3iczVvbchy3EYXtXCzmYtl5zEMmoRVdSmGRtBLF5UpkiaQoWiuREi+S7bWUvQyXYw13VjO7lKgN/SN5TZ7yCfmS/EH0CXlIVbobwACzi5kGFKfKRJHEYHG6Gw2gL8Bsd5QmxXh5+Z9vvf3O977/gx++e27hRz/+yU/fO//+BwdFNsl78X4vS7P8cbdTxGkyjPfHyTiNH4/yuHPcTeNH3Wdr+Pmjkzgvkmy4Nz4dxV8ddwbD5DDpdcbQ9PT8e22iMe2mk/gsOr349Pzi8tIy/UTzlRVVWRTqZyd7/xdXRFv0RSZ6YiKORSyGYgz1VHREAeVLsSKWxQjavhJTaMuhltDnsTgTC4CdQK8YenSg9Rn8HcDTl6p1CM9IsyB0D7ik8JsDMhIXAJNBvxzqyC2izydEGVvraE+JJsp2Cv+7itYxtI7FEbRyON3TH9eH1kOQDTXTPOYx9Ps9jTWB3iNqQS30FLcJaQ9HGFmjHwOFEbRhvQ+f51DvEVLPR0SYgnSEc9Chz/9FPbEVn3uq70S8ptF8V/T33dPLhYASiS1xX6yJltgX62JD7JK8zWWBcGswjhHoOAfJB6AhlPYSSHMZ/q/CnloW16G2CTJ2qU8MY4nEDvw/JfkXlKyRuCduij1xh3hfgvo9qF0OmCeup17bBc2G/7pZYFZZTjNy2ijBmMY/IQuQi5eNfXHt9NVsHtJ6KNSObJ5TqcE18VBsN84fch4C/RdkiY5Jg8hxCu0DkAlXaAr80CbiWv67+EYsQv0b8Q+1jiOQK1cr+4joySd/mn+CgjQvQjkT54jmPki9UI4ygic5A1m5+jvihPZGRJZ8Ap/JvZTS2htSr6bR3YdyRjW9arpQptR61ohcg+JCrrHITSgu5CaLbEFxIVsscgeKC7mjkE3YB1Bc2Acs14dQXMiHLHIPigu5xyIPoLiQByzyCygu5Bcs8jYUF/I2i7wLxYW8yyL3obiQ+yxyA4oLuaGQ9XsN7VpGdBJmX92EepUH+qkUWm6y8t0iG+vC3vLYlb0aLL8v1+G/G7vuodO4BrvhsXoOa7D8+tkEK+fG8tbkDvlIF/YOi92CFeDGbrHYz8TXNdjPPPbLsxosv2Na5G9cWN5+3oMnN/Yei70PNTeW9zLb0OLGbnvY/FENdofFPhDPa7A+Vj+vwfJ2f5diMRd218NnjGuwvNfYh9jBjeXt6QHEIG4s73MeQasb+4jFPqao0YV9zGI/p+jUhf3cw0++qsFqTymj9wHFgDHs2CZqnXJXYm0E1DoM/7T0LVhDH9VnMYMSMyDMMYvYLBGbnohWiWh5y1WUdrSgiJXnslsidj0R3dI3YW3M9u+X/fuUm/GI9RKxPoNoygJwrvVYTii60C0cclx6Lqz5jCkr7TfWYrUemi2vRmxXEHJtH9HKv0q5OmYyfcpb66kdlT5eIiN6bkK8oFxPj1Lz4HHj0irYqJcsqutAdVnUqQN1yqImDtSERZ04UCcsyux8G9f2WAFG/zgXU3rSuT93llI9u9gGj7sB3g9btuG/z1lKc1aOJwLoKXX2bGxxDrUpZdIms1unHFmeNMQgmey5rc6Y8AnPJqdq10k7fFb68kjoE09/OgnJMyjpYLwY0Y4Ko3OXWs4ovpO1MPydcufrWhh+gzR+RnG8rIXhx0r68RvIvqewe2+A3YX9NFLaN/VQGvIMRdLQdc42b5V2E88rX9LOkW2h/NeoJnVg6mE0CmsMRWUMITSMLgtLl2FUMEaSsa2uRcEjGars1tRDZcjIVw6VHOYpdGawT1/NjK6H0diBuGqNMuupVQ9doaNyNKYeRuNAyLP1M4rXdT2MxoCepT5MPYwGnql0VDZv6qHWGzUgM2RT1zFLTlGMPnFOyHs3n6XYEfm8j8ETlSdlBN9MyUSe9XS6pZ9plmjWuoTIgd5/YkVIVRpTscpmP1KGccX3ztMx/hc13wItRrBr5bk+dyadgoT6xCCmU/InRK0ZUx2Zxq2yOLQkhzOotmods7Gc4SvPdKptT6mVy5rMaI0e22RnC1p7I4rYWqRZTg+t2hmuo8hpqFXREE8vRHevaAdnM9pfZnGjGcSoXGk9uh2St9TNWaRL67uWji+oW5QxFHmnYtYvngUfEi6njCQja4OyNPG0++lTHrsN/eFVYU6g5WcRzSjaqxOyGgnd+BRsHKLPcmWkPKVnQ3uf7tmqt1aRojIS8kYVz7jxtDui+0zb1nK8UV/6/EzWC7K65h69+XbMoAcOdGj2sQa+4j7U9iCa34enPY/8w9y5ZaTvXPymvP/MaP6as237Zq9d0pDWJq7Yx6YM+KhC5QWgcS3IDNqfxiwdjW/PUeIzcpc8Jq+s2v0LdKev3xzp0AqvX8v1pyR94rpKXCPaM/K+Xz7NcpASTJ2frFLU2TxK5BfCES0ox/WJxVnqZUjv0sSUW44onk1pr3F7o9rbPjua/URz2hH6rQq8K87IPkZk/SLwThmtyYh+7bdy9LsV0h6kZCF9rE5SxjauSCdh11hCu1yuEfm+kFlvMVmyCfHXdO3dVdBalHG+9AJnM2tb66RFkWBMXHNl283ebvY9iDRvQtirRFI0a+US8b9Mf/WvXieLcysCNYwzUChL55qPjDIN1FGHfHyzDdJ9bSk/LGV4oqQ23s/I9GFFsnXKk1Ae9NV94NyjZ8kLV0lOchdzfaQXbTppRcqjGT3iaNG7tpXVHyj/i3JfJR+5SHuuLcwbNjr21325E95Zvs28qtT9aBf/F+pG11WtIcVImNNVqSHu7D2mHMuWMqV3kuTbN7GiNK/1fKZXM58hrcVjay//GVp/CX+13PrZj063YhVu0RqQFMyT0YhsieZ6+PG6VeGlV6amZZ4NP7MmdS+75U2yYmndTGZ8Ekxlh1bNS3XWoOs+49+jOzyjAd2urcjTmQh6T935+VIPo+1PecJS5mMnjUo8pLRzHj+qfZYqn4tr1CuW1jJLC9/Gs0/U7d1p+87bFDv0KMKR2UGfdkFCMY1ubc6DJAXkdU3ZL3t3takF91KXLBRSrr5ViGd3PSHfIZUy/lp5jozsqNlx+p2dF6qPtmFtqn80hzymbLagvaMR16hHrOS35YhmdvyS5dMjOvPuUMwi/XpzRmr3NrMQVfy1yebkXjC8UnFRReNDmoOxeN3IbWsuP9yyMsRIyPu+tIzgcZZfB80y5m1yZehc3R29FTRL6Elyyudl1NglGzV/yiBvsYagfb3ulkjqqfiDh3WQeaXZKfb6ws8mKivBsV2Bnqh5M/OuHjy/1Jsjx+9N7rM65DmOVRw4nXl+M1od5Umqz016mMzwNfqYiKHKCXX0bjKpKqYtPvHmIiUK4yIxPlzCRhEif5jkITLLextfyrq3plzN5qWNOaKchHsPEhGuCOqSM2K6zIyjO0evS1ibmmzhKOF5V6ZycNva4snPuTlfJFvPNXqk1PJGdd5CU7c9hrHh0kLGZP1SwZ2LyN49Id9Hrcug7NzgEyj4NxKu/El7E5/TtV2IIvG9er9vRTTf5D9XdXniF1EL7uT+THbaUeOs9mie5ecWdZu+Dwd/HgnompM+IT8YKrukzEtuU/en/4L2cC5iVnrTM3wMNhd+JPOcQsaTkF3iR5MI/T2m0LFoDj4jqXLx5yPP/blRHAr9fbqwMWjq/AiqHEJ46Pt5vzk3vcN52Zya9TXPxZeHtOH6RkLj8GasPtsw/XwsVG7NyLfPAa3DYQN17S3+13FoPoZTOC9fbgV91+lrj1mX/WJ1ZonRbPieMdx8VnM9R3+eWTk6E+u4+cmoLQqaqcwazbdPH6NJswY0r6mQJ4W8dBJvryIjry8VPDl3yZCJf3vJIPF1MvhS0Sf49ZR0D56a/qafa1T6Mx+ZDJ06marUkJ7MtNu0h2M6LTA3O316Lt+2pO+hf0w/kaxcv6YqH6+U30M/WF1a+d3SRw+uLX56S30j/V3xc/EriORXxHXxqbgDEea+wG+m/0X8Vfztj/+5sXjjyo2rsuvbbynMz0Tl58Zv/wtIPiYY</latexit> y0 <latexit sha1_base64="P6ma5GbrGzlp3Azs8/N4GutUeUg=">AAA/d3iczVtZcxy3EYady2Iu23nMgyehZUsuhUXSqiguVyKLh0haK5ESD8n2Ssoew+VYy53VzC4Pbei/kdfkOT8hvyT/IPoJfkt3AxhgdjHTAGNXmSiSGCy+7kYD6AOYbQ/7ST5aXPzPG2/+6Mc/+enP3roy9/Nf/PJXv377nXcP8nScdeL9TtpPsyftVh73k0G8P0pG/fjJMItbx+1+/Lj9YhU/f3wSZ3mSDvZG58P46XGrN0gOk05rBE1Pm0RhksXdi+js+dvziwuL9BPNVpZUZV6on530nfc+Ek3RFanoiLE4FrEYiBHU+6IlcihfiSWxKIbQ9lRMoC2DWkKfx+JCzAF2DL1i6NGC1hfwtwdPX6nWATwjzZzQHeDSh98MkJG4CpgU+mVQR24RfT4mythaRXtCNFG2c/jfVrSOoXUkjqCVw+me/rgutB6CbKiZ+jGPoN+faKwJ9B5SC2qho7iNSXs4wsga/QgoDKEN6134PIN6h5B6PiLC5KQjnIMWff5f6omt+NxRfcfiNY3mh6K/H55ergaUSGyJB2JVNMS+WBPrYpfkrS9zhFuFcQxBxxlI3gMNobTXQJrr8H8Z9tSiuAW1DZCxTX1iGEskduD/Ock/p2SNxH1xR+yJTeJ9Der3oXY9YJ64nnpt5zQb/utmjlllGc3Iea0EIxr/mCxAJs5q++La6arZPKT1kKsdWT+nUoOr4pHYrp0/5DwA+qdkiY5Jg8hxAu09kAlXaB/4oU3Etfwv8Y2Yh/o34t9qHUcgV6ZW9hHRk0/+NP8KBWl+COVCXCGa+yD1XDHKCJ7kDKTF6m+JE9obEVnyMXwm91Kf1t6AetWN7gGUC6rpVdOGMqHWi1rkKhQXcpVFbkBxITdYZAOKC9lgkTtQXMgdhazDPoTiwj5kuT6C4kI+YpF7UFzIPRZ5AMWFPGCRX0JxIb9kkXehuJB3WeQ9KC7kPRa5D8WF3GeR61BcyHWFrN5raNdSopMw++oO1Ms80E/1oeUOK98K2VgXdsVjV3YqsPy+XIP/buyah07jCuy6x+o5rMDy62cDrJwby1uTTfKRLuwmi92CFeDGbrHYz8XXFdjPPfbLiwosv2Ma5G9cWN5+3ocnN/Y+i30ANTeW9zLb0OLGbnvY/GEFdofFPhQvK7A+Vj+rwPJ2f5diMRd218NnjCqwvNfYh9jBjeXt6QHEIG4s73MeQ6sb+5jFPqGo0YV9wmK/oOjUhf3Cw0++qsBqTymj9x7FgDHs2DpqrWJXYm0I1FoM/37hW7CGPqrLYnoFpkeYYxaxUSA2PBGNAtHwlisv7GhOESvPZbdA7Hoi2oVvwtqI7d8t+ncpN+MRawVibQpRlwXgXOuxnFB0oVs45KjwXFjzGVNa2G+sxWo91FtejdguIeTaPqKVf4NydcxkupS3VlM7Kny8REb0XIc4pVxPj1Lz4HGjwirYqDMW1Xag2izq3IE6Z1FjB2rMok4cqBMWZXa+jWt6rACjf5yLCT3p3J87SymfXWyDx10H74ct2/Df5yylPivHEwH0lDp7NrY4g9qEMmmT2a1RjixPGmKQTPbcVmdM+IRnkxO166Qdvih8eST0iac/nYTk6RV0MF6MaEeF0blHLRcU38laGH6z2Pm6FoZfJ41fUBwva2H4kZJ+dAnZ9xR27xLYXdhPQ6V9Uw+lIc9QJA1d52zzVmE38bzyjHaObAvlv0o1qQNTD6ORW2PIS2MIoWF0mVu6DKOCMZKMbXUtCh7JQGW3ph4qQ0q+cqDkME+hM4N9umpmdD2Mxg7EVauUWU+seugKHRajMfUwGgdCnq1fULyu62E0evQs9WHqYTTwTKWlsnlTD7XeqAGZIZu6jlkyimL0iXNC3rv+LMWOyGd9DJ6oPCsi+HpKJvKsptMu/Ey9RNPWJUQO9P5jK0Iq05iIZTb7kTKMSr53lo7xv6j5Bmgxgl0rz/W5M+k+SKhPDGI6JX9G1Oox5ZFp3DKLQ0tyOIVqqtYRG8sZvvJMp9z2nFq5rMmM1uixSXY2p7U3pIitQZrl9NConOEqipyGGiUN8fRCdPeKdnA6pf1FFjecQgyLldah2yF5S12fRbq0vmvp+Kq6RRlBkXcqZv3iWfAh4TLKSFKyNihLHU+7nz7lsdvQH94Q5gRafhbRjKK9OiGrkdCNT87GIfosV0bKE3o2tPfpnq18axUpKkMhb1TxjBtPuyO6z7RtLccb9aXPz2Q9J6tr7tHrb8cMuudAh2Yfq+ArHkBtD6L5fXja88g/zJ1bSvrOxB+K+8+U5q8+27Zv9poFDWlt4pJ9rMuAj0pUTgGNa0Fm0P40pulofHOGEp+Ru+QxeWXZ7l+lO3395kiLVnj1Wq4+JekS12XiGtGekff98mmag5Rg4vxkmaLO+lEivxCOaEE5rs8szlIvA3qXJqbcckjxbJ/2Grc3yr3ts6PpTzSnHaHfqsC74pTsY0TWLwLvlNKajOjXfitHv1sh7UGfLKSP1UmK2MYV6STsGktol8s1It8XMustJks2Jv6arr27clqLMs6XXuBiam1rnTQoEoyJa6Zsu9nb9b4HkeZNCHuVSIpmrVwj/tfpr/7V62R+ZkWghnEGcmXpXPORUqaBOmqRj6+3QbqvLeX7hQzPlNTG+xmZ3i9JtkZ5EsqDvroLnDv0LHnhKslI7nymj/SidSetSHk4pUccLXrXprL6PeV/Ue4b5CPnac81hXnDRsf+ui93wjvNt55Xmbof7fx7oW50XdYaUoyEOV2VGuLO3mPKsWwp+/ROknz7JlaUZrWeTfWq5zOgtXhs7eW/Qevv4K+WWz/70WmXrMIKrQFJwTwZjciWaKaHH6+VEi+9MjUt82z4mTWpe9ktl8mKpXUzmfFJMJUdWjVn6qxB133Gv0d3eEYDul1bkedTEfSeuvPzpR5G25/ymKXMx04alXhIaec8flS7LFU+F9eoVyytRZYWvo1nn6jbu9P2nXcpduhQhCOzgy7tgoRiGt1anwdJCsjrprJf9u5qUgvupTZZKKRcfqsQz+46Qr5DKmX8QHmOlOyo2XH6nZ1T1UfbsCbVP55BHlM2m9Pe0Yib1CNW8ttyRFM7fsHy6RGdebcoZpF+vT4jtXubWYhK/tpkc3IvGF598aGKxgc0ByPxupbb1kx+uGVliJGQ9339IoLHWX4dNMuYt8mVoXN1d/SW0yyhJ8kon5dRY5ts1Owpg7zFGoD29bpbIKkn4s8e1kHmlWan2OsLPxurrATH9hH0RM2bmXf14Pn1vTly/C5zn9Uiz3Gs4sDJ1PPlaLWUJyk/1+lhPMXX6GMsBion1NG7yaTKmKb41JuLlCiMi8T4cAkbRYj8YZKHyCzvbXwp696acjmblzbmiHIS7j1IRLgiqGvOiOk6M472DL02YW1qsoWjhOddqcrBbWuLJz9XZnyRbL1S65H6ljeq8haauu0xjA2XFjIm69cX3LmI7N0R8n3UqgzKzg0+hYJ/I+HKn7Q38Tld24UoEt+r9/tWRP1N/ktVlyd+EbXgTu5OZactNc5yj/pZfmlRt+n7cPDnkYCuOekT8oOhskvKvOQ2dX/6p7SHMxGz0pue4WOwufAjmeUUMp6E7BI/mkTo7zGFjkVz8BlJmYs/H3nuz43iUOjv04WNQVPnR1DmEMJD38/7zbnpHc7L5lSvr1kuvjykDdc3EhqHN2PV2Ybp52OhMmtGvnsOaB0Oa6hrb/H/jkPzMZzCeflyy+m7Tl97zLrsF6szS4xmw/eM4eazmqs5+vNMi9GZWMfNT0ZtUdBMpdZovnv6GE2aNaB5TYQ8KeSlk3h7FRl5fangyblLhlR86yWDxFfJ4EtFn+BXU9I9eGr6m36uUenPfGQydKpkKlNDejLTbtIejum0wNzsdOm5eNuSvof+Cf1EsnLrpqp8slR8D/1geWHpjwsfP7w5/9mK+kb6W+K34vcQyS+JW+IzsQkR5j5J+XfxD/HPv3x7+73bH9y+Jru++YbC/EaUfm4v/Q/bzCU+</latexit> x <latexit sha1_base64="lu4TI7OEyJXvtBBsg9Av3iRYKnI=">AAA/eHiczVtZcxy3EYady2IuO3nMQyahFYkuhUXSqiguVyKLhyhaK5ESD8n2msoew+VYy53VzC4PbejfkdfkNT8hvyT/IPoJyVO6G8AAs4uZBhinykSRxGDxdTeuvjDbHvaTfLS09M+33v7Od7/3/R+8c23uhz/68U9++u57PzvI03HWifc7aT/NnrdbedxPBvH+KBn14+fDLG6dtPvxs/bLNfz82Wmc5Uk62BtdDOMvT1q9QXKUdFojaDpsEoVJFncvo/MbL96dX1pcop9otrKsKvNC/eyk7/3yA9EUXZGKjhiLExGLgRhBvS9aIofyhVgWS2IIbV+KCbRlUEvo81hcijnAjqFXDD1a0PoS/vbg6QvVOoBnpJkTugNc+vCbATIS1wGTQr8M6sgtos/HRBlbq2hPiCbKdgH/24rWCbSOxDG0cjjd0x/XhdYjkA1npn7MI+j3exprAr2H1IKz0FHcxjR7OMLIGv0IKAyhDetd+DyDeoeQej0iwuQ0R7gGLfr8X9QTW/G5o/qOxRsazbdl/r5983I9oERiSzwWa6Ih9sW62BC7JG99mSPcGoxjCHOcgeQ9mCGU9iZIswD/V+BMLYk7UNsEGdvUJ4axRGIH/l+Q/HNK1kg8EvfEnnhAvG9C/RHUFgLWieup93ZOq+G/b+aYXZbRilzUSjCi8Y9JA2TivLYv7p2uWs0j2g+5OpH1aypncE08Fdu164ecB0D/jDTRCc0gcpxAew9kwh3aB36oE3Ev/118Leah/rX4h9rHEciVqZ19TPTkkz/NP0FBmjegXIprRHMfpJ4rRhnBk1yBtNj9LXFKZyMiTT6Gz+RZ6tPeG1CvutE9hnJJNb1r2lAm1HpZi1yD4kKuschNKC7kJotsQHEhGyxyB4oLuaOQddgnUFzYJyzXp1BcyKcscg+KC7nHIg+guJAHLPJzKC7k5yzyPhQX8j6LfAjFhXzIIvehuJD7LHIDigu5oZDVZw31Wkp0EuZc3YN6mQfaqT603GPlWyUd68KuepzKTgWWP5fr8N+NXfeY07gCu+Gxe44qsPz+2QQt58by2uQB2UgX9gGL3YId4MZusdhPxVcV2E89zsvLCix/Yhpkb1xYXn8+gic39hGLfQw1N5a3MtvQ4sZue+j8YQV2h8U+Ea8qsD5aP6vA8np/l3wxF3bXw2aMKrC81dgH38GN5fXpAfggbixvc55Bqxv7jMU+J6/RhX3OYj8j79SF/czDTr6uwGpLKb33HvmAMZzYOmqt4lRibQjUWgz/fmFbsIY2qstiegWmR5gTFrFZIDY9EY0C0fCWKy/0aE4eK89lt0DseiLahW3C2ojt3y36dyk24xHrBWJ9ClEXBeBa67GcknehWzjkqLBcWPMZU1rob6zFaj/Ua16N2C4h5N4+pp1/i2J1jGS6FLdWUzsubLxERvRchzijWE+PUvPgcaNCK9iocxbVdqDaLOrCgbpgUWMHasyiTh2oUxZlTr6Na3rsADP/uBYTetKxP5dLKecutsHiboD1w5Zt+O+TS6mPyjEjgJZSR89GF2dQm1AkbSK7dYqRZaYhBslkz22VY8InzE1O1KmTeviysOWR0BlPfzoJydMr6KC/GNGJCqPzkFouyb+TtTD8g+Lk61oYfoNm/JL8eFkLw4+U9KMryL6nsHtXwO7CeRqq2Tf1UBoyhyJp6Dqnm7cKvYn5ynM6ObItlP8a1eQcmHoYjdwaQ14aQwgNM5e5NZdhVNBHkr6trkXBIxmo6NbUQ2VIyVYOlBzmKXRlsE9XrYyuh9HYAb9qjSLriVUP3aHDYjSmHkbjQMjc+iX567oeRqNHz3I+TD2MBuZUWiqaN/VQ7Y0zICNkU9c+S0ZejM44J2S963Mptkc+a2Mwo3JYePD1lIznWU2nXdiZeommtUuIHGj9x5aHVKYxESts9CNlGJVs7ywdY39x5hswixGcWpnX53LSfZBQZwxiypIfErV6THlkGrfC4lCTHE2hmqp1xPpyhq/M6ZTbXlArFzWZ0Zp5bJKezWnvDclja9DMcvPQqFzhKorcDDVKM8TTC5m713SC06nZX2JxwynEsNhpHbodkrfU9VGka9Z3rTm+rm5RRlDknYrZv5gLPiJcRhFJStoGZanjaffTWR67De3hLWEy0PKziFYU9dUpaY2Ebnxy1g/RuVzpKU/o2dDep3u28q1VpKgMhbxRxRw3Zrsjus+0dS3HG+dL589kPSeta+7R62/HDLrnQIdGH2tgKx5DbQ+8+X142vOIP8ydW0rznYnfFvefKa1ffbRt3+w1CxpS28Ql/VgXAR+XqJwBGveCjKD9aUzT0fjmDCU+InfJY+LKst6/Tnf6+s2RFu3w6r1cnSXpEtcV4hrRmZH3/fJpmoOUYOL8ZIW8zvpRIr8QjqhBOa6HFmc5LwN6lyam2HJI/myfzhp3Nsq97dzR9Cea047Qb1XgXXFK+jEi7ReBdUppT0b0a7+Vo9+tkPqgTxrSR+skhW/j8nQSdo8ldMrlHpHvC5n9FpMmGxN/Tdc+XTntRennSytwObW39Zw0yBOMiWumdLs52/W2B5HmTQh7l0iKZq/cJP4L9Ff/6n0yP7MjcIZxBXKl6VzrkVKkgXPUIhtfr4N0X1vK9wsZDpXUxvoZmd4vSbZOcRLKg7a6C5w79Cx54S7JSO58po+0onWZVqQ8nJpHHC1a16bS+j1lf1HuW2Qj5+nMNYV5w0b7/rovl+Gd5lvPq0zdj3b+f6Fu5ro8a0gxEia7KmeIy73HFGPZUvbpnST59k2sKM3OejbVq57PgPbiiXWW/wytv4K/Wm797EenXdIKq7QHJAXzZGZEtkQzPfx4rZZ46Z2paZlnw8/sSd3LbrlKVCy1m4mMT4Op7NCuOVe5Bl33Gf8e3eGZGdDtWou8mPKg99Sdny/1MNr+lMcsZd530qjEQ0o75vGj2mWp8rG4Rr1maS2xtPBtPDujbp9O23beJ9+hQx6OjA66dAoS8ml0a30cJCkgr9tKf9mnq0kteJbapKGQcvmtQszddYR8h1TK+BtlOVLSo+bE6Xd2zlQfrcOaVP9wBnlC0WxOZ0cjblOPWMlvyxFNnfhFy6ZHlPNukc8i7Xp9RGr3NqsQley1iebkWTC8+uKG8sYHtAYj8aaW29ZMfLhlRYiRkPd9/cKDx1V+E7TKGLfJnaFjdbf3ltMqoSXJKJ6XXmObdNRslkHeYg1g9vW+WySpJ+IPHtpBxpXmpNj7Cz8bq6gEx/YB9MSZNyvv6sHz63tz5Phd5T6rRZbjRPmBk6nnq9FqKUtSfq6bh/EUXzMfYzFQMaH23k0kVcY0xcfeXKREYVwkxodL2ChC5A+TPERmeW/jS1n31pTL0bzUMccUk3DvQSLC5UHddHpMC8w42jP02oS1qckWjhLmu1IVg9vaFjM/12ZskWy9VmuR+pY1qrIWmrptMYwOlxoyJu3XF1xeRPbuCPk+alUEZccGH0PBv5FwxU/amvhk13bBi8T36v2+FVF/k/9K1WXGL6IWPMndqei0pcZZ7lG/yq8s6jZ9Hw7+PBKYa076hOxgqOySMi+5Td2f/hmd4UzErPSmZ/gYbC78SGY5hYwnIb3EjyYR+ntMoWPRHHxGUubiz0fm/blRHAn9fbqwMWjq/AjKHEJ46Pt5vzU3vcN52Zzq52uWiy8PqcP1jYTG4c1YdbRh+vloqMxakW+eA2qHoxrq2lr8r+PQfAyncF6+3HL6rtNXHqsu+8UqZ4nebPiZMdx8dnM1R3+eaTE64+u4+UmvLQpaqdQazTdPH71Jswc0r4mQmUJeOom3d5GR15cKZs5dMqTi314ySHyVDL5UdAa/mpLuwVPT3/RzjUp/5iOToVMlU5ka0pORdpPOcEzZAnOz06Xn4m1L+h76R/QTycqd26ry0XLxPfSDlcXl3y1++OT2/Cer6hvp74hfiF+DJ78s7ohPxAPwMPcp2/0X8Vfxtz/+525098bdBdn17bcU5uei9HN35b/eOCVv</latexit> x0 Quadratic minimization: Proposition: John Toland Guillaume Carlier If dX (x, x′  ) = ∥x − x′  ∥, dY (y, y′  ) = ∥y − y′  ∥, 0 ≤ p ≤ 2, inf π1 =α,π2 =β ⟨Qπ, π⟩ = inf c Wc (α, β) + ∥c∥2 * (Sobolev norm) ∥c∥2 * := (− 𝒬 )*(c) Proposition: then is concave, and let 𝒬 (Toland duality) Then
  25. Gromov-Wasserstein as Metric Learning inf π1 =α,π2 =β 𝒬 (π)

