Mi Jung Park (Technical University of Denmark, Denmark) Privacy-preserving Data Generation in the Era of Foundation Models: Generative Transfer Learning with Differential Privacy
WORKSHOP ON OPTIMAL TRANSPORT
FROM THEORY TO APPLICATIONS
INTERFACING DYNAMICAL SYSTEMS, OPTIMIZATION, AND MACHINE LEARNING
Venue: Humboldt University of Berlin, Dorotheenstraße 24
generation in the era of foundation models Mi Jung Park Applied Mathematics & Computer Science, Danmarks Tekniske Universitet (DTU) OT Workshop, Berlin March 15, 2024 1
philanthropy “--- think of big data as a new kind of natural resource – infinitely renewable, increasingly ubiquitous – …Data has a social opportunity – and we have a social responsibility – … data reaches the people who need it most.”
philanthropy “--- think of big data as a new kind of natural resource – infinitely renewable, increasingly ubiquitous – …Data has a social opportunity – and we have a social responsibility – … data reaches the people who need it most.” •Great idea, but currently, a few large corporations can take advantage of data
philanthropy “--- think of big data as a new kind of natural resource – infinitely renewable, increasingly ubiquitous – …Data has a social opportunity – and we have a social responsibility – … data reaches the people who need it most.” •Great idea, but currently, a few large corporations can take advantage of data High-quality data locked in data servers
philanthropy “--- think of big data as a new kind of natural resource – infinitely renewable, increasingly ubiquitous – …Data has a social opportunity – and we have a social responsibility – … data reaches the people who need it most.” •Great idea, but currently, a few large corporations can take advantage of data High-quality data locked in data servers Privacy Regulations!
the statistical properties of the original data but “contain no personal data” • Why Useful : promote data sharing, debiasing, data augmentation, creating more “fair” datasets • Foundation models (e.g., Stable Diffusion, LLMs) for multi-modal synthetic data generation [Rajotte et al, iScience 22]
[Stadler et al., CSS 22] • Synthetic data is vulnerable to linkage attacks (link a synthetic data point to a single record in the original data) [Carlini et al., CSS 23]
[Stadler et al., CSS 22] • Synthetic data is vulnerable to linkage attacks (link a synthetic data point to a single record in the original data) [Carlini et al., CSS 23]
<latexit sha1_base64="q69qAC9QCbzeFL5i4zpxpEWkU9k=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuiLlxWsA9oh3InTdvQTGZMMoUy9DvcuFDErR/jzr8x085CWw8EDufcyz05QSy4Nq777RTW1jc2t4rbpZ3dvf2D8uFRU0eJoqxBIxGpdoCaCS5Zw3AjWDtWDMNAsFYwvs381oQpzSP5aKYx80McSj7gFI2V/G6IZkRRpHezntcrV9yqOwdZJV5OKpCj3it/dfsRTUImDRWodcdzY+OnqAyngs1K3USzGOkYh6xjqcSQaT+dh56RM6v0ySBS9klD5urvjRRDradhYCezkHrZy8T/vE5iBtd+ymWcGCbp4tAgEcREJGuA9Lli1IipJUgVt1kJHaFCamxPJVuCt/zlVdK8qHpu1Xu4rNRu8jqKcAKncA4eXEEN7qEODaDwBM/wCm/OxHlx3p2PxWjByXeO4Q+czx+iYZH+</latexit> D2 <latexit sha1_base64="kkMnEJJTL4WoIFiQkDJLkJ60BFg=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZki6LKoC5cV7APaoWTS2zY0kxmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEAuujet+O2vrG5tb24Wd4u7e/sFh6ei4qaNEMWywSESqHVCNgktsGG4EtmOFNAwEtoLxbea3Jqg0j+Sjmcboh3Qo+YAzaqzkd0NqRoyK9G7Wq/ZKZbfizkFWiZeTMuSo90pf3X7EkhClYYJq3fHc2PgpVYYzgbNiN9EYUzamQ+xYKmmI2k/noWfk3Cp9MoiUfdKQufp7I6Wh1tMwsJNZSL3sZeJ/Xicxg2s/5TJODEq2ODRIBDERyRogfa6QGTG1hDLFbVbCRlRRZmxPRVuCt/zlVdKsVjy34j1clms3eR0FOIUzuAAPrqAG91CHBjB4gmd4hTdn4rw4787HYnTNyXdO4A+czx+j5ZH/</latexit> <latexit