    := ⟨Qπ, π⟩ local minimizer π⋆ ⟺ Q(π)(x, y) := ∫ |dX (x, x′  )p − dY (y, y′  )p |2 dπ(x′  , y′  ) π⋆ ∈ argmin π1 =α,π2 =β ∫ c⋆dπ c⋆ = Qπ⋆ X <latexit sha1_base64="/59ZCDJZPBrZfCS8zgReJB0hTeY=">AABFdnictVxfcxPJER8u/y7kH5c8piq1OR8JlyKOTUglVVepOrCN8WHAINnAIaC00loI1lqhlYRB56+Q1+Tb5HPkGyRPec1j+s/Mzqw0uz3rELZsz87Or7und6anu2eWeJwO8+nGxj8ufPStb3/nu9/7+PsXf/DDH/34J5c++elRns0mveSwl6XZ5HHczZN0OEoOp8NpmjweT5LuSZwmj+LXW/j80TyZ5MNs1J6+GyfPTrqD0fB42OtOsarz+HTrxaW1jfUN+hetFjZ1YU3pfwfZJ5+uq47qq0z11EydqESN1BTKqeqqHK6nalNtqDHUPVMLqJtAaUjPE3WmLgJ2Bq0SaNGF2tfwewB3T3XtCO6RZk7oHnBJ4WcCyEhdBkwG7SZQRm4RPZ8RZaytor0gmijbO/gba1onUDtVL6FWwpmWoTjsy1Qdqz9RH4bQpzHVYO96msqMtIKSR06vpkBhDHVY7sPzCZR7hDR6jgiTU99Rt116/k9qibV439NtZ+pfJOVluCLV0r3PCgpdNSf6Eb3NGTxjeVLgPAAKie4jlt6Srk+o9yNov4D6e3CdUcnoJIZrQbVntcgtuHzILRG5C5cPuSsi9+HyIfdF5AFcPuSBRiJ2Qjr341tw+fAtkfMDuHzIByLyIVw+5EMReQSXD3kkIr+Gy4f8WkTegsuHvCUi78DlQ94RkW24fMi2iDyEy4c8FJE7cPmQOxpZPVMncGVEZyjMyhtQLvNAS5FCzQ1RvptkHX3YmwFzuleBlWf1Nvz1Y7cDdJpUYHcCxt1xBVYeebtgI/1Y2RbdptXEh70tYvdgBPixeyL2K/WqAvtVwEx7XYGV59o+tPNjZet7F+782Lsi9h6U/Fh5jboPNX7s/YAVY1yBPRCxD9SbCmyI1Z9UYGW73wK74sfK61Qb2vuxIdZ0VoGV7ekReDB+rLxaPYJaP/aRiH2sTiuwj0XsE7DufuyTgBX2fQXWrLEXaQUZkD+SwIyto9YtZiWWxkCtK/BPi7UlJd84hnoJMygwA8KciIjdArEbiNgvEPvBcuWFHc3J35W5tApEKxARF2sTlqZi+37RHktpAGK7QGwvIeo8UnzXpi9z8i5MjYScFisXlkL6lBX2G0uJHg/1ltcg7pcQPLZf0si/StESRlCoqTpqL4s1npER3dch3lL0ZnppeMi4aWEVXNSpiIo9qFhEvfOg3omomQc1E1FzD2ououzMd3GdgBFg9Y/vYkF3PALYR66+IvAKbsCqcxvmaATj5wC8wIdUcx/+tij2lq46yTCax3USsxzPSpZ4AqWFWoN6GxVuU3yd0gxLQDJueV/H+HiHuY2FnnNshc+KlTwqMibhdIYkz6Cgg95iRPOpGZ07VHNG3h2XmuFvF/PelJrhd0jjZ+TFc6kZfqqln55D9rbGts+BbcFsGmvt23JTGpx/YRqmfJFWXbS4+FZP9JhBeqcN6e/pN7N3jveyRSXWjy03o5E7/ctL/WtCw+o5d/TcjAp6T+z1mlLUuCcjHffaclMZMlpFR1oOe9f0zWCbvn4zptyMxgF4XFsUcy+cctPROy56Y8vNaBwpznuekSdvys1oDOie9WHLzWhgtqWr43xbbmrZUQMcO9tyU6s+oiww5oB4zHON9Yom5CfNNLUh+Qf12RrX519dxzBn87yIEeopWd+2mk5crGX1Ehl/IQGrNm0oB/oXM8cHK9NYqGtifMUyTEvr+yodu8aj5vdBixHMft4DkHLmKUhochJovVOguClGXeWeGdw1EYej5HgJ1dG1U9FbtHw5a1Sue0G1Ulxme2v12CF7ndPYG5NPuE+alfSwX/mGqyhKGtovaUim10R37/V8LWt/Q8SNlxDjYqT1aEeId9Lq41Sf1luOji/rXZ4pXLznY8cvZpuPtbXBmCcjW4Sy1PF025k8kluH6+pVZXPc/CyiN4r2ak5WY0g7UrkYhZpsMXvjC7q3tA9pTw55MI0evMdIUxkr3jXDLDrm0yOyqK69lXijvkyGjss5WV1jj+vRAwc98KCbxzhbsGLcg1IbYoZDuGsHRDkXC11lpPGJ+m2xO5rRG6yP6NOShTQ02N4kJQtZF2W/LFF5C2gcDRylh9NYpmPwnRVKctTvk8fGrmXLf5l2bs3+dpfGePVors7E9InrNeIa0azhXV2+W+bAEiy8T66R/1rfS+TXhCPaUInrc4cz62VEO/4JRbBj8oxTmm3S7Ci3dvNTy08MpwNl9s5xNzsjCxmR/YtgfcpoTEb0454dMDvobBFSspEhdmdYeDc+X2cojjHrxw0Vn2qw4y0hWzYj/oauO7tyGoscMfA6cLY0to1O9skXTIjrRFt3O7frVx9E2nMS7ihhinasXCH+n9Nv82PGydrKiEAN4xvIta3zvY+MYhbUUZdW+XobZNq6Un5WyPBcS23XPyvTZyXJtiniQnlwte4D5x7dMy8cJROSO19pw+toXTYXKY+X9Ii9PaYonu3+QK/AKPdVWiXXaM51aJQMYBRMiyjCtJWyyMt863mVqYfRzv8v1K2uy1pDipGyGVzWkJTfTyhac6VMYVTz+H1Ns8mv9clSq3o+IxqLJ85c/gZqfwm/jdzmPoxOXLIKN2kMMAV7ZzXCNdFKizBeN0u8zMg0tOy95WfHpGnl1pwnvmbrZmPseWMqBzRqTnXWwpTPQ+OVQ+NVoA7btNdotWjqjSV6IcYWbb1bGcqvCbd2A8ozkbLskRnUMEBKN5YKo9oXqcoxvkG9F2ltiLS6MFvd3QB3zocg/XN9eXZ/U6zukbpFvk2PPDCOX/o0S4fkc5na+kiNKSDn69q+urO/QzXIPSYLipT5HCfOGN516tF1Vkj6K72yZWTnrUUw55be6jbGxnao/PsV5AnNiZzmpUFcpxaJlt+VI1qySOuOzxFR5r9LPhX7HfUxs9vavpOo5E/YeJNnleXFkcKI9C9l3vZWotc9J36NKCacae86BlrN3zBSYIzJJPg9y5zeEK5yvJPAHm1M9nPVTvEu3siRaJ2kXqg/B9gYjnrtWHfHlumx6dtvoCVq3b51XwuZXxrMUeJ3nh29Lq1qJ9pHXSzdn49WV69y5fs6PcyW+Fp9zKiNG1nYKK+M6agvgrmwRM24MCaES7NeNJG/meRNZObdqVDKprWhXM40sI15SfGSdA4UET7v7orXm/tc6Ee8Qi8mrEuNayRKmI3LdH7AtbSYlYqWIiS3XlqTUmc9qlovLA931bB2nC1lQlYwVVLuhlu7feiUohU5G8MUeopP9lbFiS7NL+DC35HyRYmGY0gOsQV+7g21pXY+wKmIN7rMmc2IatAm9Jdi8K7uZ7lFvY7eONRd+iEcwnkMQdeS9ENaUZvKzpRlyV3q4fTfkjWYqESU3rZs3geXi9yTVU5N+jMkCyf3ZqjMNzlN+2I4hPSkzCWcD+9vSL04VubbpmZ9MNTlHpQ5NOFhzjOEvXPbujkvl1O9vla5hPLgdcDsvBgc7gBWxyy2XYiFmjhv5MNzQOtwXEPdrBb/az8MH8upOa9Qbjl9c/Yq4K1zu0RnZtEvbj5nLLeQ0VzNMZxnVvTOek1+fuz/RY3eVOb05sPTR7/UjgHDa6E4HypLx3h3FFl5Q6ng/oBPhkz9W/39gvxVwpuCRpUcTSiZ/YpqaqaFTM18eenrnXkWIpOlUyVTmZqNJ1p0MnZL7alb8LNVeIBNT4nyN5X8F7H+72j7UHtM1sNk0zmD0KG6hLIgdjetT/f2HG2VxHiml8/4tqEG98T3qRbP+96j9njmt13qW/WXJDzX76pM9UuRyfIun51XMfSgvAPHuSDzvW9EZ+o5m8Un0E4C9hj5HBVHSubr5wUh+hQXLku6IIQZLXWUYy/lmM4kJRW041LfejTCx3qnH/cd8Hx+t8guRep3VNfVqwOu1JJUBx6pnlJmICb9b0CE9gd1Ff5e1WW/pAcrkub0DsoSnTrP6k+CnXnHhf2a8TLlwUymbq7bZRTV293D+kzsdiUXPvFejx/U4AeOlC16W68p7p6o+tzhrIbmTMvk7ueOlMl7sh4wmu0W46M+fp7X8JoH9P9OJfqOI+kuyBJTtj2i/bwJ0Uu1bnZIej5XWZ+3vV0jrflqk2nak5V2HJgzknUc8KuyLWH285dn9SsDfmHmp+PO9ScB+y7YE0kiPpkpZY+SAIn4jKh0fmXopSRbjHHA+YxuQG/lvob0VKIyEyWZBXwbPQ+QZR5A51iQ5likMBAl0RbrxaW1zeX/fWS1cHRtfXNjffPB9bUvb+r/meRj9XP1qboCq/Ef1ZcwIw/UIeUa/6L+qv62/Z+dX+xc3vk1N/3ogsb8TJX+7Wz8F/gjXQI=</latexit> <latexit sha1_base64="/59ZCDJZPBrZfCS8zgReJB0hTeY=">AABFdnictVxfcxPJER8u/y7kH5c8piq1OR8JlyKOTUglVVepOrCN8WHAINnAIaC00loI1lqhlYRB56+Q1+Tb5HPkGyRPec1j+s/Mzqw0uz3rELZsz87Or7und6anu2eWeJwO8+nGxj8ufPStb3/nu9/7+PsXf/DDH/34J5c++elRns0mveSwl6XZ5HHczZN0OEoOp8NpmjweT5LuSZwmj+LXW/j80TyZ5MNs1J6+GyfPTrqD0fB42OtOsarz+HTrxaW1jfUN+hetFjZ1YU3pfwfZJ5+uq47qq0z11EydqESN1BTKqeqqHK6nalNtqDHUPVMLqJtAaUjPE3WmLgJ2Bq0SaNGF2tfwewB3T3XtCO6RZk7oHnBJ4WcCyEhdBkwG7SZQRm4RPZ8RZaytor0gmijbO/gba1onUDtVL6FWwpmWoTjsy1Qdqz9RH4bQpzHVYO96msqMtIKSR06vpkBhDHVY7sPzCZR7hDR6jgiTU99Rt116/k9qibV439NtZ+pfJOVluCLV0r3PCgpdNSf6Eb3NGTxjeVLgPAAKie4jlt6Srk+o9yNov4D6e3CdUcnoJIZrQbVntcgtuHzILRG5C5cPuSsi9+HyIfdF5AFcPuSBRiJ2Qjr341tw+fAtkfMDuHzIByLyIVw+5EMReQSXD3kkIr+Gy4f8WkTegsuHvCUi78DlQ94RkW24fMi2iDyEy4c8FJE7cPmQOxpZPVMncGVEZyjMyhtQLvNAS5FCzQ1RvptkHX3YmwFzuleBlWf1Nvz1Y7cDdJpUYHcCxt1xBVYeebtgI/1Y2RbdptXEh70tYvdgBPixeyL2K/WqAvtVwEx7XYGV59o+tPNjZet7F+782Lsi9h6U/Fh5jboPNX7s/YAVY1yBPRCxD9SbCmyI1Z9UYGW73wK74sfK61Qb2vuxIdZ0VoGV7ekReDB+rLxaPYJaP/aRiH2sTiuwj0XsE7DufuyTgBX2fQXWrLEXaQUZkD+SwIyto9YtZiWWxkCtK/BPi7UlJd84hnoJMygwA8KciIjdArEbiNgvEPvBcuWFHc3J35W5tApEKxARF2sTlqZi+37RHktpAGK7QGwvIeo8UnzXpi9z8i5MjYScFisXlkL6lBX2G0uJHg/1ltcg7pcQPLZf0si/StESRlCoqTpqL4s1npER3dch3lL0ZnppeMi4aWEVXNSpiIo9qFhEvfOg3omomQc1E1FzD2ououzMd3GdgBFg9Y/vYkF3PALYR66+IvAKbsCqcxvmaATj5wC8wIdUcx/+tij2lq46yTCax3USsxzPSpZ4AqWFWoN6GxVuU3yd0gxLQDJueV/H+HiHuY2FnnNshc+KlTwqMibhdIYkz6Cgg95iRPOpGZ07VHNG3h2XmuFvF/PelJrhd0jjZ+TFc6kZfqqln55D9rbGts+BbcFsGmvt23JTGpx/YRqmfJFWXbS4+FZP9JhBeqcN6e/pN7N3jveyRSXWjy03o5E7/ctL/WtCw+o5d/TcjAp6T+z1mlLUuCcjHffaclMZMlpFR1oOe9f0zWCbvn4zptyMxgF4XFsUcy+cctPROy56Y8vNaBwpznuekSdvys1oDOie9WHLzWhgtqWr43xbbmrZUQMcO9tyU6s+oiww5oB4zHON9Yom5CfNNLUh+Qf12RrX519dxzBn87yIEeopWd+2mk5crGX1Ehl/IQGrNm0oB/oXM8cHK9NYqGtifMUyTEvr+yodu8aj5vdBixHMft4DkHLmKUhochJovVOguClGXeWeGdw1EYej5HgJ1dG1U9FbtHw5a1Sue0G1Ulxme2v12CF7ndPYG5NPuE+alfSwX/mGqyhKGtovaUim10R37/V8LWt/Q8SNlxDjYqT1aEeId9Lq41Sf1luOji/rXZ4pXLznY8cvZpuPtbXBmCcjW4Sy1PF025k8kluH6+pVZXPc/CyiN4r2ak5WY0g7UrkYhZpsMXvjC7q3tA9pTw55MI0evMdIUxkr3jXDLDrm0yOyqK69lXijvkyGjss5WV1jj+vRAwc98KCbxzhbsGLcg1IbYoZDuGsHRDkXC11lpPGJ+m2xO5rRG6yP6NOShTQ02N4kJQtZF2W/LFF5C2gcDRylh9NYpmPwnRVKctTvk8fGrmXLf5l2bs3+dpfGePVors7E9InrNeIa0azhXV2+W+bAEiy8T66R/1rfS+TXhCPaUInrc4cz62VEO/4JRbBj8oxTmm3S7Ci3dvNTy08MpwNl9s5xNzsjCxmR/YtgfcpoTEb0454dMDvobBFSspEhdmdYeDc+X2cojjHrxw0Vn2qw4y0hWzYj/oauO7tyGoscMfA6cLY0to1O9skXTIjrRFt3O7frVx9E2nMS7ihhinasXCH+n9Nv82PGydrKiEAN4xvIta3zvY+MYhbUUZdW+XobZNq6Un5WyPBcS23XPyvTZyXJtiniQnlwte4D5x7dMy8cJROSO19pw+toXTYXKY+X9Ii9PaYonu3+QK/AKPdVWiXXaM51aJQMYBRMiyjCtJWyyMt863mVqYfRzv8v1K2uy1pDipGyGVzWkJTfTyhac6VMYVTz+H1Ns8mv9clSq3o+IxqLJ85c/gZqfwm/jdzmPoxOXLIKN2kMMAV7ZzXCNdFKizBeN0u8zMg0tOy95WfHpGnl1pwnvmbrZmPseWMqBzRqTnXWwpTPQ+OVQ+NVoA7btNdotWjqjSV6IcYWbb1bGcqvCbd2A8ozkbLskRnUMEBKN5YKo9oXqcoxvkG9F2ltiLS6MFvd3QB3zocg/XN9eXZ/U6zukbpFvk2PPDCOX/o0S4fkc5na+kiNKSDn69q+urO/QzXIPSYLipT5HCfOGN516tF1Vkj6K72yZWTnrUUw55be6jbGxnao/PsV5AnNiZzmpUFcpxaJlt+VI1qySOuOzxFR5r9LPhX7HfUxs9vavpOo5E/YeJNnleXFkcKI9C9l3vZWotc9J36NKCacae86BlrN3zBSYIzJJPg9y5zeEK5yvJPAHm1M9nPVTvEu3siRaJ2kXqg/B9gYjnrtWHfHlumx6dtvoCVq3b51XwuZXxrMUeJ3nh29Lq1qJ9pHXSzdn49WV69y5fs6PcyW+Fp9zKiNG1nYKK+M6agvgrmwRM24MCaES7NeNJG/meRNZObdqVDKprWhXM40sI15SfGSdA4UET7v7orXm/tc6Ee8Qi8mrEuNayRKmI3LdH7AtbSYlYqWIiS3XlqTUmc9qlovLA931bB2nC1lQlYwVVLuhlu7feiUohU5G8MUeopP9lbFiS7NL+DC35HyRYmGY0gOsQV+7g21pXY+wKmIN7rMmc2IatAm9Jdi8K7uZ7lFvY7eONRd+iEcwnkMQdeS9ENaUZvKzpRlyV3q4fTfkjWYqESU3rZs3geXi9yTVU5N+jMkCyf3ZqjMNzlN+2I4hPSkzCWcD+9vSL04VubbpmZ9MNTlHpQ5NOFhzjOEvXPbujkvl1O9vla5hPLgdcDsvBgc7gBWxyy2XYiFmjhv5MNzQOtwXEPdrBb/az8MH8upOa9Qbjl9c/Yq4K1zu0RnZtEvbj5nLLeQ0VzNMZxnVvTOek1+fuz/RY3eVOb05sPTR7/UjgHDa6E4HypLx3h3FFl5Q6ng/oBPhkz9W/39gvxVwpuCRpUcTSiZ/YpqaqaFTM18eenrnXkWIpOlUyVTmZqNJ1p0MnZL7alb8LNVeIBNT4nyN5X8F7H+72j7UHtM1sNk0zmD0KG6hLIgdjetT/f2HG2VxHiml8/4tqEG98T3qRbP+96j9njmt13qW/WXJDzX76pM9UuRyfIun51XMfSgvAPHuSDzvW9EZ+o5m8Un0E4C9hj5HBVHSubr5wUh+hQXLku6IIQZLXWUYy/lmM4kJRW041LfejTCx3qnH/cd8Hx+t8guRep3VNfVqwOu1JJUBx6pnlJmICb9b0CE9gd1Ff5e1WW/pAcrkub0DsoSnTrP6k+CnXnHhf2a8TLlwUymbq7bZRTV293D+kzsdiUXPvFejx/U4AeOlC16W68p7p6o+tzhrIbmTMvk7ueOlMl7sh4wmu0W46M+fp7X8JoH9P9OJfqOI+kuyBJTtj2i/bwJ0Uu1bnZIej5XWZ+3vV0jrflqk2nak5V2HJgzknUc8KuyLWH285dn9SsDfmHmp+PO9ScB+y7YE0kiPpkpZY+SAIn4jKh0fmXopSRbjHHA+YxuQG/lvob0VKIyEyWZBXwbPQ+QZR5A51iQ5likMBAl0RbrxaW1zeX/fWS1cHRtfXNjffPB9bUvb+r/meRj9XP1qboCq/Ef1ZcwIw/UIeUa/6L+qv62/Z+dX+xc3vk1N/3ogsb8TJX+7Wz8F/gjXQI=</latexit> <latexit sha1_base64="/59ZCDJZPBrZfCS8zgReJB0hTeY=">AABFdnictVxfcxPJER8u/y7kH5c8piq1OR8JlyKOTUglVVepOrCN8WHAINnAIaC00loI1lqhlYRB56+Q1+Tb5HPkGyRPec1j+s/Mzqw0uz3rELZsz87Or7und6anu2eWeJwO8+nGxj8ufPStb3/nu9/7+PsXf/DDH/34J5c++elRns0mveSwl6XZ5HHczZN0OEoOp8NpmjweT5LuSZwmj+LXW/j80TyZ5MNs1J6+GyfPTrqD0fB42OtOsarz+HTrxaW1jfUN+hetFjZ1YU3pfwfZJ5+uq47qq0z11EydqESN1BTKqeqqHK6nalNtqDHUPVMLqJtAaUjPE3WmLgJ2Bq0SaNGF2tfwewB3T3XtCO6RZk7oHnBJ4WcCyEhdBkwG7SZQRm4RPZ8RZaytor0gmijbO/gba1onUDtVL6FWwpmWoTjsy1Qdqz9RH4bQpzHVYO96msqMtIKSR06vpkBhDHVY7sPzCZR7hDR6jgiTU99Rt116/k9qibV439NtZ+pfJOVluCLV0r3PCgpdNSf6Eb3NGTxjeVLgPAAKie4jlt6Srk+o9yNov4D6e3CdUcnoJIZrQbVntcgtuHzILRG5C5cPuSsi9+HyIfdF5AFcPuSBRiJ2Qjr341tw+fAtkfMDuHzIByLyIVw+5EMReQSXD3kkIr+Gy4f8WkTegsuHvCUi78DlQ94RkW24fMi2iDyEy4c8FJE7cPmQOxpZPVMncGVEZyjMyhtQLvNAS5FCzQ1RvptkHX3YmwFzuleBlWf1Nvz1Y7cDdJpUYHcCxt1xBVYeebtgI/1Y2RbdptXEh70tYvdgBPixeyL2K/WqAvtVwEx7XYGV59o+tPNjZet7F+782Lsi9h6U/Fh5jboPNX7s/YAVY1yBPRCxD9SbCmyI1Z9UYGW73wK74sfK61Qb2vuxIdZ0VoGV7ekReDB+rLxaPYJaP/aRiH2sTiuwj0XsE7DufuyTgBX2fQXWrLEXaQUZkD+SwIyto9YtZiWWxkCtK/BPi7UlJd84hnoJMygwA8KciIjdArEbiNgvEPvBcuWFHc3J35W5tApEKxARF2sTlqZi+37RHktpAGK7QGwvIeo8UnzXpi9z8i5MjYScFisXlkL6lBX2G0uJHg/1ltcg7pcQPLZf0si/StESRlCoqTpqL4s1npER3dch3lL0ZnppeMi4aWEVXNSpiIo9qFhEvfOg3omomQc1E1FzD2ououzMd3GdgBFg9Y/vYkF3PALYR66+IvAKbsCqcxvmaATj5wC8wIdUcx/+tij2lq46yTCax3USsxzPSpZ4AqWFWoN6GxVuU3yd0gxLQDJueV/H+HiHuY2FnnNshc+KlTwqMibhdIYkz6Cgg95iRPOpGZ07VHNG3h2XmuFvF/PelJrhd0jjZ+TFc6kZfqqln55D9rbGts+BbcFsGmvt23JTGpx/YRqmfJFWXbS4+FZP9JhBeqcN6e/pN7N3jveyRSXWjy03o5E7/ctL/WtCw+o5d/TcjAp6T+z1mlLUuCcjHffaclMZMlpFR1oOe9f0zWCbvn4zptyMxgF4XFsUcy+cctPROy56Y8vNaBwpznuekSdvys1oDOie9WHLzWhgtqWr43xbbmrZUQMcO9tyU6s+oiww5oB4zHON9Yom5CfNNLUh+Qf12RrX519dxzBn87yIEeopWd+2mk5crGX1Ehl/IQGrNm0oB/oXM8cHK9NYqGtifMUyTEvr+yodu8aj5vdBixHMft4DkHLmKUhochJovVOguClGXeWeGdw1EYej5HgJ1dG1U9FbtHw5a1Sue0G1Ulxme2v12CF7ndPYG5NPuE+alfSwX/mGqyhKGtovaUim10R37/V8LWt/Q8SNlxDjYqT1aEeId9Lq41Sf1luOji/rXZ4pXLznY8cvZpuPtbXBmCcjW4Sy1PF025k8kluH6+pVZXPc/CyiN4r2ak5WY0g7UrkYhZpsMXvjC7q3tA9pTw55MI0evMdIUxkr3jXDLDrm0yOyqK69lXijvkyGjss5WV1jj+vRAwc98KCbxzhbsGLcg1IbYoZDuGsHRDkXC11lpPGJ+m2xO5rRG6yP6NOShTQ02N4kJQtZF2W/LFF5C2gcDRylh9NYpmPwnRVKctTvk8fGrmXLf5l2bs3+dpfGePVors7E9InrNeIa0azhXV2+W+bAEiy8T66R/1rfS+TXhCPaUInrc4cz62VEO/4JRbBj8oxTmm3S7Ci3dvNTy08MpwNl9s5xNzsjCxmR/YtgfcpoTEb0454dMDvobBFSspEhdmdYeDc+X2cojjHrxw0Vn2qw4y0hWzYj/oauO7tyGoscMfA6cLY0to1O9skXTIjrRFt3O7frVx9E2nMS7ihhinasXCH+n9Nv82PGydrKiEAN4xvIta3zvY+MYhbUUZdW+XobZNq6Un5WyPBcS23XPyvTZyXJtiniQnlwte4D5x7dMy8cJROSO19pw+toXTYXKY+X9Ii9PaYonu3+QK/AKPdVWiXXaM51aJQMYBRMiyjCtJWyyMt863mVqYfRzv8v1K2uy1pDipGyGVzWkJTfTyhac6VMYVTz+H1Ns8mv9clSq3o+IxqLJ85c/gZqfwm/jdzmPoxOXLIKN2kMMAV7ZzXCNdFKizBeN0u8zMg0tOy95WfHpGnl1pwnvmbrZmPseWMqBzRqTnXWwpTPQ+OVQ+NVoA7btNdotWjqjSV6IcYWbb1bGcqvCbd2A8ozkbLskRnUMEBKN5YKo9oXqcoxvkG9F2ltiLS6MFvd3QB3zocg/XN9eXZ/U6zukbpFvk2PPDCOX/o0S4fkc5na+kiNKSDn69q+urO/QzXIPSYLipT5HCfOGN516tF1Vkj6K72yZWTnrUUw55be6jbGxnao/PsV5AnNiZzmpUFcpxaJlt+VI1qySOuOzxFR5r9LPhX7HfUxs9vavpOo5E/YeJNnleXFkcKI9C9l3vZWotc9J36NKCacae86BlrN3zBSYIzJJPg9y5zeEK5yvJPAHm1M9nPVTvEu3siRaJ2kXqg/B9gYjnrtWHfHlumx6dtvoCVq3b51XwuZXxrMUeJ3nh29Lq1qJ9pHXSzdn49WV69y5fs6PcyW+Fp9zKiNG1nYKK+M6agvgrmwRM24MCaES7NeNJG/meRNZObdqVDKprWhXM40sI15SfGSdA4UET7v7orXm/tc6Ee8Qi8mrEuNayRKmI3LdH7AtbSYlYqWIiS3XlqTUmc9qlovLA931bB2nC1lQlYwVVLuhlu7feiUohU5G8MUeopP9lbFiS7NL+DC35HyRYmGY0gOsQV+7g21pXY+wKmIN7rMmc2IatAm9Jdi8K7uZ7lFvY7eONRd+iEcwnkMQdeS9ENaUZvKzpRlyV3q4fTfkjWYqESU3rZs3geXi9yTVU5N+jMkCyf3ZqjMNzlN+2I4hPSkzCWcD+9vSL04VubbpmZ9MNTlHpQ5NOFhzjOEvXPbujkvl1O9vla5hPLgdcDsvBgc7gBWxyy2XYiFmjhv5MNzQOtwXEPdrBb/az8MH8upOa9Qbjl9c/Yq4K1zu0RnZtEvbj5nLLeQ0VzNMZxnVvTOek1+fuz/RY3eVOb05sPTR7/UjgHDa6E4HypLx3h3FFl5Q6ng/oBPhkz9W/39gvxVwpuCRpUcTSiZ/YpqaqaFTM18eenrnXkWIpOlUyVTmZqNJ1p0MnZL7alb8LNVeIBNT4nyN5X8F7H+72j7UHtM1sNk0zmD0KG6hLIgdjetT/f2HG2VxHiml8/4tqEG98T3qRbP+96j9njmt13qW/WXJDzX76pM9UuRyfIun51XMfSgvAPHuSDzvW9EZ+o5m8Un0E4C9hj5HBVHSubr5wUh+hQXLku6IIQZLXWUYy/lmM4kJRW041LfejTCx3qnH/cd8Hx+t8guRep3VNfVqwOu1JJUBx6pnlJmICb9b0CE9gd1Ff5e1WW/pAcrkub0DsoSnTrP6k+CnXnHhf2a8TLlwUymbq7bZRTV293D+kzsdiUXPvFejx/U4AeOlC16W68p7p6o+tzhrIbmTMvk7ueOlMl7sh4wmu0W46M+fp7X8JoH9P9OJfqOI+kuyBJTtj2i/bwJ0Uu1bnZIej5XWZ+3vV0jrflqk2nak5V2HJgzknUc8KuyLWH285dn9SsDfmHmp+PO9ScB+y7YE0kiPpkpZY+SAIn4jKh0fmXopSRbjHHA+YxuQG/lvob0VKIyEyWZBXwbPQ+QZR5A51iQ5likMBAl0RbrxaW1zeX/fWS1cHRtfXNjffPB9bUvb+r/meRj9XP1qboCq/Ef1ZcwIw/UIeUa/6L+qv62/Z+dX+xc3vk1N/3ogsb8TJX+7Wz8F/gjXQI=</latexit> <latexit sha1_base64="/59ZCDJZPBrZfCS8zgReJB0hTeY=">AABFdnictVxfcxPJER8u/y7kH5c8piq1OR8JlyKOTUglVVepOrCN8WHAINnAIaC00loI1lqhlYRB56+Q1+Tb5HPkGyRPec1j+s/Mzqw0uz3rELZsz87Or7und6anu2eWeJwO8+nGxj8ufPStb3/nu9/7+PsXf/DDH/34J5c++elRns0mveSwl6XZ5HHczZN0OEoOp8NpmjweT5LuSZwmj+LXW/j80TyZ5MNs1J6+GyfPTrqD0fB42OtOsarz+HTrxaW1jfUN+hetFjZ1YU3pfwfZJ5+uq47qq0z11EydqESN1BTKqeqqHK6nalNtqDHUPVMLqJtAaUjPE3WmLgJ2Bq0SaNGF2tfwewB3T3XtCO6RZk7oHnBJ4WcCyEhdBkwG7SZQRm4RPZ8RZaytor0gmijbO/gba1onUDtVL6FWwpmWoTjsy1Qdqz9RH4bQpzHVYO96msqMtIKSR06vpkBhDHVY7sPzCZR7hDR6jgiTU99Rt116/k9qibV439NtZ+pfJOVluCLV0r3PCgpdNSf6Eb3NGTxjeVLgPAAKie4jlt6Srk+o9yNov4D6e3CdUcnoJIZrQbVntcgtuHzILRG5C5cPuSsi9+HyIfdF5AFcPuSBRiJ2Qjr341tw+fAtkfMDuHzIByLyIVw+5EMReQSXD3kkIr+Gy4f8WkTegsuHvCUi78DlQ94RkW24fMi2iDyEy4c8FJE7cPmQOxpZPVMncGVEZyjMyhtQLvNAS5FCzQ1RvptkHX3YmwFzuleBlWf1Nvz1Y7cDdJpUYHcCxt1xBVYeebtgI/1Y2RbdptXEh70tYvdgBPixeyL2K/WqAvtVwEx7XYGV59o+tPNjZet7F+782Lsi9h6U/Fh5jboPNX7s/YAVY1yBPRCxD9SbCmyI1Z9UYGW73wK74sfK61Qb2vuxIdZ0VoGV7ekReDB+rLxaPYJaP/aRiH2sTiuwj0XsE7DufuyTgBX2fQXWrLEXaQUZkD+SwIyto9YtZiWWxkCtK/BPi7UlJd84hnoJMygwA8KciIjdArEbiNgvEPvBcuWFHc3J35W5tApEKxARF2sTlqZi+37RHktpAGK7QGwvIeo8UnzXpi9z8i5MjYScFisXlkL6lBX2G0uJHg/1ltcg7pcQPLZf0si/StESRlCoqTpqL4s1npER3dch3lL0ZnppeMi4aWEVXNSpiIo9qFhEvfOg3omomQc1E1FzD2ououzMd3GdgBFg9Y/vYkF3PALYR66+IvAKbsCqcxvmaATj5wC8wIdUcx/+tij2lq46yTCax3USsxzPSpZ4AqWFWoN6GxVuU3yd0gxLQDJueV/H+HiHuY2FnnNshc+KlTwqMibhdIYkz6Cgg95iRPOpGZ07VHNG3h2XmuFvF/PelJrhd0jjZ+TFc6kZfqqln55D9rbGts+BbcFsGmvt23JTGpx/YRqmfJFWXbS4+FZP9JhBeqcN6e/pN7N3jveyRSXWjy03o5E7/ctL/WtCw+o5d/TcjAp6T+z1mlLUuCcjHffaclMZMlpFR1oOe9f0zWCbvn4zptyMxgF4XFsUcy+cctPROy56Y8vNaBwpznuekSdvys1oDOie9WHLzWhgtqWr43xbbmrZUQMcO9tyU6s+oiww5oB4zHON9Yom5CfNNLUh+Qf12RrX519dxzBn87yIEeopWd+2mk5crGX1Ehl/IQGrNm0oB/oXM8cHK9NYqGtifMUyTEvr+yodu8aj5vdBixHMft4DkHLmKUhochJovVOguClGXeWeGdw1EYej5HgJ1dG1U9FbtHw5a1Sue0G1Ulxme2v12CF7ndPYG5NPuE+alfSwX/mGqyhKGtovaUim10R37/V8LWt/Q8SNlxDjYqT1aEeId9Lq41Sf1luOji/rXZ4pXLznY8cvZpuPtbXBmCcjW4Sy1PF025k8kluH6+pVZXPc/CyiN4r2ak5WY0g7UrkYhZpsMXvjC7q3tA9pTw55MI0evMdIUxkr3jXDLDrm0yOyqK69lXijvkyGjss5WV1jj+vRAwc98KCbxzhbsGLcg1IbYoZDuGsHRDkXC11lpPGJ+m2xO5rRG6yP6NOShTQ02N4kJQtZF2W/LFF5C2gcDRylh9NYpmPwnRVKctTvk8fGrmXLf5l2bs3+dpfGePVors7E9InrNeIa0azhXV2+W+bAEiy8T66R/1rfS+TXhCPaUInrc4cz62VEO/4JRbBj8oxTmm3S7Ci3dvNTy08MpwNl9s5xNzsjCxmR/YtgfcpoTEb0454dMDvobBFSspEhdmdYeDc+X2cojjHrxw0Vn2qw4y0hWzYj/oauO7tyGoscMfA6cLY0to1O9skXTIjrRFt3O7frVx9E2nMS7ihhinasXCH+n9Nv82PGydrKiEAN4xvIta3zvY+MYhbUUZdW+XobZNq6Un5WyPBcS23XPyvTZyXJtiniQnlwte4D5x7dMy8cJROSO19pw+toXTYXKY+X9Ii9PaYonu3+QK/AKPdVWiXXaM51aJQMYBRMiyjCtJWyyMt863mVqYfRzv8v1K2uy1pDipGyGVzWkJTfTyhac6VMYVTz+H1Ns8mv9clSq3o+IxqLJ85c/gZqfwm/jdzmPoxOXLIKN2kMMAV7ZzXCNdFKizBeN0u8zMg0tOy95WfHpGnl1pwnvmbrZmPseWMqBzRqTnXWwpTPQ+OVQ+NVoA7btNdotWjqjSV6IcYWbb1bGcqvCbd2A8ozkbLskRnUMEBKN5YKo9oXqcoxvkG9F2ltiLS6MFvd3QB3zocg/XN9eXZ/U6zukbpFvk2PPDCOX/o0S4fkc5na+kiNKSDn69q+urO/QzXIPSYLipT5HCfOGN516tF1Vkj6K72yZWTnrUUw55be6jbGxnao/PsV5AnNiZzmpUFcpxaJlt+VI1qySOuOzxFR5r9LPhX7HfUxs9vavpOo5E/YeJNnleXFkcKI9C9l3vZWotc9J36NKCacae86BlrN3zBSYIzJJPg9y5zeEK5yvJPAHm1M9nPVTvEu3siRaJ2kXqg/B9gYjnrtWHfHlumx6dtvoCVq3b51XwuZXxrMUeJ3nh29Lq1qJ9pHXSzdn49WV69y5fs6PcyW+Fp9zKiNG1nYKK+M6agvgrmwRM24MCaES7NeNJG/meRNZObdqVDKprWhXM40sI15SfGSdA4UET7v7orXm/tc6Ee8Qi8mrEuNayRKmI3LdH7AtbSYlYqWIiS3XlqTUmc9qlovLA931bB2nC1lQlYwVVLuhlu7feiUohU5G8MUeopP9lbFiS7NL+DC35HyRYmGY0gOsQV+7g21pXY+wKmIN7rMmc2IatAm9Jdi8K7uZ7lFvY7eONRd+iEcwnkMQdeS9ENaUZvKzpRlyV3q4fTfkjWYqESU3rZs3geXi9yTVU5N+jMkCyf3ZqjMNzlN+2I4hPSkzCWcD+9vSL04VubbpmZ9MNTlHpQ5NOFhzjOEvXPbujkvl1O9vla5hPLgdcDsvBgc7gBWxyy2XYiFmjhv5MNzQOtwXEPdrBb/az8MH8upOa9Qbjl9c/Yq4K1zu0RnZtEvbj5nLLeQ0VzNMZxnVvTOek1+fuz/RY3eVOb05sPTR7/UjgHDa6E4HypLx3h3FFl5Q6ng/oBPhkz9W/39gvxVwpuCRpUcTSiZ/YpqaqaFTM18eenrnXkWIpOlUyVTmZqNJ1p0MnZL7alb8LNVeIBNT4nyN5X8F7H+72j7UHtM1sNk0zmD0KG6hLIgdjetT/f2HG2VxHiml8/4tqEG98T3qRbP+96j9njmt13qW/WXJDzX76pM9UuRyfIun51XMfSgvAPHuSDzvW9EZ+o5m8Un0E4C9hj5HBVHSubr5wUh+hQXLku6IIQZLXWUYy/lmM4kJRW041LfejTCx3qnH/cd8Hx+t8guRep3VNfVqwOu1JJUBx6pnlJmICb9b0CE9gd1Ff5e1WW/pAcrkub0DsoSnTrP6k+CnXnHhf2a8TLlwUymbq7bZRTV293D+kzsdiUXPvFejx/U4AeOlC16W68p7p6o+tzhrIbmTMvk7ueOlMl7sh4wmu0W46M+fp7X8JoH9P9OJfqOI+kuyBJTtj2i/bwJ0Uu1bnZIej5XWZ+3vV0jrflqk2nak5V2HJgzknUc8KuyLWH285dn9SsDfmHmp+PO9ScB+y7YE0kiPpkpZY+SAIn4jKh0fmXopSRbjHHA+YxuQG/lvob0VKIyEyWZBXwbPQ+QZR5A51iQ5likMBAl0RbrxaW1zeX/fWS1cHRtfXNjffPB9bUvb+r/meRj9XP1qboCq/Ef1ZcwIw/UIeUa/6L+qv62/Z+dX+xc3vk1N/3ogsb8TJX+7Wz8F/gjXQI=</latexit> <latexit sha1_base64="/59ZCDJZPBrZfCS8zgReJB0hTeY=">AABFdnictVxfcxPJER8u/y7kH5c8piq1OR8JlyKOTUglVVepOrCN8WHAINnAIaC00loI1lqhlYRB56+Q1+Tb5HPkGyRPec1j+s/Mzqw0uz3rELZsz87Or7und6anu2eWeJwO8+nGxj8ufPStb3/nu9/7+PsXf/DDH/34J5c++elRns0mveSwl6XZ5HHczZN0OEoOp8NpmjweT5LuSZwmj+LXW/j80TyZ5MNs1J6+GyfPTrqD0fB42OtOsarz+HTrxaW1jfUN+hetFjZ1YU3pfwfZJ5+uq47qq0z11EydqESN1BTKqeqqHK6nalNtqDHUPVMLqJtAaUjPE3WmLgJ2Bq0SaNGF2tfwewB3T3XtCO6RZk7oHnBJ4WcCyEhdBkwG7SZQRm4RPZ8RZaytor0gmijbO/gba1onUDtVL6FWwpmWoTjsy1Qdqz9RH4bQpzHVYO96msqMtIKSR06vpkBhDHVY7sPzCZR7hDR6jgiTU99Rt116/k9qibV439NtZ+pfJOVluCLV0r3PCgpdNSf6Eb3NGTxjeVLgPAAKie4jlt6Srk+o9yNov4D6e3CdUcnoJIZrQbVntcgtuHzILRG5C5cPuSsi9+HyIfdF5AFcPuSBRiJ2Qjr341tw+fAtkfMDuHzIByLyIVw+5EMReQSXD3kkIr+Gy4f8WkTegsuHvCUi78DlQ94RkW24fMi2iDyEy4c8FJE7cPmQOxpZPVMncGVEZyjMyhtQLvNAS5FCzQ1RvptkHX3YmwFzuleBlWf1Nvz1Y7cDdJpUYHcCxt1xBVYeebtgI/1Y2RbdptXEh70tYvdgBPixeyL2K/WqAvtVwEx7XYGV59o+tPNjZet7F+782Lsi9h6U/Fh5jboPNX7s/YAVY1yBPRCxD9SbCmyI1Z9UYGW73wK74sfK61Qb2vuxIdZ0VoGV7ekReDB+rLxaPYJaP/aRiH2sTiuwj0XsE7DufuyTgBX2fQXWrLEXaQUZkD+SwIyto9YtZiWWxkCtK/BPi7UlJd84hnoJMygwA8KciIjdArEbiNgvEPvBcuWFHc3J35W5tApEKxARF2sTlqZi+37RHktpAGK7QGwvIeo8UnzXpi9z8i5MjYScFisXlkL6lBX2G0uJHg/1ltcg7pcQPLZf0si/StESRlCoqTpqL4s1npER3dch3lL0ZnppeMi4aWEVXNSpiIo9qFhEvfOg3omomQc1E1FzD2ououzMd3GdgBFg9Y/vYkF3PALYR66+IvAKbsCqcxvmaATj5wC8wIdUcx/+tij2lq46yTCax3USsxzPSpZ4AqWFWoN6GxVuU3yd0gxLQDJueV/H+HiHuY2FnnNshc+KlTwqMibhdIYkz6Cgg95iRPOpGZ07VHNG3h2XmuFvF/PelJrhd0jjZ+TFc6kZfqqln55D9rbGts+BbcFsGmvt23JTGpx/YRqmfJFWXbS4+FZP9JhBeqcN6e/pN7N3jveyRSXWjy03o5E7/ctL/WtCw+o5d/TcjAp6T+z1mlLUuCcjHffaclMZMlpFR1oOe9f0zWCbvn4zptyMxgF4XFsUcy+cctPROy56Y8vNaBwpznuekSdvys1oDOie9WHLzWhgtqWr43xbbmrZUQMcO9tyU6s+oiww5oB4zHON9Yom5CfNNLUh+Qf12RrX519dxzBn87yIEeopWd+2mk5crGX1Ehl/IQGrNm0oB/oXM8cHK9NYqGtifMUyTEvr+yodu8aj5vdBixHMft4DkHLmKUhochJovVOguClGXeWeGdw1EYej5HgJ1dG1U9FbtHw5a1Sue0G1Ulxme2v12CF7ndPYG5NPuE+alfSwX/mGqyhKGtovaUim10R37/V8LWt/Q8SNlxDjYqT1aEeId9Lq41Sf1luOji/rXZ4pXLznY8cvZpuPtbXBmCcjW4Sy1PF025k8kluH6+pVZXPc/CyiN4r2ak5WY0g7UrkYhZpsMXvjC7q3tA9pTw55MI0evMdIUxkr3jXDLDrm0yOyqK69lXijvkyGjss5WV1jj+vRAwc98KCbxzhbsGLcg1IbYoZDuGsHRDkXC11lpPGJ+m2xO5rRG6yP6NOShTQ02N4kJQtZF2W/LFF5C2gcDRylh9NYpmPwnRVKctTvk8fGrmXLf5l2bs3+dpfGePVors7E9InrNeIa0azhXV2+W+bAEiy8T66R/1rfS+TXhCPaUInrc4cz62VEO/4JRbBj8oxTmm3S7Ci3dvNTy08MpwNl9s5xNzsjCxmR/YtgfcpoTEb0454dMDvobBFSspEhdmdYeDc+X2cojjHrxw0Vn2qw4y0hWzYj/oauO7tyGoscMfA6cLY0to1O9skXTIjrRFt3O7frVx9E2nMS7ihhinasXCH+n9Nv82PGydrKiEAN4xvIta3zvY+MYhbUUZdW+XobZNq6Un5WyPBcS23XPyvTZyXJtiniQnlwte4D5x7dMy8cJROSO19pw+toXTYXKY+X9Ii9PaYonu3+QK/AKPdVWiXXaM51aJQMYBRMiyjCtJWyyMt863mVqYfRzv8v1K2uy1pDipGyGVzWkJTfTyhac6VMYVTz+H1Ns8mv9clSq3o+IxqLJ85c/gZqfwm/jdzmPoxOXLIKN2kMMAV7ZzXCNdFKizBeN0u8zMg0tOy95WfHpGnl1pwnvmbrZmPseWMqBzRqTnXWwpTPQ+OVQ+NVoA7btNdotWjqjSV6IcYWbb1bGcqvCbd2A8ozkbLskRnUMEBKN5YKo9oXqcoxvkG9F2ltiLS6MFvd3QB3zocg/XN9eXZ/U6zukbpFvk2PPDCOX/o0S4fkc5na+kiNKSDn69q+urO/QzXIPSYLipT5HCfOGN516tF1Vkj6K72yZWTnrUUw55be6jbGxnao/PsV5AnNiZzmpUFcpxaJlt+VI1qySOuOzxFR5r9LPhX7HfUxs9vavpOo5E/YeJNnleXFkcKI9C9l3vZWotc9J36NKCacae86BlrN3zBSYIzJJPg9y5zeEK5yvJPAHm1M9nPVTvEu3siRaJ2kXqg/B9gYjnrtWHfHlumx6dtvoCVq3b51XwuZXxrMUeJ3nh29Lq1qJ9pHXSzdn49WV69y5fs6PcyW+Fp9zKiNG1nYKK+M6agvgrmwRM24MCaES7NeNJG/meRNZObdqVDKprWhXM40sI15SfGSdA4UET7v7orXm/tc6Ee8Qi8mrEuNayRKmI3LdH7AtbSYlYqWIiS3XlqTUmc9qlovLA931bB2nC1lQlYwVVLuhlu7feiUohU5G8MUeopP9lbFiS7NL+DC35HyRYmGY0gOsQV+7g21pXY+wKmIN7rMmc2IatAm9Jdi8K7uZ7lFvY7eONRd+iEcwnkMQdeS9ENaUZvKzpRlyV3q4fTfkjWYqESU3rZs3geXi9yTVU5N+jMkCyf3ZqjMNzlN+2I4hPSkzCWcD+9vSL04VubbpmZ9MNTlHpQ5NOFhzjOEvXPbujkvl1O9vla5hPLgdcDsvBgc7gBWxyy2XYiFmjhv5MNzQOtwXEPdrBb/az8MH8upOa9Qbjl9c/Yq4K1zu0RnZtEvbj5nLLeQ0VzNMZxnVvTOek1+fuz/RY3eVOb05sPTR7/UjgHDa6E4HypLx3h3FFl5Q6ng/oBPhkz9W/39gvxVwpuCRpUcTSiZ/YpqaqaFTM18eenrnXkWIpOlUyVTmZqNJ1p0MnZL7alb8LNVeIBNT4nyN5X8F7H+72j7UHtM1sNk0zmD0KG6hLIgdjetT/f2HG2VxHiml8/4tqEG98T3qRbP+96j9njmt13qW/WXJDzX76pM9UuRyfIun51XMfSgvAPHuSDzvW9EZ+o5m8Un0E4C9hj5HBVHSubr5wUh+hQXLku6IIQZLXWUYy/lmM4kJRW041LfejTCx3qnH/cd8Hx+t8guRep3VNfVqwOu1JJUBx6pnlJmICb9b0CE9gd1Ff5e1WW/pAcrkub0DsoSnTrP6k+CnXnHhf2a8TLlwUymbq7bZRTV293D+kzsdiUXPvFejx/U4AeOlC16W68p7p6o+tzhrIbmTMvk7ueOlMl7sh4wmu0W46M+fp7X8JoH9P9OJfqOI+kuyBJTtj2i/bwJ0Uu1bnZIej5XWZ+3vV0jrflqk2nak5V2HJgzknUc8KuyLWH285dn9SsDfmHmp+PO9ScB+y7YE0kiPpkpZY+SAIn4jKh0fmXopSRbjHHA+YxuQG/lvob0VKIyEyWZBXwbPQ+QZR5A51iQ5likMBAl0RbrxaW1zeX/fWS1cHRtfXNjffPB9bUvb+r/meRj9XP1qboCq/Ef1ZcwIw/UIeUa/6L+qv62/Z+dX+xc3vk1N/3ogsb8TJX+7Wz8F/gjXQI=</latexit> <latexit sha1_base64="O+fT+UDZYhoqifeIw6Ke6DTBAFc=">AAA/fXiczVtbdxu3EUbSW6ze7PSxD91WUWPnuDqy4lM3J6d1bEmWFdOWbFGykzB2eVlRG1NcepfUxazyT/raPvQn9Jf0H9Q/oU/tzABYYEnsDqAm50Q4krAgvpnBAJgLsOyMBkk+Xln511tvf+/7P/jhj965tPDjn/z0Zz+/fOXd/TydZN14r5sO0uxZp53Hg2QY742T8SB+Nsri9lFnED/tvFzDz58ex1mepMPm+GwUf3nU7g+Tg6TbHkPTi8tXWkRjmsW986j3ovXs9MXlxZXlFfqJ5is3VGVRqJ+d9MqvPhAt0ROp6IqJOBKxGIox1AeiLXIoX4gbYkWMoO1LMYW2DGoJfR6Lc7EA2An0iqFHG1pfwt8+PH2hWofwjDRzQneBywB+M0BGYgkwKfTLoI7cIvp8QpSxtYr2lGiibGfwv6NoHUHrWBxCK4fTPf1xPWg9ANlQM/VjHkO/P9BYE+g9ohbUQldxm5D2cISRNfoxUBhBG9Z78HkG9S4h9XxEhMlJRzgHbfr839QTW/G5q/pOxBsazXdFf989vSwFlEhsiUdiTTTEnlgXG2KX5K0vC4Rbg3GMQMcZSN4HDaG0V0Gaa/B/FfbUirgFtU2QsUN9YhhLJHbg/xnJv6BkjcRDcUc0xX3ifRXqD6F2LWCeuJ56bec0G/7rZoFZZRnNyFmtBGMa/4QsQCZOa/vi2ump2Tyg9ZCrHVk/p1KDa+KJ2K6dP+Q8BPonZImOSIPIcQrtfZAJV+gA+KFNxLX8D/G1WIT61+Kfah1HIFemVvYh0ZNP/jT/DAVpvg/lXFwimnsg9UIxygie5Aykxepvi2PaGxFZ8gl8JvfSgNbekHrVje4RlHOq6VXTgTKl1vNa5BoUF3KNRW5CcSE3WWQDigvZYJE7UFzIHYWswz6G4sI+Zrk+geJCPmGRTSguZJNF7kNxIfdZ5OdQXMjPWeQ9KC7kPRb5AIoL+YBF7kFxIfdY5AYUF3JDIav3Gtq1lOgkzL66A/UyD/RTA2i5w8p3l2ysC3vXY1d2K7D8vlyH/27suodO4wrshsfqOajA8utnE6ycG8tbk/vkI13Y+yx2C1aAG7vFYj8VX1VgP/XYLy8rsPyOaZC/cWF5+/kQntzYhyz2EdTcWN7LbEOLG7vtYfNHFdgdFvtYvKrA+lj9rALL2/1disVc2F0PnzGuwPJeYw9iBzeWt6f7EIO4sbzPeQqtbuxTFvuMokYX9hmL/YyiUxf2Mw8/+boCqz2ljN77FAPGsGPrqLWLXYm1EVBrM/wHhW/BGvqoHovpF5g+YY5YxGaB2PRENApEw1uuvLCjOUWsPJfdArHriegUvglrY7Z/r+jfo9yMR6wXiPUZRF0WgHOtx3JM0YVu4ZDjwnNhzWdMaWG/sRar9VBveTViu4SQa/uQVv51ytUxk+lR3lpN7bDw8RIZ0XMd4oRyPT1KzYPHjQurYKNOWVTHgeqwqDMH6oxFTRyoCYs6dqCOWZTZ+Tau5bECjP5xLqb0pHN/7iylfHaxDR53A7wftmzDf5+zlPqsHE8E0FPq7NnY4gxqU8qkTWa3TjmyPGmIQTLZc1udMeETnk1O1a6Tdvi88OWR0Cee/nQSkqdf0MF4MaIdFUbnAbWcU3wna2H4+8XO17Uw/AZp/JzieFkLw4+V9OMLyN5U2OYFsLuwn0ZK+6YeSkOeoUgaus7Z5q3CbuJ55SntHNkWyn+NalIHph5GI7fGkJfGEELD6DK3dBlGBWMkGdvqWhQ8kqHKbk09VIaUfOVQyWGeQmcG+/TUzOh6GI0diKvWKLOeWvXQFToqRmPqYTT2hTxbP6d4XdfDaPTpWerD1MNo4JlKW2Xzph5qvVEDMkM2dR2zZBTF6BPnhLx3/VmKHZHP+xg8UXleRPD1lEzkWU2nU/iZeolmrUuIHOj9J1aEVKYxFats9iNlGJd87zwd439R8w3QYgS7Vp7rc2fSA5BQnxjEdEr+nKjVY8oj07hVFoeW5GAG1VKtYzaWM3zlmU657QW1clmTGa3RY4vsbE5rb0QRW4M0y+mhUTnDVRQ5DTVKGuLphejuNe3gdEb7KyxuNIMYFSutS7dD8pa6Pot0aX3X0vGSukUZQ5F3Kmb94lnwAeEyykhSsjYoSx1Pu58+5bHb0B9eF+YEWn4W0YyivTomq5HQjU/OxiH6LFdGylN6NrT36J6tfGsVKSojIW9U8YwbT7sjus+0bS3HG/Wlz89kPSera+7R62/HDLrvQIdmH2vgKx5BrQnR/B48NT3yD3PnlpK+M/G74v4zpfmrz7btm71WQUNam7hkH+sy4MMSlRNA41qQGbQ/jVk6Gt+ao8Rn5C55TF5ZtvtLdKev3xxp0wqvXsvVpyQ94rpKXCPaM/K+Xz7NcpASTJ2frFLUWT9K5BfCES0ox/W5xVnqZUjv0sSUW44onh3QXuP2Rrm3fXY0+4nmtCP0WxV4V5ySfYzI+kXgnVJakxH92m/l6HcrpD0YkIX0sTpJEdu4Ip2EXWMJ7XK5RuT7Qma9xWTJJsRf07V3V05rUcb50gucz6xtrZMGRYIxcc2UbTd7u973INK8CWGvEknRrJWrxP8a/dW/ep0szq0I1DDOQK4snWs+Uso0UEdt8vH1Nkj3taV8r5DhuZLaeD8j03slydYpT0J50Ff3gHOXniUvXCUZyZ3P9ZFetO6kFSmPZvSIo0Xv2lJWv6/8L8p9nXzkIu25ljBv2OjYX/flTnhn+dbzKlP3o51/K9SNrstaQ4qRMKerUkPc2XtMOZYt5YDeSZJv38SK0rzWs5le9XyGtBaPrL38F2j9NfzVcutnPzqdklW4S2tAUjBPRiOyJZrr4cfrbomXXpmalnk2/Mya1L3slotkxdK6mcz4OJjKDq2aU3XWoOs+42/SHZ7RgG7XVuTFTATdVHd+vtTDaPtTnrCU+dhJoxIPKe2cx49qj6XK5+Ia9ZqltcLSwrfx7BN1e3favvMexQ5dinBkdtCjXZBQTKNb6/MgSQF53VT2y95dLWrBvdQhC4WUy28V4tldV8h3SKWMv1WeIyU7anacfmfnRPXRNqxF9Q/nkEeUzea0dzTiJvWIlfy2HNHMjl+2fHpEZ95tilmkX6/PSO3eZhaikr822ZzcC4bXQLyvovEhzcFYvKnltjWXH25ZGWIk5H3foIjgcZbfBM0y5m1yZehc3R295TRL6Ekyyudl1NghGzV/yiBvsYagfb3ulknqqfijh3WQeaXZKfb6ws8mKivBsX0APVHzZuZdPXh+A2+OHL+L3Ge1yXMcqThwOvN8MVpt5UnKz3V6mMzwNfqYiKHKCXX0bjKpMqYlPvbmIiUK4yIxPlzCRhEif5jkITLLextfyrq3plzO5qWNOaSchHsPEhGuCOqqM2K6xoyjM0evQ1ibmmzhKOF5V6pycNva4snPpTlfJFsv1XqkgeWNqryFpm57DGPDpYWMyfoNBHcuInt3hXwftSqDsnODj6Hg30i48iftTXxO13YhisT36v2+FVF/k/9K1eWJX0QtuJN7M9lpW42z3KN+ll9Z1G36Phz8eSSga076hPxgqOySMi+5Td2f/gnt4UzErPSmZ/gYbC78SOY5hYwnIbvEjyYR+ntMoWPRHHxGUubiz0ee+3OjOBD6+3RhY9DU+RGUOYTw0PfzfnNueofzsjnV62ueiy8PacP1jYTG4c1YdbZh+vlYqMyakW+eA1qHgxrq2lv8v+PQfAyncF6+3HL6rtNXHrMu+8XqzBKj2fA9Y7j5rOZqjv4802J0JtZx85NRWxQ0U6k1mm+ePkaTZg1oXlMhTwp56STeXkVGXl8qeHLukiEV//GSQeKrZPClok/wqynpHjw1/U0/16j0Zz4yGTpVMpWpIT2ZabdoD8d0WmBudnr0XLxtSd9D/4h+Ilm5dVNVPrpRfA99f3X5xu+XP3x8c/GTu+ob6e+IX4rfQCR/Q9wSn4j7EGHugQwn4q/ib+Lvf/rv7aXb128vy65vv6UwvxCln9u3/gfA1CcO</latexit> dX