sha1_base64="kkMnEJJTL4WoIFiQkDJLkJ60BFg=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZki6LKoC5cV7APaoWTS2zY0kxmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEAuujet+O2vrG5tb24Wd4u7e/sFh6ei4qaNEMWywSESqHVCNgktsGG4EtmOFNAwEtoLxbea3Jqg0j+Sjmcboh3Qo+YAzaqzkd0NqRoyK9G7Wq/ZKZbfizkFWiZeTMuSo90pf3X7EkhClYYJq3fHc2PgpVYYzgbNiN9EYUzamQ+xYKmmI2k/noWfk3Cp9MoiUfdKQufp7I6Wh1tMwsJNZSL3sZeJ/Xicxg2s/5TJODEq2ODRIBDERyRogfa6QGTG1hDLFbVbCRlRRZmxPRVuCt/zlVdKsVjy34j1clms3eR0FOIUzuAAPrqAG91CHBjB4gmd4hTdn4rw4787HYnTNyXdO4A+czx+j5ZH/</latexit> <latexit sha1_base64="kkMnEJJTL4WoIFiQkDJLkJ60BFg=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZki6LKoC5cV7APaoWTS2zY0kxmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEAuujet+O2vrG5tb24Wd4u7e/sFh6ei4qaNEMWywSESqHVCNgktsGG4EtmOFNAwEtoLxbea3Jqg0j+Sjmcboh3Qo+YAzaqzkd0NqRoyK9G7Wq/ZKZbfizkFWiZeTMuSo90pf3X7EkhClYYJq3fHc2PgpVYYzgbNiN9EYUzamQ+xYKmmI2k/noWfk3Cp9MoiUfdKQufp7I6Wh1tMwsJNZSL3sZeJ/Xicxg2s/5TJODEq2ODRIBDERyRogfa6QGTG1hDLFbVbCRlRRZmxPRVuCt/zlVdKsVjy34j1clms3eR0FOIUzuAAPrqAG91CHBjB4gmd4hTdn4rw4787HYnTNyXdO4A+czx+j5ZH/</latexit> <latexit sha1_base64="kkMnEJJTL4WoIFiQkDJLkJ60BFg=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZki6LKoC5cV7APaoWTS2zY0kxmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEAuujet+O2vrG5tb24Wd4u7e/sFh6ei4qaNEMWywSESqHVCNgktsGG4EtmOFNAwEtoLxbea3Jqg0j+Sjmcboh3Qo+YAzaqzkd0NqRoyK9G7Wq/ZKZbfizkFWiZeTMuSo90pf3X7EkhClYYJq3fHc2PgpVYYzgbNiN9EYUzamQ+xYKmmI2k/noWfk3Cp9MoiUfdKQufp7I6Wh1tMwsJNZSL3sZeJ/Xicxg2s/5TJODEq2ODRIBDERyRogfa6QGTG1hDLFbVbCRlRRZmxPRVuCt/zlVdKsVjy34j1clms3eR0FOIUzuAAPrqAG91CHBjB4gmd4hTdn4rw4787HYnTNyXdO4A+czx+j5ZH/</latexit> A <latexit sha1_base64="BAeVOBC5ObWqGCFk52KlP7hcwRg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPVi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOmXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqt3kcRTiBUzgHD66gBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBkt2MxQ==</latexit> <latexit sha1_base64="BAeVOBC5ObWqGCFk52KlP7hcwRg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPVi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOmXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqt3kcRTiBUzgHD66gBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBkt2MxQ==</latexit> <latexit sha1_base64="BAeVOBC5ObWqGCFk52KlP7hcwRg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPVi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOmXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqt3kcRTiBUzgHD66gBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBkt2MxQ==</latexit> <latexit sha1_base64="BAeVOBC5ObWqGCFk52KlP7hcwRg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPVi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOmXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqt3kcRTiBUzgHD66gBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBkt2MxQ==</latexit> Differential Privacy • Privacy loss how well we can distinguish two datasets
<latexit sha1_base64="q69qAC9QCbzeFL5i4zpxpEWkU9k=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIoMuiLlxWsA9oh3InTdvQTGZMMoUy9DvcuFDErR/jzr8x085CWw8EDufcyz05QSy4Nq777RTW1jc2t4rbpZ3dvf2D8uFRU0eJoqxBIxGpdoCaCS5Zw3AjWDtWDMNAsFYwvs381oQpzSP5aKYx80McSj7gFI2V/G6IZkRRpHezntcrV9yqOwdZJV5OKpCj3it/dfsRTUImDRWodcdzY+OnqAyngs1K3USzGOkYh6xjqcSQaT+dh56RM6v0ySBS9klD5urvjRRDradhYCezkHrZy8T/vE5iBtd+ymWcGCbp4tAgEcREJGuA9Lli1IipJUgVt1kJHaFCamxPJVuCt/zlVdK8qHpu1Xu4rNRu8jqKcAKncA4eXEEN7qEODaDwBM/wCm/OxHlx3p2PxWjByXeO4Q+czx+iYZH+</latexit> D2 <latexit sha1_base64="kkMnEJJTL4WoIFiQkDJLkJ60BFg=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZki6LKoC5cV7APaoWTS2zY0kxmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEAuujet+O2vrG5tb24Wd4u7e/sFh6ei4qaNEMWywSESqHVCNgktsGG4EtmOFNAwEtoLxbea3Jqg0j+Sjmcboh3Qo+YAzaqzkd0NqRoyK9G7Wq/ZKZbfizkFWiZeTMuSo90pf3X7EkhClYYJq3fHc2PgpVYYzgbNiN9EYUzamQ+xYKmmI2k/noWfk3Cp9MoiUfdKQufp7I6Wh1tMwsJNZSL3sZeJ/Xicxg2s/5TJODEq2ODRIBDERyRogfa6QGTG1hDLFbVbCRlRRZmxPRVuCt/zlVdKsVjy34j1clms3eR0FOIUzuAAPrqAG91CHBjB4gmd4hTdn4rw4787HYnTNyXdO4A+czx+j5ZH/</latexit> <latexit sha1_base64="kkMnEJJTL4WoIFiQkDJLkJ60BFg=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZki6LKoC5cV7APaoWTS2zY0kxmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEAuujet+O2vrG5tb24Wd4u7e/sFh6ei4qaNEMWywSESqHVCNgktsGG4EtmOFNAwEtoLxbea3Jqg0j+Sjmcboh3Qo+YAzaqzkd0NqRoyK9G7Wq/ZKZbfizkFWiZeTMuSo90pf3X7EkhClYYJq3fHc2PgpVYYzgbNiN9EYUzamQ+xYKmmI2k/noWfk3Cp9MoiUfdKQufp7I6Wh1tMwsJNZSL3sZeJ/Xicxg2s/5TJODEq2ODRIBDERyRogfa6QGTG1hDLFbVbCRlRRZmxPRVuCt/zlVdKsVjy34j1clms3eR0FOIUzuAAPrqAG91CHBjB4gmd4hTdn4rw4787HYnTNyXdO4A+czx+j5ZH/</latexit> <latexit sha1_base64="kkMnEJJTL4WoIFiQkDJLkJ60BFg=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZki6LKoC5cV7APaoWTS2zY0kxmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEAuujet+O2vrG5tb24Wd4u7e/sFh6ei4qaNEMWywSESqHVCNgktsGG4EtmOFNAwEtoLxbea3Jqg0j+Sjmcboh3Qo+YAzaqzkd0NqRoyK9G7Wq/ZKZbfizkFWiZeTMuSo90pf3X7EkhClYYJq3fHc2PgpVYYzgbNiN9EYUzamQ+xYKmmI2k/noWfk3Cp9MoiUfdKQufp7I6Wh1tMwsJNZSL3sZeJ/Xicxg2s/5TJODEq2ODRIBDERyRogfa6QGTG1hDLFbVbCRlRRZmxPRVuCt/zlVdKsVjy34j1clms3eR0FOIUzuAAPrqAG91CHBjB4gmd4hTdn4rw4787HYnTNyXdO4A+czx+j5ZH/</latexit> <latexit sha1_base64="kkMnEJJTL4WoIFiQkDJLkJ60BFg=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclZki6LKoC5cV7APaoWTS2zY0kxmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEAuujet+O2vrG5tb24Wd4u7e/sFh6ei4qaNEMWywSESqHVCNgktsGG4EtmOFNAwEtoLxbea3Jqg0j+Sjmcboh3Qo+YAzaqzkd0NqRoyK9G7Wq/ZKZbfizkFWiZeTMuSo90pf3X7EkhClYYJq3fHc2PgpVYYzgbNiN9EYUzamQ+xYKmmI2k/noWfk3Cp9MoiUfdKQufp7I6Wh1tMwsJNZSL3sZeJ/Xicxg2s/5TJODEq2ODRIBDERyRogfa6QGTG1hDLFbVbCRlRRZmxPRVuCt/zlVdKsVjy34j1clms3eR0FOIUzuAAPrqAG91CHBjB4gmd4hTdn4rw4787HYnTNyXdO4A+czx+j5ZH/</latexit> A <latexit sha1_base64="BAeVOBC5ObWqGCFk52KlP7hcwRg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPVi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOmXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqt3kcRTiBUzgHD66gBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBkt2MxQ==</latexit> <latexit sha1_base64="BAeVOBC5ObWqGCFk52KlP7hcwRg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPVi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOmXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqt3kcRTiBUzgHD66gBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBkt2MxQ==</latexit> <latexit sha1_base64="BAeVOBC5ObWqGCFk52KlP7hcwRg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPVi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOmXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqt3kcRTiBUzgHD66gBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBkt2MxQ==</latexit> <latexit sha1_base64="BAeVOBC5ObWqGCFk52KlP7hcwRg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPVi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUuOmXK27VnYOsEi8nFchR75e/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSuqh6btVrXFZqt3kcRTiBUzgHD66gBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBkt2MxQ==</latexit> Differential Privacy • Privacy loss for all o and all pairs of datasets A is epsilon-DP if how well we can distinguish two datasets
Algorithm Output1 Output2 • Union of output 1 & output 2 is (epsilon1+epsilon2)-DP! • More re fi ned composition methods, e.g., Moments accountant [Abadi et al,16]