Y <latexit sha1_base64="6tOGw6FSQVfHa06oZqSaTlaRZAo=">AABFdnictVxtc9u4EUaub9f0Ldd+7EyHPZ/bXCd17TSdduamM5fYjuOLkziR7CQXJRlRohUltKiIkvKi81/o1/bf9Hf0H7Sf+rUfuy8AAUogF3TTcGyDIJ7dxRJY7C7AxON0mE83N/9x4aNvffs73/3ex9+/+IMf/ujHP7n0yU+P82w26SVHvSzNJo/ibp6kw1FyNB1O0+TReJJ0T+M0eRi/2sbnD+fJJB9mo/b03Th5etodjIYnw153ilWdx++2n19a29zYpH/RamFLF9aU/neYffLphuqovspUT83UqUrUSE2hnKquyuF6orbUphpD3VO1gLoJlIb0PFFn6iJgZ9AqgRZdqH0Fvwdw90TXjuAeaeaE7gGXFH4mgIzUOmAyaDeBMnKL6PmMKGNtFe0F0UTZ3sHfWNM6hdqpegG1Es60DMVhX6bqRP2J+jCEPo2pBnvX01RmpBWUPHJ6NQUKY6jDch+eT6DcI6TRc0SYnPqOuu3S839SS6zF+55uO1P/IinX4YpUS/c+Kyh01ZzoR/Q2Z/CM5UmB8wAoJLqPWHpDuj6l3o+g/QLq78J1RiWjkxiuBdWe1SK34fIht0XkHlw+5J6IPIDLhzwQkYdw+ZCHGonYCencj2/B5cO3RM734fIh74vIB3D5kA9E5DFcPuSxiPwaLh/yaxF5Ey4f8qaIvA2XD3lbRLbh8iHbIvIILh/ySETuwuVD7mpk9UydwJURnaEwK69DucwDLUUKNddF+W6QdfRhbwTM6V4FVp7VO/DXj90J0GlSgd0NGHcnFVh55O2BjfRjZVt0i1YTH/aWiN2HEeDH7ovYr9TLCuxXATPtVQVWnmsH0M6Pla3vHbjzY++I2LtQ8mPlNeoe1Pix9wJWjHEF9lDE3levK7AhVn9SgZXtfgvsih8rr1NtaO/HhljTWQVWtqfH4MH4sfJq9RBq/diHIvaReluBfSRiH4N192MfB6yw7yuwZo29SCvIgPyRBGZsHbVuMSuxNAZqXYF/WqwtKfnGMdRLmEGBGRDmVETsFYi9QMRBgTgIlisv7GhO/q7MpVUgWoGIuFibsDQV2/eL9lhKAxA7BWJnCVHnkeK7Nn2Zk3dhaiTktFi5sBTSp6yw31hK9Hiot7wGca+E4LH9gkb+FYqWMIJCTdVRe1Gs8YyM6L4O8YaiN9NLw0PGTQur4KLeiqjYg4pF1DsP6p2ImnlQMxE196DmIsrOfBfXCRgBVv/4LhZ0xyOAfeTqKwKv4DqsOrdgjkYwfg7BC3xANffgb4tib+mqkwyjeVwnMcvxtGSJJ1BaqDWot1HhDsXXKc2wBCTjlvd0jI93mNtY6DnHVvisWMmjImMSTmdI8gwKOugtRjSfmtG5TTVn5N1xqRn+VjHvTakZfpc0fkZePJea4ada+uk5ZG9rbPsc2BbMprHWvi03pcH5F6Zhyhdp1UWLi2/1VI8ZpPe2If19/Wb2z/FetqnE+rHlZjRyp395qX9NaFg9546em1FB74m9XlOKGvdkpONeW24qQ0ar6EjLYe+avhls09dvxpSb0TgEj2ubYu6FU246esdFb2y5GY1jxXnPM/LkTbkZjQHdsz5suRkNzLZ0dZxvy00tO2qAY2dbbmrVR5QFxhwQj3musV7RhPykmaY2JP+gPlvj+vyr6xjmbJ4VMUI9JevbVtOJi7WsXiLjLyRg1aYN5UD/Yub4YGUaC3VVjK9YhmlpfV+lY9d41PwBaDGC2c97AFLOPAUJTU4CrXcKFLfEqKvcM4O7KuJwlJwsoTq6dip6i5YvZ43Kdc+pVorLbG+tHjtkr3Mae2PyCQ9Is5IeDirfcBVFSUMHJQ3J9Jro7r2er2Xtb4q48RJiXIy0Hu0I8U5afZzq03rL0fG63uWZwsV7Pnb8Yrb5RFsbjHkyskUoSx1Pt53JI7l1uK5eUTbHzc8ieqNor+ZkNYa0I5WLUajJFrM3vqB7S/uI9uSQB9PowXuMNJWx4l0zzKJjPj0ii+raW4k36stk6Lick9U19rgePXDQAw+6eYyzDSvGXSi1IWY4grt2QJRzsdBVRhqfqN8Wu6MZvcH6iD4tWUhDg+1NUrKQdVH2ixKVN4DG0cBRejiNZToG31mhJEf9Pnls7Fq2/Ou0c2v2t7s0xqtHc3Umpk9crxLXiGYN7+ry3TIHlmDhfXKV/Nf6XiK/JhzRhkpcnzmcWS8j2vFPKIIdk2ec0myTZke5tZufWn5iOB0qs3eOu9kZWciI7F8E61NGYzKiH/fsgNlBZ4uQko0MsTvDwrvx+TpDcYxZP26o+FSDHW8J2bIZ8Td03dmV01jkiIHXgbOlsW10ckC+YEJcJ9q627ldv/og0p6TcEcJU7Rj5TLx/5x+mx8zTtZWRgRqGN9Arm2d731kFLOgjrq0ytfbINPWlfKzQoZnWmq7/lmZPitJtkMRF8qDq3UfOPfonnnhKJmQ3PlKG15H67K5SHm8pEfs7QlF8Wz3B3oFRrmv0Cq5RnOuQ6NkAKNgWkQRpq2URV7mW8+rTD2Mdv5/oW51XdYaUoyUzeCyhqT8fkLRmitlCqOax+8rmk1+rU+WWtXzGdFYPHXm8jdQ+0v4beQ292F04pJVuEFjgCnYO6sRrolWWoTxulHiZUamoWXvLT87Jk0rt+Y88TVbNxtjzxtTOaRR81ZnLUz5PDReOjReBuqwTXuNVoum3lii52Js0da7laH8mnBrN6A8EynLHplBDQOkdGOpMKp9kaoc4xvUe5HWpkirC7PV3Q1w53wI0j/Xl2f3N8XqHqmb5Nv0yAPj+KVPs3RIPpeprY/UmAJyvqbtqzv7O1SD3GOyoEiZz3HijOFdpx5dZ4Wkv9IrW0Z23loEc27pjW5jbGyHyr9fQZ7SnMhpXhrENWqRaPldOaIli7Th+BwRZf675FOx31EfM7ut7TuJSv6EjTd5VlleHCmMSP9S5m1/JXrdd+LXiGLCmfauY6DV/A0jBcaYTILfs8zpDeEqxzsJ7NHGZD9X7RTv4o0ciTZI6oX6c4CN4ajXjnV3bJkem779Blqi1u1b97WQ+aXBHCV+59nR69Kqdqp91MXS/flodfUqV76v08Nsia/Vx4zauJGFjfLKmI76IpgLS9SMC2NCuDTrRRP5m0neRGbenQqlbFobyuVMA9uYFxQvSedAEeHz7i57vbnPhX7EK/RiwrrUuEaihNm4TOcHXEuLWaloKUJy66U1KXXWo6r1wvJwVw1rx9lSJmQFUyXlbri124dOKVqRszFMoaf4ZG9VnOjS/AIu/B0pX5RoOIbkEFvg515X22r3A5yKeK3LnNmMqAZtQn8pBu/qfpZb1OvotUPdpR/CIZzHEHQtST+kFbWp7ExZltylHk7/DVmDiUpE6W3L5n1wucg9WeXUpD9DsnByb4bKfJPTtC+GQ0hPylzC+fD+htSLE2W+bWrWB0Nd7kGZQxMe5jxD2Du3rZvzcjnV62uVSygPXgfMzovB4Q5gdcxi24VYqInzRj48B7QOJzXUzWrxv/bD8LGcmvMK5ZbTN2cvA946t0t0Zhb94uZzxnILGc3VHMN5ZkXvrNfk58f+X9ToTWVObz48ffRL7RgwvBaK86GydIx3R5GVN5QK7g/4ZMjUv9XfL8hfJbwuaFTJ0YSS2a+opmZayNTMl5e+3plnITJZOlUylanZeKJFJ2O31b66CT/bhQfY9JQof1PJfxHr/462D7UnZD1MNp0zCB2qSygLYnfT+nRvz9FWSYxnevmMbxtqcE/8gGrxvO9dao9nftulvlV/ScJz/Y7KVL8UmSzv8tl5FUMPyjtwnAsy3/tGdKaes1l8Au00YI+Rz1FxpGS+fl4Qok9x4bKkC0KY0VJHOfZSjulMUlJBOy71rUcjfKx3+nHfAc/nd4vsUqR+R3VdvTrgSi1JdeiR6gllBmLS/yZEaH9QV+DvFV32S3q4ImlO76As0VvnWf1JsDPvuLBfM65THsxk6ua6XUZRvd09rM/E7lRy4RPv9fhBDX7gSNmit/WK4u6Jqs8dzmpozrRM7n7uSJm8J+sBo9luMT7q4+d5Da95QP9vV6JvO5LugSwxZdsj2s+bEL1U62aXpOdzlfV521s10pqvNpmmPVlpx4E5I1nHAb8q2xZmP395Vr8y4BdmfjruXH8csO+CPZEk4pOZUvYoCZCIz4hK51eGXkqyxRgHnM/oBvRW7mtITyUqM1GSWcC30fMAWeYBdE4EaU5ECgNREm2xnl9a21r+30dWC8dXN7Y2N7buX1v78ob+n0k+Vj9Xn6rLsBr/UX0JM/JQHVGu8S/qr+pvO//Z/cXu+u6vuelHFzTmZ6r0b3fzv4JTXQQ=</latexit> <latexit sha1_base64="6tOGw6FSQVfHa06oZqSaTlaRZAo=">AABFdnictVxtc9u4EUaub9f0Ldd+7EyHPZ/bXCd17TSdduamM5fYjuOLkziR7CQXJRlRohUltKiIkvKi81/o1/bf9Hf0H7Sf+rUfuy8AAUogF3TTcGyDIJ7dxRJY7C7AxON0mE83N/9x4aNvffs73/3ex9+/+IMf/ujHP7n0yU+P82w26SVHvSzNJo/ibp6kw1FyNB1O0+TReJJ0T+M0eRi/2sbnD+fJJB9mo/b03Th5etodjIYnw153ilWdx++2n19a29zYpH/RamFLF9aU/neYffLphuqovspUT83UqUrUSE2hnKquyuF6orbUphpD3VO1gLoJlIb0PFFn6iJgZ9AqgRZdqH0Fvwdw90TXjuAeaeaE7gGXFH4mgIzUOmAyaDeBMnKL6PmMKGNtFe0F0UTZ3sHfWNM6hdqpegG1Es60DMVhX6bqRP2J+jCEPo2pBnvX01RmpBWUPHJ6NQUKY6jDch+eT6DcI6TRc0SYnPqOuu3S839SS6zF+55uO1P/IinX4YpUS/c+Kyh01ZzoR/Q2Z/CM5UmB8wAoJLqPWHpDuj6l3o+g/QLq78J1RiWjkxiuBdWe1SK34fIht0XkHlw+5J6IPIDLhzwQkYdw+ZCHGonYCencj2/B5cO3RM734fIh74vIB3D5kA9E5DFcPuSxiPwaLh/yaxF5Ey4f8qaIvA2XD3lbRLbh8iHbIvIILh/ySETuwuVD7mpk9UydwJURnaEwK69DucwDLUUKNddF+W6QdfRhbwTM6V4FVp7VO/DXj90J0GlSgd0NGHcnFVh55O2BjfRjZVt0i1YTH/aWiN2HEeDH7ovYr9TLCuxXATPtVQVWnmsH0M6Pla3vHbjzY++I2LtQ8mPlNeoe1Pix9wJWjHEF9lDE3levK7AhVn9SgZXtfgvsih8rr1NtaO/HhljTWQVWtqfH4MH4sfJq9RBq/diHIvaReluBfSRiH4N192MfB6yw7yuwZo29SCvIgPyRBGZsHbVuMSuxNAZqXYF/WqwtKfnGMdRLmEGBGRDmVETsFYi9QMRBgTgIlisv7GhO/q7MpVUgWoGIuFibsDQV2/eL9lhKAxA7BWJnCVHnkeK7Nn2Zk3dhaiTktFi5sBTSp6yw31hK9Hiot7wGca+E4LH9gkb+FYqWMIJCTdVRe1Gs8YyM6L4O8YaiN9NLw0PGTQur4KLeiqjYg4pF1DsP6p2ImnlQMxE196DmIsrOfBfXCRgBVv/4LhZ0xyOAfeTqKwKv4DqsOrdgjkYwfg7BC3xANffgb4tib+mqkwyjeVwnMcvxtGSJJ1BaqDWot1HhDsXXKc2wBCTjlvd0jI93mNtY6DnHVvisWMmjImMSTmdI8gwKOugtRjSfmtG5TTVn5N1xqRn+VjHvTakZfpc0fkZePJea4ada+uk5ZG9rbPsc2BbMprHWvi03pcH5F6Zhyhdp1UWLi2/1VI8ZpPe2If19/Wb2z/FetqnE+rHlZjRyp395qX9NaFg9546em1FB74m9XlOKGvdkpONeW24qQ0ar6EjLYe+avhls09dvxpSb0TgEj2ubYu6FU246esdFb2y5GY1jxXnPM/LkTbkZjQHdsz5suRkNzLZ0dZxvy00tO2qAY2dbbmrVR5QFxhwQj3musV7RhPykmaY2JP+gPlvj+vyr6xjmbJ4VMUI9JevbVtOJi7WsXiLjLyRg1aYN5UD/Yub4YGUaC3VVjK9YhmlpfV+lY9d41PwBaDGC2c97AFLOPAUJTU4CrXcKFLfEqKvcM4O7KuJwlJwsoTq6dip6i5YvZ43Kdc+pVorLbG+tHjtkr3Mae2PyCQ9Is5IeDirfcBVFSUMHJQ3J9Jro7r2er2Xtb4q48RJiXIy0Hu0I8U5afZzq03rL0fG63uWZwsV7Pnb8Yrb5RFsbjHkyskUoSx1Pt53JI7l1uK5eUTbHzc8ieqNor+ZkNYa0I5WLUajJFrM3vqB7S/uI9uSQB9PowXuMNJWx4l0zzKJjPj0ii+raW4k36stk6Lick9U19rgePXDQAw+6eYyzDSvGXSi1IWY4grt2QJRzsdBVRhqfqN8Wu6MZvcH6iD4tWUhDg+1NUrKQdVH2ixKVN4DG0cBRejiNZToG31mhJEf9Pnls7Fq2/Ou0c2v2t7s0xqtHc3Umpk9crxLXiGYN7+ry3TIHlmDhfXKV/Nf6XiK/JhzRhkpcnzmcWS8j2vFPKIIdk2ec0myTZke5tZufWn5iOB0qs3eOu9kZWciI7F8E61NGYzKiH/fsgNlBZ4uQko0MsTvDwrvx+TpDcYxZP26o+FSDHW8J2bIZ8Td03dmV01jkiIHXgbOlsW10ckC+YEJcJ9q627ldv/og0p6TcEcJU7Rj5TLx/5x+mx8zTtZWRgRqGN9Arm2d731kFLOgjrq0ytfbINPWlfKzQoZnWmq7/lmZPitJtkMRF8qDq3UfOPfonnnhKJmQ3PlKG15H67K5SHm8pEfs7QlF8Wz3B3oFRrmv0Cq5RnOuQ6NkAKNgWkQRpq2URV7mW8+rTD2Mdv5/oW51XdYaUoyUzeCyhqT8fkLRmitlCqOax+8rmk1+rU+WWtXzGdFYPHXm8jdQ+0v4beQ292F04pJVuEFjgCnYO6sRrolWWoTxulHiZUamoWXvLT87Jk0rt+Y88TVbNxtjzxtTOaRR81ZnLUz5PDReOjReBuqwTXuNVoum3lii52Js0da7laH8mnBrN6A8EynLHplBDQOkdGOpMKp9kaoc4xvUe5HWpkirC7PV3Q1w53wI0j/Xl2f3N8XqHqmb5Nv0yAPj+KVPs3RIPpeprY/UmAJyvqbtqzv7O1SD3GOyoEiZz3HijOFdpx5dZ4Wkv9IrW0Z23loEc27pjW5jbGyHyr9fQZ7SnMhpXhrENWqRaPldOaIli7Th+BwRZf675FOx31EfM7ut7TuJSv6EjTd5VlleHCmMSP9S5m1/JXrdd+LXiGLCmfauY6DV/A0jBcaYTILfs8zpDeEqxzsJ7NHGZD9X7RTv4o0ciTZI6oX6c4CN4ajXjnV3bJkem779Blqi1u1b97WQ+aXBHCV+59nR69Kqdqp91MXS/flodfUqV76v08Nsia/Vx4zauJGFjfLKmI76IpgLS9SMC2NCuDTrRRP5m0neRGbenQqlbFobyuVMA9uYFxQvSedAEeHz7i57vbnPhX7EK/RiwrrUuEaihNm4TOcHXEuLWaloKUJy66U1KXXWo6r1wvJwVw1rx9lSJmQFUyXlbri124dOKVqRszFMoaf4ZG9VnOjS/AIu/B0pX5RoOIbkEFvg515X22r3A5yKeK3LnNmMqAZtQn8pBu/qfpZb1OvotUPdpR/CIZzHEHQtST+kFbWp7ExZltylHk7/DVmDiUpE6W3L5n1wucg9WeXUpD9DsnByb4bKfJPTtC+GQ0hPylzC+fD+htSLE2W+bWrWB0Nd7kGZQxMe5jxD2Du3rZvzcjnV62uVSygPXgfMzovB4Q5gdcxi24VYqInzRj48B7QOJzXUzWrxv/bD8LGcmvMK5ZbTN2cvA946t0t0Zhb94uZzxnILGc3VHMN5ZkXvrNfk58f+X9ToTWVObz48ffRL7RgwvBaK86GydIx3R5GVN5QK7g/4ZMjUv9XfL8hfJbwuaFTJ0YSS2a+opmZayNTMl5e+3plnITJZOlUylanZeKJFJ2O31b66CT/bhQfY9JQof1PJfxHr/462D7UnZD1MNp0zCB2qSygLYnfT+nRvz9FWSYxnevmMbxtqcE/8gGrxvO9dao9nftulvlV/ScJz/Y7KVL8UmSzv8tl5FUMPyjtwnAsy3/tGdKaes1l8Au00YI+Rz1FxpGS+fl4Qok9x4bKkC0KY0VJHOfZSjulMUlJBOy71rUcjfKx3+nHfAc/nd4vsUqR+R3VdvTrgSi1JdeiR6gllBmLS/yZEaH9QV+DvFV32S3q4ImlO76As0VvnWf1JsDPvuLBfM65THsxk6ua6XUZRvd09rM/E7lRy4RPv9fhBDX7gSNmit/WK4u6Jqs8dzmpozrRM7n7uSJm8J+sBo9luMT7q4+d5Da95QP9vV6JvO5LugSwxZdsj2s+bEL1U62aXpOdzlfV521s10pqvNpmmPVlpx4E5I1nHAb8q2xZmP395Vr8y4BdmfjruXH8csO+CPZEk4pOZUvYoCZCIz4hK51eGXkqyxRgHnM/oBvRW7mtITyUqM1GSWcC30fMAWeYBdE4EaU5ECgNREm2xnl9a21r+30dWC8dXN7Y2N7buX1v78ob+n0k+Vj9Xn6rLsBr/UX0JM/JQHVGu8S/qr+pvO//Z/cXu+u6vuelHFzTmZ6r0b3fzv4JTXQQ=</latexit> <latexit sha1_base64="6tOGw6FSQVfHa06oZqSaTlaRZAo=">AABFdnictVxtc9u4EUaub9f0Ldd+7EyHPZ/bXCd17TSdduamM5fYjuOLkziR7CQXJRlRohUltKiIkvKi81/o1/bf9Hf0H7Sf+rUfuy8AAUogF3TTcGyDIJ7dxRJY7C7AxON0mE83N/9x4aNvffs73/3ex9+/+IMf/ujHP7n0yU+P82w26SVHvSzNJo/ibp6kw1FyNB1O0+TReJJ0T+M0eRi/2sbnD+fJJB9mo/b03Th5etodjIYnw153ilWdx++2n19a29zYpH/RamFLF9aU/neYffLphuqovspUT83UqUrUSE2hnKquyuF6orbUphpD3VO1gLoJlIb0PFFn6iJgZ9AqgRZdqH0Fvwdw90TXjuAeaeaE7gGXFH4mgIzUOmAyaDeBMnKL6PmMKGNtFe0F0UTZ3sHfWNM6hdqpegG1Es60DMVhX6bqRP2J+jCEPo2pBnvX01RmpBWUPHJ6NQUKY6jDch+eT6DcI6TRc0SYnPqOuu3S839SS6zF+55uO1P/IinX4YpUS/c+Kyh01ZzoR/Q2Z/CM5UmB8wAoJLqPWHpDuj6l3o+g/QLq78J1RiWjkxiuBdWe1SK34fIht0XkHlw+5J6IPIDLhzwQkYdw+ZCHGonYCencj2/B5cO3RM734fIh74vIB3D5kA9E5DFcPuSxiPwaLh/yaxF5Ey4f8qaIvA2XD3lbRLbh8iHbIvIILh/ySETuwuVD7mpk9UydwJURnaEwK69DucwDLUUKNddF+W6QdfRhbwTM6V4FVp7VO/DXj90J0GlSgd0NGHcnFVh55O2BjfRjZVt0i1YTH/aWiN2HEeDH7ovYr9TLCuxXATPtVQVWnmsH0M6Pla3vHbjzY++I2LtQ8mPlNeoe1Pix9wJWjHEF9lDE3levK7AhVn9SgZXtfgvsih8rr1NtaO/HhljTWQVWtqfH4MH4sfJq9RBq/diHIvaReluBfSRiH4N192MfB6yw7yuwZo29SCvIgPyRBGZsHbVuMSuxNAZqXYF/WqwtKfnGMdRLmEGBGRDmVETsFYi9QMRBgTgIlisv7GhO/q7MpVUgWoGIuFibsDQV2/eL9lhKAxA7BWJnCVHnkeK7Nn2Zk3dhaiTktFi5sBTSp6yw31hK9Hiot7wGca+E4LH9gkb+FYqWMIJCTdVRe1Gs8YyM6L4O8YaiN9NLw0PGTQur4KLeiqjYg4pF1DsP6p2ImnlQMxE196DmIsrOfBfXCRgBVv/4LhZ0xyOAfeTqKwKv4DqsOrdgjkYwfg7BC3xANffgb4tib+mqkwyjeVwnMcvxtGSJJ1BaqDWot1HhDsXXKc2wBCTjlvd0jI93mNtY6DnHVvisWMmjImMSTmdI8gwKOugtRjSfmtG5TTVn5N1xqRn+VjHvTakZfpc0fkZePJea4ada+uk5ZG9rbPsc2BbMprHWvi03pcH5F6Zhyhdp1UWLi2/1VI8ZpPe2If19/Wb2z/FetqnE+rHlZjRyp395qX9NaFg9546em1FB74m9XlOKGvdkpONeW24qQ0ar6EjLYe+avhls09dvxpSb0TgEj2ubYu6FU246esdFb2y5GY1jxXnPM/LkTbkZjQHdsz5suRkNzLZ0dZxvy00tO2qAY2dbbmrVR5QFxhwQj3musV7RhPykmaY2JP+gPlvj+vyr6xjmbJ4VMUI9JevbVtOJi7WsXiLjLyRg1aYN5UD/Yub4YGUaC3VVjK9YhmlpfV+lY9d41PwBaDGC2c97AFLOPAUJTU4CrXcKFLfEqKvcM4O7KuJwlJwsoTq6dip6i5YvZ43Kdc+pVorLbG+tHjtkr3Mae2PyCQ9Is5IeDirfcBVFSUMHJQ3J9Jro7r2er2Xtb4q48RJiXIy0Hu0I8U5afZzq03rL0fG63uWZwsV7Pnb8Yrb5RFsbjHkyskUoSx1Pt53JI7l1uK5eUTbHzc8ieqNor+ZkNYa0I5WLUajJFrM3vqB7S/uI9uSQB9PowXuMNJWx4l0zzKJjPj0ii+raW4k36stk6Lick9U19rgePXDQAw+6eYyzDSvGXSi1IWY4grt2QJRzsdBVRhqfqN8Wu6MZvcH6iD4tWUhDg+1NUrKQdVH2ixKVN4DG0cBRejiNZToG31mhJEf9Pnls7Fq2/Ou0c2v2t7s0xqtHc3Umpk9crxLXiGYN7+ry3TIHlmDhfXKV/Nf6XiK/JhzRhkpcnzmcWS8j2vFPKIIdk2ec0myTZke5tZufWn5iOB0qs3eOu9kZWciI7F8E61NGYzKiH/fsgNlBZ4uQko0MsTvDwrvx+TpDcYxZP26o+FSDHW8J2bIZ8Td03dmV01jkiIHXgbOlsW10ckC+YEJcJ9q627ldv/og0p6TcEcJU7Rj5TLx/5x+mx8zTtZWRgRqGN9Arm2d731kFLOgjrq0ytfbINPWlfKzQoZnWmq7/lmZPitJtkMRF8qDq3UfOPfonnnhKJmQ3PlKG15H67K5SHm8pEfs7QlF8Wz3B3oFRrmv0Cq5RnOuQ6NkAKNgWkQRpq2URV7mW8+rTD2Mdv5/oW51XdYaUoyUzeCyhqT8fkLRmitlCqOax+8rmk1+rU+WWtXzGdFYPHXm8jdQ+0v4beQ292F04pJVuEFjgCnYO6sRrolWWoTxulHiZUamoWXvLT87Jk0rt+Y88TVbNxtjzxtTOaRR81ZnLUz5PDReOjReBuqwTXuNVoum3lii52Js0da7laH8mnBrN6A8EynLHplBDQOkdGOpMKp9kaoc4xvUe5HWpkirC7PV3Q1w53wI0j/Xl2f3N8XqHqmb5Nv0yAPj+KVPs3RIPpeprY/UmAJyvqbtqzv7O1SD3GOyoEiZz3HijOFdpx5dZ4Wkv9IrW0Z23loEc27pjW5jbGyHyr9fQZ7SnMhpXhrENWqRaPldOaIli7Th+BwRZf675FOx31EfM7ut7TuJSv6EjTd5VlleHCmMSP9S5m1/JXrdd+LXiGLCmfauY6DV/A0jBcaYTILfs8zpDeEqxzsJ7NHGZD9X7RTv4o0ciTZI6oX6c4CN4ajXjnV3bJkem779Blqi1u1b97WQ+aXBHCV+59nR69Kqdqp91MXS/flodfUqV76v08Nsia/Vx4zauJGFjfLKmI76IpgLS9SMC2NCuDTrRRP5m0neRGbenQqlbFobyuVMA9uYFxQvSedAEeHz7i57vbnPhX7EK/RiwrrUuEaihNm4TOcHXEuLWaloKUJy66U1KXXWo6r1wvJwVw1rx9lSJmQFUyXlbri124dOKVqRszFMoaf4ZG9VnOjS/AIu/B0pX5RoOIbkEFvg515X22r3A5yKeK3LnNmMqAZtQn8pBu/qfpZb1OvotUPdpR/CIZzHEHQtST+kFbWp7ExZltylHk7/DVmDiUpE6W3L5n1wucg9WeXUpD9DsnByb4bKfJPTtC+GQ0hPylzC+fD+htSLE2W+bWrWB0Nd7kGZQxMe5jxD2Du3rZvzcjnV62uVSygPXgfMzovB4Q5gdcxi24VYqInzRj48B7QOJzXUzWrxv/bD8LGcmvMK5ZbTN2cvA946t0t0Zhb94uZzxnILGc3VHMN5ZkXvrNfk58f+X9ToTWVObz48ffRL7RgwvBaK86GydIx3R5GVN5QK7g/4ZMjUv9XfL8hfJbwuaFTJ0YSS2a+opmZayNTMl5e+3plnITJZOlUylanZeKJFJ2O31b66CT/bhQfY9JQof1PJfxHr/462D7UnZD1MNp0zCB2qSygLYnfT+nRvz9FWSYxnevmMbxtqcE/8gGrxvO9dao9nftulvlV/ScJz/Y7KVL8UmSzv8tl5FUMPyjtwnAsy3/tGdKaes1l8Au00YI+Rz1FxpGS+fl4Qok9x4bKkC0KY0VJHOfZSjulMUlJBOy71rUcjfKx3+nHfAc/nd4vsUqR+R3VdvTrgSi1JdeiR6gllBmLS/yZEaH9QV+DvFV32S3q4ImlO76As0VvnWf1JsDPvuLBfM65THsxk6ua6XUZRvd09rM/E7lRy4RPv9fhBDX7gSNmit/WK4u6Jqs8dzmpozrRM7n7uSJm8J+sBo9luMT7q4+d5Da95QP9vV6JvO5LugSwxZdsj2s+bEL1U62aXpOdzlfV521s10pqvNpmmPVlpx4E5I1nHAb8q2xZmP395Vr8y4BdmfjruXH8csO+CPZEk4pOZUvYoCZCIz4hK51eGXkqyxRgHnM/oBvRW7mtITyUqM1GSWcC30fMAWeYBdE4EaU5ECgNREm2xnl9a21r+30dWC8dXN7Y2N7buX1v78ob+n0k+Vj9Xn6rLsBr/UX0JM/JQHVGu8S/qr+pvO//Z/cXu+u6vuelHFzTmZ6r0b3fzv4JTXQQ=</latexit> <latexit sha1_base64="6tOGw6FSQVfHa06oZqSaTlaRZAo=">AABFdnictVxtc9u4EUaub9f0Ldd+7EyHPZ/bXCd17TSdduamM5fYjuOLkziR7CQXJRlRohUltKiIkvKi81/o1/bf9Hf0H7Sf+rUfuy8AAUogF3TTcGyDIJ7dxRJY7C7AxON0mE83N/9x4aNvffs73/3ex9+/+IMf/ujHP7n0yU+P82w26SVHvSzNJo/ibp6kw1FyNB1O0+TReJJ0T+M0eRi/2sbnD+fJJB9mo/b03Th5etodjIYnw153ilWdx++2n19a29zYpH/RamFLF9aU/neYffLphuqovspUT83UqUrUSE2hnKquyuF6orbUphpD3VO1gLoJlIb0PFFn6iJgZ9AqgRZdqH0Fvwdw90TXjuAeaeaE7gGXFH4mgIzUOmAyaDeBMnKL6PmMKGNtFe0F0UTZ3sHfWNM6hdqpegG1Es60DMVhX6bqRP2J+jCEPo2pBnvX01RmpBWUPHJ6NQUKY6jDch+eT6DcI6TRc0SYnPqOuu3S839SS6zF+55uO1P/IinX4YpUS/c+Kyh01ZzoR/Q2Z/CM5UmB8wAoJLqPWHpDuj6l3o+g/QLq78J1RiWjkxiuBdWe1SK34fIht0XkHlw+5J6IPIDLhzwQkYdw+ZCHGonYCencj2/B5cO3RM734fIh74vIB3D5kA9E5DFcPuSxiPwaLh/yaxF5Ey4f8qaIvA2XD3lbRLbh8iHbIvIILh/ySETuwuVD7mpk9UydwJURnaEwK69DucwDLUUKNddF+W6QdfRhbwTM6V4FVp7VO/DXj90J0GlSgd0NGHcnFVh55O2BjfRjZVt0i1YTH/aWiN2HEeDH7ovYr9TLCuxXATPtVQVWnmsH0M6Pla3vHbjzY++I2LtQ8mPlNeoe1Pix9wJWjHEF9lDE3levK7AhVn9SgZXtfgvsih8rr1NtaO/HhljTWQVWtqfH4MH4sfJq9RBq/diHIvaReluBfSRiH4N192MfB6yw7yuwZo29SCvIgPyRBGZsHbVuMSuxNAZqXYF/WqwtKfnGMdRLmEGBGRDmVETsFYi9QMRBgTgIlisv7GhO/q7MpVUgWoGIuFibsDQV2/eL9lhKAxA7BWJnCVHnkeK7Nn2Zk3dhaiTktFi5sBTSp6yw31hK9Hiot7wGca+E4LH9gkb+FYqWMIJCTdVRe1Gs8YyM6L4O8YaiN9NLw0PGTQur4KLeiqjYg4pF1DsP6p2ImnlQMxE196DmIsrOfBfXCRgBVv/4LhZ0xyOAfeTqKwKv4DqsOrdgjkYwfg7BC3xANffgb4tib+mqkwyjeVwnMcvxtGSJJ1BaqDWot1HhDsXXKc2wBCTjlvd0jI93mNtY6DnHVvisWMmjImMSTmdI8gwKOugtRjSfmtG5TTVn5N1xqRn+VjHvTakZfpc0fkZePJea4ada+uk5ZG9rbPsc2BbMprHWvi03pcH5F6Zhyhdp1UWLi2/1VI8ZpPe2If19/Wb2z/FetqnE+rHlZjRyp395qX9NaFg9546em1FB74m9XlOKGvdkpONeW24qQ0ar6EjLYe+avhls09dvxpSb0TgEj2ubYu6FU246esdFb2y5GY1jxXnPM/LkTbkZjQHdsz5suRkNzLZ0dZxvy00tO2qAY2dbbmrVR5QFxhwQj3musV7RhPykmaY2JP+gPlvj+vyr6xjmbJ4VMUI9JevbVtOJi7WsXiLjLyRg1aYN5UD/Yub4YGUaC3VVjK9YhmlpfV+lY9d41PwBaDGC2c97AFLOPAUJTU4CrXcKFLfEqKvcM4O7KuJwlJwsoTq6dip6i5YvZ43Kdc+pVorLbG+tHjtkr3Mae2PyCQ9Is5IeDirfcBVFSUMHJQ3J9Jro7r2er2Xtb4q48RJiXIy0Hu0I8U5afZzq03rL0fG63uWZwsV7Pnb8Yrb5RFsbjHkyskUoSx1Pt53JI7l1uK5eUTbHzc8ieqNor+ZkNYa0I5WLUajJFrM3vqB7S/uI9uSQB9PowXuMNJWx4l0zzKJjPj0ii+raW4k36stk6Lick9U19rgePXDQAw+6eYyzDSvGXSi1IWY4grt2QJRzsdBVRhqfqN8Wu6MZvcH6iD4tWUhDg+1NUrKQdVH2ixKVN4DG0cBRejiNZToG31mhJEf9Pnls7Fq2/Ou0c2v2t7s0xqtHc3Umpk9crxLXiGYN7+ry3TIHlmDhfXKV/Nf6XiK/JhzRhkpcnzmcWS8j2vFPKIIdk2ec0myTZke5tZufWn5iOB0qs3eOu9kZWciI7F8E61NGYzKiH/fsgNlBZ4uQko0MsTvDwrvx+TpDcYxZP26o+FSDHW8J2bIZ8Td03dmV01jkiIHXgbOlsW10ckC+YEJcJ9q627ldv/og0p6TcEcJU7Rj5TLx/5x+mx8zTtZWRgRqGN9Arm2d731kFLOgjrq0ytfbINPWlfKzQoZnWmq7/lmZPitJtkMRF8qDq3UfOPfonnnhKJmQ3PlKG15H67K5SHm8pEfs7QlF8Wz3B3oFRrmv0Cq5RnOuQ6NkAKNgWkQRpq2URV7mW8+rTD2Mdv5/oW51XdYaUoyUzeCyhqT8fkLRmitlCqOax+8rmk1+rU+WWtXzGdFYPHXm8jdQ+0v4beQ292F04pJVuEFjgCnYO6sRrolWWoTxulHiZUamoWXvLT87Jk0rt+Y88TVbNxtjzxtTOaRR81ZnLUz5PDReOjReBuqwTXuNVoum3lii52Js0da7laH8mnBrN6A8EynLHplBDQOkdGOpMKp9kaoc4xvUe5HWpkirC7PV3Q1w53wI0j/Xl2f3N8XqHqmb5Nv0yAPj+KVPs3RIPpeprY/UmAJyvqbtqzv7O1SD3GOyoEiZz3HijOFdpx5dZ4Wkv9IrW0Z23loEc27pjW5jbGyHyr9fQZ7SnMhpXhrENWqRaPldOaIli7Th+BwRZf675FOx31EfM7ut7TuJSv6EjTd5VlleHCmMSP9S5m1/JXrdd+LXiGLCmfauY6DV/A0jBcaYTILfs8zpDeEqxzsJ7NHGZD9X7RTv4o0ciTZI6oX6c4CN4ajXjnV3bJkem779Blqi1u1b97WQ+aXBHCV+59nR69Kqdqp91MXS/flodfUqV76v08Nsia/Vx4zauJGFjfLKmI76IpgLS9SMC2NCuDTrRRP5m0neRGbenQqlbFobyuVMA9uYFxQvSedAEeHz7i57vbnPhX7EK/RiwrrUuEaihNm4TOcHXEuLWaloKUJy66U1KXXWo6r1wvJwVw1rx9lSJmQFUyXlbri124dOKVqRszFMoaf4ZG9VnOjS/AIu/B0pX5RoOIbkEFvg515X22r3A5yKeK3LnNmMqAZtQn8pBu/qfpZb1OvotUPdpR/CIZzHEHQtST+kFbWp7ExZltylHk7/DVmDiUpE6W3L5n1wucg9WeXUpD9DsnByb4bKfJPTtC+GQ0hPylzC+fD+htSLE2W+bWrWB0Nd7kGZQxMe5jxD2Du3rZvzcjnV62uVSygPXgfMzovB4Q5gdcxi24VYqInzRj48B7QOJzXUzWrxv/bD8LGcmvMK5ZbTN2cvA946t0t0Zhb94uZzxnILGc3VHMN5ZkXvrNfk58f+X9ToTWVObz48ffRL7RgwvBaK86GydIx3R5GVN5QK7g/4ZMjUv9XfL8hfJbwuaFTJ0YSS2a+opmZayNTMl5e+3plnITJZOlUylanZeKJFJ2O31b66CT/bhQfY9JQof1PJfxHr/462D7UnZD1MNp0zCB2qSygLYnfT+nRvz9FWSYxnevmMbxtqcE/8gGrxvO9dao9nftulvlV/ScJz/Y7KVL8UmSzv8tl5FUMPyjtwnAsy3/tGdKaes1l8Au00YI+Rz1FxpGS+fl4Qok9x4bKkC0KY0VJHOfZSjulMUlJBOy71rUcjfKx3+nHfAc/nd4vsUqR+R3VdvTrgSi1JdeiR6gllBmLS/yZEaH9QV+DvFV32S3q4ImlO76As0VvnWf1JsDPvuLBfM65THsxk6ua6XUZRvd09rM/E7lRy4RPv9fhBDX7gSNmit/WK4u6Jqs8dzmpozrRM7n7uSJm8J+sBo9luMT7q4+d5Da95QP9vV6JvO5LugSwxZdsj2s+bEL1U62aXpOdzlfV521s10pqvNpmmPVlpx4E5I1nHAb8q2xZmP395Vr8y4BdmfjruXH8csO+CPZEk4pOZUvYoCZCIz4hK51eGXkqyxRgHnM/oBvRW7mtITyUqM1GSWcC30fMAWeYBdE4EaU5ECgNREm2xnl9a21r+30dWC8dXN7Y2N7buX1v78ob+n0k+Vj9Xn6rLsBr/UX0JM/JQHVGu8S/qr+pvO//Z/cXu+u6vuelHFzTmZ6r0b3fzv4JTXQQ=</latexit> <latexit sha1_base64="6tOGw6FSQVfHa06oZqSaTlaRZAo=">AABFdnictVxtc9u4EUaub9f0Ldd+7EyHPZ/bXCd17TSdduamM5fYjuOLkziR7CQXJRlRohUltKiIkvKi81/o1/bf9Hf0H7Sf+rUfuy8AAUogF3TTcGyDIJ7dxRJY7C7AxON0mE83N/9x4aNvffs73/3ex9+/+IMf/ujHP7n0yU+P82w26SVHvSzNJo/ibp6kw1FyNB1O0+TReJJ0T+M0eRi/2sbnD+fJJB9mo/b03Th5etodjIYnw153ilWdx++2n19a29zYpH/RamFLF9aU/neYffLphuqovspUT83UqUrUSE2hnKquyuF6orbUphpD3VO1gLoJlIb0PFFn6iJgZ9AqgRZdqH0Fvwdw90TXjuAeaeaE7gGXFH4mgIzUOmAyaDeBMnKL6PmMKGNtFe0F0UTZ3sHfWNM6hdqpegG1Es60DMVhX6bqRP2J+jCEPo2pBnvX01RmpBWUPHJ6NQUKY6jDch+eT6DcI6TRc0SYnPqOuu3S839SS6zF+55uO1P/IinX4YpUS/c+Kyh01ZzoR/Q2Z/CM5UmB8wAoJLqPWHpDuj6l3o+g/QLq78J1RiWjkxiuBdWe1SK34fIht0XkHlw+5J6IPIDLhzwQkYdw+ZCHGonYCencj2/B5cO3RM734fIh74vIB3D5kA9E5DFcPuSxiPwaLh/yaxF5Ey4f8qaIvA2XD3lbRLbh8iHbIvIILh/ySETuwuVD7mpk9UydwJURnaEwK69DucwDLUUKNddF+W6QdfRhbwTM6V4FVp7VO/DXj90J0GlSgd0NGHcnFVh55O2BjfRjZVt0i1YTH/aWiN2HEeDH7ovYr9TLCuxXATPtVQVWnmsH0M6Pla3vHbjzY++I2LtQ8mPlNeoe1Pix9wJWjHEF9lDE3levK7AhVn9SgZXtfgvsih8rr1NtaO/HhljTWQVWtqfH4MH4sfJq9RBq/diHIvaReluBfSRiH4N192MfB6yw7yuwZo29SCvIgPyRBGZsHbVuMSuxNAZqXYF/WqwtKfnGMdRLmEGBGRDmVETsFYi9QMRBgTgIlisv7GhO/q7MpVUgWoGIuFibsDQV2/eL9lhKAxA7BWJnCVHnkeK7Nn2Zk3dhaiTktFi5sBTSp6yw31hK9Hiot7wGca+E4LH9gkb+FYqWMIJCTdVRe1Gs8YyM6L4O8YaiN9NLw0PGTQur4KLeiqjYg4pF1DsP6p2ImnlQMxE196DmIsrOfBfXCRgBVv/4LhZ0xyOAfeTqKwKv4DqsOrdgjkYwfg7BC3xANffgb4tib+mqkwyjeVwnMcvxtGSJJ1BaqDWot1HhDsXXKc2wBCTjlvd0jI93mNtY6DnHVvisWMmjImMSTmdI8gwKOugtRjSfmtG5TTVn5N1xqRn+VjHvTakZfpc0fkZePJea4ada+uk5ZG9rbPsc2BbMprHWvi03pcH5F6Zhyhdp1UWLi2/1VI8ZpPe2If19/Wb2z/FetqnE+rHlZjRyp395qX9NaFg9546em1FB74m9XlOKGvdkpONeW24qQ0ar6EjLYe+avhls09dvxpSb0TgEj2ubYu6FU246esdFb2y5GY1jxXnPM/LkTbkZjQHdsz5suRkNzLZ0dZxvy00tO2qAY2dbbmrVR5QFxhwQj3musV7RhPykmaY2JP+gPlvj+vyr6xjmbJ4VMUI9JevbVtOJi7WsXiLjLyRg1aYN5UD/Yub4YGUaC3VVjK9YhmlpfV+lY9d41PwBaDGC2c97AFLOPAUJTU4CrXcKFLfEqKvcM4O7KuJwlJwsoTq6dip6i5YvZ43Kdc+pVorLbG+tHjtkr3Mae2PyCQ9Is5IeDirfcBVFSUMHJQ3J9Jro7r2er2Xtb4q48RJiXIy0Hu0I8U5afZzq03rL0fG63uWZwsV7Pnb8Yrb5RFsbjHkyskUoSx1Pt53JI7l1uK5eUTbHzc8ieqNor+ZkNYa0I5WLUajJFrM3vqB7S/uI9uSQB9PowXuMNJWx4l0zzKJjPj0ii+raW4k36stk6Lick9U19rgePXDQAw+6eYyzDSvGXSi1IWY4grt2QJRzsdBVRhqfqN8Wu6MZvcH6iD4tWUhDg+1NUrKQdVH2ixKVN4DG0cBRejiNZToG31mhJEf9Pnls7Fq2/Ou0c2v2t7s0xqtHc3Umpk9crxLXiGYN7+ry3TIHlmDhfXKV/Nf6XiK/JhzRhkpcnzmcWS8j2vFPKIIdk2ec0myTZke5tZufWn5iOB0qs3eOu9kZWciI7F8E61NGYzKiH/fsgNlBZ4uQko0MsTvDwrvx+TpDcYxZP26o+FSDHW8J2bIZ8Td03dmV01jkiIHXgbOlsW10ckC+YEJcJ9q627ldv/og0p6TcEcJU7Rj5TLx/5x+mx8zTtZWRgRqGN9Arm2d731kFLOgjrq0ytfbINPWlfKzQoZnWmq7/lmZPitJtkMRF8qDq3UfOPfonnnhKJmQ3PlKG15H67K5SHm8pEfs7QlF8Wz3B3oFRrmv0Cq5RnOuQ6NkAKNgWkQRpq2URV7mW8+rTD2Mdv5/oW51XdYaUoyUzeCyhqT8fkLRmitlCqOax+8rmk1+rU+WWtXzGdFYPHXm8jdQ+0v4beQ292F04pJVuEFjgCnYO6sRrolWWoTxulHiZUamoWXvLT87Jk0rt+Y88TVbNxtjzxtTOaRR81ZnLUz5PDReOjReBuqwTXuNVoum3lii52Js0da7laH8mnBrN6A8EynLHplBDQOkdGOpMKp9kaoc4xvUe5HWpkirC7PV3Q1w53wI0j/Xl2f3N8XqHqmb5Nv0yAPj+KVPs3RIPpeprY/UmAJyvqbtqzv7O1SD3GOyoEiZz3HijOFdpx5dZ4Wkv9IrW0Z23loEc27pjW5jbGyHyr9fQZ7SnMhpXhrENWqRaPldOaIli7Th+BwRZf675FOx31EfM7ut7TuJSv6EjTd5VlleHCmMSP9S5m1/JXrdd+LXiGLCmfauY6DV/A0jBcaYTILfs8zpDeEqxzsJ7NHGZD9X7RTv4o0ciTZI6oX6c4CN4ajXjnV3bJkem779Blqi1u1b97WQ+aXBHCV+59nR69Kqdqp91MXS/flodfUqV76v08Nsia/Vx4zauJGFjfLKmI76IpgLS9SMC2NCuDTrRRP5m0neRGbenQqlbFobyuVMA9uYFxQvSedAEeHz7i57vbnPhX7EK/RiwrrUuEaihNm4TOcHXEuLWaloKUJy66U1KXXWo6r1wvJwVw1rx9lSJmQFUyXlbri124dOKVqRszFMoaf4ZG9VnOjS/AIu/B0pX5RoOIbkEFvg515X22r3A5yKeK3LnNmMqAZtQn8pBu/qfpZb1OvotUPdpR/CIZzHEHQtST+kFbWp7ExZltylHk7/DVmDiUpE6W3L5n1wucg9WeXUpD9DsnByb4bKfJPTtC+GQ0hPylzC+fD+htSLE2W+bWrWB0Nd7kGZQxMe5jxD2Du3rZvzcjnV62uVSygPXgfMzovB4Q5gdcxi24VYqInzRj48B7QOJzXUzWrxv/bD8LGcmvMK5ZbTN2cvA946t0t0Zhb94uZzxnILGc3VHMN5ZkXvrNfk58f+X9ToTWVObz48ffRL7RgwvBaK86GydIx3R5GVN5QK7g/4ZMjUv9XfL8hfJbwuaFTJ0YSS2a+opmZayNTMl5e+3plnITJZOlUylanZeKJFJ2O31b66CT/bhQfY9JQof1PJfxHr/462D7UnZD1MNp0zCB2qSygLYnfT+nRvz9FWSYxnevmMbxtqcE/8gGrxvO9dao9nftulvlV/ScJz/Y7KVL8UmSzv8tl5FUMPyjtwnAsy3/tGdKaes1l8Au00YI+Rz1FxpGS+fl4Qok9x4bKkC0KY0VJHOfZSjulMUlJBOy71rUcjfKx3+nHfAc/nd4vsUqR+R3VdvTrgSi1JdeiR6gllBmLS/yZEaH9QV+DvFV32S3q4ImlO76As0VvnWf1JsDPvuLBfM65THsxk6ua6XUZRvd09rM/E7lRy4RPv9fhBDX7gSNmit/WK4u6Jqs8dzmpozrRM7n7uSJm8J+sBo9luMT7q4+d5Da95QP9vV6JvO5LugSwxZdsj2s+bEL1U62aXpOdzlfV521s10pqvNpmmPVlpx4E5I1nHAb8q2xZmP395Vr8y4BdmfjruXH8csO+CPZEk4pOZUvYoCZCIz4hK51eGXkqyxRgHnM/oBvRW7mtITyUqM1GSWcC30fMAWeYBdE4EaU5ECgNREm2xnl9a21r+30dWC8dXN7Y2N7buX1v78ob+n0k+Vj9Xn6rLsBr/UX0JM/JQHVGu8S/qr+pvO//Z/cXu+u6vuelHFzTmZ6r0b3fzv4JTXQQ=</latexit> <latexit sha1_base64="kVF27gTIsbauBCqg40Iqh1v4D6s=">AAA/fniczVvbchy3EYXtXCzmYtl5zEMmoWVLLlmhaFVklytFSyRF0VqJlHiRZK9F72W4HGu4s5rZpURt6E/Ja1KVT8iX5A+iT8hbuhvAALOLmQYUp8pEkcRgcbobDaAvwGx3lCbFeGnpX2+8+dZPfvqzn799buEXv/zVr985/+57+0U2yXvxXi9Ls/xRt1PEaTKM98bJOI0fjfK4c9xN44fdp6v4+cOTOC+SbLg7Ph3F3xx3BsPkMOl1xtB0cP69NtGYdtNJfBb1D9qPTw/OLy5dWaKfaL5yVVUWhfrZzt793UeiLfoiEz0xEcciFkMxhnoqOqKA8rW4KpbECNq+EVNoy6GW0OexOBMLgJ1Arxh6dKD1KfwdwNPXqnUIz0izIHQPuKTwmwMyEhcAk0G/HOrILaLPJ0QZW+toT4kmynYK/7uK1jG0jsURtHI43dMf14fWQ5ANNdM85jH0+5TGmkDvEbWgFnqK24S0hyOMrNGPgcII2rDeh89zqPcIqecjIkxBOsI56NDn/6ae2IrPPdV3Il7RaH4s+vvx6eVCQInEprgnVkVL7Ik1sS52SN7mskC4VRjHCHScg+QD0BBKexGkuQT/l2FPLYnrUNsAGbvUJ4axRGIb/p+S/AtK1kjcFTfErrhNvC9C/S7ULgXME9dTr+2CZsN/3SwwqyynGTltlGBM45+QBcjFi8a+uHb6ajYPaT0Uakc2z6nU4Kp4ILYa5w85D4H+c7JEx6RB5DiF9gHIhCs0BX5oE3Et/0N8Lxah/r34p1rHEciVq5V9RPTkkz/Nb6EgzQ+hnIlzRHMPpF4oRxnBk5yBrFz9HXFCeyMiSz6Bz+ReSmntDalX0+juQTmjml41XShTaj1rRK5CcSFXWeQGFBdyg0W2oLiQLRa5DcWF3FbIJux9KC7sfZbrAygu5AMWuQvFhdxlkftQXMh9FvkVFBfyKxZ5C4oLeYtF3oHiQt5hkXtQXMg9FrkOxYVcV8j6vYZ2LSM6CbOvbkC9ygP9VAotN1j5bpKNdWFveuzKXg2W35dr8N+NXfPQaVyDXfdYPYc1WH79bICVc2N5a3KbfKQLe5vFbsIKcGM3WeyX4rsa7Jce++VpDZbfMS3yNy4sbz/vwpMbe5fF3oOaG8t7mS1ocWO3PGz+qAa7zWLvi2c1WB+rn9dgebu/Q7GYC7vj4TPGNVjea+xB7ODG8vZ0H2IQN5b3OQ+h1Y19yGIfUdTowj5isY8pOnVhH3v4yZc1WO0pZfQ+oBgwhh3bRK1T7kqsjYBah+Gflr4Fa+ij+ixmUGIGhDlmERslYsMT0SoRLW+5itKOFhSx8lx2SsSOJ6Jb+iasjdn+/bJ/n3IzHrFWItZmEE1ZAM61HssJRRe6hUOOS8+FNZ8xZaX9xlqs1kOz5dWIrQpCru0jWvmXKVfHTKZPeWs9taPSx0tkRM9NiOeU6+lRah48blxaBRv1gkV1Haguizp1oE5Z1MSBmrCoEwfqhEWZnW/j2h4rwOgf52JKTzr3585SqmcXW+Bx18H7YcsW/Pc5S2nOyvFEAD2lzp6NLc6hNqVM2mR2a5Qjy5OGGCSTPbfUGRM+4dnkVO06aYfPSl8eCX3i6U8nIXkGJR2MFyPaUWF07lDLGcV3shaGv13ufF0Lw6+Txs8ojpe1MPxYST9+Ddl3FXb3NbA7sJ9GSvumHkpDnqFIGrrO2ebN0m7ieeUL2jmyLZT/KtWkDkw9jEZhjaGojCGEhtFlYekyjArGSDK21bUoeCRDld2aeqgMGfnKoZLDPIXODPbpq5nR9TAa2xBXrVJmPbXqoSt0VI7G1MNo7At5tn5G8bquh9EY0LPUh6mH0cAzlY7K5k091HqjBmSGbOo6ZskpitEnzgl57+azFDsin/cxeKLypIzgmymZyLOeTrf0M80SzVqXEDnQ+0+sCKlKYyqW2exHyjCu+N55Osb/ouZboMUIdq081+fOpFOQUJ8YxHRK/oSoNWOqI9O4ZRaHluRwBtVWrWM2ljN85ZlOte2AWrmsyYzW6LFNdragtTeiiK1FmuX00Kqd4TqKnIZaFQ3x9EJ095J2cDaj/SUWN5pBjMqV1qPbIXlL3ZxFurS+Y+n4grpFGUORdypm/eJZ8CHhcspIMrI2KEsTT7ufPuWx29AfXhbmBFp+FtGMor06IauR0I1PwcYh+ixXRspTeja09+ierXprFSkqIyFvVPGMG0+7I7rPtG0txxv1pc/PZL0gq2vu0Ztvxwx64ECHZh+r4CvuQW0Xovk9eNr1yD/MnVtG+s7Fx+X9Z0bz15xt2zd77ZKGtDZxxT42ZcBHFSrPAY1rQWbQ/jRm6Wh8e44Sn5G75DF5ZdXuX6A7ff3mSIdWeP1arj8l6RPXZeIa0Z6R9/3yaZaDlGDq/GSZos7mUSK/EI5oQTmuTyzOUi9DepcmptxyRPFsSnuN2xvV3vbZ0ewnmtO20G9V4F1xRvYxIusXgXfKaE1G9Gu/laPfrZD2ICUL6WN1kjK2cUU6CbvGEtrlco3I94XMeovJkk2Iv6Zr766C1qKM86UXOJtZ21onLYoEY+KaK9tu9naz70GkeRPCXiWSolkrF4n/Jfqrf/U6WZxbEahhnIFCWTrXfGSUaaCOOuTjm22Q7mtL+X4pwxMltfF+Rqb3K5KtUZ6E8qCv7gPnHj1LXrhKcpK7mOsjvWjTSStSHs3oEUeL3rWtrP5A+V+U+zL5yEXac21h3rDRsb/uy53wzvJt5lWl7ke7+L9QN7quag0pRsKcrkoNcWfvMeVYtpQpvZMk376JFaV5reczvZr5DGktHlt7+S/Q+nv4q+XWz350uhWrcJPWgKRgnoxGZEs018OP180KL70yNS3zbPiZNal72S2vkxVL62Yy45NgKtu0al6oswZd9xn/Lt3hGQ3odm1FDmYi6F115+dLPYy2P+UJS5mPnTQq8ZDSznn8qPZZqnwurlEvWVpLLC18G88+Ubd3p+07b1Hs0KMIR2YHfdoFCcU0urU5D5IUkNc1Zb/s3dWmFtxLXbJQSLn6ViGe3fWEfIdUyviB8hwZ2VGz4/Q7O89VH23D2lT/ZA55TNlsQXtHI65Rj1jJb8sRzez4K5ZPj+jMu0Mxi/TrzRmp3dvMQlTx1yabk3vB8ErFhyoaH9IcjMWrRm6bc/nhppUhRkLe96VlBI+z/CpoljFvkytD5+ru6K2gWUJPklM+L6PGLtmo+VMGeYs1BO3rdXeFpJ6KP3tYB5lXmp1iry/8bKKyEhzbR9ATNW9m3tWD55d6c+T4vc59Voc8x7GKA6czz69Hq6M8SfW5SQ+TGb5GHxMxVDmhjt5NJlXFtMXn3lykRGFcJMaHS9goQuQPkzxEZnlv40tZ99aUq9m8tDFHlJNw70EiwhVBXXRGTJeYcXTn6HUJa1OTLRwlPO/KVA5uW1s8+Tk354tk67lGj5Ra3qjOW2jqtscwNlxayJisXyq4cxHZuyfk+6h1GZSdG3wOBf9GwpU/aW/ic7q2A1Ekvlfv962I5pv8Z6ouT/wiasGd3J/JTjtqnNUezbP8zKJu0/fh4M8jAV1z0ifkB0Nll5R5yW3q/vSf0x7ORcxKb3qGj8Hmwo9knlPIeBKyS/xoEqG/xxQ6Fs3BZyRVLv585Lk/N4pDob9PFzYGTZ0fQZVDCA99P+8356Z3OC+bU7O+5rn48pA2XN9IaBzejNVnG6afj4XKrRn54TmgdThsoK69xf86Ds3HcArn5cutoO86fecx67JfrM4sMZoN3zOGm89qrufozzMrR2diHTc/GbVFQTOVWaP54eljNGnWgOY1FfKkkJdO4u1VZOT1pYIn5y4ZMvEfLxkkvk4GXyr6BL+eku7BU9Pf9HONSn/mI5OhUydTlRrSk5l2m/ZwTKcF5manT8/l25b0PfTP6CeSlevXVOWzq+X30PeXr1z905VP7l9b/OKm+kb62+K34g8QyV8V18UX4jZEmHsgwwvxV/E38fcVsfLByscrf5Rd33xDYX4jKj8rn/4XWWsmiA==</latexit> dY <latexit sha1_base64="Uu/jGzHimifAQUBslloJGY6wA84=">AABFdnictVzbchy3EYWcm6Pc7OQxVamJaSayS2EoWYnjcqXKEklRtCiJ0i4pyVpJtbM7XI003FntTZc1fyGvyd/kO/IHyVNe85i+AAPMLmYawyicIheDxelu9ACN7gaG8ShLJ9PNzX+ce+873/3e93/w/g/P/+jHP/npzz748OdHk3w27iWHvTzLxw/i7iTJ0mFyOE2nWfJgNE66J3GW3I9fbOH39+fJeJLmw/b0zSh5fNIdDNPjtNedYlVnlG49/WBtc2OTfqLVwiVdWFP65yD/8KMN1VF9lauemqkTlaihmkI5U101geuRuqQ21QjqHqsF1I2hlNL3iTpV5wE7g1YJtOhC7Qv4O4C7R7p2CPdIc0LoHnDJ4HcMyEitAyaHdmMoI7eIvp8RZaytor0gmijbG/iMNa0TqJ2qZ1Ar4UzLUBz2ZaqO1Z+oDyn0aUQ12LuepjIjraDkkdOrKVAYQR2W+/D9GMo9Qho9R4SZUN9Rt136/p/UEmvxvqfbztS/SMp1uCLV0r3PCwpdNSf6ET3NGXzH8mTAeQAUEt1HLL0iXZ9Q74fQfgH1t+E6pZLRSQzXgmpPa5FbcPmQWyJyFy4fcldE7sPlQ+6LyAO4fMgDjUTsmHTux7fg8uFbIue7cPmQd0XkPbh8yHsi8gguH/JIRH4Dlw/5jYi8DpcPeV1E3oTLh7wpIttw+ZBtEXkIlw95KCJ34PIhdzSyeqaO4cqJTirMyqtQLvNAS5FBzVVRvmtkHX3YawFzuleBlWf1Nnz6sdsBOk0qsDsB4+64AiuPvF2wkX6sbItu0Griw94QsXswAvzYPRH7tXpegf06YKa9qMDKc20f2vmxsvW9BXd+7C0RextKfqy8Rt2BGj/2TsCKMarAHojYu+plBTbE6o8rsLLdb4Fd8WPldaoN7f3YEGs6q8DK9vQIPBg/Vl6t7kOtH3tfxD5QryuwD0TsQ7DufuzDgBX2bQXWrLHnaQUZkD+SwIyto9YtZiWWRkCtK/DPirUlI984hnoJMygwA8KciIjdArEbiNgvEPvBck0KOzohf1fm0ioQrUBEXKxNWJqK7ftFeyxlAYjtArG9hKjzSPFZm77MybswNRJyWqxcWArpU17YbywlejzUW16DuFNC8Nh+RiP/IkVLGEGhpuqoPSvWeEZGdF+HeEXRm+ml4SHjpoVVcFGvRVTsQcUi6o0H9UZEzTyomYiae1BzEWVnvovrBIwAq398Fgu64xHAPnL1FYFXcBVWnRswRyMYPwfgBd6jmjvw2aLYW7rqJMNoHtdJzHI8LlniMZQWag3qbVS4TfF1RjMsAcm45R0d4+Md5jYWes6xFT4tVvKoyJiE00lJnkFBB73FiOZTMzo3qeaUvDsuNcPfKOa9KTXD75DGT8mL51Iz/FRLPz2D7G2NbZ8B24LZNNLat+WmNDj/wjRM+Tytumhx8ame6DGD9F43pL+nn8zeGZ7LFpVYP7bcjMbE6d+k1L8mNKyeJ46em1FB74m9XlOKGvdkqONeW24qQ06r6FDLYe+aPhls09dPxpSb0TgAj2uLYu6FU246ekdFb2y5GY0jxXnPU/LkTbkZjQHdsz5suRkNzLZ0dZxvy00tO2qAY2dbbmrVh5QFxhwQj3musV7RmPykmaaWkn9Qn61xff7VdQxzNk+KGKGekvVtq+nExVpWL5HxFxKwatOGcqB/MXN8sDKNhbosxlcsw7S0vq/SsWs8an4ftBjB7Oc9AClnnoGEJieB1jsDipfEqKvcM4O7LOJwlBwvoTq6dip6i5YvZ43KdU+pVorLbG+tHjtkryc09kbkE+6TZiU97Fc+4SqKkob2SxqS6TXR3Vs9X8va3xRxoyXEqBhpPdoR4p20+jjVp/WWo+N1vcszhYv3fOz4xWzzsbY2GPPkZItQljqebjuTR3LrcF29qGyOm7+L6ImivZqT1UhpR2oiRqEmW8ze+ILuLe1D2pNDHkyjB88x0lRGinfNMIuO+fSILKprbyXeqC+ToePyhKyuscf16IGDHnjQzWOcLVgxbkOpDTHDIdy1A6Kc84WuctL4WP2u2B3N6QnWR/RZyUIaGmxvkpKFrIuyn5WovAI0jgaO0sNpLNMx+M4KJTnq98ljY9ey5V+nnVuzv92lMV49mqszMX3iepm4RjRreFeX75Y5sAQL7zeXyX+t7yXya8IRbajE9YnDmfUypB3/hCLYEXnGGc02aXaUW7v5qeVvDKcDZfbOcTc7JwsZkf2LYH3KaUxG9OueHTA76GwRMrKRIXYnLbwbn6+TimPM+nGp4lMNdrwlZMtmxN/QdWfXhMYiRwy8DpwujW2jk33yBRPiOtbW3c7t+tUHkfachDtKmKIdKxeI/yf01/yacbK2MiJQw/gEJtrW+Z5HTjEL6qhLq3y9DTJtXSk/LmR4oqW265+V6eOSZNsUcaE8uFr3gXOP7pkXjpIxyT1ZacPraF02FymPlvSIvT2mKJ7t/kCvwCj3RVol12jOdWiUDGAUTIsowrSVssjLfOt5lamH0Z78X6hbXZe1hhQjZTO4rCEpv59QtOZKmcGo5vH7gmaTX+vjpVb1fIY0Fk+cufwt1P4a/hq5zX0YnbhkFa7RGGAK9s5qhGuilRZhvK6VeJmRaWjZe8vPjknTyq05S3zN1s3G2PPGVA5o1LzWWQtTPguN5w6N54E6bNNeo9WiqTeW6KkYW7T1bmUovybc2g0oz0TKskdmUGmAlG4sFUa1L1KVY3yDeivS2hRpdWG2ursB7pwPQfrn+vLs/rZY3SN1nXybHnlgHL/0aZam5HOZ2vpIjSkg5yvavrqzv0M1yD0mC4qU+RwnzhjederRdVpI+hu9suVk561FMOeWXuk2xsZ2qPzZCvKE5sSE5qVBXKEWiZbflSNaskgbjs8RUea/Sz4V+x31MbPb2j6TqORP2HiTZ5XlxZHCkPQvZd72VqLXPSd+jSgmnGnvOgZazZ8wUmCMyST4PcsJPSFc5XgngT3amOznqp3iXbyhI9EGSb1Qfw6wMRz12rHuji3TY9O3T6Elat0+dV8LmV8WzFHid5YdvS6taifaR10s3Z+NVlevcuX7Oj3MlvhafcyojRtZ2CivjOmoL4O5sETNuDAmhEuzXjSRv5nkTWTm3alQyqa1oVzONLCNeUbxknQOFBE+7+6C15v7ROhHvEIvJqxLjWskSpiNy3V+wLW0mJWKliIkt15akzJnPapaLywPd9WwdpwtZUJWMFNS7oZbu33olKIVORvDFHqKT/ZWxYkuzS/hwr+R8kWJhmNIDrEFfu5VtaV23sGpiJe6zJnNiGrQJvSXYvCu7me5Rb2OXjrUXfohHMJ5pKBrSfqUVtSmsjNlWXKXejj9V2QNxioRpbctm/fB5SL3ZJVTk/6kZOHk3qTKvJPTtC+GQ0hPylzC+fD+htSLY2XebWrWB0Nd7kGZQxMe5jxD2DO3rZvzcjnV62uVSygPXgfMzovB4Q5gdcxi24VYqLHzRN49B7QOxzXUzWrxv/bD8LGcmvMK5Tahd86eBzx1bpfozCz6xc3njOUWMpqrOYbzzIveWa/Jz4/9v6jRk8qd3rx7+uiX2jFgeC0U50Nl6RjvjiIrbygV3B/wyZCrf6u/n5PfSnhZ0KiSowkls19RTc20kKmZNy99vTPfhchk6VTJVKZm44kWnYzdUnvqOvxuFR5g01Oi/E4lfyLW/x5tH2qPyXqYbDpnEDpUl1AWxO6m9enenqOtkhjP9PIZ3zbU4J74PtXied/b1B7P/LZLfat+k4Tn+i2Vq34pMlne5bPzKoYelHfgOBdk3veN6Ew9Z7P4BNpJwB4jn6PiSMm8/bwgRJ/iwmVJF4Qwo6WOcuylHNOZpKSCdlzqW49G+Ejv9OO+A57P7xbZpUj9nuq6enXAlVqS6sAj1SPKDMSk/02I0P6gLsLnRV32S3qwIumEnkFZotfOd/UnwU6948K+zbhOeTCTqZvrdjlF9Xb3sD4Tu13JhU+81+MHNfiBI2WLntYLirvHqj53OKuhOdMyufu5Q2XynqwHjGa7xfioj5/nNbzmAf2/WYm+6Ui6C7LElG2PaD9vTPQyrZsdkp7PVdbnbW/USGve2mSa9mSlHQfmjGQdB3yrbEuY/fzmWf3KgG+Y+em4c/1hwL4L9kSSiE9mStmjJEAiPiMqnV9JvZRkizEKOJ/RDeit3NeQnkpUZqIks4B3o+cBsswD6BwL0hyLFAaiJNpi0f8j+YJ+Ii58fkUXvrhU/D+So8sbl/648dndK2tfXdP/meR99Uv1kboAq/Hn6iuYkQfqkHKNf1F/VX/b/s/Or3bWd37LTd87pzG/UKWfnc3/AqaKXaM=</latexit> ⇡ <latexit sha1_base64="Ov2LTKTmb98Skpojd3G2ltsOy/U=">AAA/eHiczVvbchy3EYWdm8Xc7OQxD5mEViS6FBZFq6K4XIkskRRJayVS4kWyvZayl+FyrOHOamaXErWhvyOvyWs+IV+SP4g+IXlKdwMYYHYx0wDjVJkokhgsTnfj1jfMdkdpUoxXVv751tvf+e73vv+Ddy4t/PBHP/7JT99972eHRTbJe/FBL0uz/Em3U8RpMowPxsk4jZ+M8rhz0k3jx93na/j549M4L5JsuD8+G8VfnnQGw+Qo6XXG0PS0TRSm3XQSn0dnz95dXFleoZ9ovnJdVRaF+tnN3vvlB6It+iITPTERJyIWQzGGeio6ooDyhbguVsQI2r4UU2jLoZbQ57E4FwuAnUCvGHp0oPU5/B3A0xeqdQjPSLMgdA+4pPCbAzISlwGTQb8c6sgtos8nRBlb62hPiSbKdgb/u4rWCbSOxTG0cjjd0x/Xh9YjkA1npnnMY+j3exprAr1H1IKz0FPcJjR7OMLIGv0YKIygDet9+DyHeo+Qej0iwhQ0R7gGHfr8X9QTW/G5p/pOxBsazbdl/r5983I5oERiWzwQa6IlDsS62BB7JG9zWSDcGoxjBHOcg+QDmCGU9ipIswT/V+FMrYibUNsEGbvUJ4axRGIX/p+R/AtK1kjcF7fFvtgi3lehfh9qSwHrxPXUe7ug1fDfNwvMLstpRc4aJRjT+CekAXLxqrEv7p2+Ws0j2g+FOpHNaypncE08EjuN64ech0D/JWmiE5pB5DiF9gHIhDs0BX6oE3Ev/118LRah/rX4h9rHEciVq519TPTkkz/NP0FBmlegnItLRPMApF4oRxnBk1yBrNz9HXFKZyMiTT6Bz+RZSmnvDalX0+geQDmnmt41XShTaj1vRK5BcSHXWOQmFBdyk0W2oLiQLRa5C8WF3FXIJuxDKC7sQ5brIygu5CMWuQ/FhdxnkYdQXMhDFvk5FBfycxZ5F4oLeZdF3oPiQt5jkQdQXMgDFrkBxYXcUMj6s4Z6LSM6CXOubkO9ygPtVAott1n57pCOdWHveJzKXg2WP5fr8N+NXfeY07gGu+Gxe45qsPz+2QQt58by2mSLbKQLu8Vit2EHuLHbLPZT8VUN9lOP8/K8BsufmBbZGxeW15/34cmNvc9iH0DNjeWtzA60uLE7Hjp/VIPdZbEPxYsarI/Wz2uwvN7fI1/Mhd3zsBnjGixvNQ7Ad3BjeX16CD6IG8vbnMfQ6sY+ZrFPyGt0YZ+w2M/IO3VhP/Owk69rsNpSSu99QD5gDCe2iVqnPJVYGwG1DsM/LW0L1tBG9VnMoMQMCHPCIjZLxKYnolUiWt5yFaUeLchj5bnslYg9T0S3tE1YG7P9+2X/PsVmPGK9RKzPIJqiAFxrPZZT8i50C4ccl5YLaz5jykr9jbVY7YdmzasROxWE3NvHtPOvUayOkUyf4tZ6aseljZfIiJ6bEC8p1tOj1Dx43LjUCjbqFYvqOlBdFnXmQJ2xqIkDNWFRpw7UKYsyJ9/GtT12gJl/XIspPenYn8ulVHMXO2BxN8D6YcsO/PfJpTRH5ZgRQEupo2eji3OoTSmSNpHdOsXIMtMQg2Sy547KMeET5ian6tRJPXxe2vJI6IynP52E5BmUdNBfjOhEhdG5Ry3n5N/JWhh+qzz5uhaG36AZPyc/XtbC8GMl/fgCsu8r7P4FsHtwnkZq9k09lIbMoUgaus7p5u1Sb2K+8hWdHNkWyn+NanIOTD2MRmGNoaiMIYSGmcvCmsswKugjSd9W16LgkQxVdGvqoTJkZCuHSg7zFLoy2KevVkbXw2jsgl+1RpH11KqH7tBRORpTD6NxKGRu/Zz8dV0PozGgZzkfph5GA3MqHRXNm3qo9sYZkBGyqWufJScvRmecE7LezbkU2yOftzGYUXlaevDNlIznWU+nW9qZZolmtUuIHGj9J5aHVKUxFats9CNlGFds7zwdY39x5lswixGcWpnX53LSKUioMwYxZcmfErVmTHVkGrfK4lCTHM2g2qp1zPpyhq/M6VTbnlErFzWZ0Zp5bJOeLWjvjchja9HMcvPQql3hOorcDLUqM8TTC5m713SCs5nZX2FxoxnEqNxpPbodkrfUzVGka9b3rDm+rG5RxlDknYrZv5gLPiJcThFJRtoGZWniaffTWR67De3hNWEy0PKziFYU9dUpaY2EbnwK1g/RuVzpKU/p2dA+oHu26q1VpKiMhLxRxRw3Zrsjus+0dS3HG+dL589kvSCta+7Rm2/HDHrgQIdGH2tgKx5AbR+8+QN42veIP8ydW0bznYvflvefGa1fc7Rt3+y1SxpS28QV/dgUAR9XqLwENO4FGUH705ilo/HtOUp8RO6Sx8SVVb1/me709ZsjHdrh9Xu5PkvSJ66rxDWiMyPv++XTLAcpwdT5ySp5nc2jRH4hHFGDclyfWpzlvAzpXZqYYssR+bMpnTXubFR727mj2U80p12h36rAu+KM9GNE2i8C65TRnozo134rR79bIfVBShrSR+skpW/j8nQSdo8ldMrlHpHvC5n9FpMmmxB/Tdc+XQXtRennSytwPrO39Zy0yBOMiWuudLs52822B5HmTQh7l0iKZq9cJf5L9Ff/6n2yOLcjcIZxBQql6VzrkVGkgXPUIRvfrIN0X1vK90sZniqpjfUzMr1fkWyd4iSUB211Hzj36Fnywl2Sk9zFXB9pRZsyrUh5NDOPOFq0rm2l9QfK/qLc18hGLtKZawvzho32/XVfLsM7y7eZV5W6H+3i/0LdzHV11pBiJEx2Vc4Ql3uPKcaypUzpnST59k2sKM3Pej7Tq5nPkPbiiXWW/wytv4K/Wm797EenW9EKd2gPSArmycyIbInmevjxulPhpXempmWeDT+zJ3Uvu+UiUbHUbiYyPg2msku75pXKNei6z/j36Q7PzIBu11rk2YwHva/u/Hyph9H2pzxhKfO+k0YlHlLaMY8f1T5LlY/FNeo1S2uFpYVv49kZdft02rbzLvkOPfJwZHTQp1OQkE+jW5vjIEkBed1Q+ss+XW1qwbPUJQ2FlKtvFWLurifkO6RSxt8oy5GRHjUnTr+z81L10TqsTfUP55AnFM0WdHY04gb1iJX8thzRzIlftmx6RDnvDvks0q43R6R2b7MKUcVem2hOngXDKxVXlDc+pDUYizeN3Lbn4sNtK0KMhLzvS0sPHlf5TdAqY9wmd4aO1d3eW0GrhJYkp3heeo1d0lHzWQZ5izWE2df7bpmknoo/eGgHGVeak2LvL/xsoqISHNsH0BNn3qy8qwfPL/XmyPG7yH1WhyzHifIDpzPPF6PVUZak+tw0D5MZvmY+JmKoYkLtvZtIqoppi4+9uUiJwrhIjA+XsFGEyB8meYjM8t7Gl7LurSlXo3mpY44pJuHeg0SEy4O66vSYlphxdOfodQlrU5MtHCXMd2UqBre1LWZ+Ls3ZItl6qdEipZY1qrMWmrptMYwOlxoyJu2XCi4vInv3hHwftS6CsmODj6Hg30i44idtTXyya3vgReJ79X7fimi+yX+h6jLjF1ELnuT+THTaUeOs9mhe5RcWdZu+Dwd/HgnMNSd9QnYwVHZJmZfcpu5P/yWd4VzErPSmZ/gYbC78SOY5hYwnIb3EjyYR+ntMoWPRHHxGUuXiz0fm/blRHAn9fbqwMWjq/AiqHEJ46Pt5vzU3vcN52Zya52ueiy8PqcP1jYTG4c1YfbRh+vloqNxakW+eA2qHowbq2lr8r+PQfAyncF6+3Ar6rtNXHqsu+8UqZ4nebPiZMdx8dnM9R3+eWTk64+u4+UmvLQpaqcwazTdPH71Jswc0r6mQmUJeOom3d5GR15cKZs5dMmTi314ySHydDL5UdAa/npLuwVPT3/RzjUp/5iOToVMnU5Ua0pORdpvOcEzZAnOz06fn8m1L+h76R/QTycrNG6ry0fXye+iHq8vXf7f84cMbi5/cUd9If0f8QvwaPPnr4qb4RGyBh3lA2e6/iL+Kv/3xP7eiW1duLcmub7+lMD8XlZ9bq/8FWlgltg==</latexit> y <latexit sha1_base64="LvFcuviAqZAdjSTE/PqtKDzG1pU=">AAA/e3iczVvbchy3EYXtXCzmYtl5zEMmoRVdSmGRtBLF5UpkiaQoWiuREi+S7bWUvQyXYw13VjO7lKgN/SN5TZ7yCfmS/EH0CXlIVbobwACzi5kGFKfKRJHEYHG6Gw2gL8Bsd5QmxXh5+Z9vvf3O977/gx++e27hRz/+yU/fO//+BwdFNsl78X4vS7P8cbdTxGkyjPfHyTiNH4/yuHPcTeNH3Wdr+Pmjkzgvkmy4Nz4dxV8ddwbD5DDpdcbQ9PT8e22iMe2mk/gsOr349Pzi8tIy/UTzlRVVWRTqZyd7/xdXRFv0RSZ6YiKORSyGYgz1VHREAeVLsSKWxQjavhJTaMuhltDnsTgTC4CdQK8YenSg9Rn8HcDTl6p1CM9IsyB0D7ik8JsDMhIXAJNBvxzqyC2izydEGVvraE+JJsp2Cv+7itYxtI7FEbRyON3TH9eH1kOQDTXTPOYx9Ps9jTWB3iNqQS30FLcJaQ9HGFmjHwOFEbRhvQ+f51DvEVLPR0SYgnSEc9Chz/9FPbEVn3uq70S8ptF8V/T33dPLhYASiS1xX6yJltgX62JD7JK8zWWBcGswjhHoOAfJB6AhlPYSSHMZ/q/CnloW16G2CTJ2qU8MY4nEDvw/JfkXlKyRuCduij1xh3hfgvo9qF0OmCeup17bBc2G/7pZYFZZTjNy2ijBmMY/IQuQi5eNfXHt9NVsHtJ6KNSObJ5TqcE18VBsN84fch4C/RdkiY5Jg8hxCu0DkAlXaAr80CbiWv67+EYsQv0b8Q+1jiOQK1cr+4joySd/mn+CgjQvQjkT54jmPki9UI4ygic5A1m5+jvihPZGRJZ8Ap/JvZTS2htSr6bR3YdyRjW9arpQptR61ohcg+JCrrHITSgu5CaLbEFxIVsscgeKC7mjkE3YB1Bc2Acs14dQXMiHLHIPigu5xyIPoLiQByzyCygu5Bcs8jYUF/I2i7wLxYW8yyL3obiQ+yxyA4oLuaGQ9XsN7VpGdBJmX92EepUH+qkUWm6y8t0iG+vC3vLYlb0aLL8v1+G/G7vuodO4BrvhsXoOa7D8+tkEK+fG8tbkDvlIF/YOi92CFeDGbrHYz8TXNdjPPPbLsxosv2Na5G9cWN5+3oMnN/Yei70PNTeW9zLb0OLGbnvY/FENdofFPhDPa7A+Vj+vwfJ2f5diMRd218NnjGuwvNfYh9jBjeXt6QHEIG4s73MeQasb+4jFPqao0YV9zGI/p+jUhf3cw0++qsFqTymj9wHFgDHs2CZqnXJXYm0E1DoM/7T0LVhDH9VnMYMSMyDMMYvYLBGbnohWiWh5y1WUdrSgiJXnslsidj0R3dI3YW3M9u+X/fuUm/GI9RKxPoNoygJwrvVYTii60C0cclx6Lqz5jCkr7TfWYrUemi2vRmxXEHJtH9HKv0q5OmYyfcpb66kdlT5eIiN6bkK8oFxPj1Lz4HHj0irYqJcsqutAdVnUqQN1yqImDtSERZ04UCcsyux8G9f2WAFG/zgXU3rSuT93llI9u9gGj7sB3g9btuG/z1lKc1aOJwLoKXX2bGxxDrUpZdIms1unHFmeNMQgmey5rc6Y8AnPJqdq10k7fFb68kjoE09/OgnJMyjpYLwY0Y4Ko3OXWs4ovpO1MPydcufrWhh+gzR+RnG8rIXhx0r68RvIvqewe2+A3YX9NFLaN/VQGvIMRdLQdc42b5V2E88rX9LOkW2h/NeoJnVg6mE0CmsMRWUMITSMLgtLl2FUMEaSsa2uRcEjGars1tRDZcjIVw6VHOYpdGawT1/NjK6H0diBuGqNMuupVQ9doaNyNKYeRuNAyLP1M4rXdT2MxoCepT5MPYwGnql0VDZv6qHWGzUgM2RT1zFLTlGMPnFOyHs3n6XYEfm8j8ETlSdlBN9MyUSe9XS6pZ9plmjWuoTIgd5/YkVIVRpTscpmP1KGccX3ztMx/hc13wItRrBr5bk+dyadgoT6xCCmU/InRK0ZUx2Zxq2yOLQkhzOotmods7Gc4SvPdKptT6mVy5rMaI0e22RnC1p7I4rYWqRZTg+t2hmuo8hpqFXREE8vRHevaAdnM9pfZnGjGcSoXGk9uh2St9TNWaRL67uWji+oW5QxFHmnYtYvngUfEi6njCQja4OyNPG0++lTHrsN/eFVYU6g5WcRzSjaqxOyGgnd+BRsHKLPcmWkPKVnQ3uf7tmqt1aRojIS8kYVz7jxtDui+0zb1nK8UV/6/EzWC7K65h69+XbMoAcOdGj2sQa+4j7U9iCa34enPY/8w9y5ZaTvXPymvP/MaP6as237Zq9d0pDWJq7Yx6YM+KhC5QWgcS3IDNqfxiwdjW/PUeIzcpc8Jq+s2v0LdKev3xzp0AqvX8v1pyR94rpKXCPaM/K+Xz7NcpASTJ2frFLU2TxK5BfCES0ox/WJxVnqZUjv0sSUW44onk1pr3F7o9rbPjua/URz2hH6rQq8K87IPkZk/SLwThmtyYh+7bdy9LsV0h6kZCF9rE5SxjauSCdh11hCu1yuEfm+kFlvMVmyCfHXdO3dVdBalHG+9AJnM2tb66RFkWBMXHNl283ebvY9iDRvQtirRFI0a+US8b9Mf/WvXieLcysCNYwzUChL55qPjDIN1FGHfHyzDdJ9bSk/LGV4oqQ23s/I9GFFsnXKk1Ae9NV94NyjZ8kLV0lOchdzfaQXbTppRcqjGT3iaNG7tpXVHyj/i3JfJR+5SHuuLcwbNjr21325E95Zvs28qtT9aBf/F+pG11WtIcVImNNVqSHu7D2mHMuWMqV3kuTbN7GiNK/1fKZXM58hrcVjay//GVp/CX+13PrZj063YhVu0RqQFMyT0YhsieZ6+PG6VeGlV6amZZ4NP7MmdS+75U2yYmndTGZ8Ekxlh1bNS3XWoOs+49+jOzyjAd2urcjTmQh6T935+VIPo+1PecJS5mMnjUo8pLRzHj+qfZYqn4tr1CuW1jJLC9/Gs0/U7d1p+87bFDv0KMKR2UGfdkFCMY1ubc6DJAXkdU3ZL3t3takF91KXLBRSrr5ViGd3PSHfIZUy/lp5jozsqNlx+p2dF6qPtmFtqn80hzymbLagvaMR16hHrOS35YhmdvyS5dMjOvPuUMwi/XpzRmr3NrMQVfy1yebkXjC8UnFRReNDmoOxeN3IbWsuP9yyMsRIyPu+tIzgcZZfB80y5m1yZehc3R29FTRL6Elyyudl1NglGzV/yiBvsYagfb3ulkjqqfiDh3WQeaXZKfb6ws8mKivBsV2Bnqh5M/OuHjy/1Jsjx+9N7rM65DmOVRw4nXl+M1od5Umqz016mMzwNfqYiKHKCXX0bjKpKqYtPvHmIiUK4yIxPlzCRhEif5jkITLLextfyrq3plzN5qWNOaKchHsPEhGuCOqSM2K6zIyjO0evS1ibmmzhKOF5V6ZycNva4snPuTlfJFvPNXqk1PJGdd5CU7c9hrHh0kLGZP1SwZ2LyN49Id9Hrcug7NzgEyj4NxKu/El7E5/TtV2IIvG9er9vRTTf5D9XdXniF1EL7uT+THbaUeOs9mie5ecWdZu+Dwd/HgnompM+IT8YKrukzEtuU/en/4L2cC5iVnrTM3wMNhd+JPOcQsaTkF3iR5MI/T2m0LFoDj4jqXLx5yPP/blRHAr9fbqwMWjq/AiqHEJ46Pt5vzk3vcN52Zya9TXPxZeHtOH6RkLj8GasPtsw/XwsVG7NyLfPAa3DYQN17S3+13FoPoZTOC9fbgV91+lrj1mX/WJ1ZonRbPieMdx8VnM9R3+eWTk6E+u4+cmoLQqaqcwazbdPH6NJswY0r6mQJ4W8dBJvryIjry8VPDl3yZCJf3vJIPF1MvhS0Sf49ZR0D56a/qafa1T6Mx+ZDJ06marUkJ7MtNu0h2M6LTA3O316Lt+2pO+hf0w/kaxcv6YqH6+U30M/WF1a+d3SRw+uLX56S30j/V3xc/EriORXxHXxqbgDEea+wG+m/0X8Vfztj/+5sXjjyo2rsuvbbynMz0Tl58Zv/wtIPiYY</latexit> y0 <latexit sha1_base64="P6ma5GbrGzlp3Azs8/N4GutUeUg=">AAA/d3iczVtZcxy3EYady2Iu23nMgyehZUsuhUXSqiguVyKLh0haK5ESD8n2Ssoew+VYy53VzC4Pbei/kdfkOT8hvyT/IPoJfkt3AxhgdjHTAGNXmSiSGCy+7kYD6AOYbQ/7ST5aXPzPG2/+6Mc/+enP3roy9/Nf/PJXv377nXcP8nScdeL9TtpPsyftVh73k0G8P0pG/fjJMItbx+1+/Lj9YhU/f3wSZ3mSDvZG58P46XGrN0gOk05rBE1Pm0RhksXdi+js+dvziwuL9BPNVpZUZV6on530nfc+Ek3RFanoiLE4FrEYiBHU+6IlcihfiSWxKIbQ9lRMoC2DWkKfx+JCzAF2DL1i6NGC1hfwtwdPX6nWATwjzZzQHeDSh98MkJG4CpgU+mVQR24RfT4mythaRXtCNFG2c/jfVrSOoXUkjqCVw+me/rgutB6CbKiZ+jGPoN+faKwJ9B5SC2qho7iNSXs4wsga/QgoDKEN6134PIN6h5B6PiLC5KQjnIMWff5f6omt+NxRfcfiNY3mh6K/H55ergaUSGyJB2JVNMS+WBPrYpfkrS9zhFuFcQxBxxlI3gMNobTXQJrr8H8Z9tSiuAW1DZCxTX1iGEskduD/Ock/p2SNxH1xR+yJTeJ9Der3oXY9YJ64nnpt5zQb/utmjlllGc3Iea0EIxr/mCxAJs5q++La6arZPKT1kKsdWT+nUoOr4pHYrp0/5DwA+qdkiY5Jg8hxAu09kAlXaB/4oU3Etfwv8Y2Yh/o34t9qHUcgV6ZW9hHRk0/+NP8KBWl+COVCXCGa+yD1XDHKCJ7kDKTF6m+JE9obEVnyMXwm91Kf1t6AetWN7gGUC6rpVdOGMqHWi1rkKhQXcpVFbkBxITdYZAOKC9lgkTtQXMgdhazDPoTiwj5kuT6C4kI+YpF7UFzIPRZ5AMWFPGCRX0JxIb9kkXehuJB3WeQ9KC7kPRa5D8WF3GeR61BcyHWFrN5raNdSopMw++oO1Ms80E/1oeUOK98K2VgXdsVjV3YqsPy+XIP/buyah07jCuy6x+o5rMDy62cDrJwby1uTTfKRLuwmi92CFeDGbrHYz8XXFdjPPfbLiwosv2Ma5G9cWN5+3ocnN/Y+i30ANTeW9zLb0OLGbnvY/GEFdofFPhQvK7A+Vj+rwPJ2f5diMRd218NnjCqwvNfYh9jBjeXt6QHEIG4s73MeQ6sb+5jFPqGo0YV9wmK/oOjUhf3Cw0++qsBqTymj9x7FgDHs2DpqrWJXYm0I1FoM/37hW7CGPqrLYnoFpkeYYxaxUSA2PBGNAtHwlisv7GhOESvPZbdA7Hoi2oVvwtqI7d8t+ncpN+MRawVibQpRlwXgXOuxnFB0oVs45KjwXFjzGVNa2G+sxWo91FtejdguIeTaPqKVf4NydcxkupS3VlM7Kny8REb0XIc4pVxPj1Lz4HGjwirYqDMW1Xag2izq3IE6Z1FjB2rMok4cqBMWZXa+jWt6rACjf5yLCT3p3J87SymfXWyDx10H74ct2/Df5yylPivHEwH0lDp7NrY4g9qEMmmT2a1RjixPGmKQTPbcVmdM+IRnkxO166Qdvih8eST0iac/nYTk6RV0MF6MaEeF0blHLRcU38laGH6z2Pm6FoZfJ41fUBwva2H4kZJ+dAnZ9xR27xLYXdhPQ6V9Uw+lIc9QJA1d52zzVmE38bzyjHaObAvlv0o1qQNTD6ORW2PIS2MIoWF0mVu6DKOCMZKMbXUtCh7JQGW3ph4qQ0q+cqDkME+hM4N9umpmdD2Mxg7EVauUWU+seugKHRajMfUwGgdCnq1fULyu62E0evQs9WHqYTTwTKWlsnlTD7XeqAGZIZu6jlkyimL0iXNC3rv+LMWOyGd9DJ6oPCsi+HpKJvKsptMu/Ey9RNPWJUQO9P5jK0Iq05iIZTb7kTKMSr53lo7xv6j5Bmgxgl0rz/W5M+k+SKhPDGI6JX9G1Oox5ZFp3DKLQ0tyOIVqqtYRG8sZvvJMp9z2nFq5rMmM1uixSXY2p7U3pIitQZrl9NConOEqipyGGiUN8fRCdPeKdnA6pf1FFjecQgyLldah2yF5S12fRbq0vmvp+Kq6RRlBkXcqZv3iWfAh4TLKSFKyNihLHU+7nz7lsdvQH94Q5gRafhbRjKK9OiGrkdCNT87GIfosV0bKE3o2tPfpnq18axUpKkMhb1TxjBtPuyO6z7RtLccb9aXPz2Q9J6tr7tHrb8cMuudAh2Yfq+ArHkBtD6L5fXja88g/zJ1bSvrOxB+K+8+U5q8+27Zv9poFDWlt4pJ9rMuAj0pUTgGNa0Fm0P40pulofHOGEp+Ru+QxeWXZ7l+lO3395kiLVnj1Wq4+JekS12XiGtGekff98mmag5Rg4vxkmaLO+lEivxCOaEE5rs8szlIvA3qXJqbcckjxbJ/2Grc3yr3ts6PpTzSnHaHfqsC74pTsY0TWLwLvlNKajOjXfitHv1sh7UGfLKSP1UmK2MYV6STsGktol8s1It8XMustJks2Jv6arr27clqLMs6XXuBiam1rnTQoEoyJa6Zsu9nb9b4HkeZNCHuVSIpmrVwj/tfpr/7V62R+ZkWghnEGcmXpXPORUqaBOmqRj6+3QbqvLeX7hQzPlNTG+xmZ3i9JtkZ5EsqDvroLnDv0LHnhKslI7nymj/SidSetSHk4pUccLXrXprL6PeV/Ue4b5CPnac81hXnDRsf+ui93wjvNt55Xmbof7fx7oW50XdYaUoyEOV2VGuLO3mPKsWwp+/ROknz7JlaUZrWeTfWq5zOgtXhs7eW/Qevv4K+WWz/70WmXrMIKrQFJwTwZjciWaKaHH6+VEi+9MjUt82z4mTWpe9ktl8mKpXUzmfFJMJUdWjVn6qxB133Gv0d3eEYDul1bkedTEfSeuvPzpR5G25/ymKXMx04alXhIaec8flS7LFU+F9eoVyytRZYWvo1nn6jbu9P2nXcpduhQhCOzgy7tgoRiGt1anwdJCsjrprJf9u5qUgvupTZZKKRcfqsQz+46Qr5DKmX8QHmOlOyo2XH6nZ1T1UfbsCbVP55BHlM2m9Pe0Yib1CNW8ttyRFM7fsHy6RGdebcoZpF+vT4jtXubWYhK/tpkc3IvGF598aGKxgc0ByPxupbb1kx+uGVliJGQ9339IoLHWX4dNMuYt8mVoXN1d/SW0yyhJ8kon5dRY5ts1Owpg7zFGoD29bpbIKkn4s8e1kHmlWan2OsLPxurrATH9hH0RM2bmXf14Pn1vTly/C5zn9Uiz3Gs4sDJ1PPlaLWUJyk/1+lhPMXX6GMsBion1NG7yaTKmKb41JuLlCiMi8T4cAkbRYj8YZKHyCzvbXwp696acjmblzbmiHIS7j1IRLgiqGvOiOk6M472DL02YW1qsoWjhOddqcrBbWuLJz9XZnyRbL1S65H6ljeq8haauu0xjA2XFjIm69cX3LmI7N0R8n3UqgzKzg0+hYJ/I+HKn7Q38Tld24UoEt+r9/tWRP1N/ktVlyd+EbXgTu5OZactNc5yj/pZfmlRt+n7cPDnkYCuOekT8oOhskvKvOQ2dX/6p7SHMxGz0pue4WOwufAjmeUUMp6E7BI/mkTo7zGFjkVz8BlJmYs/H3nuz43iUOjv04WNQVPnR1DmEMJD38/7zbnpHc7L5lSvr1kuvjykDdc3EhqHN2PV2Ybp52OhMmtGvnsOaB0Oa6hrb/H/jkPzMZzCeflyy+m7Tl97zLrsF6szS4xmw/eM4eazmqs5+vNMi9GZWMfNT0ZtUdBMpdZovnv6GE2aNaB5TYQ8KeSlk3h7FRl5fangyblLhlR86yWDxFfJ4EtFn+BXU9I9eGr6m36uUenPfGQydKpkKlNDejLTbtIejum0wNzsdOm5eNuSvof+Cf1EsnLrpqp8slR8D/1geWHpjwsfP7w5/9mK+kb6W+K34vcQyS+JW+IzsQkR5j5J+XfxD/HPv3x7+73bH9y+Jru++YbC/EaUfm4v/Q/bzCU+</latexit> x <latexit sha1_base64="lu4TI7OEyJXvtBBsg9Av3iRYKnI=">AAA/eHiczVtZcxy3EYady2IuO3nMQyahFYkuhUXSqiguVyKLhyhaK5ESD8n2msoew+VYy53VzC4PbejfkdfkNT8hvyT/IPoJyVO6G8AAs4uZBhinykSRxGDxdTeuvjDbHvaTfLS09M+33v7Od7/3/R+8c23uhz/68U9++u57PzvI03HWifc7aT/NnrdbedxPBvH+KBn14+fDLG6dtPvxs/bLNfz82Wmc5Uk62BtdDOMvT1q9QXKUdFojaDpsEoVJFncvo/MbL96dX1pcop9otrKsKvNC/eyk7/3yA9EUXZGKjhiLExGLgRhBvS9aIofyhVgWS2IIbV+KCbRlUEvo81hcijnAjqFXDD1a0PoS/vbg6QvVOoBnpJkTugNc+vCbATIS1wGTQr8M6sgtos/HRBlbq2hPiCbKdgH/24rWCbSOxDG0cjjd0x/XhdYjkA1npn7MI+j3exprAr2H1IKz0FHcxjR7OMLIGv0IKAyhDetd+DyDeoeQej0iwuQ0R7gGLfr8X9QTW/G5o/qOxRsazbdl/r5983I9oERiSzwWa6Ih9sW62BC7JG99mSPcGoxjCHOcgeQ9mCGU9iZIswD/V+BMLYk7UNsEGdvUJ4axRGIH/l+Q/HNK1kg8EvfEnnhAvG9C/RHUFgLWieup93ZOq+G/b+aYXZbRilzUSjCi8Y9JA2TivLYv7p2uWs0j2g+5OpH1aypncE08Fdu164ecB0D/jDTRCc0gcpxAew9kwh3aB36oE3Ev/118Leah/rX4h9rHEciVqZ19TPTkkz/NP0FBmjegXIprRHMfpJ4rRhnBk1yBtNj9LXFKZyMiTT6Gz+RZ6tPeG1CvutE9hnJJNb1r2lAm1HpZi1yD4kKuschNKC7kJotsQHEhGyxyB4oLuaOQddgnUFzYJyzXp1BcyKcscg+KC7nHIg+guJAHLPJzKC7k5yzyPhQX8j6LfAjFhXzIIvehuJD7LHIDigu5oZDVZw31Wkp0EuZc3YN6mQfaqT603GPlWyUd68KuepzKTgWWP5fr8N+NXfeY07gCu+Gxe44qsPz+2QQt58by2uQB2UgX9gGL3YId4MZusdhPxVcV2E89zsvLCix/Yhpkb1xYXn8+gic39hGLfQw1N5a3MtvQ4sZue+j8YQV2h8U+Ea8qsD5aP6vA8np/l3wxF3bXw2aMKrC81dgH38GN5fXpAfggbixvc55Bqxv7jMU+J6/RhX3OYj8j79SF/czDTr6uwGpLKb33HvmAMZzYOmqt4lRibQjUWgz/fmFbsIY2qstiegWmR5gTFrFZIDY9EY0C0fCWKy/0aE4eK89lt0DseiLahW3C2ojt3y36dyk24xHrBWJ9ClEXBeBa67GcknehWzjkqLBcWPMZU1rob6zFaj/Ua16N2C4h5N4+pp1/i2J1jGS6FLdWUzsubLxERvRchzijWE+PUvPgcaNCK9iocxbVdqDaLOrCgbpgUWMHasyiTh2oUxZlTr6Na3rsADP/uBYTetKxP5dLKecutsHiboD1w5Zt+O+TS6mPyjEjgJZSR89GF2dQm1AkbSK7dYqRZaYhBslkz22VY8InzE1O1KmTeviysOWR0BlPfzoJydMr6KC/GNGJCqPzkFouyb+TtTD8g+Lk61oYfoNm/JL8eFkLw4+U9KMryL6nsHtXwO7CeRqq2Tf1UBoyhyJp6Dqnm7cKvYn5ynM6ObItlP8a1eQcmHoYjdwaQ14aQwgNM5e5NZdhVNBHkr6trkXBIxmo6NbUQ2VIyVYOlBzmKXRlsE9XrYyuh9HYAb9qjSLriVUP3aHDYjSmHkbjQMjc+iX567oeRqNHz3I+TD2MBuZUWiqaN/VQ7Y0zICNkU9c+S0ZejM44J2S963Mptkc+a2Mwo3JYePD1lIznWU2nXdiZeommtUuIHGj9x5aHVKYxESts9CNlGJVs7ywdY39x5hswixGcWpnX53LSfZBQZwxiypIfErV6THlkGrfC4lCTHE2hmqp1xPpyhq/M6ZTbXlArFzWZ0Zp5bJKezWnvDclja9DMcvPQqFzhKorcDDVKM8TTC5m713SC06nZX2JxwynEsNhpHbodkrfU9VGka9Z3rTm+rm5RRlDknYrZv5gLPiJcRhFJStoGZanjaffTWR67De3hLWEy0PKziFYU9dUpaY2Ebnxy1g/RuVzpKU/o2dDep3u28q1VpKgMhbxRxRw3Zrsjus+0dS3HG+dL589kPSeta+7R62/HDLrnQIdGH2tgKx5DbQ+8+X142vOIP8ydW0rznYnfFvefKa1ffbRt3+w1CxpS28Ql/VgXAR+XqJwBGveCjKD9aUzT0fjmDCU+InfJY+LKst6/Tnf6+s2RFu3w6r1cnSXpEtcV4hrRmZH3/fJpmoOUYOL8ZIW8zvpRIr8QjqhBOa6HFmc5LwN6lyam2HJI/myfzhp3Nsq97dzR9Cea047Qb1XgXXFK+jEi7ReBdUppT0b0a7+Vo9+tkPqgTxrSR+skhW/j8nQSdo8ldMrlHpHvC5n9FpMmGxN/Tdc+XTntRennSytwObW39Zw0yBOMiWumdLs52/W2B5HmTQh7l0iKZq/cJP4L9Ff/6n0yP7MjcIZxBXKl6VzrkVKkgXPUIhtfr4N0X1vK9wsZDpXUxvoZmd4vSbZOcRLKg7a6C5w79Cx54S7JSO58po+0onWZVqQ8nJpHHC1a16bS+j1lf1HuW2Qj5+nMNYV5w0b7/rovl+Gd5lvPq0zdj3b+f6Fu5ro8a0gxEia7KmeIy73HFGPZUvbpnST59k2sKM3OejbVq57PgPbiiXWW/wytv4K/Wm797EenXdIKq7QHJAXzZGZEtkQzPfx4rZZ46Z2paZlnw8/sSd3LbrlKVCy1m4mMT4Op7NCuOVe5Bl33Gf8e3eGZGdDtWou8mPKg99Sdny/1MNr+lMcsZd530qjEQ0o75vGj2mWp8rG4Rr1maS2xtPBtPDujbp9O23beJ9+hQx6OjA66dAoS8ml0a30cJCkgr9tKf9mnq0kteJbapKGQcvmtQszddYR8h1TK+BtlOVLSo+bE6Xd2zlQfrcOaVP9wBnlC0WxOZ0cjblOPWMlvyxFNnfhFy6ZHlPNukc8i7Xp9RGr3NqsQley1iebkWTC8+uKG8sYHtAYj8aaW29ZMfLhlRYiRkPd9/cKDx1V+E7TKGLfJnaFjdbf3ltMqoSXJKJ6XXmObdNRslkHeYg1g9vW+WySpJ+IPHtpBxpXmpNj7Cz8bq6gEx/YB9MSZNyvv6sHz63tz5Phd5T6rRZbjRPmBk6nnq9FqKUtSfq6bh/EUXzMfYzFQMaH23k0kVcY0xcfeXKREYVwkxodL2ChC5A+TPERmeW/jS1n31pTL0bzUMccUk3DvQSLC5UHddHpMC8w42jP02oS1qckWjhLmu1IVg9vaFjM/12ZskWy9VmuR+pY1qrIWmrptMYwOlxoyJu3XF1xeRPbuCPk+alUEZccGH0PBv5FwxU/amvhk13bBi8T36v2+FVF/k/9K1WXGL6IWPMndqei0pcZZ7lG/yq8s6jZ9Hw7+PBKYa076hOxgqOySMi+5Td2f/hmd4UzErPSmZ/gYbC78SGY5hYwnIb3EjyYR+ntMoWPRHHxGUubiz0fm/blRHAn9fbqwMWjq/AjKHEJ46Pt5vzU3vcN52Zzq52uWiy8PqcP1jYTG4c1YdbRh+vloqMxakW+eA2qHoxrq2lr8r+PQfAyncF6+3HL6rtNXHqsu+8UqZ4nebPiZMdx8dnM1R3+eaTE64+u4+UmvLQpaqdQazTdPH71Jswc0r4mQmUJeOom3d5GR15cKZs5dMqTi314ySHyVDL5UdAa/mpLuwVPT3/RzjUp/5iOToVMlU5ka0pORdpPOcEzZAnOz06Xn4m1L+h76R/QTycqd26ry0XLxPfSDlcXl3y1++OT2/Cer6hvp74hfiF+DJ78s7ohPxAPwMPcp2/0X8Vfxtz/+525098bdBdn17bcU5uei9HN35b/eOCVv</latexit> x0 Quadratic minimization: Proposition: John Toland Guillaume Carlier Example: for p = 2, ∥c∥2 * := { ∥M∥2 F if c(x, y) = − ⟨Mx, y⟩ − ∥x∥2∥y∥2 +∞ otherwise Titouan Vayer Extension: sparsity regularizers R(c) = ∥M∥1 , … Othmane Sebbouh If dX (x, x′  ) = ∥x − x′  ∥, dY (y, y′  ) = ∥y − y′  ∥, 0 ≤ p ≤ 2, inf π1 =α,π2 =β ⟨Qπ, π⟩ = inf c Wc (α, β) + ∥c∥2 * (Sobolev norm) ∥c∥2 * := (− 𝒬 )*(c) Proposition: then is concave, and let 𝒬 (Toland duality) Then
  26. OT for Single cell genomics Gromov Wasserstein as metric learning