Perturb gradients of D [Park et al., 2018;Torkzadehmahani et al., 2019; Xie et al., 2018; Frigerio et al., 2019]. Random Input Generator (G) Generated Data Sample Discriminator (D) Real Data Sample
Perturb gradients of D [Park et al., 2018;Torkzadehmahani et al., 2019; Xie et al., 2018; Frigerio et al., 2019]. If D is DP, G: data-independent! Random Input Generator (G) Generated Data Sample Discriminator (D) Real Data Sample
Perturb gradients of D [Park et al., 2018;Torkzadehmahani et al., 2019; Xie et al., 2018; Frigerio et al., 2019]. If D is DP, G: data-independent! DP-Generator by post-processing invariance of DP Random Input Generator (G) Generated Data Sample Discriminator (D) Real Data Sample
training results in High privacy loss, due to composability of DP Challenge II: Larger models (generally) have poor accuracy-privacy trade-offs, because noise scale (roughly) grows linearly with # parameters.
training results in High privacy loss, due to composability of DP Challenge II: Larger models (generally) have poor accuracy-privacy trade-offs, because noise scale (roughly) grows linearly with # parameters. Kernel Mean Embedding Discriminator (D) Can we use a simpler “Discriminator” that allows us to add noise only once?
data Given probability space inf. dim. features reproducing kernel Hilbert space Kernel Mean Embedding (ME) Maximum mean discrepancy [Gretton et al, 2012]
data Synthetic data Given probability space inf. dim. features reproducing kernel Hilbert space Kernel Mean Embedding (ME) Maximum mean discrepancy [Gretton et al, 2012]
Gaussian noise Approximation error under RF [Sutherland & Schneider15] [Rahimi & Recht, 2018] Finite-dimensional features such that DP-MERF [Harder et al, AISTATS 2021]
precision recall curve F1 score: harmonic mean of precision and recall [DP-CGAN by Torkzadehmahani et al., 2019] Evaluation: Train 12-classifiers using Synthetic data; and Test them on Real test data ROC PRC ROC PRC ROC PRC
precision recall curve F1 score: harmonic mean of precision and recall [DP-CGAN by Torkzadehmahani et al., 2019] • Takeaway: The kernel-based method (DP-MERF) performs better than DP-CGAN at a small privacy budget (epsilon=1) Evaluation: Train 12-classifiers using Synthetic data; and Test them on Real test data ROC PRC ROC PRC ROC PRC
precision recall curve F1 score: harmonic mean of precision and recall [DP-CGAN by Torkzadehmahani et al., 2019] • Takeaway: The kernel-based method (DP-MERF) performs better than DP-CGAN at a small privacy budget (epsilon=1) Evaluation: Train 12-classifiers using Synthetic data; and Test them on Real test data ROC PRC ROC PRC ROC PRC • Later work: DP-HP (Hermite Polynomials) [Vinaroz et al, ICML 2022]
traditional metrics (L2/SNR, etc), embedding using the features of VGG networks trained on ImageNet classi fi cation agrees surprisingly well with human’s perceptual similarity. [Dos Santos et al, ICCV 2019] • Generative modelling via Moment matching using perceptual features
VGG19 Using Gaussian mechanism • MMD is a well-de fi ned metric if PFs are universal features. • A bit murky: Empirically, in transfer learning, features from ImageNet pretrained VGG/ResNet can express any functions for a downstream task by fi nding a linear weight in their span, which follows the de fi nition of universal feature [Charles et al, JMLR 06]
universal features, • Second term goes to zero for good generators • At a given DP-level, sigma is constant, but the error is small if D (PF dimension) is smaller than m^2 (private data size). In CIFAR10, m=50k and D=300k.