    Inverse OT for metric learning Wasserstein Singular Vectors for metric learning
  27. Wasserstein Singular Vectors α1 , α2 , α3 , …

    β1 β2 β3 … Goal: find costs and such that c d c(α, α′  ) ∝ Wd (α, α′  ) d(β, β′  ) ∝ Wc (β, β′  ) M βj = ∑ i Mi,j δαi αi = ∑ j Mi,j δβj
  28. Wasserstein Singular Vectors α1 , α2 , α3 , …

    β1 β2 β3 … Goal: find costs and such that c d c(α, α′  ) ∝ Wd (α, α′  ) d(β, β′  ) ∝ Wc (β, β′  ) M βj = ∑ i Mi,j δαi αi = ∑ j Mi,j δβj Φ : d ↦ c, Ψ : c ↦ d, Wasserstein transfert operators: c(α, α′  ) := Wd (α, α′  ) + τ∥α − α′  ∥ d(β, β′  ) := Wc (β, β′  ) + τ∥β − β′  ∥ and costs (λ, μ) ∈ ℝ+ * (c, d) Φ(d) = λc and Ψ(c) = μd Wasserstein singular values/vectors: Stéphane Gaubert c d Ψ Φ
  29. Wasserstein Singular Vectors α1 , α2 , α3 , …

    β1 β2 β3 … Goal: find costs and such that c d c(α, α′  ) ∝ Wd (α, α′  ) d(β, β′  ) ∝ Wc (β, β′  ) M βj = ∑ i Mi,j δαi αi = ∑ j Mi,j δβj Φ : d ↦ c, Ψ : c ↦ d, Wasserstein transfert operators: c(α, α′  ) := Wd (α, α′  ) + τ∥α − α′  ∥ d(β, β′  ) := Wc (β, β′  ) + τ∥β − β′  ∥ and costs (λ, μ) ∈ ℝ+ * (c, d) Φ(d) = λc and Ψ(c) = μd Wasserstein singular values/vectors: Stéphane Gaubert c d Ψ Φ Proposition: for , and : τ ≥ 0 Φ Ψ Theorem: for there is a unique pair of singular vectors τ > 0 • maps distances to distances, • are 1-homogenous monotone. non-linear Perron-Frobenius → Algorithm: power iterations, ct+1 := Φ(dt ), dt+1 := Ψ(ct+1 ) Geert-Jan Huizing
  30. Examples of Wasserstein Singular Vectors 0 20 40 60 80

    Figure 2. Illustration on the 1-D torus. (top, left) histograms whose t associated to the singular vectors B1 , B2 , B3 for varying values of ⌧ right) convergence rate of the power iterations for ⌧ = 0.1, accordi proposition, proved in Appendix C, states that for large enough regularization, uniqueness and linear convergence are maintained. Proposition 2.6. For ⌧ large enough, the singular vectors are unique and the power iterations (4) converge linearly for k·k . When ⌧ ! 1, the singular vectors converge to Translated histograms: Mi,j = h(i − j) Unsupervised Ground Metric Learning Using Wasserstein Singular 0 20 40 60 80 Figure 2. Illustration on the 1-D torus. (top, left) histograms whose translations form B1 , B2 , B3 ; (b associated to the singular vectors B1 , B2 , B3 for varying values of ⌧ ; (top, right) functions h1 , h2 , right) convergence rate of the power iterations for ⌧ = 0.1, according to the d H metric. α0 αi i c(0,⋅) Input histograms Singular vector c M
  31. Examples of Wasserstein Singular Vectors 0 20 40 60 80

    Figure 2. Illustration on the 1-D torus. (top, left) histograms whose t associated to the singular vectors B1 , B2 , B3 for varying values of ⌧ right) convergence rate of the power iterations for ⌧ = 0.1, accordi proposition, proved in Appendix C, states that for large enough regularization, uniqueness and linear convergence are maintained. Proposition 2.6. For ⌧ large enough, the singular vectors are unique and the power iterations (4) converge linearly for k·k . When ⌧ ! 1, the singular vectors converge to Translated histograms: Mi,j = h(i − j) Unsupervised Ground Metric Learning Using Wasserstein Singular 0 20 40 60 80 Figure 2. Illustration on the 1-D torus. (top, left) histograms whose translations form B1 , B2 , B3 ; (b associated to the singular vectors B1 , B2 , B3 for varying values of ⌧ ; (top, right) functions h1 , h2 , right) convergence rate of the power iterations for ⌧ = 0.1, according to the d H metric. α0 αi i c(0,⋅) Input histograms Singular vector c are singular vectors of ( 1 A , 1 B ), with singular value 2 2. This proposition shows that for " = +1 a set of positive singular vectors is obtained as simply squared Euclidean distances over 1-D principal component embeddings of the data. Entropic regularization thus draws a link between our novel set of OT-based metric learning techniques and classical dimensionality reduction methods. This frames Sinkhorn singular vectors as a well-posed problem regard- less of the value of ". 5. Metric Learning for Single-Cell Genomics between precomputed Gene2Vec (Du et al., 2019) embed- dings. (Huizing et al., 2021) use a Sinkhorn divergence with a cosine distance between genes (i.e. vectors of cells) as a ground cost. In the present paper we compute OT distances using the Python package POT (Flamary et al., 2021). Dataset A commonly analyzed scRNA-seq dataset is the “PBMC 3k” dataset produced by 10X Genomics, obtained through the function pbmc3k of Scanpy (Wolf et al., 2018). Details on preprocessing and cell type annotation are given in Appendix H. The processed dataset contains m = 1030 genes and n = 2043 cells, each belonging to one of 6 immune cell types: ‘B cell’, ‘Natural Killer’, ‘CD4+ T cell’, ‘CD8+ T cell’, ‘Dendritic cell’ and ‘Monocyte’. The cell populations are heavily unbalanced. In addition, for each cell type we consider the set of canonical marker genes given by Azimuth (Hao et al., 2021), i.e. genes whose expression is characteristic of a certain cell type. Evaluation We use the annotation on cells (resp. on marker genes) to evaluate the quality of distances between cells (resp. between marker genes). We report in Table 1 and Table 2 the Average Silhouette Width (ASW), computed us- ing the function silhouette score of Scikit-learn (Pe- Unsupervised Ground Metric Learning Using Wasserstein Singular Vectors RNA-seq expression data : W Singular vector on cells c Singular vector on genes d genes genes and to a single-cell RNA sequencing dataset. In all cases, the ground metric learned iteratively is intu- itively interpretable. In particular, the ground metric learned on biological data not only leads to improved clustering, but also encodes biologically relevant infor- mation. Theoretical perspectives include further results on the existence of positive eigenvectors, in particular for ⌧ = 0 and for " > 0. In addition, integrating un- balanced optimal transport [38, 9] into the method could avoid the need for the step of normalization to histograms. Applying our method to large single cell datasets is also a promising avenue to extend the appli- cability of OT to new classes of problems in genomics. d Figure 9: Dataset, with genes arranged according to clustering of singular vector C Aur´ elien Bellet, Amaury Habrard, and Marc ebban. A survey on metric learning for fea- ure vectors and structured data. arXiv preprint rXiv:1306.6709, 2013. ethallah Benmansour, Guillaume Carlier, Gabriel Peyr´ e, and Filippo Santambrogio. Derivatives ith respect to metrics and applications: subgradi- nt marching algorithm. Numerische Mathematik, 16(3):357–381, 2010. Guillaume Carlier, Arnaud Dupuy, Alfred Gali- hon, and Yifei Sun. Sista: learning optimal ransport costs under sparsity constraints. arXiv reprint arXiv:2009.08564, 2020. Guillaume Carlier, Vincent Duval, Gabriel Peyr´ e, nd Bernhard Schmitzer. Convergence of en- ropic schemes for optimal transport and gradient ows. SIAM Journal on Mathematical Analysis, 9(2):1385–1418, 2017. ´ ena¨ ıc Chizat, Gabriel Peyr´ e, Bernhard Schmitzer, nd Fran¸ cois-Xavier Vialard. Unbalanced optimal ransport: Dynamic and kantorovich formulations. ournal of Functional Analysis, 274(11):3090–3123, 018. enaic Chizat, Pierre Roussillon, Flavien L´ eger, ran¸ cois-Xavier Vialard, and Gabriel Peyr´ e. Faster asserstein distance estimation with the sinkhorn ivergence. In Proc. NeurIPS’20, 2020. Marco Cuturi. Sinkhorn distances: Lightspeed omputation of optimal transport. In Adv. in Neu- al Information Processing Systems, pages 2292– 300, 2013. Marco Cuturi and David Avis. Ground metric earning. The Journal of Machine Learning Re- earch, 15(1):533–564, 2014. ason V Davis and Inderjit S Dhillon. Structured metric learning for high dimensional problems. In Proceedings of the 14th ACM SIGKDD tional conference on Knowledge discovery a mining, pages 195–203, 2008. [14] Arnaud Dupuy, Alfred Galichon, and Y Estimating matching a nity matrices un rank constraints. Information and Infer Journal of the IMA, 8(4):677–689, 2019. [15] Jean Feydy, Thibault S´ ejourn´ e, Fran¸ cois Vialard, Shun-ichi Amari, Alain Trou Gabriel Peyr´ e. Interpolating between transport and mmd using sinkhorn diverge The 22nd International Conference on A Intelligence and Statistics, pages 2681–269 [16] R´ emi Flamary and Nicolas Courty. Pot optimal transport library, 2017. [17] R´ emi Flamary, Marco Cuturi, Nicolas Cou Alain Rakotomamonjy. Wasserstein discr analysis. Machine Learning, 107(12):192 2018. [18] Alfred Galichon and Bernard Salani´ e. invisible hand: Social surplus and ident in matching models. Available at SSRN 1 2020. [19] A. Genevay, G. Peyr´ e, and M. Cuturi. L generative models with sinkhorn diverge Proc. AISTATS’18, pages 1608–1617, 201 [20] Aude Genevay, L´ enaic Chizat, Franci Marco Cuturi, and Gabriel Peyr´ e. Samp plexity of sinkhorn divergences. In The 2 ternational Conference on Artificial Inte and Statistics, pages 1574–1583. PMLR, [21] Alison L Gibbs and Francis Edward Su. O ing and bounding probability metrics. tional statistical review, 70(3):419–435, 20 [22] Alexandre Gramfort, Gabriel Peyr´ e, and Cuturi. Fast optimal transport averaging roimaging data. In International Confer 10 M M
  32. OT for Single cell genomics Gromov Wasserstein as metric learning

    Inverse OT for metric learning Wasserstein Singular Vectors for metric learning
  33. Inverse Optimal Transport Schrodinger problem: πϵ (c) := argminπ {⟨c,

    π⟩ + εKL(π|α ⊗ β) : π1 = α, π2 = β} c(x, y) πε (c) ̂ π Forward OT Sampling Inverse OT Alfred Galichon
  34. Inverse Optimal Transport Schrodinger problem: πϵ (c) := argminπ {⟨c,

    π⟩ + εKL(π|α ⊗ β) : π1 = α, π2 = β} c(x, y) πε (c) ̂ π Forward OT Sampling Inverse OT Alfred Galichon Application: gene-gene regulation networks estimation Cells , cost on genes space. x, y ∈ ℝgenes c(x, y) [Weinreb et al., 2020] (undifferentiated) t = 0 ̂ π day (differentiated) t = 1 barcoding differentiation RNA-seq
  35. Fenchel-Young Losses Cross loss function: L(c| ̂ π) := ⟨c,

    ̂ π⟩ + Φ( ̂ π) − inf π ⟨c, π⟩ + Φ(π) ≥ 0 L(c| ̂ π) = 0 ⇔ ̂ π = πε (c) Proposition: if , ε > 0 πε (c) := argminπ ⟨c, π⟩ + Φ(π) Schrodinger problem: Φ(π) := { εKL(π|α ⊗ β) if π1 = α, π2 = β +∞ otherwise where is convex! → L( ⋅ | ̂ π)
  36. Fenchel-Young Losses Cross loss function: L(c| ̂ π) := ⟨c,

    ̂ π⟩ + Φ( ̂ π) − inf π ⟨c, π⟩ + Φ(π) ≥ 0 L(c| ̂ π) = 0 ⇔ ̂ π = πε (c) Proposition: if , ε > 0 πε (c) := argminπ ⟨c, π⟩ + Φ(π) Schrodinger problem: Φ(π) := { εKL(π|α ⊗ β) if π1 = α, π2 = β +∞ otherwise where is convex! → L( ⋅ | ̂ π) Proposition: L(c| ̂ π) := Φ( ̂ π) + Φ*(−c) − ⟨−c, ̂ π⟩ Fenchel-Young loss of Mathieu Blondel. → Mathieu Blondel
  37. Fenchel-Young Losses Cross loss function: L(c| ̂ π) := ⟨c,

    ̂ π⟩ + Φ( ̂ π) − inf π ⟨c, π⟩ + Φ(π) ≥ 0 L(c| ̂ π) = 0 ⇔ ̂ π = πε (c) Proposition: if , ε > 0 πε (c) := argminπ ⟨c, π⟩ + Φ(π) Schrodinger problem: Φ(π) := { εKL(π|α ⊗ β) if π1 = α, π2 = β +∞ otherwise where is convex! → L( ⋅ | ̂ π) Alternate interpretation [Galichon]: maximum likelihood estimator. L(c| ̂ π) ∝ − ∑ i log( dπε (c) dαdβ (xi , yi )) for ̂ π = ∑ i δ(xi ,yi ) Proposition: L(c| ̂ π) := Φ( ̂ π) + Φ*(−c) − ⟨−c, ̂ π⟩ Fenchel-Young loss of Mathieu Blondel. → Mathieu Blondel
  38. Regularized Inverse Optimal Transport Regularized inversion: min θ L(cθ |

    ̂ π) + λR(θ) R(θ) = ∥θ∥1 cθ (x, y) = ⟨θx, y⟩ SISTA [Dupuis, Galichon, Carlier]
  39. Regularized Inverse Optimal Transport Regularized inversion: min θ L(cθ |

    ̂ π) + λR(θ) R(θ) = ∥θ∥1 cθ (x, y) = ⟨θx, y⟩ Estimating from samples: θ⋆ ̂ π := ∑n i=1 δ(xi ,yi ) (xi , yi )i ∼ πϵ (cθ⋆ ) SISTA [Dupuis, Galichon, Carlier] πϵ ̂ π
  40. Regularized Inverse Optimal Transport Regularized inversion: min θ L(cθ |

    ̂ π) + λR(θ) R(θ) = ∥θ∥1 cθ (x, y) = ⟨θx, y⟩ Estimating from samples: θ⋆ ̂ π := ∑n i=1 δ(xi ,yi ) (xi , yi )i ∼ πϵ (cθ⋆ ) SISTA [Dupuis, Galichon, Carlier] Intuition: ∥η⋆∥∞ ≤ 1 ⇔ primal-dual solutions as (θ⋆, η⋆) λ → 0 J(θ) := L(cθ |πϵ (cθ⋆ )) Dual certificate: η⋆ := argminη {⟨J′  ′  (θ⋆)η, η⟩ : ηI = sign(θ⋆ I )} θ θ⋆ J(θ) I := supp(θ⋆) +1 −1 I non-degenerated degenerated πϵ ̂ π
  41. Regularized Inverse Optimal Transport Regularized inversion: min θ L(cθ |

    ̂ π) + λR(θ) R(θ) = ∥θ∥1 cθ (x, y) = ⟨θx, y⟩ Estimating from samples: θ⋆ ̂ π := ∑n i=1 δ(xi ,yi ) (xi , yi )i ∼ πϵ (cθ⋆ ) SISTA [Dupuis, Galichon, Carlier] Intuition: ∥η⋆∥∞ ≤ 1 ⇔ primal-dual solutions as (θ⋆, η⋆) λ → 0 J(θ) := L(cθ |πϵ (cθ⋆ )) Dual certificate: η⋆ := argminη {⟨J′  ′  (θ⋆)η, η⟩ : ηI = sign(θ⋆ I )} θ θ⋆ J(θ) I := supp(θ⋆) +1 −1 I non-degenerated degenerated πϵ ̂ π Theorem: if there exists , so that for ∥η⋆ Ic ∥∞ < 1, (A, B) n− 1 2 eA ε log(1/δ) ≤ λ ≤ B supp(θλ ) = supp(θ⋆) ∥θλ − θ⋆∥2 = 𝒪 ( exp(A/ε)log(1/δ) n ) one has with probability 1 − δ and Clarice Poon Francisco Andrade
  42. Gaussian Case α = 𝒩 (mα , Σα ) β

    = 𝒩 (mβ , Σβ ) Σ = Σα θΔ(Δθ⊤Σα θΔ)−1 2 Δ − εθ†,⊤ Δ = (Σβ +ε2θ†Σα −1θ†,⊤)1 2 [Bojilov & Galichon’16] πϵ (cθ ) = 𝒩 ( mα mβ , ( Σα Σ Σ Σβ )) mα mβ ∂2J(θ⋆) = 2ε[4ε2(Σβ −ΣTΣα Σ)−1 ⊗ (Σα − ΣΣβ −1Σ⊤)−1 + (θ⋆⊤ ⊗ θ⋆)]−1 Proposition: J(θ) := L(cθ |πϵ (cθ⋆ )) θ θ⋆ J(θ) Easy to check when is non-degenerated. → η⋆
  43. Gaussian Case α = 𝒩 (mα , Σα ) β

    = 𝒩 (mβ , Σβ ) Σ = Σα θΔ(Δθ⊤Σα θΔ)−1 2 Δ − εθ†,⊤ Δ = (Σβ +ε2θ†Σα −1θ†,⊤)1 2 [Bojilov & Galichon’16] πϵ (cθ ) = 𝒩 ( mα mβ , ( Σα Σ Σ Σβ )) mα mβ ∂2J(θ⋆) = 2ε[4ε2(Σβ −ΣTΣα Σ)−1 ⊗ (Σα − ΣΣβ −1Σ⊤)−1 + (θ⋆⊤ ⊗ θ⋆)]−1 Proposition: J(θ) := L(cθ |πϵ (cθ⋆ )) θ θ⋆ J(θ) Easy to check when is non-degenerated. → η⋆ min θ L(cθ | ̂ π) + λ∥θ∥1 min θ 1 2 ∥(Σ1 2 β ⊗ Σ1 2 α )(θ − ̂ θ)∥2 F + λ0 ∥θ∥1 λ = λ0 /ε ε → + ∞ min θ≻0 1 2 log det(θ)+ 1 2 ⟨θ, ̂ θ−1⟩ + λ0 ∥θ∥1 ε → 0 λ = λ0 ε Lasso Graphical-Lasso
  44. Graph Estimation Experiments θ⋆ = δI + diag(A1) − A

    dgeod (i, j) dgeod (i, j) dgeod (i, j) = 2 Graph Laplacian η⋆ (i,j) η⋆ (i,j) Adjacency A
  45. Better modeling the dynamics: use gradient flows Luigi Ambrosio Nicola

    Gigli Giuseppe Savare <latexit sha1_base64="LIz5cv8SkqGoJa7sBtLUbjFelcY=">AABEz3ictVzdlhO5ERabv83kD5LL3PRmlhw2hyUDIT/n7M3CeBhm8YLBnoFdDHO67bYxtN3GbXsAr3Nym4fIbfIYeYhc5Q2Sq7xCqkpSS22ru9QTQp+ZUcv6qkolqVRVkommySib7+3988IH3/r2d777vQ+/v/ODH/7oxz+5eOmnJ1m6mPXi416apLMnUZjFyWgSH89H8yR+Mp3F4ThK4sfRq338/PEynmWjdNKZv53Gz8bhcDIajHrhHKpOL17qEo1VlCzidTdMTvdOL+7uXdujf8F24boq7Ar1r5Ve+ugfoiv6IhU9sRBjEYuJmEM5EaHI4Hkqros9MYW6Z2IFdTMojejzWKzFDmAX0CqGFiHUvoLfQ3h7qmon8I40M0L3gEsCPzNABuIyYFJoN4Mycgvo8wVRxtoy2iuiibK9hb+RojWG2rl4AbUcTrf0xWFf5mIg/kB9GEGfplSDvespKgvSCkoeWL2aA4Up1GG5D5/PoNwjpNZzQJiM+o66Denzf1FLrMX3nmq7EP8mKS/DE4i26n2aUwjFkugHNJoL+EzKkwDnIVCIVR+xdEa6HlPvJ9B+BfX34VlTSeskgmdFtetK5D48LuQ+izyEx4U8ZJFNeFzIJotsweNCthQSsTPSuRvfhseFb7OcH8LjQj5kkY/gcSEfscgTeFzIExb5NTwu5Ncs8g48LuQdFnkPHhfyHovswONCdljkMTwu5DGLPIDHhTxQyPKVOoMnJTojZlXegnKRB1qKBGpusfLdJuvowt72WNO9Eiy/qhvw141teOg0LsEeeMy7QQmWn3mHYCPdWN4W3aXdxIW9y2KPYAa4sUcs9gvxsgT7hcdKe1WC5ddaE9q5sbz1/RLe3NgvWex9KLmx/B71AGrc2AceO8a0BNtisQ/F6xKsj9WflWB5u98Gu+LG8vtUB9q7sT7WdFGC5e3pCXgwbiy/Wz2GWjf2MYt9It6UYJ+w2K/AuruxX3nssO9KsHqP3aEdZEj+SAwrtopamK9KLE2BWsjwT/K9JSHfOIJ6DjPMMUPCjFnEYY449EQ0c0TTW64st6MZ+bs8l3aOaHsionxvwtKcbd/P22Mp8UA0ckRjA1HlkeJY674sybvQNRxynu9cWPLpU5rbbyzFaj5UW16NeFBAyLn9gmb+VYqWMIJCTVVRe5Hv8RIZ0HsV4oyiN91LzYPHzXOrYKPesKjIgYpY1FsH6i2LWjhQCxa1dKCWLMqsfBvX9ZgBRv84Fit6kzNA+sjlTwBewS3Yde7CGg1g/rTAC3xENQ/gb5tib+6pkgyjedwnMcvxrGCJZ1BaiV2oN1Fhg+LrhFZYDJLJlg9UjI9vmNtYqTUnrfA638mDPGPiT2dE8gxzOugtBrSe6tG5RzVr8u5kqR7+br7udake/oA0viYvXpbq4edK+vk5ZO8obOcc2DaspqnSvinXpSHzL5KGLu/QrosWF0d1rOYM0ntTk/6RGpmjc4zLPpWkfky5Ho3M6l9W6F8dGkbPmaXnelTQe5Jery4FtXsyUXGvKdeVIaVddKLkMG91Rwbb9NXI6HI9Gi3wuPYp5l5Z5bqzd5r3xpTr0TgRMu+5Jk9el+vRGNK71Icp16OB2ZZQxfmmXNeyowZk7GzKda36hLLAmAOSc17WGK9oRn7SQlEbkX9Qna2xff7tfQxzNs/zGKGakvFty+lE+V5WLZH2F2KwavOacqB/sbB8sCKNlbjBxldShnlhf9+mY/Z41HwTtBjA6pdnAFzOPAEJdU4CrXcCFK+zUVexZxp3g8XhLBlsoLqqds56i4avzBoV606plovLTG+NHrtkrzOae1PyCZukWU4PzdIRLqPIaahZ0BBPr47u3qn1WtT+HoubbiCm+Uzr0YmQPEmrjlNdWm9bOr6sTnnm8MgzHzN/Mds8UNYGY56UbBHKUsXTbqfzSHYd7qtXhclxy88CGlG0V0uyGiM6kcrYKFRni6U3vqJ3Q/uYzuSQh6TRg3EMFJWpkKdmmEXHfHpAFtW2txxv1JfO0MlyRlZX2+Nq9NBCDx3o+jHOPuwY96HUgZjhGN46HlHOTq6rlDQ+E5/mp6MpjWB1RJ8ULKSmIe1NXLCQVVH2iwKVM0DjbJBRuj+NTToa392ixEf9LnlM7Fq0/Jfp5Fafb4c0x8tnc3kmpk9cbxDXgFaNPNWVb5scpAQr5yc3yH+t7iXyq8MRbSjH9bnFWeplQif+MUWwU/KME1pt3OootrbzU5ufaE4toc/O8TQ7JQsZkP0LYH9KaU4G9GPfHdAn6NIiJGQjfezOKPduXL7OiJ1jxo8bCXmrwcy3mGzZgvhruvbqymguyohB7gPrjbmtddIkXzAmrjNl3c3art59EGnuSdizRFI0c+UK8f+EfusfPU92t2YEahhHIFO2zjUeKcUsqKOQdvlqG6Tb2lJ+nMvwXElt9j8j08cFyRoUcaE8uFv3gXOP3iUvnCUzkjvbaiP30apsLlKebugRezugKF7a/aHagVHuq7RL7tKa69IsGcIsmOdRhG7LZZE3+VbzKlL3o539X6gbXRe1hhQDYTK4UkNcfj+maM2WMoFZLefvK1pNbq3PNlpV85nQXBxba/kbqP0Ifmu59bsfnahgFW7THJAUzJvRiKwJtlr48bpd4KVnpqZl3g0/Myd1K7vmPPG1tG4mxl7WptKiWfNGZS10+Tw0Xlo0XnrqsENnjUaLul5bolM2tuio00pffnW4dWpQXrCUeY9Mo0YeUtqxlB/VPkuVj/E16h1La4+lFcJqtU8D7DXvg3Sv9c3V/U2+uwfiDvk2PfLAZPzSp1U6Ip9L11ZHapICcr6p7Ku9+rtUg9wjsqBIWd7jxBUjT5169KxzSX+pdraU7LyxCPre0plqo21sl8q/2UKOaU1ktC414ia1iJX8thzBhkW6ZvkcAWX+Q/KppN9RHTPbrc2YBAV/wsSbclUZXjJSmJD+uczb0Vb0emTFrwHFhAvlXUdAq2yEd0TZrVXtPaIWUxWPV0mEHCWPtdAZaTki+MlrofPqVXh7HtvzRvdGy/0raIkaNSPqasHLm3hz5Pid57QupB1rrPzP1cb7+WiFagcrvlfpYbHB1+hjQW3sqMFEcEVMV3zmzUVKVI+LxPhwqdeLOvLXk7yOzPLkyZeybq0pF7MI0n68oFiIu+OJCJfndsXpqX3C9CPaohcR1qYmazhKmGlLVexvW1HMOAUb0Y9dz+03ibXXlO0Fhoe9IxgbLePrmDzsRHB5Gdna7kO3EInwmRZJoSfkrd2yGNCm+Rk8+DsQrghQc/TJD7bBh70l9sXBe7jx8FqVZdYyoBq0Cf2N+DpU/Sy2qNbRa4u6Td+Hgz+PEeiak35Eu19d2SVlXnKbuj/9M7IGMxGz0puW9ftgc+F7ss2pTn9GZOH43oyE/r5N3b5oDj49KXLx5yPPLrheDIT+3lK9PmjqfA+KHOrw0HcV/MbctK7Py+ZUra9tLr485D6gT1U0Dk/3yuMR087HQs2sEXn/HNA6DCqo693if+2H5mM41eflyy2j75O99Bh12S5WWVf0i+uvGcPNZzaXc/Tnmea9M16Tm5/0/4JaI5VavXn/9NEvNXNA81oJmevkpZN4exYZeX2pYO7fJUMq/iP+foH/xsHrnEaZHHUo6bOIcmq6BU9Nf6vS1Tv9mY9Mhk6ZTEVqJp5o063XfXEk7sDPfu4B1r0BKr8vKf+WZxv6UDsg66Ez5TKX0FUZhCyPqpBTn97NHdkyifG+rry/24EaPO9uUi3e5b1P7fE+b6fQt/Jvici1/qVIRb8QmWye4Jl1FUEPiqdrMs+jv8sb0H15mamSt8vGHueH8o6UnWNBXSOiT3HhpqQrQujZUkU5clKO6L5RXEI7KvStRzN8qk7x8UwB796H+ZlkIH5NdaHaHXCn5qRqOaR6SpmBiPS/BxHab8VV+HtVld2StrYkzWgMihK9sT6rvuW1ds4L803Fy5R101m4pWqXUlRvTgars6yNUi7yNns1fliBH1pStmm0XlHcPRPVmd9FBc2Fksk+q50IndOUesBoNsznR3X8vKzgtfTo/71S9D1L0kOQJaJMekBndTOilyjdHJD08s5kdU72boW0+huZkqa5NWnmgb7/WJ3vT9S8K1/98o4jl6uJS+jYa13etuRugoyclPj1OfW46RB69Jbvq09POSoLVpKFx7eMlx6yLD3oDBhpBiyFISuJsg+nF3evb/4/HtuFkxvXrv/u2s2HN3c/v63+j48Pxc/FL8QV2Pt+Lz6H+d8Sx8DpTPxF/FX8rfGwcdb4Y+NPsukHFxTmZ6Lwr/Hn/wKZnz38</latexit> ↵0 <latexit sha1_base64="PDCCocAjh/Bnm69+EKF4dh/DduY=">AABEz3ictVzdlhO5ERabn91M/iC5zE1vZslhc1gyw5Kfc/ZmYTwMsxgYsGdgF8OcbrttDG23cdsewOuc3OYhcps8Rh4iV3mD5CqvkKqS1FLb6i71hNBnZtSyvqpSSSpVlWSiSTLMZjs7/7zwwXe++73vf/jRD7Z++KMf/+SnFy/97CRL59NufNxNk3T6JAqzOBmO4+PZcJbETybTOBxFSfw4erWHnz9exNNsmI7bs7eT+NkoHIyH/WE3nEHV6cVLHaKxjJJ5vOqEyenu6cXtnWs79C/YLOyqwrZQ/47SSx//Q3RET6SiK+ZiJGIxFjMoJyIUGTxPxa7YEROoeyaWUDeF0pA+j8VKbAF2Dq1iaBFC7Sv4PYC3p6p2DO9IMyN0F7gk8DMFZCAuAyaFdlMoI7eAPp8TZawto70kmijbW/gbKVojqJ2JF1DL4XRLXxz2ZSb64g/UhyH0aUI12LuuojInraDkgdWrGVCYQB2We/D5FMpdQmo9B4TJqO+o25A+/xe1xFp876q2c/FvkvIyPIFoqd6nOYVQLIh+QKM5h8+kPAlwHgCFWPURS2ek6xH1fgztl1B/H54VlbROIniWVLuqRO7B40LuscgDeFzIAxbZhMeFbLLII3hcyCOFROyUdO7Gt+Bx4Vss54fwuJAPWeQjeFzIRyzyBB4X8oRFfgOPC/kNi7wNjwt5m0XehceFvMsi2/C4kG0WeQyPC3nMIvfhcSH3FbJ8pU7hSYnOkFmVN6Fc5IGWIoGam6x8t8g6urC3PNZ0twTLr+oG/HVjGx46jUuw+x7zrl+C5WfeAdhIN5a3RXdoN3Fh77DYQ5gBbuwhi/1KvCzBfuWx0l6VYPm11oR2bixvfe/Bmxt7j8Xeh5Iby+9RD6DGjX3gsWNMSrBHLPaheF2C9bH60xIsb/dbYFfcWH6fakN7N9bHms5LsLw9PQEPxo3ld6vHUOvGPmaxT8SbEuwTFvs1WHc39muPHfZdCVbvsVu0gwzIH4lhxVZRC/NViaUJUAsZ/km+tyTkG0dQz2EGOWZAmBGLOMgRB56IZo5oesuV5XY0I3+X59LKES1PRJTvTViase17eXssJR6IRo5orCGqPFIca92XBXkXuoZDzvKdC0s+fUpz+42lWM2HasurEQ8KCDm3X9DMv0rREkZQqKkqai/yPV4iA3qvQpxR9KZ7qXnwuFluFWzUGxYVOVARi3rrQL1lUXMHas6iFg7UgkWZlW/jOh4zwOgfx2JJb3IGSB+5/AnAK7gJu84dWKMBzJ8j8AIfUc0D+Nui2Jt7qiTDaB73ScxyPCtY4imUlmIb6k1U2KD4OqEVFoNksuUDFePjG+Y2lmrNSSu8ynfyIM+Y+NMZkjyDnA56iwGtp3p07lLNirw7WaqHv5Ove12qh98nja/Ii5eleviZkn52DtnbCts+B7YFq2mitG/KdWnI/IukoctbtOuixcVRHak5g/Te1KR/qEbm8BzjskclqR9Trkcjs/qXFfpXh4bRc2bpuR4V9J6k16tLQe2ejFXca8p1ZUhpFx0rOcxb3ZHBNj01Mrpcj8YReFx7FHMvrXLd2TvJe2PK9WicCJn3XJEnr8v1aAzoXerDlOvRwGxLqOJ8U65r2VEDMnY25bpWfUxZYMwByTkva4xXNCU/aa6oDck/qM7W2D7/5j6GOZvneYxQTcn4tuV0onwvq5ZI+wsxWLVZTTnQv5hbPliRxlJcZ+MrKcOssL9v0jF7PGq+CVoMYPXLMwAuZ56AhDongdY7AYq7bNRV7JnGXWdxOEv6a6iOqp2x3qLhK7NGxbpTquXiMtNbo8cO2euM5t6EfMImaZbTQ7N0hMsochpqFjTE06uju3dqvRa1v8PiJmuIST7TunQiJE/SquNUl9Zblo4vq1OeGTzyzMfMX8w295W1wZgnJVuEslTxtNvpPJJdh/vqVWFy3PKzgEYU7dWCrMaQTqQyNgrV2WLpjS/p3dA+pjM55CFpdGEcA0VlIuSpGWbRMZ8ekEW17S3HG/WlM3SynJHV1fa4Gj2w0AMHun6Mswc7xn0otSFmOIa3tkeUs5XrKiWNT8Vn+eloSiNYHdEnBQupaUh7ExcsZFWU/aJA5QzQOBtklO5PY52Oxnc2KPFRv0seE7sWLf9lOrnV59shzfHy2VyeiekR1+vENaBVI0915ds6BynB0vnJdfJfq3uJ/OpwRBvKcX1ucZZ6GdOJf0wR7IQ844RWG7c6iq3t/NT6J5rTkdBn53ianZKFDMj+BbA/pTQnA/qx7w7oE3RpERKykT52Z5h7Ny5fZ8jOMePHDYW81WDmW0y2bE78NV17dWU0F2XEIPeB1drc1jppki8YE9epsu5mbVfvPog09yTsWSIpmrlyhfh/Sr/1j54n2xszAjWMI5ApW+caj5RiFtRRSLt8tQ3SbW0pP8lleK6kNvufkemTgmQNirhQHtyte8C5S++SF86SKcmdbbSR+2hVNhcpT9b0iL3tUxQv7f5A7cAo91XaJbdpzXVolgxgFszyKEK35bLI63yreRWp+9HO/i/Uja6LWkOKgTAZXKkhLr8fU7RmS5nArJbz9xWtJrfWp2utqvmMaS6OrLX8LdR+DL+13Prdj05UsAq3aA5ICubNaETWBBst/HjdKvDSM1PTMu+Gn5mTupVdc574Wlo3E2MvalM5olnzRmUtdPk8NF5aNF566rBNZ41Gi7peW6JTNrZoq9NKX351uLVrUJ6zlHmPTKOGHlLasZQf1R5LlY/xNeodS2uHpRXCarVPA+w174N0r/X11f1tvrsH4jb5Nl3ywGT80qNVOiSfS9dWR2qSAnK+oeyrvfo7VIPcI7KgSFne48QVI0+duvSsckl/pXa2lOy8sQj63tKZaqNtbIfKn28gR7QmMlqXGnGDWsRKfluOYM0iXbN8joAy/yH5VNLvqI6Z7dZmTIKCP2HiTbmqDC8ZKYxJ/1zm7XAjej204teAYsK58q4joFU2wlui7Naq9h5Ri6mKx6skQo6Sx0rojLQcEfzktdB59Sq8PY/teaN7o+X+NbREjZoRdbXg5U28OXL8znNaF9KONVL+53Lt/Xy0QrWDFd+r9DBf42v0Mac2dtRgIrgipiO+8OYiJarHRWJ8uNTrRR3560leR2Z58uRLWbfWlItZBGk/XlAsxN3xRITLc7vi9NQ+ZfoRbdCLCGtTkzUcJcy0pSr2t60oZpyCtejHruf2m8Taa8r2AsPD3hGMjZbxdUwediK4vIxsbfehU4hE+EyLpNAV8tZuWQxo0/wCHvwdCFcEqDn65Adb4MPeFHti/z3ceHityjJrGVAN2oTeWnwdqn4WW1Tr6LVF3abvw8GfxxB0zUk/pN2vruySMi+5Td2f/hlZg6mIWelNy/p9sLnwPdnkVKc/Q7JwfG+GQn/fpm5fNAefnhS5+PORZxdcL/pCf2+pXh80db4HRQ51eOi7Cn5jblrX52VzqtbXJhdfHnIf0KcqGoene+XxiGnnY6Gm1oi8fw5oHfoV1PVu8b/2Q/MxnOrz8uWW0ffJXnqMumwXq6wr+sX114zh5jObyzn680zz3hmvyc1P+n9BrZFKrd68f/rol5o5oHkthcx18tJJvD2LjLy+VDD375IhFf8Rf7/Af+PgdU6jTI46lPRZRDk13YKnpr9V6eqd/sxHJkOnTKYiNRNPtOjW6544FLfhZy/3AOveAJXfl5R/y7MNPajtk/XQmXKZS+ioDEKWR1XIqUfv5o5smcR4X1fe321DDZ53N6kW7/Lep/Z4n7dd6Fv5t0TkWr8nUtErRCbrJ3hmXUXQg+Lpmszz6O/yBnRfXmaq5O2ykcf5obwjZedYUNeI6FFcuC7pkhB6tlRRjpyUI7pvFJfQjgp969IMn6hTfDxTwLv3YX4mGYjfUF2odgfcqTmpjhxSPaXMQET634EI7bfiKvy9qspuSY82JM1oDIoSvbE+q77ltXLOC/NNxcuUddNZuIVql1JUb04Gq7OsjVIu8jZ7NX5QgR9YUrZotF5R3D0V1ZnfeQXNuZLJPqsdC53TlHrAaDbM50d1/Lyo4LXw6P/dUvRdS9IDkCWiTHpAZ3VTopco3eyT9PLOZHVO9k6FtPobmZKmuTVp5oG+/1id70/UvCtf/fKOI5eriUvo2Gtd3rbkboIMnZT49TnxuOkQevSW76tPTzkqc1aSuce3jBcesiw86PQZafoshQEribIPpxe3d9f/H4/Nwsn1a7u/u3bj4Y3tL2+p/+PjI/EL8UtxBfa+34svYf4fiWPgdCb+Iv4q/tZ42Dhr/LHxJ9n0gwsK83NR+Nf4838B3fg9/Q==</latexit> ↵1 Conclusion: gradient flows for genomics αt+1 = argmin β W(αt , β) + τf(β)
  46. Better modeling the dynamics: use gradient flows Luigi Ambrosio Nicola