datasets like CIFAR10 with DP! A simple & practical algorithm for DP data generation using mean embeddings with perceptual features, a good accuracy-privacy trade-off!
datasets like CIFAR10 with DP! A simple & practical algorithm for DP data generation using mean embeddings with perceptual features, a good accuracy-privacy trade-off! Could we use better generative models (e.g., diffusion models), and adjust features for private data via fine-tuning, so we can generate more complex data beyond CIFAR10? But static (not adapted to private data) features are somewhat limited
(sampling direction) Di ff usion process, forward process (inference direction) Extremely slow training (100s GPU days)! Not a good fit to generative modelling with DP!
[Dockhorn et al, TMLR 23]: Train a small-ish DM with DP-SGD for datasets like MNIST/FashionMNIST (still requires 192 GPU days) • DP-Diffusion: [Ghalebikesabi et al. 23]: Fine-tune a pre-trained DM with DP-SGD. Performs well on CIFAR-10, CelebA32, Camelyon17. But the Unet is large, requiring fi ne-tuning 80 M parameters using DP-SGD seems awfully inef fi cient!
Latent Diffusion Models, where Autoencoders maps high-dimensional pixels to lower-dimensional space to diffuse. Faster training (from 100s-1000s to 1-10s GPU days). [Rombach et al., CVPR 22]
Latent Diffusion Models, where Autoencoders maps high-dimensional pixels to lower-dimensional space to diffuse. Faster training (from 100s-1000s to 1-10s GPU days). [Rombach et al., CVPR 22]
• Update only attention modules with DP-SGD using private data (if conditioned generation, fi ne- tune conditioning embedder as well). [Lyu et al, submitted 2023]
a given task / given a distribution. Fine-tuning weights for what to focus on seems to make sense. • LLMs: altering attention modules substantially alters the models’ behaviors [(Shi et al., 2023; Hu et al., 2021]. DMs: manipulating or fi ne-tuning attention modules yields a more targeted generation, e.g., targeted for a user- preference [Zhang et al., ICLR 24] and transferring to a target distribution [You & Zhao, 2023] 33 Intermediate representation Conditioning Why attention modules?
DP and non-DP generative modelling, compared to existing methods. Fine-tuning DMs is still annoying… Any other ways to use foundation models? Something like, e.g., DP-API [Lin et al, ICLR 2024] DP-histogram mechanism to generate synthetic data through the utilization of publicly accessible APIs What’s next?
DP and non-DP generative modelling, compared to existing methods. Fine-tuning DMs is still annoying… Any other ways to use foundation models? Something like, e.g., DP-API [Lin et al, ICLR 2024] DP-histogram mechanism to generate synthetic data through the utilization of publicly accessible APIs What about Tabular data? What’s next?
to a selection of a certain statistic Closed-form estimator : Pair-wise evaluation Of a kernel function Using samples drawn from P and Q Needs privatization once
to a selection of a certain statistic Closed-form estimator : Pair-wise evaluation Of a kernel function Using samples drawn from P and Q Needs privatization in every training step Needs privatization once
High: perturb high-dimensional gradients at every training step Low (hence, practical) : perturb first term once-for-all Sensitivity No analytic sensitivity: needs to search for optimal norm clipping bound (costly) Analytic sensitivity : RFs are norm bounded by construction Generating Input/output pairs Output (labels) assumed to be known. Generate outputs condition on inputs Learn joint distribution! By constructing a new kernel Heterogeneous data GANs not working well with mixed-data Simple! By constructing a new kernel [modelling tabular data using CGAN by Xu et al, 2019]
Decompose G as Generator learns joint distribution (1) (2) Product of two kernels: Characteristic kernels [Szabo & Sriperumbudur18] DP-Proportion to real data
Decompose G as Generator learns joint distribution (1) (2) Product of two kernels: Characteristic kernels [Szabo & Sriperumbudur18] DP-Proportion to real data DP-MERF