    Gigli Giuseppe Savare <latexit sha1_base64="LIz5cv8SkqGoJa7sBtLUbjFelcY=">AABEz3ictVzdlhO5ERabv83kD5LL3PRmlhw2hyUDIT/n7M3CeBhm8YLBnoFdDHO67bYxtN3GbXsAr3Nym4fIbfIYeYhc5Q2Sq7xCqkpSS22ru9QTQp+ZUcv6qkolqVRVkommySib7+3988IH3/r2d777vQ+/v/ODH/7oxz+5eOmnJ1m6mPXi416apLMnUZjFyWgSH89H8yR+Mp3F4ThK4sfRq338/PEynmWjdNKZv53Gz8bhcDIajHrhHKpOL17qEo1VlCzidTdMTvdOL+7uXdujf8F24boq7Ar1r5Ve+ugfoiv6IhU9sRBjEYuJmEM5EaHI4Hkqros9MYW6Z2IFdTMojejzWKzFDmAX0CqGFiHUvoLfQ3h7qmon8I40M0L3gEsCPzNABuIyYFJoN4Mycgvo8wVRxtoy2iuiibK9hb+RojWG2rl4AbUcTrf0xWFf5mIg/kB9GEGfplSDvespKgvSCkoeWL2aA4Up1GG5D5/PoNwjpNZzQJiM+o66Denzf1FLrMX3nmq7EP8mKS/DE4i26n2aUwjFkugHNJoL+EzKkwDnIVCIVR+xdEa6HlPvJ9B+BfX34VlTSeskgmdFtetK5D48LuQ+izyEx4U8ZJFNeFzIJotsweNCthQSsTPSuRvfhseFb7OcH8LjQj5kkY/gcSEfscgTeFzIExb5NTwu5Ncs8g48LuQdFnkPHhfyHovswONCdljkMTwu5DGLPIDHhTxQyPKVOoMnJTojZlXegnKRB1qKBGpusfLdJuvowt72WNO9Eiy/qhvw141teOg0LsEeeMy7QQmWn3mHYCPdWN4W3aXdxIW9y2KPYAa4sUcs9gvxsgT7hcdKe1WC5ddaE9q5sbz1/RLe3NgvWex9KLmx/B71AGrc2AceO8a0BNtisQ/F6xKsj9WflWB5u98Gu+LG8vtUB9q7sT7WdFGC5e3pCXgwbiy/Wz2GWjf2MYt9It6UYJ+w2K/AuruxX3nssO9KsHqP3aEdZEj+SAwrtopamK9KLE2BWsjwT/K9JSHfOIJ6DjPMMUPCjFnEYY449EQ0c0TTW64st6MZ+bs8l3aOaHsionxvwtKcbd/P22Mp8UA0ckRjA1HlkeJY674sybvQNRxynu9cWPLpU5rbbyzFaj5UW16NeFBAyLn9gmb+VYqWMIJCTVVRe5Hv8RIZ0HsV4oyiN91LzYPHzXOrYKPesKjIgYpY1FsH6i2LWjhQCxa1dKCWLMqsfBvX9ZgBRv84Fit6kzNA+sjlTwBewS3Yde7CGg1g/rTAC3xENQ/gb5tib+6pkgyjedwnMcvxrGCJZ1BaiV2oN1Fhg+LrhFZYDJLJlg9UjI9vmNtYqTUnrfA638mDPGPiT2dE8gxzOugtBrSe6tG5RzVr8u5kqR7+br7udake/oA0viYvXpbq4edK+vk5ZO8obOcc2DaspqnSvinXpSHzL5KGLu/QrosWF0d1rOYM0ntTk/6RGpmjc4zLPpWkfky5Ho3M6l9W6F8dGkbPmaXnelTQe5Jery4FtXsyUXGvKdeVIaVddKLkMG91Rwbb9NXI6HI9Gi3wuPYp5l5Z5bqzd5r3xpTr0TgRMu+5Jk9el+vRGNK71Icp16OB2ZZQxfmmXNeyowZk7GzKda36hLLAmAOSc17WGK9oRn7SQlEbkX9Qna2xff7tfQxzNs/zGKGakvFty+lE+V5WLZH2F2KwavOacqB/sbB8sCKNlbjBxldShnlhf9+mY/Z41HwTtBjA6pdnAFzOPAEJdU4CrXcCFK+zUVexZxp3g8XhLBlsoLqqds56i4avzBoV606plovLTG+NHrtkrzOae1PyCZukWU4PzdIRLqPIaahZ0BBPr47u3qn1WtT+HoubbiCm+Uzr0YmQPEmrjlNdWm9bOr6sTnnm8MgzHzN/Mds8UNYGY56UbBHKUsXTbqfzSHYd7qtXhclxy88CGlG0V0uyGiM6kcrYKFRni6U3vqJ3Q/uYzuSQh6TRg3EMFJWpkKdmmEXHfHpAFtW2txxv1JfO0MlyRlZX2+Nq9NBCDx3o+jHOPuwY96HUgZjhGN46HlHOTq6rlDQ+E5/mp6MpjWB1RJ8ULKSmIe1NXLCQVVH2iwKVM0DjbJBRuj+NTToa392ixEf9LnlM7Fq0/Jfp5Fafb4c0x8tnc3kmpk9cbxDXgFaNPNWVb5scpAQr5yc3yH+t7iXyq8MRbSjH9bnFWeplQif+MUWwU/KME1pt3OootrbzU5ufaE4toc/O8TQ7JQsZkP0LYH9KaU4G9GPfHdAn6NIiJGQjfezOKPduXL7OiJ1jxo8bCXmrwcy3mGzZgvhruvbqymguyohB7gPrjbmtddIkXzAmrjNl3c3art59EGnuSdizRFI0c+UK8f+EfusfPU92t2YEahhHIFO2zjUeKcUsqKOQdvlqG6Tb2lJ+nMvwXElt9j8j08cFyRoUcaE8uFv3gXOP3iUvnCUzkjvbaiP30apsLlKebugRezugKF7a/aHagVHuq7RL7tKa69IsGcIsmOdRhG7LZZE3+VbzKlL3o539X6gbXRe1hhQDYTK4UkNcfj+maM2WMoFZLefvK1pNbq3PNlpV85nQXBxba/kbqP0Ifmu59bsfnahgFW7THJAUzJvRiKwJtlr48bpd4KVnpqZl3g0/Myd1K7vmPPG1tG4mxl7WptKiWfNGZS10+Tw0Xlo0XnrqsENnjUaLul5bolM2tuio00pffnW4dWpQXrCUeY9Mo0YeUtqxlB/VPkuVj/E16h1La4+lFcJqtU8D7DXvg3Sv9c3V/U2+uwfiDvk2PfLAZPzSp1U6Ip9L11ZHapICcr6p7Ku9+rtUg9wjsqBIWd7jxBUjT5169KxzSX+pdraU7LyxCPre0plqo21sl8q/2UKOaU1ktC414ia1iJX8thzBhkW6ZvkcAWX+Q/KppN9RHTPbrc2YBAV/wsSbclUZXjJSmJD+uczb0Vb0emTFrwHFhAvlXUdAq2yEd0TZrVXtPaIWUxWPV0mEHCWPtdAZaTki+MlrofPqVXh7HtvzRvdGy/0raIkaNSPqasHLm3hz5Pid57QupB1rrPzP1cb7+WiFagcrvlfpYbHB1+hjQW3sqMFEcEVMV3zmzUVKVI+LxPhwqdeLOvLXk7yOzPLkyZeybq0pF7MI0n68oFiIu+OJCJfndsXpqX3C9CPaohcR1qYmazhKmGlLVexvW1HMOAUb0Y9dz+03ibXXlO0Fhoe9IxgbLePrmDzsRHB5Gdna7kO3EInwmRZJoSfkrd2yGNCm+Rk8+DsQrghQc/TJD7bBh70l9sXBe7jx8FqVZdYyoBq0Cf2N+DpU/Sy2qNbRa4u6Td+Hgz+PEeiak35Eu19d2SVlXnKbuj/9M7IGMxGz0puW9ftgc+F7ss2pTn9GZOH43oyE/r5N3b5oDj49KXLx5yPPLrheDIT+3lK9PmjqfA+KHOrw0HcV/MbctK7Py+ZUra9tLr485D6gT1U0Dk/3yuMR087HQs2sEXn/HNA6DCqo693if+2H5mM41eflyy2j75O99Bh12S5WWVf0i+uvGcPNZzaXc/Tnmea9M16Tm5/0/4JaI5VavXn/9NEvNXNA81oJmevkpZN4exYZeX2pYO7fJUMq/iP+foH/xsHrnEaZHHUo6bOIcmq6BU9Nf6vS1Tv9mY9Mhk6ZTEVqJp5o063XfXEk7sDPfu4B1r0BKr8vKf+WZxv6UDsg66Ez5TKX0FUZhCyPqpBTn97NHdkyifG+rry/24EaPO9uUi3e5b1P7fE+b6fQt/Jvici1/qVIRb8QmWye4Jl1FUEPiqdrMs+jv8sb0H15mamSt8vGHueH8o6UnWNBXSOiT3HhpqQrQujZUkU5clKO6L5RXEI7KvStRzN8qk7x8UwB796H+ZlkIH5NdaHaHXCn5qRqOaR6SpmBiPS/BxHab8VV+HtVld2StrYkzWgMihK9sT6rvuW1ds4L803Fy5R101m4pWqXUlRvTgars6yNUi7yNns1fliBH1pStmm0XlHcPRPVmd9FBc2Fksk+q50IndOUesBoNsznR3X8vKzgtfTo/71S9D1L0kOQJaJMekBndTOilyjdHJD08s5kdU72boW0+huZkqa5NWnmgb7/WJ3vT9S8K1/98o4jl6uJS+jYa13etuRugoyclPj1OfW46RB69Jbvq09POSoLVpKFx7eMlx6yLD3oDBhpBiyFISuJsg+nF3evb/4/HtuFkxvXrv/u2s2HN3c/v63+j48Pxc/FL8QV2Pt+Lz6H+d8Sx8DpTPxF/FX8rfGwcdb4Y+NPsukHFxTmZ6Lwr/Hn/wKZnz38</latexit> ↵0 <latexit sha1_base64="PDCCocAjh/Bnm69+EKF4dh/DduY=">AABEz3ictVzdlhO5ERabn91M/iC5zE1vZslhc1gyw5Kfc/ZmYTwMsxgYsGdgF8OcbrttDG23cdsewOuc3OYhcps8Rh4iV3mD5CqvkKqS1FLb6i71hNBnZtSyvqpSSSpVlWSiSTLMZjs7/7zwwXe++73vf/jRD7Z++KMf/+SnFy/97CRL59NufNxNk3T6JAqzOBmO4+PZcJbETybTOBxFSfw4erWHnz9exNNsmI7bs7eT+NkoHIyH/WE3nEHV6cVLHaKxjJJ5vOqEyenu6cXtnWs79C/YLOyqwrZQ/47SSx//Q3RET6SiK+ZiJGIxFjMoJyIUGTxPxa7YEROoeyaWUDeF0pA+j8VKbAF2Dq1iaBFC7Sv4PYC3p6p2DO9IMyN0F7gk8DMFZCAuAyaFdlMoI7eAPp8TZawto70kmijbW/gbKVojqJ2JF1DL4XRLXxz2ZSb64g/UhyH0aUI12LuuojInraDkgdWrGVCYQB2We/D5FMpdQmo9B4TJqO+o25A+/xe1xFp876q2c/FvkvIyPIFoqd6nOYVQLIh+QKM5h8+kPAlwHgCFWPURS2ek6xH1fgztl1B/H54VlbROIniWVLuqRO7B40LuscgDeFzIAxbZhMeFbLLII3hcyCOFROyUdO7Gt+Bx4Vss54fwuJAPWeQjeFzIRyzyBB4X8oRFfgOPC/kNi7wNjwt5m0XehceFvMsi2/C4kG0WeQyPC3nMIvfhcSH3FbJ8pU7hSYnOkFmVN6Fc5IGWIoGam6x8t8g6urC3PNZ0twTLr+oG/HVjGx46jUuw+x7zrl+C5WfeAdhIN5a3RXdoN3Fh77DYQ5gBbuwhi/1KvCzBfuWx0l6VYPm11oR2bixvfe/Bmxt7j8Xeh5Iby+9RD6DGjX3gsWNMSrBHLPaheF2C9bH60xIsb/dbYFfcWH6fakN7N9bHms5LsLw9PQEPxo3ld6vHUOvGPmaxT8SbEuwTFvs1WHc39muPHfZdCVbvsVu0gwzIH4lhxVZRC/NViaUJUAsZ/km+tyTkG0dQz2EGOWZAmBGLOMgRB56IZo5oesuV5XY0I3+X59LKES1PRJTvTViase17eXssJR6IRo5orCGqPFIca92XBXkXuoZDzvKdC0s+fUpz+42lWM2HasurEQ8KCDm3X9DMv0rREkZQqKkqai/yPV4iA3qvQpxR9KZ7qXnwuFluFWzUGxYVOVARi3rrQL1lUXMHas6iFg7UgkWZlW/jOh4zwOgfx2JJb3IGSB+5/AnAK7gJu84dWKMBzJ8j8AIfUc0D+Nui2Jt7qiTDaB73ScxyPCtY4imUlmIb6k1U2KD4OqEVFoNksuUDFePjG+Y2lmrNSSu8ynfyIM+Y+NMZkjyDnA56iwGtp3p07lLNirw7WaqHv5Ove12qh98nja/Ii5eleviZkn52DtnbCts+B7YFq2mitG/KdWnI/IukoctbtOuixcVRHak5g/Te1KR/qEbm8BzjskclqR9Trkcjs/qXFfpXh4bRc2bpuR4V9J6k16tLQe2ejFXca8p1ZUhpFx0rOcxb3ZHBNj01Mrpcj8YReFx7FHMvrXLd2TvJe2PK9WicCJn3XJEnr8v1aAzoXerDlOvRwGxLqOJ8U65r2VEDMnY25bpWfUxZYMwByTkva4xXNCU/aa6oDck/qM7W2D7/5j6GOZvneYxQTcn4tuV0onwvq5ZI+wsxWLVZTTnQv5hbPliRxlJcZ+MrKcOssL9v0jF7PGq+CVoMYPXLMwAuZ56AhDongdY7AYq7bNRV7JnGXWdxOEv6a6iOqp2x3qLhK7NGxbpTquXiMtNbo8cO2euM5t6EfMImaZbTQ7N0hMsochpqFjTE06uju3dqvRa1v8PiJmuIST7TunQiJE/SquNUl9Zblo4vq1OeGTzyzMfMX8w295W1wZgnJVuEslTxtNvpPJJdh/vqVWFy3PKzgEYU7dWCrMaQTqQyNgrV2WLpjS/p3dA+pjM55CFpdGEcA0VlIuSpGWbRMZ8ekEW17S3HG/WlM3SynJHV1fa4Gj2w0AMHun6Mswc7xn0otSFmOIa3tkeUs5XrKiWNT8Vn+eloSiNYHdEnBQupaUh7ExcsZFWU/aJA5QzQOBtklO5PY52Oxnc2KPFRv0seE7sWLf9lOrnV59shzfHy2VyeiekR1+vENaBVI0915ds6BynB0vnJdfJfq3uJ/OpwRBvKcX1ucZZ6GdOJf0wR7IQ844RWG7c6iq3t/NT6J5rTkdBn53ianZKFDMj+BbA/pTQnA/qx7w7oE3RpERKykT52Z5h7Ny5fZ8jOMePHDYW81WDmW0y2bE78NV17dWU0F2XEIPeB1drc1jppki8YE9epsu5mbVfvPog09yTsWSIpmrlyhfh/Sr/1j54n2xszAjWMI5ApW+caj5RiFtRRSLt8tQ3SbW0pP8lleK6kNvufkemTgmQNirhQHtyte8C5S++SF86SKcmdbbSR+2hVNhcpT9b0iL3tUxQv7f5A7cAo91XaJbdpzXVolgxgFszyKEK35bLI63yreRWp+9HO/i/Uja6LWkOKgTAZXKkhLr8fU7RmS5nArJbz9xWtJrfWp2utqvmMaS6OrLX8LdR+DL+13Prdj05UsAq3aA5ICubNaETWBBst/HjdKvDSM1PTMu+Gn5mTupVdc574Wlo3E2MvalM5olnzRmUtdPk8NF5aNF566rBNZ41Gi7peW6JTNrZoq9NKX351uLVrUJ6zlHmPTKOGHlLasZQf1R5LlY/xNeodS2uHpRXCarVPA+w174N0r/X11f1tvrsH4jb5Nl3ywGT80qNVOiSfS9dWR2qSAnK+oeyrvfo7VIPcI7KgSFne48QVI0+duvSsckl/pXa2lOy8sQj63tKZaqNtbIfKn28gR7QmMlqXGnGDWsRKfluOYM0iXbN8joAy/yH5VNLvqI6Z7dZmTIKCP2HiTbmqDC8ZKYxJ/1zm7XAjej204teAYsK58q4joFU2wlui7Naq9h5Ri6mKx6skQo6Sx0rojLQcEfzktdB59Sq8PY/teaN7o+X+NbREjZoRdbXg5U28OXL8znNaF9KONVL+53Lt/Xy0QrWDFd+r9DBf42v0Mac2dtRgIrgipiO+8OYiJarHRWJ8uNTrRR3560leR2Z58uRLWbfWlItZBGk/XlAsxN3xRITLc7vi9NQ+ZfoRbdCLCGtTkzUcJcy0pSr2t60oZpyCtejHruf2m8Taa8r2AsPD3hGMjZbxdUwediK4vIxsbfehU4hE+EyLpNAV8tZuWQxo0/wCHvwdCFcEqDn65Adb4MPeFHti/z3ceHityjJrGVAN2oTeWnwdqn4WW1Tr6LVF3abvw8GfxxB0zUk/pN2vruySMi+5Td2f/hlZg6mIWelNy/p9sLnwPdnkVKc/Q7JwfG+GQn/fpm5fNAefnhS5+PORZxdcL/pCf2+pXh80db4HRQ51eOi7Cn5jblrX52VzqtbXJhdfHnIf0KcqGoene+XxiGnnY6Gm1oi8fw5oHfoV1PVu8b/2Q/MxnOrz8uWW0ffJXnqMumwXq6wr+sX114zh5jObyzn680zz3hmvyc1P+n9BrZFKrd68f/rol5o5oHkthcx18tJJvD2LjLy+VDD375IhFf8Rf7/Af+PgdU6jTI46lPRZRDk13YKnpr9V6eqd/sxHJkOnTKYiNRNPtOjW6544FLfhZy/3AOveAJXfl5R/y7MNPajtk/XQmXKZS+ioDEKWR1XIqUfv5o5smcR4X1fe321DDZ53N6kW7/Lep/Z4n7dd6Fv5t0TkWr8nUtErRCbrJ3hmXUXQg+Lpmszz6O/yBnRfXmaq5O2ykcf5obwjZedYUNeI6FFcuC7pkhB6tlRRjpyUI7pvFJfQjgp969IMn6hTfDxTwLv3YX4mGYjfUF2odgfcqTmpjhxSPaXMQET634EI7bfiKvy9qspuSY82JM1oDIoSvbE+q77ltXLOC/NNxcuUddNZuIVql1JUb04Gq7OsjVIu8jZ7NX5QgR9YUrZotF5R3D0V1ZnfeQXNuZLJPqsdC53TlHrAaDbM50d1/Lyo4LXw6P/dUvRdS9IDkCWiTHpAZ3VTopco3eyT9PLOZHVO9k6FtPobmZKmuTVp5oG+/1id70/UvCtf/fKOI5eriUvo2Gtd3rbkboIMnZT49TnxuOkQevSW76tPTzkqc1aSuce3jBcesiw86PQZafoshQEribIPpxe3d9f/H4/Nwsn1a7u/u3bj4Y3tL2+p/+PjI/EL8UtxBfa+34svYf4fiWPgdCb+Iv4q/tZ42Dhr/LHxJ9n0gwsK83NR+Nf4838B3fg9/Q==</latexit> ↵1 <latexit sha1_base64="Tis7/dOjTO3ezjstyD8AzcqN46U=">AABE+3ictVxZcxu5EYY318a5vMlTKi+z0Trl3VIcSXGOqq1UrSzJstayLZuU7F3TdnHIEU17xKF5+eCy8mNSeUmlkqc853fkB6QqecpfSB/AAENipjGKo7FEDIivu9EDNLobGMfDtD+ebGz848J7X/v6N775rfe/ffE73/3e939w6YMfnoyz6aiTHHeyNBs9jNvjJO0PkuNJf5ImD4ejpH0Wp8mD+MUOfv9glozG/WzQnLwZJo/P2r1B/7TfaU+g6umlH7eIxqNRL34831y/eg3+LaLt5vbO00trG1c36CdaLWzqwprSP0fZBx/+U7VUV2Wqo6bqTCVqoCZQTlVbjeF6pDbVhhpC3WM1h7oRlPr0faIW6iJgp9AqgRZtqH0Bf3tw90jXDuAeaY4J3QEuKfyOABmpy4DJoN0Iysgtou+nRBlry2jPiSbK9gY+Y03rDGon6hnUSjjTMhSHfZmoU/Vb6kMf+jSkGuxdR1OZklZQ8sjp1QQoDKEOy134fgTlDiGNniPCjKnvqNs2ff8vaom1eN/Rbafq3yTlZbgi1dC9z3IKbTUj+hE9zSl8x/KkwLkHFBLdRyy9Il2fUe8H0H4O9XfgWlDJ6CSGa061i0rkDlw+5I6I3IfLh9wXkYdw+ZCHIvIILh/ySCMROyKd+/ENuHz4hsj5Hlw+5D0ReR8uH/K+iDyBy4c8EZFfwuVDfikib8DlQ94Qkbfg8iFvicgmXD5kU0Qew+VDHovIPbh8yD2NLJ+pI7gyotMXZuU2lIs80FKkULMtynedrKMPez1gTndKsPKs3oVPP3Y3QKdJCXYvYNydlmDlkbcPNtKPlW3RTVpNfNibIvYARoAfeyBiP1fPS7CfB8y0FyVYea4dQjs/Vra+t+HOj70tYu9AyY+V16i7UOPH3g1YMYYl2CMRe0+9LMGGWP1RCVa2+w2wK36svE41ob0fG2JNpyVY2Z6egAfjx8qr1QOo9WMfiNiH6nUJ9qGI/QKsux/7RcAK+7YEa9bYi7SC9MgfSWDGVlFr57MSS0Og1hb4p/nakpJvHEO9hOnlmB5hzkTEfo7YD0Qc5ojDYLnGuR0dk78rc2nkiEYgIs7XJixNxPbdvD2W0gDEbo7YXUJUeaT4rE1fZuRdmBoJOclXLiyF9CnL7TeWEj0eqi2vQdwtIHhsP6ORv07REkZQqKkqas/yNZ6REd1XIV5R9GZ6aXjIuEluFVzUaxEVe1CxiHrjQb0RUVMPaiqiZh7UTETZme/iWgEjwOofn8Wc7ngEsI9cfkXgFWzDqnMT5mgE4+cIvMD7VHMXPhsUe0tXlWQYzeM6iVmOxwVLPILSXK1BvY0Kdym+TmmGJSAZt7yrY3y8w9zGXM85tsKLfCWP8oxJOJ0+ydPL6aC3GNF8qkfnFtUsyLvjUj38zXzem1I9/B5pfEFePJfq4Sda+sk5ZG9qbPMc2AbMpqHWvi3XpcH5F6Zhyhdp1UWLi0/1TI8ZpPe6Jv0D/WQOzvFcdqjE+rHlejTGTv/Ghf7VoWH1PHb0XI8Kek/s9ZpSVLsnAx332nJdGTJaRQdaDntX98lgm65+MqZcj8YReFw7FHPPnXLd0TvMe2PL9WicKM57LsiTN+V6NHp0z/qw5Xo0MNvS1nG+Lde17KgBjp1tua5VH1AWGHNAPOa5xnpFI/KTpppan/yD6myN6/OvrmOYs3mSxwjVlKxvW04nzteyaomMv5CAVZvUlAP9i6njgxVpzNWWGF+xDJPC+r5Kx67xqPlD0GIEs5/3AKSceQoSmpwEWu8UKG6KUVexZwa3JeJwlJwuoVq6diJ6i5YvZ42KdU+pVorLbG+tHltkr8c09obkEx6SZiU9HJY+4TKKkoYOCxqS6dXR3Vs9X4va3xBxwyXEMB9pHdoR4p206jjVp/WGo+PLepdnAhfv+djxi9nmU21tMObJyBahLFU83XYmj+TW4bq6rmyOm7+L6ImivZqR1ejTjtRYjEJNtpi98TndW9rHtCeHPJhGB55jpKkMFe+aYRYd8+kRWVTX3kq8UV8mQ8flMVldY4+r0T0H3fOg68c4O7Bi3IFSE2KGY7hrBkQ5F3NdZaTxkfp5vjua0ROsjujTgoU0NNjeJAULWRVlPytQeQVoHA0cpYfTWKZj8K0VSnLU75PHxq5Fy3+Zdm7N/nabxnj5aC7PxHSJ6xZxjWjW8K4u3y1zYAnm3m+2yH+t7iXyq8MRbajE9YnDmfUyoB3/hCLYIXnGKc02aXYUW7v5qeVvDKcjZfbOcTc7IwsZkf2LYH3KaExG9OueHTA76GwRUrKRIXann3s3Pl+nL44x68f1FZ9qsOMtIVs2Jf6Grju7xjQWOWLgdWCxNLaNTg7JF0yI60hbdzu3q1cfRNpzEu4oYYp2rFwh/h/TX/NrxsnayohADeMTGGtb53seGcUsqKM2rfLVNsi0daX8KJfhiZbarn9Wpo8Kku1SxIXy4GrdBc4dumdeOEpGJPd4pQ2vo1XZXKQ8XNIj9vaUoni2+z29AqPc67RKrtGca9Eo6cEomORRhGkrZZGX+VbzKlIPoz3+v1C3ui5qDSlGymZwWUNSfj+haM2VMoVRzeP3Bc0mv9ZHS62q+QxoLJ45c/krqP0Q/hq5zX0YnbhgFa7TGGAK9s5qhGuilRZhvK4XeJmRaWjZe8vPjknTyq05T3zN1s3G2LPaVI5o1LzWWQtTPg+N5w6N54E6bNJeo9WiqTeW6KkYWzT1bmUovzrcmjUoT0XKskdmUP0AKd1YKoxqV6Qqx/gG9VaktSHSasNsdXcD3DkfgvTP9eXZ/VW+ukfqBvk2HfLAOH7p0iztk89laqsjNaaAnK9p++rO/hbVIPeYLChS5nOcOGN416lD1yKX9Gd6ZcvIzluLYM4tvdJtjI1tUfmXK8gzmhNjmpcGcY1aJFp+V45oySJddXyOiDL/bfKp2O+ojpnd1vaZRAV/wsabPKssL44UBqR/KfN2sBK9Hjjxa0Qx4VR71zHQqv+EkQJjTCbB71mO6QnhKsc7CezRxmQ/V+0U7+INHImuktRz9bsAG8NRrx3r7tgyPTZ9+wRaotbtU/e1kPmlwRwlfufZ0WvTqnamfdT50v35aLX1Kle8r9LDdImv1ceU2riRhY3yipiW+jSYC0tUjwtjQrjU60Ud+etJXkdm3p0KpWxaG8rFTAPbmGcUL0nnQBHh8+6ueL25j4V+xCv0YsK61LhGooTZuEznB1xLi1mpaClCcuulNSl11qOy9cLycFcNa8fZUiZkBVMl5W64tduHViFakbMxTKGj+GRvWZzo0vwULvwbKV+UaDiG5BAb4Oduqx219w5ORbzUZc5sRlSDNqG7FIO3dT+LLap19NKh7tIP4RDOow+6lqTv04paV3amLEvuUg+n/4qswUglovS2Zf0+uFzknqxyqtOfPlk4uTd9Zd7JqdsXwyGkJ0Uu4Xx4f0Pqxaky7zbV64OhLvegyKEOD3OeIeyZ29b1ebmcqvW1yiWUB68DZufF4HAHsDxmse1CLNTIeSLvngNah9MK6ma1+F/7YfhYTvV5hXIb0ztnzwOeOrdLdGYW/eL6c8ZyCxnN5RzDeWZ576zX5OfH/l9U60llTm/ePX30S+0YMLzmivOhsnSMd0eRlTeUCu4P+GTI1H/U3y/IbyW8zGmUyVGHktmvKKdmWsjUzJuXvt6Z70JksnTKZCpSs/FEg07G7qgDdQN+d3IPsO4pUX6nkj8R63+Ptgu1p2Q9TDadMwgtqksoC2J307p0b8/RlkmMZ3r5jG8TanBP/JBq8bzvHWqPZ36bhb6Vv0nCc/22ylS3EJks7/LZeRVDD4o7cJwLMu/7RnSmnrNZfALtLGCPkc9RcaRk3n6eE6JLceGypHNCmNFSRTn2Uo7pTFJSQjsu9K1DI3yod/px3wHP57fz7FKkfkF1bb064EotSXXkkeoRZQZi0v8GRGi/Uuvwua7LfkmPViQd0zMoSvTa+a76JNjCOy7s24yXKQ9mMnUz3S6jqN7uHlZnYndLufCJ92p8rwLfc6Rs0NN6QXH3SFXnDqcVNKdaJnc/d6BM3pP1gNFsOx8f1fHzrILXLKD/t0rRtxxJ90GWmLLtEe3njYheqnWzR9LzucrqvO3NCmnNW5tM056stOPAnJGs3hNI9bgrn/18DlLK1SQldNy5zicypdMifS8leX4OA05DtAN6K/c1pKcSlakoyTTgTeRZgCyzADqngjSnIoWeKIm2D08vrW0u/18fq4WTraubv7567d7W2mfX9f8D8r76ifqpugJr32/UZzD+j9QxcPq9+qP6i/rr7mL3D7t/2v0zN33vgsb8SBV+dv/2X8iWSHA=</latexit> ATAC <latexit sha1_base64="yLexRhVyH/8+kX4r+aALcN6qwFs=">AABE+nictVxZcxu5EYY318a5vMlLqvIyG61T3i1FkRTnqNpK1dqiLGst27JJyd41bReHHNG0Rxyalw9a+TGpvKRSyVPe8zvyA1KVPOUvpA9ggCEx0xhlo7FEDIivu9EDNLobGMejdDCZbm7+48J7X/v6N775rfe/ffE73/3e939w6YMfHk+y2bibHHWzNBs/jDuTJB0Mk6PpYJomD0fjpHMap8mD+MUOfv9gnowng2zYmr4ZJY9PO/3h4GTQ7Uyh6umlH7eJxqNxP3682Li6Dv+2zqL7d649vbS2ubFJP9FqYUsX1pT+Ocw++PCfqq16KlNdNVOnKlFDNYVyqjpqAtcjtaU21QjqHqsF1I2hNKDvE3WmLgJ2Bq0SaNGB2hfwtw93j3TtEO6R5oTQXeCSwu8YkJG6DJgM2o2hjNwi+n5GlLG2jPaCaKJsb+Az1rROoXaqnkGthDMtQ3HYl6k6Ub+lPgygTyOqwd51NZUZaQUlj5xeTYHCCOqw3IPvx1DuEtLoOSLMhPqOuu3Q9/+illiL913ddqb+TVJehitSTd37LKfQUXOiH9HTnMF3LE8KnPtAIdF9xNIr0vUp9X4I7RdQfweuMyoZncRwLaj2rBK5A5cPuSMi9+DyIfdE5AFcPuSBiDyEy4c81EjEjknnfnwTLh++KXK+B5cPeU9E3ofLh7wvIo/h8iGPReSXcPmQX4rIG3D5kDdE5C24fMhbIrIFlw/ZEpFHcPmQRyJyFy4fclcjy2fqGK6M6AyEWXkNykUeaClSqLkmynedrKMPez1gTndLsPKsbsCnH9sI0GlSgt0NGHcnJVh55O2BjfRjZVt0k1YTH/amiN2HEeDH7ovYz9XzEuznATPtRQlWnmsH0M6Pla3vbbjzY2+L2DtQ8mPlNeou1PixdwNWjFEJ9lDE3lMvS7AhVn9cgpXtfhPsih8rr1MtaO/HhljTWQlWtqfH4MH4sfJq9QBq/dgHIvahel2CfShivwDr7sd+EbDCvi3BmjX2Iq0gffJHEpixVdQ6+azE0giodQT+ab62pOQbx1AvYfo5pk+YUxGxlyP2AhEHOeIgWK5Jbkcn5O/KXJo5ohmIiPO1CUtTsX0vb4+lNADRyBGNJUSVR4rP2vRlTt6FqZGQ03zlwlJIn7LcfmMp0eOh2vIaxN0Cgsf2Mxr56xQtYQSFmqqi9ixf4xkZ0X0V4hVFb6aXhoeMm+ZWwUW9FlGxBxWLqDce1BsRNfOgZiJq7kHNRZSd+S6uHTACrP7xWSzojkcA+8jlVwRewTVYdW7CHI1g/ByCF3ifau7CZ5Nib+mqkgyjeVwnMcvxuGCJx1BaqDWot1Fhg+LrlGZYApJxy7s6xsc7zG0s9JxjK3yWr+RRnjEJpzMgefo5HfQWI5pP9ejcopoz8u64VA9/M5/3plQPv0saPyMvnkv18FMt/fQcsrc0tnUObBNm00hr35br0uD8C9Mw5Yu06qLFxad6qscM0ntdk/6+fjL753guO1Ri/dhyPRoTp3+TQv/q0LB6njh6rkcFvSf2ek0pqt2ToY57bbmuDBmtokMth72r+2SwTU8/GVOuR+MQPK4dirkXTrnu6B3lvbHlejSOFec9z8iTN+V6NPp0z/qw5Xo0MNvS0XG+Lde17KgBjp1tua5VH1IWGHNAPOa5xnpFY/KTZpragPyD6myN6/OvrmOYs3mSxwjVlKxvW04nzteyaomMv5CAVZvWlAP9i5njgxVpLNS2GF+xDNPC+r5Kx67xqPkD0GIEs5/3AKSceQoSmpwEWu8UKG6JUVexZwa3LeJwlJwsodq6dip6i5YvZ42KdU+pVorLbG+tHttkryc09kbkEx6QZiU9HJQ+4TKKkoYOChqS6dXR3Vs9X4va3xRxoyXEKB9pXdoR4p206jjVp/Wmo+PLepdnChfv+djxi9nmE21tMObJyBahLFU83XYmj+TW4bq6rmyOm7+L6ImivZqT1RjQjtREjEJNtpi98QXdW9pHtCeHPJhGF55jpKmMFO+aYRYd8+kRWVTX3kq8UV8mQ8flCVldY4+r0X0H3feg68c4O7Bi3IFSC2KGI7hrBUQ5F3NdZaTxsfp5vjua0ROsjujTgoU0NNjeJAULWRVlPytQeQVoHA0cpYfTWKZj8O0VSnLU75PHxq5Fy3+Zdm7N/naHxnj5aC7PxPSI6zZxjWjW8K4u3y1zYAkW3m+2yX+t7iXyq8MRbajE9YnDmfUypB3/hCLYEXnGKc02aXYUW7v5qeVvDKdDZfbOcTc7IwsZkf2LYH3KaExG9OueHTA76GwRUrKRIXZnkHs3Pl9nII4x68cNFJ9qsOMtIVs2I/6Grju7JjQWOWLgdeBsaWwbnRyQL5gQ17G27nZuV68+iLTnJNxRwhTtWLlC/D+mv+bXjJO1lRGBGsYnMNG2zvc8MopZUEcdWuWrbZBp60r5US7DEy21Xf+sTB8VJGtQxIXy4GrdA85dumdeOErGJPdkpQ2vo1XZXKQ8WtIj9vaEoni2+329AqPc67RKrtGca9Mo6cMomOZRhGkrZZGX+VbzKlIPoz35v1C3ui5qDSlGymZwWUNSfj+haM2VMoVRzeP3Bc0mv9bHS62q+QxpLJ46c/kd1H4If43c5j6MTlywCtdpDDAFe2c1wjXRSoswXtcLvMzINLTsveVnx6Rp5dacJ75m62Zj7HltKoc0al7rrIUpn4fGc4fG80Adtmiv0WrR1BtL9FSMLVp6tzKUXx1urRqUZyJl2SMzqEGAlG4sFUa1J1KVY3yDeivS2hRpdWC2ursB7pwPQfrn+vLsfpev7pG6Qb5Nlzwwjl96NEsH5HOZ2upIjSkg56vavrqzv001yD0mC4qU+RwnzhjederSdZZL+jO9smVk561FMOeWXuk2xsa2qfzLFeQpzYkJzUuDuEotEi2/K0e0ZJE2HJ8josx/h3wq9juqY2a3tX0mUcGfsPEmzyrLiyOFIelfyrztr0Sv+078GlFMONPedQy06j9hpMAYk0nwe5YTekK4yvFOAnu0MdnPVTvFu3hDR6INknqhfhdgYzjqtWPdHVumx6Zvn0BL1Lp96r4WMr80mKPE7zw7eh1a1U61j7pYuj8frY5e5Yr3VXqYLfG1+phRGzeysFFeEdNWnwZzYYnqcWFMCJd6vagjfz3J68jMu1OhlE1rQ7mYaWAb84ziJekcKCJ83t0Vrzf3sdCPeIVeTFiXGtdIlDAbl+n8gGtpMSsVLUVIbr20JqXOelS2Xlge7qph7ThbyoSsYKqk3A23dvvQLkQrcjaGKXQVn+wtixNdmp/ChX8j5YsSDceQHGIT/NxrakftfgWnIl7qMmc2I6pBm9BbisE7up/FFtU6eulQd+mHcAjnMQBdS9IPaEWtKztTliV3qYfTf0XWYKwSUXrbsn4fXC5yT1Y51enPgCyc3JuBMu/k1O2L4RDSkyKXcD68vyH14kSZd5vq9cFQl3tQ5FCHhznPEPbMbev6vFxO1fpa5RLKg9cBs/NicLgDWB6z2HYhFmrsPJGvngNah5MK6ma1+F/7YfhYTvV5hXKb0DtnzwOeOrdLdGYW/eL6c8ZyCxnN5RzDeWZ576zX5OfH/l9U60llTm++evrol9oxYHgtFOdDZekY744iK28oFdwf8MmQqf+ov1+Q30p4mdMok6MOJbNfUU7NtJCpmTcvfb0z34XIZOmUyVSkZuOJJp2M3VH76gb87uQeYN1TovxOJX8i1v8ebQ9qT8h6mGw6ZxDaVJdQFsTupvXo3p6jLZMYz/TyGd8W1OCe+AHV4nnfO9Qez/y2Cn0rf5OE5/ptlaleITJZ3uWz8yqGHhR34DgXZN73jehMPWez+ATaacAeI5+j4kjJvP28IESP4sJlSReEMKOlinLspRzTmaSkhHZc6FuXRvhI7/TjvgOez+/k2aVI/YLqOnp1wJVakurQI9UjygzEpP9NiNB+pdbhc12X/ZIerkg6oWdQlOi18131SbAz77iwbzNepjyYydTNdbuMonq7e1idiW2UcuET79X4fgW+70jZpKf1guLusarOHc4qaM60TO5+7lCZvCfrAaPZTj4+quPneQWveUD/b5WibzmS7oEsMWXbI9rPGxO9VOtml6Tnc5XVedubFdKatzaZpj1ZaceBOSNZvSeQ6nFXPvv5HKSUq0lK6LhznU9kSqdFBl5K8vwcBZyG6AT0Vu5rSE8lKjNRklnAm8jzAFnmAXROBGlORAp9URJtH55eWtta/r8+VgvH2xtbv964em977bPr+v8BeV/9RP1UXYG17zfqMxj/h+oIOP1e/VH9Rf218a7xh8afGn/mpu9d0JgfqcJP42//BVywSC4=</latexit> RNA <latexit sha1_base64="zPn9haeMC3Ejo2cst7+vCdU4JsI=">AABE/XictVxZcxu5EYY318a5vMnjvsxG65Q3pSiS4hxVW6laW5RlrWVbNinZu6bt4pAjmvaIQ/PywVWl8mNSeUmlkqc85nfkB6QqecpfSB/AAENipjGKo7FEDIivu9EDNLobGMejdDCZbm7+48J7X/v6N775rfe/ffE73/3e939w6YMfHk+y2bibHHWzNBs/jDuTJB0Mk6PpYJomD0fjpHMap8mD+MUOfv9gnowng2zYmr4ZJY9PO/3h4GTQ7Uyh6umlD9tE49G4Hz9ebFxdp39nUXPU6SZPL61tbmzST7Ra2NKFNaV/DrMPPvqnaqueylRXzdSpStRQTaGcqo6awPVIbalNNYK6x2oBdWMoDej7RJ2pi4CdQasEWnSg9gX87cPdI107hHukOSF0F7ik8DsGZKQuAyaDdmMoI7eIvp8RZawto70gmijbG/iMNa1TqJ2qZ1Ar4UzLUBz2ZapO1G+oDwPo04hqsHddTWVGWkHJI6dXU6Awgjos9+D7MZS7hDR6jggzob6jbjv0/b+oJdbifVe3nal/k5SX4YpUU/c+yyl01JzoR/Q0Z/Ady5MC5z5QSHQfsfSKdH1KvR9C+wXU34HrjEpGJzFcC6o9q0TuwOVD7ojIPbh8yD0ReQCXD3kgIg/h8iEPNRKxY9K5H9+Ey4dvipzvweVD3hOR9+HyIe+LyGO4fMhjEfklXD7klyLyBlw+5A0ReQsuH/KWiGzB5UO2ROQRXD7kkYjchcuH3NXI8pk6hisjOgNhVl6DcpEHWooUaq6J8l0n6+jDXg+Y090SrDyrG/DpxzYCdJqUYHcDxt1JCVYeeXtgI/1Y2RbdpNXEh70pYvdhBPix+yL2c/W8BPt5wEx7UYKV59oBtPNjZet7G+782Nsi9g6U/Fh5jboLNX7s3YAVY1SCPRSx99TLEmyI1R+XYGW73wS74sfK61QL2vuxIdZ0VoKV7ekxeDB+rLxaPYBaP/aBiH2oXpdgH4rYL8C6+7FfBKywb0uwZo29SCtIn/yRBGZsFbVOPiuxNAJqHYF/mq8tKfnGMdRLmH6O6RPmVETs5Yi9QMRBjjgIlmuS29EJ+bsyl2aOaAYi4nxtwtJUbN/L22MpDUA0ckRjCVHlkeKzNn2Zk3dhaiTkNF+5sBTSpyy331hK9HiotrwGcbeA4LH9jEb+OkVLGEGhpqqoPcvXeEZGdF+FeEXRm+ml4SHjprlVcFGvRVTsQcUi6o0H9UZEzTyomYiae1BzEWVnvotrB4wAq398Fgu64xHAPnL5FYFXcA1WnZswRyMYP4fgBd6nmrvw2aTYW7qqJMNoHtdJzHI8LljiMZQWag3qbVTYoPg6pRmWgGTc8q6O8fEOcxsLPefYCp/lK3mUZ0zC6QxInn5OB73FiOZTPTq3qOaMvDsu1cPfzOe9KdXD75LGz8iL51I9/FRLPz2H7C2NbZ0D24TZNNLat+W6NDj/wjRM+SKtumhx8ame6jGD9F7XpL+vn8z+OZ7LDpVYP7Zcj8bE6d+k0L86NKyeJ46e61FB74m9XlOKavdkqONeW64rQ0ar6FDLYe/qPhls09NPxpTr0TgEj2uHYu6FU647ekd5b2y5Ho1jxXnPM/LkTbkejT7dsz5suR4NzLZ0dJxvy3UtO2qAY2dbrmvVh5QFxhwQj3musV7RmPykmaY2IP+gOlvj+vyr6xjmbJ7kMUI1JevbltOJ87WsWiLjLyRg1aY15UD/Yub4YEUaC7Utxlcsw7Swvq/SsWs8av4AtBjB7Oc9AClnnoKEJieB1jsFilti1FXsmcFtizgcJSdLqLaunYreouXLWaNi3VOqleIy21urxzbZ6wmNvRH5hAekWUkPB6VPuIyipKGDgoZkenV091bP16L2N0XcaAkxykdal3aEeCetOk71ab3p6Piy3uWZwsV7Pnb8Yrb5RFsbjHkyskUoSxVPt53JI7l1uK6uK5vj5u8ieqJor+ZkNQa0IzURo1CTLWZvfEH3lvYR7ckhD6bRhecYaSojxbtmmEXHfHpEFtW1txJv1JfJ0HF5QlbX2ONqdN9B9z3o+jHODqwYd6DUgpjhCO5aAVHOxVxXGWl8rH6W745m9ASrI/q0YCENDbY3ScFCVkXZzwpUXgEaRwNH6eE0lukYfHuFkhz1++SxsWvR8l+mnVuzv92hMV4+msszMT3iuk1cI5o1vKvLd8scWIKF95tt8l+re4n86nBEGypxfeJwZr0Macc/oQh2RJ5xSrNNmh3F1m5+avkbw+lQmb1z3M3OyEJGZP8iWJ8yGpMR/bpnB8wOOluElGxkiN0Z5N6Nz9cZiGPM+nEDxaca7HhLyJbNiL+h686uCY1Fjhh4HThbGttGJwfkCybEdaytu53b1asPIu05CXeUMEU7Vq4Q/0/or/k142RtZUSghvEJTLSt8z2PjGIW1FGHVvlqG2TaulJ+nMvwREtt1z8r08cFyRoUcaE8uFr3gHOX7pkXjpIxyT1ZacPraFU2FymPlvSIvT2hKJ7tfl+vwCj3Oq2SazTn2jRK+jAKpnkUYdpKWeRlvtW8itTDaE/+L9StrotaQ4qRshlc1pCU308oWnOlTGFU8/h9QbPJr/XxUqtqPkMai6fOXP4Kaj+Cv0Zucx9GJy5Yhes0BpiCvbMa4ZpopUUYr+sFXmZkGlr23vKzY9K0cmvOE1+zdbMx9rw2lUMaNa911sKUz0PjuUPjeaAOW7TXaLVo6o0leirGFi29WxnKrw63Vg3KM5Gy7JEZ1CBASjeWCqPaE6nKMb5BvRVpbYq0OjBb3d0Ad86HIP1zfXl2f5Wv7pG6Qb5Nlzwwjl96NEsH5HOZ2upIjSkg56vavrqzv001yD0mC4qU+RwnzhjederSdZZL+hO9smVk561FMOeWXuk2xsa2qfyLFeQpzYkJzUuDuEotEi2/K0e0ZJE2HJ8josx/h3wq9juqY2a3tX0mUcGfsPEmzyrLiyOFIelfyrztr0Sv+078GlFMONPedQy06j9hpMAYk0nwe5YTekK4yvFOAnu0MdnPVTvFu3hDR6INknqhfhtgYzjqtWPdHVumx6ZvP4WWqHX71H0tZH5pMEeJ33l29Dq0qp1qH3WxdH8+Wh29yhXvq/QwW+Jr9TGjNm5kYaO8IqatPg3mwhLV48KYEC71elFH/nqS15GZd6dCKZvWhnIx08A25hnFS9I5UET4vLsrXm/uE6Ef8Qq9mLAuNa6RKGE2LtP5AdfSYlYqWoqQ3HppTUqd9ahsvbA83FXD2nG2lAlZwVRJuRtu7fahXYhW5GwMU+gqPtlbFie6ND+FC/9GyhclGo4hOcQm+LnX1I7afQenIl7qMmc2I6pBm9BbisE7up/FFtU6eulQd+mHcAjnMQBdS9IPaEWtKztTliV3qYfTf0XWYKwSUXrbsn4fXC5yT1Y51enPgCyc3JuBMu/k1O2L4RDSkyKXcD68vyH14kSZd5vq9cFQl3tQ5FCHhznPEPbMbev6vFxO1fpa5RLKg9cBs/NicLgDWB6z2HYhFmrsPJF3zwGtw0kFdbNa/K/9MHwsp/q8QrlN6J2z5wFPndslOjOLfnH9OWO5hYzmco7hPLO8d9Zr8vNj/y+q9aQypzfvnj76pXYMGF4LxflQWTrGu6PIyhtKBfcHfDJk6j/q7xfktxJe5jTK5KhDyexXlFMzLWRq5s1LX+/MdyEyWTplMhWp2XiiSSdjd9S+ugG/O7kHWPeUKL9TyZ+I9b9H24PaE7IeJpvOGYQ21SWUBbG7aT26t+doyyTGM718xrcFNbgnfkC1eN73DrXHM7+tQt/K3yThuX5bZapXiEyWd/nsvIqhB8UdOM4Fmfd9IzpTz9ksPoF2GrDHyOeoOFIybz8vCNGjuHBZ0gUhzGipohx7Kcd0JikpoR0X+talET7SO/2474Dn8zt5dilSP6e6jl4dcKWWpDr0SPWIMgMx6X8TIrRfqnX4XNdlv6SHK5JO6BkUJXrtfFd9EuzMOy7s24yXKQ9mMnVz3S6jqN7uHlZnYhulXPjEezW+X4HvO1I26Wm9oLh7rKpzh7MKmjMtk7ufO1Qm78l6wGi2k4+P6vh5XsFrHtD/W6XoW46keyBLTNn2iPbzxkQv1brZJen5XGV13vZmhbTmrU2maU9W2nFgzkhW7wmketyVz34+BynlapISOu5c5xOZ0mmRgZeSPD9HAachOgG9lfsa0lOJykyUZBbwJvI8QJZ5AJ0TQZoTkUJflETbh6eX1raW/6+P1cLx9sbWrzau3tte++y6/n9A3lcfqh+rK7D2/Vp9BuP/UB0Bp9+rP6q/qL82ftf4Q+NPjT9z0/cuaMyPVOGn8bf/AjyJSYg=</latexit> Space <latexit sha1_base64="+EZbGBOzeNlqviQLBRprUfDP878=">AABE6HictVxbcxPJFW42tw25scljXmZjSLEpLzEOuVRtpWrBMsaLAYNkwy4GSiONhWCsERpJXLT+D6m8pFLJU/5Ifkd+QKqSp/yFnEv3dI/UM6fHIUzZ7unp75zTZ7pPn3O6h3icDvPpxsY/zn3wjW9+69vf+fC757/3/R/88EcXPvrxYZ7NJr3koJel2eRR3M2TdDhKDqbDaZo8Gk+S7kmcJg/jl1v4/OE8meTDbNSZvh0nT066g9HweNjrTqHq0VaWT6OLvYvPLqxtXNmgf9Fq4aourCn9bz/76ON/qiPVV5nqqZk6UYkaqSmUU9VVOVyP1VW1ocZQ90QtoG4CpSE9T9SpOg/YGbRKoEUXal/C7wHcPda1I7hHmjmhe8AlhZ8JICN1CTAZtJtAGblF9HxGlLG2ivaCaKJsb+FvrGmdQO1UPYdaCWdahuKwL1N1rH5HfRhCn8ZUg73raSoz0gpKHjm9mgKFMdRhuQ/PJ1DuEdLoOSJMTn1H3Xbp+b+oJdbifU+3nal/k5SX4IpUW/c+Kyh01ZzoR/Q2Z/CM5UmB8wAoJLqPWHpNuj6h3o+g/QLq78J1SiWjkxiuBdWe1iK34PIht0TkDlw+5I6I3IPLh9wTkftw+ZD7GonYCencj2/D5cO3Rc734fIh74vIB3D5kA9E5CFcPuShiPwKLh/yKxF5Ey4f8qaIvA2XD3lbRHbg8iE7IvIALh/yQERuw+VDbmtk9UydwJURnaEwK69DucwDLUUKNddF+W6QdfRhbwTM6V4FVp7VLfjrx7YCdJpUYLcDxt1xBVYeeTtgI/1Y2RbdotXEh70lYndhBPixuyL2C/WiAvtFwEx7WYGV59oetPNjZet7B+782Dsi9i6U/Fh5jboHNX7svYAVY1yB3Rex99WrCmyI1Z9UYGW73wa74sfK61QH2vuxIdZ0VoGV7ekheDB+rLxaPYRaP/ahiH2k3lRgH4nYL8G6+7FfBqyw7yqwZo09TyvIgPyRBGZsHbVuMSuxNAZqXYF/WqwtKfnGMdRLmEGBGRDmRETsFIidQMRegdgLlisv7GhO/q7MpV0g2oGIuFibsDQV2/eL9lhKAxCtAtFaQtR5pPiuTV/m5F2YGgk5LVYuLIX0KSvsN5YSPR7qLa9B3CsheGw/p5G/TtESRlCoqTpqz4s1npER3dchXlP0ZnppeMi4aWEVXNQbERV7ULGIeutBvRVRMw9qJqLmHtRcRNmZ7+KOAkaA1T++iwXd8QhgH7n6isAruA6rzi2YoxGMn33wAh9QzT3426bYW7rqJMNoHtdJzHI8KVniCZQWag3qbVTYovg6pRmWgGTc8p6O8fEOcxsLPefYCp8WK3lUZEzC6QxJnkFBB73FiOZTMzq3qeaUvDsuNcPfKua9KTXDb5PGT8mL51Iz/FRLPz2D7B2N7ZwB24bZNNbat+WmNDj/wjRM+Tytumhx8a2e6DGD9N40pL+r38zuGd7LFpVYP7bcjEbu9C8v9a8JDavn3NFzMyroPbHXa0pR456MdNxry01lyGgVHWk57F3TN4Nt+vrNmHIzGvvgcW1RzL1wyk1H77jojS03o3GoOO95Sp68KTejMaB71octN6OB2ZaujvNtuallRw1w7GzLTa36iLLAmAPiMc811iuakJ8009SG5B/UZ2tcn391HcOczdMiRqinZH3bajpxsZbVS2T8hQSs2rShHOhfzBwfrExjoTbF+IplmJbW91U6do1Hze+BFiOY/bwHIOXMU5DQ5CTQeqdA8aoYdZV7ZnCbIg5HyfES6kjXTkVv0fLlrFG57hnVSnGZ7a3V4xHZ65zG3ph8wj3SrKSHvco3XEVR0tBeSUMyvSa6e6fna1n7GyJuvIQYFyOtRztCvJNWH6f6tN52dHxJ7/JM4eI9Hzt+Mdt8rK0NxjwZ2SKUpY6n287kkdw6XFfXlc1x87OI3ijaqzlZjSHtSOViFGqyxeyNL+je0j6gPTnkwTR68B4jTWWseNcMs+iYT4/Iorr2VuKN+jIZOi7nZHWNPa5HDxz0wINuHuNswYpxF0odiBkO4K4TEOWcL3SVkcYn6tNidzSjN1gf0aclC2losL1JShayLsp+XqLyGtA4GjhKD6exTMfgj1YoyVG/Tx4bu5Yt/yXauTX7210a49WjuToT0yeum8Q1olnDu7p8t8yBJVh4n2yS/1rfS+TXhCPaUInrU4cz62VEO/4JRbBj8oxTmm3S7Ci3dvNTy08Mp31l9s5xNzsjCxmR/YtgfcpoTEb0454dMDvobBFSspEhdmdYeDc+X2cojjHrxw0Vn2qw4y0hWzYj/oauO7tyGoscMfA6cLo0to1O9sgXTIjrRFt3O7frVx9E2nMS7ihhinasXCb+n9Bv82PGydrKiEAN4xvIta3zvY+MYhbUUZdW+XobZNq6Ul4sZHiqpbbrn5XpYkmyFkVcKA+u1n3g3KN75oWjZEJy5ytteB2ty+Yi5fGSHrG3xxTFs90f6BUY5V6nVXKN5twRjZIBjIJpEUWYtlIWeZlvPa8y9TDa+f+FutV1WWtIMVI2g8sakvL7CUVrrpQpjGoevy9pNvm1PllqVc9nRGPxxJnLX0Ptx/DbyG3uw+jEJatwg8YAU7B3ViNcE620CON1o8TLjExDy95bfnZMmlZuzVnia7ZuNsaeN6ayT6Pmjc5amPJZaLxwaLwI1GGH9hqtFk29sUTPxNiio3crQ/k14dZpQHkmUpY9MoMaBkjpxlJhVPsiVTnGN6h3Iq0NkVYXZqu7G+DO+RCkf64vz+6vi9U9UjfJt+mRB8bxS59m6ZB8LlNbH6kxBeR8TdtXd/YfUQ1yj8mCImU+x4kzhnedenSdFpL+XK9sGdl5axHMuaXXuo2xsUdU/tUK8oTmRE7z0iCuUYtEy+/KES1ZpCuOzxFR5r9LPhX7HfUxs9vavpOo5E/YeJNnleXFkcKI9C9l3nZXotddJ36NKCacae86BlrN3zBSYIzJJPg9y5zeEK5yvJPAHm1M9nPVTvEu3siR6ApJvVC/D7AxHPXase6OLdNj07dfQEvUun3rvhYyvzSYo8TvLDt6XVrVTrSPuli6Pxutrl7lyvd1epgt8bX6mFEbN7KwUV4Zc6Q+C+bCEjXjwpgQLs160UT+ZpI3kZl3p0Ipm9aGcjnTwDbmOcVL0jlQRPi8u8teb+4ToR/xCr2YsC41rpEoYTYu0/kB19JiVipaipDcemlNSp31qGq9sDzcVcPacbaUCVnBVEm5G27t9uGoFK3I2Rim0FN8srcqTnRpfgYX/o6UL0o0HENyiG3wc6+rLbX9Hk5FvNJlzmxGVIM2ob8Ug3d1P8st6nX0yqHu0g/hEM5jCLqWpB/SitpUdqYsS+5SD6f/mqzBRCWi9LZl8z64XOSerHJq0p8hWTi5N0Nlvslp2hfDIaQnZS7hfHh/Q+rFsTLfNjXrg6Eu96DMoQkPc54h7J3b1s15uZzq9bXKJZQHrwNm58XgcAewOmax7UIs1MR5I++fA1qH4xrqZrX4X/th+FhOzXmFcsvpm7MXAW+d2yU6M4t+cfM5Y7mFjOZqjuE8s6J31mvy82P/L2r0pjKnN++fPvqldgwYXgvF+VBZOsa7o8jKG0oF9wd8MmTqP+rv5+SvEl4VNKrkaELJ7FdUUzMtZGrmy0tf78yzEJksnSqZytRsPNGmk7FbalfdhJ+twgNsekqUv6nkv4j1f0fbh9pjsh4mm84ZhCOqSygLYnfT+nRvz9FWSYxnevmMbwdqcE98j2rxvO9dao9nfjulvlV/ScJz/Y7KVL8UmSzv8tl5FUMPyjtwnAsy3/tGdKaes1l8Au0kYI+Rz1FxpGS+fl4Qok9x4bKkC0KY0VJHOfZSjulMUlJBOy71rUcjfKx3+nHfAc/nd4vsUqR+SXVdvTrgSi1Jte+R6jFlBmLS/wZEaL9W6/B3XZf9ku6vSJrTOyhL9MZ5Vn8S7NQ7LuzXjJcoD2YydXPdLqOo3u4e1mdiW5Vc+MR7PX5Qgx84Urbpbb2kuHui6nOHsxqaMy2Tu587UibvyXrAaLZbjI/6+Hlew2se0P/blejbjqQ7IEtM2faI9vMmRC/Vutkm6flcZX3e9laNtOarTaZpT1bacWDOSNbvCaR63FXPfj4HKeVqkgo67lznE5nSaZGhl5I8P8cBpyG6Ab2V+xrSU4nKTJRkFvAl8jxAlnkAnWNBmmORwkCURNuHZxfWri7/Xx+rhcPNK1d/c+Xa/c21z2/o/wfkQ/VT9TN1Gda+36rPYfzvqwPyGf6o/qL+2nrR+kPrT60/c9MPzmnMT1TpX+tv/wUAFUIN</latexit> Cost c <latexit sha1_base64="8m5e3cx4W7SX6zn7FV/D8eXsYVg=">AABFM3ictVzdc9u4EUeuX1f3K9c+9oWpk06u43NtN/2YuenMJZbj+OIkTiQ7uYuSjChRshJaVEhJTqLTn9XpY/+OTqcvnX4+dPovdHcBEKAEckE3NWMLhPDbXSyBxe4CTDiOh9lka+uPlz742te/8c1vffjtte9893vf/8Hlj354kiXTtBsdd5M4SZ+EnSyKh6PoeDKcxNGTcRp1zsI4ehy+2sXvH8+iNBsmo9bk7Th6dtYZjIb9YbczgaoXlx/O20TkaToIn803b2zAv+1F8Oj+zUWw1r7SvnK1HUf9STocnE46aZqcX8XKtQrUi8vrW5tb9BOsFrZVYV2on6Pkoyt/E23RE4noiqk4E5EYiQmUY9ERGVxPxbbYEmOoeybmUJdCaUjfR2Ih1gA7hVYRtOhA7Sv4O4C7p6p2BPdIMyN0F7jE8JsCMhDXAJNAuxTKyC2g76dEGWvLaM+JJsr2Fj5DResMaifiFGo5nG7pi8O+TERf/Ib6MIQ+jakGe9dVVKakFZQ8sHo1AQpjqMNyD75PodwlpNZzQJiM+o667dD3/6SWWIv3XdV2Kv5FUl6DKxBN1fskp9ARM6If0NOcwndSnhg4D4BCpPqIpXPS9Rn1fgTt51B/H64FlbROQrjmVLuoRO7C5ULussh9uFzIfRZ5CJcLecgij+ByIY8UErEp6dyNb8LlwjdZzg/hciEfsshHcLmQj1jkCVwu5AmL/BIuF/JLFnkbLhfyNou8C5cLeZdFtuByIVss8hguF/KYRe7B5ULuKWT5TE3hSojOkJmVN6Fc5IGWIoaam6x8t8g6urC3POZ0twTLz+oGfLqxDQ+dRiXYPY9x1y/B8iNvH2ykG8vboju0mriwd1jsAYwAN/aAxX4uXpZgP/eYaa9KsPxcO4R2bixvfe/BnRt7j8Xeh5Iby69RD6DGjX3gsWKMS7BHLPaheF2C9bH6aQmWt/tNsCtuLL9OtaC9G+tjTaclWN6enoAH48byq9VjqHVjH7PYJ+JNCfYJi/0CrLsb+4XHCvuuBKvX2DVaQQbkj0QwY6uodfJZiaUxUOsw/ON8bYnJNw6hnsMMcsyAMGcsYj9H7HsiDnPEobdcWW5HM/J3eS7NHNH0RIT52oSlCdu+l7fHUuyBaOSIxhKiyiPFZ637MiPvQtdwyEm+cmHJp09Jbr+xFKnxUG15NeJBASHH9imN/A2KljCCQk1VUTvN13iJDOi+CnFO0ZvupebB4ya5VbBRb1hU6ECFLOqtA/WWRU0dqCmLmjlQMxZlZr6Na3uMAKN/fBZzupMjQPrI5VcAXsFNWHXuwBwNYPwcgRf4iGoewGeTYm/uqpIMo3lcJzHL8axgiVMozcU61JuosEHxdUwzLALJZMsHKsbHO8xtzNWck1Z4ka/kQZ4x8aczJHkGOR30FgOaT/Xo3KWaBXl3slQPfyef97pUD79HGl+QFy9L9fATJf3kArK3FLZ1AWwTZtNYad+U69KQ+RdJQ5fXaNVFi4tP9UyNGaT3pib9A/VkDi7wXHapJPVjyvVoZFb/skL/6tAwes4sPdejgt6T9Hp1Kajdk5GKe025rgwJraIjJYe5q/tksE1PPRldrkfjCDyuXYq551a57ugd570x5Xo0ToTMey7Ik9flejQGdC/1Ycr1aGC2paPifFOua9lRAzJ2NuW6Vn1EWWDMAckxL2uMV5SSnzRV1IbkH1Rna2yff3Udw5zN8zxGqKZkfNtyOmG+llVLpP2FCKzapKYc6F9MLR+sSGMudtj4SsowKazvq3TMGo+aPwQtBjD75R4AlzOPQUKdk0DrHQPFbTbqKvZM43ZYHI6S/hKqrWonrLdo+MqsUbHuBdVycZnprdFjm+x1RmNvTD7hIWmW08Nh6RMuo8hp6LCgIZ5eHd29U/O1qP0tFjdeQozzkdalHSG5k1Ydp7q03rR0fE3t8kzgkns+ZvxitrmvrA3GPAnZIpSliqfdTueR7DpcVzeEyXHL7wJ6omivZmQ1hrQjlbFRqM4WS298TveG9jHtySEPSaMLzzFQVMZC7pphFh3z6QFZVNvecrxRXzpDJ8sZWV1tj6vRAws9cKDrxzi7sGLch1ILYoZjuGt5RDlrua4S0ngqPsl3RxN6gtURfVywkJqGtDdRwUJWRdmnBSrngMbRIKN0fxrLdDS+vUKJj/pd8pjYtWj5r9HOrd7f7tAYLx/N5ZmYHnHdIa4BzRq5qyvvljlICebOb3bIf63uJfKrwxFtKMf1ucVZ6mVEO/4RRbBj8oxjmm3c7Ci2tvNTy99oTkdC753jbnZCFjIg+xfA+pTQmAzo1z47oHfQpUWIyUb62J1h7t24fJ0hO8aMHzcU8lSDGW8R2bIp8dd07dmV0ViUEYNcBxZLY1vr5JB8wYi4psq6m7ldvfog0pyTsEeJpGjGynXi/zH91b96nKyvjAjUMD6BTNk61/NIKGZBHXVola+2QbqtLeXVXIbnSmqz/hmZrhYka1DEhfLgat0Dzl26l7xwlKQkd7bSRq6jVdlcpDxe0iP2tk9RvLT7A7UCo9wbtEqu05xr0ygZwCiY5FGEbstlkZf5VvMqUvejnf1fqBtdF7WGFANhMrhSQ1x+P6JozZYyhlEtx+8rmk1uradLrar5jGgsnllz+SuovQJ/tdz63o9OWLAKt2gMSArmzmhE1gQrLfx43Srw0iNT0zL3hp8Zk7qVXXOR+FpaNxNjz2pTOaJR80ZlLXT5IjReWjReeuqwRXuNRou6XluiF2xs0VK7lb786nBr1aA8ZSnzHplGDT2ktGMpP6o9liof42vUO5bWFkurA7PV3g2w57wP0j3Xl2f3V/nqHojb5Nt0yQOT8UuPZumQfC5dWx2pSQrI+Yayr/bsb1MNcg/JgiJleY4TZ4zcderStcgl/ala2RKy88Yi6HNL56qNtrFtKv9iBXlGcyKjeakRN6hFpOS35QiWLNKm5XMElPnvkE8l/Y7qmNlubZ5JUPAnTLwpZ5XhJSOFEemfy7wdrESvB1b8GlBMOFXedQi06j9hpCAxOpPg9iwzekK4ysmdBOnRhmQ/V+2U3MUbWRJtktRz8VsPGyOjXjPW7bGle6z79jNoiVo3T93VgucXe3Pk+F1kR69Dq9qZ8lHnS/cXo9VRq1zxvkoP0yW+Rh9TamNHFibKK2La4lNvLlKielwkxodLvV7Ukb+e5HVklrtTvpR1a025mGmQNuaU4iXuHCgiXN7ddac39zHTj3CFXkhYm5qs4ShhNi5R+QHb0mJWKliKkOx6bk2KrfWobL0wPOxVw9hxaSkjsoKx4HI3srXdh3YhWuGzMZJCV8iTvWVxok3zU7jwbyBcUaLm6JNDbIKfe1Psir33cCritSrLzGZANWgTeksxeEf1s9iiWkevLeo2fR8O/jyGoGtO+iGtqHVll5R5yW3q/vTPyRqkImKlNy3r98HmwvdklVOd/gzJwvG9GQr9Tk7dvmgOPj0pcvHnI/c3uF70hX63qV4fNHW+B0UOdXjo8wx+z9y0rs/L5lStr1UuvjzkOqB3XjQOdwDLYxbTzsdCpdYTef8c0Dr0K6jr1eJ/7YfmYzjV5+XLLaN3zl56PHXZLlKZWfSL688Zw81nNJdz9OeZ5L0zXpObn/T/glpPKrF68/7po19qxoDmNRcyH8pLJ/H2KDLy+lLB/QGXDIn4j/jDJf6thNc5jTI56lDS+xXl1HQLnpp+89LVO/2dj0yGTplMRWomnmjSydhdcSBuw+9u7gHWPSUq36mUn4h1v0fbg9o+WQ+dTZcZhDbVRZQFMbtpPbo352jLJMYzvfKMbwtqcE/8kGrxvO99ao9nfluFvpW/SSLn+j2RiF4hMlne5TPzKoQeFHfgZC5Iv+8b0Jl6mc2SJ9DOPPYY5TkqGSnpt5/nhOhRXLgs6ZwQerRUUQ6dlEM6kxSV0A4LfevSCB+rnX7cd8Dz+Z08uxSIn1NdR60OuFJzUh05pHpKmYGQ9L8FEdovxQZ8bqiyW9KjFUkzegZFid5Y31WfBFs4x4V5m/Ea5cF0pm6m2iUU1Zvdw+pMbKOUizzxXo0fVOAHlpRNelqvKO5ORXXucFpBc6pksvdzR0LnPaUeMJrt5OOjOn6eVfCaefT/bin6riXpPsgSUrY9oP28lOjFSjd7JL08V1mdt71TIa1+a1PSNCcrzTjQZySr9wRiNe7KZ788B8nlaqISOvZclycyudMiQyclfn6OPU5DdDx6y/fVp6cclSkrydTjTeSZhywzDzp9Rpo+S2HASqLsw4vL69vL/9fHauFkZ3P7V5s3Hu6sf3ZL/T8gH4ofi5+I67D2/Vp8BuP/SBwDp9+LP4u/i380ftf4U+Mvjb/Kph9cUpgficJP49//BdBdXOw=</latexit> RNA$RNA <latexit sha1_base64="vyS0pY8dnG7eij7tBr2nJIGP9Xs=">AABFNXictVzdc9u4EUeuX1f3K9c+9oWpk06u43NtN/2YuenMOZaT+OIkTiQ7uYuSDClRshJaVKgPJ9Hp7+r0qX9HHzp9aTt3T/cvdLELEKAEckE3NWMLhPDbXSyBxe4CTDRKBuPJ1tbfL33wne9+7/s/+PCHaz/68U9++rPLH/38ZJxOs0583EmTNHsSheM4GQzj48lgksRPRlkcnkVJ/Dh6tSe/fzyLs/EgHbYmb0fxs7OwPxz0Bp1wAlUvLjfnbSTyNOtHz+abNzbw3yJojsJOvAjW2leutpO4N8kG/dNJmGXp+dX2lfaVtQJsW6N2W7t7i+DF5fWtzS38CVYL26qwLtTPUfrRlX+LtuiKVHTEVJyJWAzFBMqJCMUYrqdiW2yJEdQ9E3Ooy6A0wO9jsRBrgJ1CqxhahFD7Cv724e6pqh3CvaQ5RnQHuCTwmwEyENcAk0K7DMqSW4DfT5GyrC2jPUeaUra38BkpWmdQOxGnUMvhdEtfnOzLRPTEn7APA+jTCGtk7zqKyhS1IiUPrF5NgMII6mS5C99nUO4gUus5QMwY+y51G+L3X2NLWSvvO6rtVHyDUl6DKxBN1fs0pxCKGdIP8GlO4TuSJwHOfaAQqz7K0jnq+gx7P4T2c6i/D9cCS1onEVxzrF1UIvfgciH3WORtuFzI2yzyEC4X8pBFHsHlQh4ppMRmqHM3vgmXC99kOT+Ey4V8yCIfweVCPmKRJ3C5kCcs8ku4XMgvWeQtuFzIWyzyLlwu5F0W2YLLhWyxyGO4XMhjFrkPlwu5r5DlMzWDK0U6A2ZW7kK5yENaigRqdln5bqJ1dGFveszpTgmWn9UN+HRjGx46jUuw+x7jrleC5UfebbCRbixvi+7gauLC3mGxBzAC3NgDFvu5eFmC/dxjpr0qwfJz7RDaubG89b0Hd27sPRZ7H0puLL9GPYAaN/aBx4oxKsEesdiH4nUJ1sfqZyVY3u43wa64sfw61YL2bqyPNZ2WYHl7egIejBvLr1aPodaNfcxin4g3JdgnLPYLsO5u7BceK+y7EqxeY9dwBemjPxLDjK2iFuazUpZGQC1k+Cf52pKgbxxBPYfp55g+Ys5YxO0ccdsTcZgjDr3lGud2dIz+Ls+lmSOanogoX5tkacK27+btZSnxQDRyRGMJUeWRymet+zJD70LXcMhJvnLJkk+f0tx+y1KsxkO15dWIBwUEje1THPkbGC3JCEpqqoraab7GEzLA+yrEOUZvupeaB4+b5FbBRr1hUZEDFbGotw7UWxY1daCmLGrmQM1YlJn5Nq7tMQKM/uWzmOMdjQDykcuvALyCXVh17sAcDWD8HIEX+AhrHsBnE2Nv7qqSTEbzcp2UWY5nBUucQWku1qHeRIUNjK8TnGExSEYtH6gYX97J3MZczTmywot8JQ/yjIk/nQHK08/pSG8xwPlUj85drFmgd0elevg7+bzXpXr4fdT4Ar14KtXDT5T0kwvI3lLY1gWwTZhNI6V9U65Lg/IvREOX13DVlRZXPtUzNWYkvTc16R+oJ3NwgeeyhyXSjynXozG2+jcu9K8ODaPnsaXnelSk90Rery4FtXsyVHGvKdeVIcVVdKjkMHd1n4xs01VPRpfr0TgCj2sPY+65Va47ekd5b0y5Ho0TQXnPBXryulyPRh/vSR+mXI+GzLaEKs435bqWXWqAYmdTrmvVh5gFljkgGvNUY7yiDP2kqaI2QP+gOltj+/yr65jM2TzPY4RqSsa3LacT5WtZtUTaX4jBqk1qyiH9i6nlgxVpzMUOG1+RDJPC+r5Kx6zxUvOHoMUAZj/tAXA58wQk1DkJab0ToLjNRl3FnmncDouTo6S3hGqr2gnrLRq+lDUq1r3AWi4uM701emyjvR7j2BuhT3iImuX0cFj6hMsocho6LGiIp1dHd+/UfC1qf4vFjZYQo3ykdXBHiHbSquNUl9ablo6vqV2eCVy052PGr8w295S1kTFPirZIylLF026n80h2nVxXN4TJcdN3AT5Raa9maDUGuCM1ZqNQnS0mb3yO94b2Me7JSR5EowPPMVBURoJ2zWQWXebTA7Sotr3leEt96QwdlcdodbU9rkb3LXTfga4f4+zBinEfSi2IGY7hruUR5azlukpR45n4JN8dTfEJVkf0ScFCahpkb+KChayKsk8LVM4BLUcDRen+NJbpaHx7hRIf9bvkMbFr0fJfw51bvb8d4hgvH83lmZguct1BrgHOGtrVpbtlDiTB3PnNDvqv1b2U/OpwlDaU4/rc4kx6GeKOf4wR7Ag94wRnGzc7iq3t/NTyN5rTkdB753I3O0ULGaD9C2B9SnFMBvhrnx3QO+hkERK0kT52Z5B7Ny5fZ8COMePHDQSdajDjLUZbNkX+mq49u8Y4FilioHVgsTS2tU4O0ReMkWumrLuZ29Wrj0SacxL2KCGKZqxcR/4f41/9q8fJ+sqIkBqWT2CsbJ3reaQYs0gdhbjKV9sg3daW8mouw3MltVn/jExXC5I1MOKS8sjVugucO3hPvOQoyVDu8UobWkersrmS8mhJj7K3PYziye731Qos5d7AVXId51wbR0kfRsEkjyJ0Wy6LvMy3mleRuh/t8f+FutF1UWuSYiBMBpc0xOX3Y4zWbCkTGNU0fl/hbHJrPVtqVc1niGPxzJrLX0HtFfir5db3fnSiglW4iWOAKJg7oxGqCVZa+PG6WeClR6amZe4NPzMmdSu75iLxNVk3E2PPalM5wlHzRmUtdPkiNF5aNF566rCFe41Gi7peW6IXbGzRUruVvvzqcGvVoDxlKfMemUYNPKS0Yyk/ql2WKh/ja9Q7ltYWSyuE2WrvBthz3gfpnuvLs/urfHUPxC30bTrogVH80sVZOkCfS9dWR2pEQXK+oeyrPfvbWCO5R2hBJWU6xylnDO06dfBa5JL+Wq1sKdp5YxH0uaVz1Ubb2DaWf7eCPMM5McZ5qRE3sEWs5LflCJYs0qblcwSY+Q/RpyK/ozpmtlubZxIU/AkTb9KsMrwoUhii/rnM28FK9Hpgxa8BxoRT5V1HQKv+E5YUCKMzCW7PcoxPSK5ytJNAHm2E9nPVTtEu3tCSaBOlnos/e9gYinrNWLfHlu6x7ttvoKXUunnqrhY8v8SbI8fvIjt6Ia5qZ8pHnS/dX4xWqFa54n2VHqZLfI0+ptjGjixMlFfEtMWn3lxIonpcCOPDpV4v6shfT/I6MtPulC9l3VpTLmYayMacYrzEnQOVCJd3d93pzX3M9CNaoRch1qZGNRwlmY1LVX7AtrQyKxUsRUh2PbcmJdZ6VLZeGB72qmHsOFnKGK1gIrjcDbW2+9AuRCt8NoYodASd7C2LE22an8Il/wbCFSVqjj45xCb4ubtiT+y/h1MRr1WZMpsB1kib0F2KwUPVz2KLah29tqjb9H04+PMYgK456Qe4otaVnSjzktvU/emfozXIRMxKb1rW74PNhe/JKqc6/RmgheN7MxD6nZy6fdEcfHpS5OLPh/Y3uF70hH63qV4fNHW+B0UOdXjo8wx+z9y0rs/L5lStr1UuvjxoHdA7LxondwDLYxbTzsdCZdYTef8cpHXoVVDXq8X/2g/Nx3Cqz8uX2xjfOXvp8dSpXawys9Ivrj9nDDef0VzO0Z9nmvfOeE1ufuT/BbWeVGr15v3Tl36pGQOa11xQPpSXjvD2KDLy+lKR+wMuGVLxrfjbJf6thNc5jTI56lDS+xXl1HQLnpp+89LVO/2dj0yGTplMRWomnmjiydg9cSBuwe9e7gHWPSVK71TSp8S636PtQm0PrYfOplMGoY11MWZBzG5aF+/NOdoyieWZXjrj24IauSd+iLXyvO99bC/P/LYKfSt/k4Tm+j2Rim4hMlne5TPzKoIeFHfgKBek3/cN8Ew9ZbPoBNqZxx4jnaOiSEm//TxHRBfjwmVJ54jQo6WKcuSkHOGZpLiEdlToWwdH+Ejt9Mt9B3k+P8yzS4H4LdaFanWQKzUn1ZFDqqeYGYhQ/1sQof1ebMDnhiq7JT1akXSMz6Ao0Rvru+qTYAvnuDBvM17DPJjO1M1UuxSjerN7WJ2JbZRyoRPv1fh+Bb5vSdnEp/UK4+5MVOcOpxU0p0omez93KHTek/Qgo9kwHx/V8fOsgtfMo/93S9F3LUlvgywRZtsD3M/LkF6idLOP0tO5yuq87Z0KafVbm0TTnKw040CfkazeE0jUuCuf/XQOksvVxCV07LlOJzK50yIDJyV+fo48TkOEHr3l++rTU47KlJVk6vEm8sxDlpkHnR4jTY+l0GclUfbhxeX17eX/62O1cLKzuf2HzRsPd9Y/u6n+H5APxS/Fr8R1WPv+KD6D8X8kjoHTX8U/xdfim8ZfGv9o/KvxH2r6wSWF+YUo/DS+/S8F8F33</latexit> Space$ATAC <latexit sha1_base64="vA45klaB9h2VYbfGlhYcgIATDJw=">AABE6HictVzbchTJES3WtzW+sfajX3otcLAOFgsZXyI2HLGgEaBFgGBGgl0ExFxaQ0PP9DA9M1xm9Q8Ovzgc9pN/xN/hD3CE/eRfcF6quqpnqjurZUyHpOrqOplZ2VVZmVnV9CZpks82N/9x5oNvfPNb3/7Oh989+73v/+CHPzr30Y8P82w+7ccH/SzNpo963TxOk3F8MEtmafxoMo27o14aP+y93MbnDxfxNE+ycWf2dhI/GXWH4+Q46XdnUPWok4zi6Pzs/LNzG5uXN+lftF64ogsbSv/bzz76+J/qSA1UpvpqrkYqVmM1g3KquiqH67G6ojbVBOqeqCXUTaGU0PNYnaizgJ1DqxhadKH2Jfwewt1jXTuGe6SZE7oPXFL4mQIyUhcAk0G7KZSRW0TP50QZa6toL4kmyvYW/vY0rRHUztRzqJVwpmUoDvsyU8fqd9SHBPo0oRrsXV9TmZNWUPLI6dUMKEygDssDeD6Fcp+QRs8RYXLqO+q2S8//RS2xFu/7uu1c/ZukvABXpNq691lBoasWRD+itzmHZyxPCpyHQCHWfcTSa9L1iHo/hvZLqL8L1wmVjE56cC2p9qQWuQ2XD7ktIm/C5UPeFJF7cPmQeyJyHy4fcl8jETslnfvxbbh8+LbI+T5cPuR9EfkALh/ygYg8hMuHPBSRX8HlQ34lIm/A5UPeEJG34fIhb4vIDlw+ZEdEHsDlQx6IyB24fMgdjayeqVO4MqKTCLPyGpTLPNBSpFBzTZTvOllHH/Z6wJzuV2DlWd2Cv35sK0CncQV2J2DcHVdg5ZF3E2ykHyvbolu0mviwt0TsLowAP3ZXxH6hXlRgvwiYaS8rsPJc24N2fqxsfe/AnR97R8TehZIfK69R96DGj70XsGJMKrD7Iva+elWBDbH60wqsbPfbYFf8WHmd6kB7PzbEms4rsLI9PQQPxo+VV6uHUOvHPhSxj9SbCuwjEfslWHc/9suAFfZdBdassWdpBRmSPxLDjK2j1i1mJZYmQK0r8E+LtSUl37gH9RJmWGCGhBmJiJsF4mYgYq9A7AXLlRd2NCd/V+bSLhDtQESvWJuwNBPbD4r2WEoDEK0C0VpB1Hmk+K5NXxbkXZgaCTkrVi4shfQpK+w3lmI9Huotr0HcKyF4bD+nkX+JoiWMoFBTddSeF2s8IyO6r0O8pujN9NLwkHGzwiq4qDciqudB9UTUWw/qrYiae1BzEbXwoBYiys58F3cUMAKs/vFdLOmORwD7yNVXBF7BNVh1bsEcjWD87IMX+IBq7sHfNsXe0lUnGUbzuE5iluNJyRJPobRUG1Bvo8IWxdcpzbAYJOOW93SMj3eY21jqOcdW+KRYyaMiYxJOJyF5hgUd9BYjmk/N6NymmhPy7rjUDH+rmPem1Ay/Qxo/IS+eS83wMy397BSydzS2cwpsG2bTRGvflpvS4PwL0zDls7TqosXFtzrSYwbpvWlIf1e/md1TvJdtKrF+bLkZjdzpX17qXxMaVs+5o+dmVNB7Yq/XlKLGPRnruNeWm8qQ0So61nLYu6ZvBtsM9Jsx5WY09sHj2qaYe+mUm47eSdEbW25G41Bx3vOEPHlTbkZjSPesD1tuRgOzLV0d59tyU8uOGuDY2ZabWvUxZYExB8RjnmusVzQlP2muqSXkH9Rna1yff30dw5zN0yJGqKdkfdtqOr1iLauXyPgLMVi1WUM50L+YOz5YmcZSbYnxFcswK63v63TsGo+a3wMtRjD7eQ9AypmnIKHJSaD1ToHiFTHqKvfM4LZEHI6S4xXUka6did6i5ctZo3LdM6qV4jLbW6vHI7LXOY29CfmEe6RZSQ97lW+4iqKkob2ShmR6TXT3Ts/XsvY3RdxkBTEpRlqfdoR4J60+TvVpve3o+ILe5ZnBxXs+dvxitvlYWxuMeTKyRShLHU+3nckjuXW4rl5SNsfNzyJ6o2ivFmQ1EtqRysUo1GSL2Rtf0r2lfUB7csiDafThPUaaykTxrhlm0TGfHpFFde2txBv1ZTJ0XM7J6hp7XI8eOuihB908xtmGFeMulDoQMxzAXScgyjlb6CojjU/Vp8XuaEZvsD6iT0sW0tBgexOXLGRdlP28ROU1oHE0cJQeTmOVjsEfrVGSo36fPDZ2LVv+C7Rza/a3uzTGq0dzdSZmQFy3iGtEs4Z3dflulQNLsPQ+2SL/tb6XyK8JR7ShEtenDmfWy5h2/GOKYCfkGac026TZUW7t5qdWnxhO+8rsneNudkYWMiL7F8H6lNGYjOjHPTtgdtDZIqRkI0PsTlJ4Nz5fJxHHmPXjEsWnGux4i8mWzYm/oevOrpzGIkcMvA6crIxto5M98gVj4jrV1t3O7frVB5H2nIQ7SpiiHSsXif8n9Nv8mHGysTYiUMP4BnJt63zvI6OYBXXUpVW+3gaZtq6U5wsZnmqp7fpnZTpfkqxFERfKg6v1ADj36Z554SiZktz5WhteR+uyuUh5sqJH7O0xRfFs94d6BUa5L9EquUFz7ohGyRBGwayIIkxbKYu8yreeV5l6GO38/0Ld6rqsNaQYKZvBZQ1J+f2YojVXyhRGNY/flzSb/FqfrrSq5zOmsThy5vLXUPsx/DZym/swOr2SVbhOY4Ap2DurEa6J1lqE8bpe4mVGpqFl7y0/OyZNK7fmNPE1WzcbYy8aU9mnUfNGZy1M+TQ0Xjg0XgTqsEN7jVaLpt5YomdibNHRu5Wh/Jpw6zSgPBcpyx6ZQSUBUrqxVBjVgUhVjvEN6p1Ia1Ok1YXZ6u4GuHM+BOmf66uz++tidY/UDfJt+uSBcfwyoFmakM9lausjNaaAnK9q++rO/iOqQe49sqBImc9x4ozhXac+XSeFpD/XK1tGdt5aBHNu6bVuY2zsEZV/tYYc0ZzIaV4axFVqEWv5XTmiFYt02fE5Isr8d8mnYr+jPmZ2W9t3EpX8CRtv8qyyvDhSGJP+pczb7lr0uuvErxHFhHPtXfeAVvM3jBQYYzIJfs8ypzeEqxzvJLBH2yP7uW6neBdv7Eh0maReqt8H2BiOeu1Yd8eW6bHp2y+gJWrdvnVfC5lfGsxR4neaHb0urWoj7aMuV+5PR6urV7nyfZ0e5it8rT7m1MaNLGyUV8Ycqc+CubBEzbgwJoRLs140kb+Z5E1k5t2pUMqmtaFczjSwjXlO8ZJ0DhQRPu/uoteb+0ToR2+NXo+wLjWukShhNi7T+QHX0mJWKlqJkNx6aU1KnfWoar2wPNxVw9pxtpQxWcFUSbkbbu324agUrcjZGKbQV3yytypOdGl+Bhf+jpQvSjQcQ3KIbfBzr6lttfMeTkW80mXObEZUgzZhsBKDd3U/yy3qdfTKoe7SD+EQziMBXUvSJ7SiNpWdKcuSu9TD6b8mazBVsSi9bdm8Dy4XuSfrnJr0JyELJ/cmUeabnKZ9MRxCelLmEs6H9zekXhwr821Tsz4Y6nIPyhya8DDnGcLeuW3dnJfLqV5f61xCefA6YHZeDA53AKtjFtsuxEJNnTfy/jmgdTiuoW5Wi/+1H4aP5dScVyi3nL45exHw1rldrDOz6Bc3nzOWW8horuYYzjMreme9Jj8/9v+iRm8qc3rz/umjX2rHgOG1VJwPlaVjvDuKrLyhVHB/wCdDpv6j/n5G/irhVUGjSo4mlMx+RTU100KmZr689PXOPAuRydKpkqlMzcYTbToZu6121Q342S48wKanRPmbSv6LWP93tAOoPSbrYbLpnEE4orqYsiB2N21A9/YcbZXEeKaXz/h2oAb3xPeoFs/73qX2eOa3U+pb9ZckPNfvqEwNSpHJ6i6fnVc96EF5B45zQeZ734jO1HM2i0+gjQL2GPkcFUdK5uvnJSEGFBeuSrokhBktdZR7Xso9OpMUV9DulfrWpxE+0Tv9uO+A5/O7RXYpUr+kuq5eHXCllqTa90j1mDIDPdL/JkRov1aX4O8lXfZLur8maU7voCzRG+dZ/UmwE++4sF8zXqA8mMnULXS7jKJ6u3tYn4ltVXLhE+/1+GENfuhI2aa39ZLi7qmqzx3Oa2jOtUzufu5Ymbwn6wGj2W4xPurj50UNr0VA/29Xom87kt4EWXqUbY9oP29K9FKtmx2Sns9V1udtb9VIa77aZJr2ZKUdB+aMZP2eQKrHXfXs53OQUq4mrqDjznU+kSmdFkm8lOT5OQk4DdEN6K3c15CeSlTmoiTzgC+RFwGyLALoHAvSHIsUhqIk2j48O7dxZfX/+lgvHG5dvvKby1fvb218fl3/PyAfqp+qn6mLsPb9Vn0O439fHZDP8Ef1F/XX1ovWH1p/av2Zm35wRmN+okr/Wn/7L9+ZQhQ=</latexit> Time t <latexit sha1_base64="YHVT67vEixLv4MjZ0HBsvycnjIM=">AABE6nictVxbcxPJFW42tw25scljXmZjSLEJIbZDLlVbqVqwjPHiBYFkw4KB0mUsBCON0EjiovWfSOUllUqe8j/yO/IDUpU85S/kXLqne6SeOT0OYcp2T09/55w+0336nNM9dCfJMJttbv7j3Adf+/o3vvmtD799/jvf/d73f3Dhox8eZel82osPe2mSTh92O1mcDMfx4Ww4S+KHk2ncGXWT+EH35Q4+f7CIp9kwHbdnbyfxk1FnMB6eDHudGVQ9ag9HcXRx9vOti88ubGxe3aR/0XphSxc2lP7XTD/6+J/qWPVVqnpqrkYqVmM1g3KiOiqD67HaUptqAnVP1BLqplAa0vNYnarzgJ1DqxhadKD2JfwewN1jXTuGe6SZEboHXBL4mQIyUpcAk0K7KZSRW0TP50QZa8toL4kmyvYW/nY1rRHUztRzqJVwpmUoDvsyUyfqd9SHIfRpQjXYu56mMietoOSR06sZUJhAHZb78HwK5R4hjZ4jwmTUd9Rth57/i1piLd73dNu5+jdJeQmuSLV079OcQkctiH5Eb3MOz1ieBDgPgEKs+4il16TrEfV+DO2XUH8HrlMqGZ104VpS7WklcgcuH3JHRO7B5UPuicgDuHzIAxHZhMuHbGokYqekcz++BZcP3xI534PLh7wnIu/D5UPeF5FHcPmQRyLyEVw+5CMReRMuH/KmiLwNlw95W0S24fIh2yLyEC4f8lBE7sLlQ+5qZPlMncKVEp2hMCuvQ7nIAy1FAjXXRflukHX0YW8EzOleCVae1Q3468c2AnQal2B3A8bdSQlWHnl7YCP9WNkW3aLVxIe9JWL3YQT4sfsi9nP1ogT7ecBMe1mClefaAbTzY2Xr+wXc+bFfiNg7UPJj5TXqLtT4sXcDVoxJCbYpYu+pVyXYEKs/LcHKdr8FdsWPldepNrT3Y0Os6bwEK9vTI/Bg/Fh5tXoAtX7sAxH7UL0pwT4UsV+CdfdjvwxYYd+VYM0ae55WkAH5IzHM2CpqnXxWYmkC1DoC/yRfWxLyjbtQL2EGOWZAmJGI2MsRe4GIgxxxECxXltvRjPxdmUsrR7QCEd18bcLSTGzfz9tjKQlANHJEYwVR5ZHiuzZ9WZB3YWok5CxfubAU0qc0t99YivV4qLa8BnG3gOCx/ZxG/hWKljCCQk1VUXuer/GMjOi+CvGaojfTS8NDxs1yq+Ci3oiorgfVFVFvPai3ImruQc1F1MKDWogoO/Nd3HHACLD6x3expDseAewjl18ReAXXYdW5BXM0gvHTBC/wPtXchb8tir2lq0oyjOZxncQsx5OCJZ5Caak2oN5GhQ2KrxOaYTFIxi3v6hgf7zC3sdRzjq3wab6SR3nGJJzOkOQZ5HTQW4xoPtWjc5tqTsm741I9/K183ptSPfwuafyUvHgu1cPPtPSzM8je1tj2GbAtmE0TrX1brkuD8y9Mw5TP06qLFhff6kiPGaT3pib9ff1m9s/wXnaoxPqx5Xo0Mqd/WaF/dWhYPWeOnutRQe+JvV5Timr3ZKzjXluuK0NKq+hYy2Hv6r4ZbNPXb8aU69Fogse1QzH30inXHb2TvDe2XI/GkeK85yl58qZcj8aA7lkftlyPBmZbOjrOt+W6lh01wLGzLde16mPKAmMOiMc811ivaEp+0lxTG5J/UJ2tcX3+9XUMczZP8xihmpL1bcvpdPO1rFoi4y/EYNVmNeVA/2Lu+GBFGku1LcZXLMOssL6v07FrPGr+ALQYweznPQApZ56AhCYngdY7AYpbYtRV7JnBbYs4HCUnK6hjXTsTvUXLl7NGxbpnVCvFZba3Vo/HZK8zGnsT8gkPSLOSHg5K33AZRUlDBwUNyfTq6O6dnq9F7W+KuMkKYpKPtB7tCPFOWnWc6tN6y9HxJb3LM4OL93zs+MVs84m2NhjzpGSLUJYqnm47k0dy63BdvaJsjpufRfRG0V4tyGoMaUcqE6NQky1mb3xJ95b2Ie3JIQ+m0YP3GGkqE8W7ZphFx3x6RBbVtbcSb9SXydBxOSOra+xxNXrgoAcedP0YZwdWjDtQakPMcAh37YAo53yuq5Q0PlW/yHdHU3qD1RF9UrCQhgbbm7hgIaui7OcFKq8BjaOBo/RwGqt0DP54jZIc9fvksbFr0fJfop1bs7/doTFePprLMzF94rpNXCOaNbyry3erHFiCpffJNvmv1b1EfnU4og2VuD51OLNexrTjH1MEOyHPOKHZJs2OYms3P7X6xHBqKrN3jrvZKVnIiOxfBOtTSmMyoh/37IDZQWeLkJCNDLE7w9y78fk6Q3GMWT9uqPhUgx1vMdmyOfE3dN3ZldFY5IiB14HTlbFtdHJAvmBMXKfautu5Xb36INKek3BHCVO0Y+Uy8f+EfpsfM0421kYEahjfQKZtne99pBSzoI46tMpX2yDT1pXyYi7DUy21Xf+sTBcLkjUo4kJ5cLXuA+ce3TMvHCVTkjtba8PraFU2FylPVvSIvT2hKJ7t/kCvwCj3FVolN2jOHdMoGcAomOVRhGkrZZFX+VbzKlIPo539X6hbXRe1hhQjZTO4rCEpvx9TtOZKmcCo5vH7kmaTX+vTlVbVfMY0FkfOXP4Kaj+G30Zucx9Gp1uwCjdoDDAFe2c1wjXRWoswXjcKvMzINLTsveVnx6Rp5dacJb5m62Zj7EVtKk0aNW901sKUz0LjhUPjRaAO27TXaLVo6o0leibGFm29WxnKrw63dg3Kc5Gy7JEZ1DBASjeWCqPaF6nKMb5BvRNpbYq0OjBb3d0Ad86HIP1zfXV2f5Wv7pG6Sb5Njzwwjl/6NEuH5HOZ2upIjSkg52vavrqz/5hqkHuXLChS5nOcOGN416lH12ku6U/1ypaSnbcWwZxbeq3bGBt7TOVfrSFHNCcympcGcY1axFp+V45oxSJddXyOiDL/HfKp2O+ojpnd1vadRAV/wsabPKssL44UxqR/KfO2vxa97jvxa0Qx4Vx7112gVf8NIwXGmEyC37PM6A3hKsc7CezRdsl+rtsp3sUbOxJdJamX6vcBNoajXjvW3bFlemz69jNoiVq3b93XQuaXBHOU+J1lR69Dq9pI+6jLlfuz0eroVa54X6WH+Qpfq485tXEjCxvlFTHH6tNgLixRPS6MCeFSrxd15K8neR2ZeXcqlLJpbSgXMw1sY55TvCSdA0WEz7u77PXmPhH60V2j1yWsS41rJEqYjUt1fsC1tJiVilYiJLdeWpMSZz0qWy8sD3fVsHacLWVMVjBRUu6GW7t9OC5EK3I2hin0FJ/sLYsTXZqfwoW/I+WLEg3HkBxiC/zc62pH7b6HUxGvdJkzmxHVoE3or8TgHd3PYotqHb1yqLv0QziE8xiCriXph7Si1pWdKcuSu9TD6b8mazBVsSi9bVm/Dy4XuSfrnOr0Z0gWTu7NUJlvcur2xXAI6UmRSzgf3t+QenGizLdN9fpgqMs9KHKow8OcZwh757Z1fV4up2p9rXMJ5cHrgNl5MTjcASyPWWy7EAs1dd7I++eA1uGkgrpZLf7Xfhg+llN9XqHcMvrm7EXAW+d2sc7Mol9cf85YbiGjuZxjOM807531mvz82P+Lar2p1OnN+6ePfqkdA4bXUnE+VJaO8e4osvKGUsH9AZ8MqfqP+vs5+auEVzmNMjnqUDL7FeXUTAuZmvny0tc78yxEJkunTKYiNRtPtOhk7I7aVzfhZyf3AOueEuVvKvkvYv3f0fah9oSsh8mmcwbhmOpiyoLY3bQ+3dtztGUS45lePuPbhhrcEz+gWjzve4fa45nfdqFv5V+S8Fz/QqWqX4hMVnf57LzqQg+KO3CcCzLf+0Z0pp6zWXwCbRSwx8jnqDhSMl8/LwnRp7hwVdIlIcxoqaLc9VLu0pmkuIR2t9C3Ho3wid7px30HPJ/fybNLkfol1XX06oArtSRV0yPVY8oMdEn/mxCh/Vpdgb9XdNkvaXNN0ozeQVGiN86z6pNgp95xYb9mvER5MJOpW+h2KUX1dvewOhPbKOXCJ96r8YMK/MCRskVv6yXF3VNVnTucV9Cca5nc/dyxMnlP1gNGs518fFTHz4sKXouA/t8uRd92JN0DWbqUbY9oP29K9BKtm12Sns9VVudtb1VIa77aZJr2ZKUdB+aMZPWeQKLHXfns53OQUq4mLqHjznU+kSmdFhl6KcnzcxJwGqIT0Fu5ryE9lajMRUnmAV8iLwJkWQTQORGkOREpDERJtH14dmFja/X/+lgvHG1f3frN1Wv3tjc+u6H/H5AP1Y/VT9RlWPt+qz6D8d9Uh8BprP6o/qL+2kgaf2j8qfFnbvrBOY35kSr8a/ztv1L4QoQ=</latexit> Time t + 1 <latexit sha1_base64="tAOLrNN55bQUCxbY7zOCf5+FHIQ=">AABE7XictVxbcxPJFW42tw25scljXmZjSLEpLzEOuVRtpWrBMsaLAYFkwy4GSpeREIw1QiOJi9Y/I5WXVCp5ys/I78gPSFXylL+Qc+me7pF65vQ4hCnbPT39nXP6TPfpc0730J0ko2y2tfWPcx9845vf+vZ3Pvzu+e99/wc//NGFj358lKXzaS8+7KVJOn3U7WRxMhrHh7PRLIkfTaZx56SbxA+7L3fw+cNFPM1G6bg9ezuJn5x0huPRYNTrzKDqSTOdxePZqJNEFwcXn13Y2LqyRf+i9cJVXdhQ+l8z/ejjf6pj1Vep6qm5OlGxGqsZlBPVURlcj9VVtaUmUPdELaFuCqURPY/VqToP2Dm0iqFFB2pfwu8h3D3WtWO4R5oZoXvAJYGfKSAjdQkwKbSbQhm5RfR8TpSxtoz2kmiibG/hb1fTOoHamXoOtRLOtAzFYV9maqB+R30YQZ8mVIO962kqc9IKSh45vZoBhQnUYbkPz6dQ7hHS6DkiTEZ9R9126Pm/qCXW4n1Pt52rf5OUl+CKVEv3Ps0pdNSC6Ef0NufwjOVJgPMQKMS6j1h6Tbo+od6Pof0S6u/CdUolo5MuXEuqPa1E7sDlQ+6IyD24fMg9EXkAlw95ICKbcPmQTY1E7JR07se34PLhWyLn+3D5kPdF5AO4fMgHIvIILh/ySER+BZcP+ZWIvAmXD3lTRN6Gy4e8LSLbcPmQbRF5CJcPeSgid+HyIXc1snymTuFKic5ImJXXoVzkgZYigZrronw3yDr6sDcC5nSvBCvP6gb89WMbATqNS7C7AeNuUIKVR94e2Eg/VrZFt2g18WFvidh9GAF+7L6I/UK9KMF+ETDTXpZg5bl2AO38WNn63oE7P/aOiL0LJT9WXqPuQY0fey9gxZiUYJsi9r56VYINsfrTEqxs91tgV/xYeZ1qQ3s/NsSazkuwsj09Ag/Gj5VXq4dQ68c+FLGP1JsS7CMR+yVYdz/2y4AV9l0J1qyx52kFGZI/EsOMraLWyWclliZArSPwT/K1JSHfuAv1EmaYY4aEORERezliLxBxkCMOguXKcjuakb8rc2nliFYgopuvTViaie37eXssJQGIRo5orCCqPFJ816YvC/IuTI2EnOUrF5ZC+pTm9htLsR4P1ZbXIO4VEDy2n9PI36RoCSMo1FQVtef5Gs/IiO6rEK8pejO9NDxk3Cy3Ci7qjYjqelBdEfXWg3orouYe1FxELTyohYiyM9/FHQeMAKt/fBdLuuMRwD5y+RWBV3AdVp1bMEcjGD9N8AIfUM09+Nui2Fu6qiTDaB7XScxyPClY4imUlmoD6m1U2KD4OqEZFoNk3PKejvHxDnMbSz3n2Aqf5it5lGdMwumMSJ5hTge9xYjmUz06t6nmlLw7LtXD38rnvSnVw++Sxk/Ji+dSPfxMSz87g+xtjW2fAduC2TTR2rflujQ4/8I0TPk8rbpocfGtnugxg/Te1KS/r9/M/hneyw6VWD+2XI9G5vQvK/SvDg2r58zRcz0q6D2x12tKUe2ejHXca8t1ZUhpFR1rOexd3TeDbfr6zZhyPRpN8Lh2KOZeOuW6o3eS98aW69E4Upz3PCVP3pTr0RjSPevDluvRwGxLR8f5tlzXsqMGOHa25bpWfUxZYMwB8ZjnGusVTclPmmtqI/IPqrM1rs+/vo5hzuZpHiNUU7K+bTmdbr6WVUtk/IUYrNqsphzoX8wdH6xIY6m2xfiKZZgV1vd1OnaNR80fgBYjmP28ByDlzBOQ0OQk0HonQPGqGHUVe2Zw2yIOR8lgBXWsa2eit2j5ctaoWPeMaqW4zPbW6vGY7HVGY29CPuEBaVbSw0HpGy6jKGnooKAhmV4d3b3T87Wo/S0RN1lBTPKR1qMdId5Jq45TfVpvOTq+pHd5ZnDxno8dv5htHmhrgzFPSrYIZani6bYzeSS3DtfVTWVz3PwsojeK9mpBVmNEO1KZGIWabDF740u6t7QPaU8OeTCNHrzHSFOZKN41wyw65tMjsqiuvZV4o75Mho7LGVldY4+r0UMHPfSg68c4O7Bi3IVSG2KGQ7hrB0Q553NdpaTxqfo03x1N6Q1WR/RJwUIaGmxv4oKFrIqynxeovAY0jgaO0sNprNIx+OM1SnLU75PHxq5Fy3+Jdm7N/naHxnj5aC7PxPSJ6zZxjWjW8K4u361yYAmW3ifb5L9W9xL51eGINlTi+tThzHoZ045/TBHshDzjhGabNDuKrd381OoTw6mpzN457manZCEjsn8RrE8pjcmIftyzA2YHnS1CQjYyxO6Mcu/G5+uMxDFm/biR4lMNdrzFZMvmxN/QdWdXRmORIwZeB05XxrbRyQH5gjFxnWrrbud29eqDSHtOwh0lTNGOlcvE/xP6bX7MONlYGxGoYXwDmbZ1vveRUsyCOurQKl9tg0xbV8qLuQxPtdR2/bMyXSxI1qCIC+XB1boPnHt0z7xwlExJ7mytDa+jVdlcpDxZ0SP2dkBRPNv9oV6BUe5NWiU3aM4d0ygZwiiY5VGEaStlkVf5VvMqUg+jnf1fqFtdF7WGFCNlM7isISm/H1O05kqZwKjm8fuSZpNf69OVVtV8xjQWT5y5/DXUfgy/jdzmPoxOt2AVbtAYYAr2zmqEa6K1FmG8bhR4mZFpaNl7y8+OSdPKrTlLfM3WzcbYi9pUmjRq3uishSmfhcYLh8aLQB22aa/RatHUG0v0TIwt2nq3MpRfHW7tGpTnImXZIzOoUYCUbiwVRrUvUpVjfIN6J9LaEml1YLa6uwHunA9B+uf66uz+Ol/dI3WTfJseeWAcv/Rplo7I5zK11ZEaU0DO17R9dWf/MdUg9y5ZUKTM5zhxxvCuU4+u01zSn+uVLSU7by2CObf0WrcxNvaYyr9aQ57QnMhoXhrENWoRa/ldOaIVi3TF8Tkiyvx3yKdiv6M6ZnZb23cSFfwJG2/yrLK8OFIYk/6lzNv+WvS678SvEcWEc+1dd4FW/TeMFBhjMgl+zzKjN4SrHO8ksEfbJfu5bqd4F2/sSHSFpF6q3wfYGI567Vh3x5bpsenbL6Alat2+dV8LmV8SzFHid5YdvQ6taifaR12u3J+NVkevcsX7Kj3MV/hafcypjRtZ2CiviDlWnwVzYYnqcWFMCJd6vagjfz3J68jMu1OhlE1rQ7mYaWAb85ziJekcKCJ83t1lrzf3idCP7hq9LmFdalwjUcJsXKrzA66lxaxUtBIhufXSmpQ461HZemF5uKuGteNsKWOygomScjfc2u3DcSFakbMxTKGn+GRvWZzo0vwMLvwdKV+UaDiG5BBb4OdeVztq9z2cinily5zZjKgGbUJ/JQbv6H4WW1Tr6JVD3aUfwiGcxwh0LUk/ohW1ruxMWZbcpR5O/zVZg6mKRelty/p9cLnIPVnnVKc/I7Jwcm9GynyTU7cvhkNIT4pcwvnw/obUi4Ey3zbV64OhLvegyKEOD3OeIeyd29b1ebmcqvW1ziWUB68DZufF4HAHsDxmse1CLNTUeSPvnwNah0EFdbNa/K/9MHwsp/q8Qrll9M3Zi4C3zu1inZlFv7j+nLHcQkZzOcdwnmneO+s1+fmx/xfVelOp05v3Tx/9UjsGDK+l4nyoLB3j3VFk5Q2lgvsDPhlS9R/193PyVwmvchplctShZPYryqmZFjI18+Wlr3fmWYhMlk6ZTEVqNp5o0cnYHbWvbsLPTu4B1j0lyt9U8l/E+r+j7UPtgKyHyaZzBuGY6mLKgtjdtD7d23O0ZRLjmV4+49uGGtwTP6BaPO97l9rjmd92oW/lX5LwXL+jUtUvRCaru3x2XnWhB8UdOM4Fme99IzpTz9ksPoF2ErDHyOeoOFIyXz8vCdGnuHBV0iUhzGipotz1Uu7SmaS4hHa30LcejfCJ3unHfQc8n9/Js0uR+iXVdfTqgCu1JFXTI9Vjygx0Sf9bEKH9Wm3C301d9kvaXJM0o3dQlOiN86z6JNipd1zYrxkvUR7MZOoWul1KUb3dPazOxDZKufCJ92r8sAI/dKRs0dt6SXH3VFXnDucVNOdaJnc/d6xM3pP1gNFsJx8f1fHzooLXIqD/t0vRtx1J90CWLmXbI9rPmxK9ROtml6Tnc5XVedtbFdKarzaZpj1ZaceBOSNZvSeQ6HFXPvv5HKSUq4lL6LhznU9kSqdFRl5K8vycBJyG6AT0Vu5rSE8lKnNRknnAl8iLAFkWAXQGgjQDkcJQlETbh2cXNq6u/l8f64Wj7StXf3Pl2v3tjc9v6P8H5EP1U/UzdRnWvt+qz2H8N9Uh+SF/VH9Rf22kjT80/tT4Mzf94JzG/EQV/jX+9l8TxkRZ</latexit> Potential f Key issues: learning the potential f(β) Integrate several omics Conclusion: gradient flows for genomics αt+1 = argmin β W(αt , β) + τf(β)