Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Text Mining, the Tidy Way

Sponsored · Ship Features Fearlessly Turn features on and off without deploys. Used by thousands of Ruby developers.
Avatar for Julia Silge Julia Silge
January 13, 2017

Text Mining, the Tidy Way

January 2017 talk at rstudio::conf

Avatar for Julia Silge

Julia Silge

January 13, 2017
Tweet

More Decks by Julia Silge

Other Decks in Technology

Transcript

  1. > text <- c("Because I could not stop for Death

    -", "He kindly stopped for me -", "The Carriage held but just Ourselves -", "and Immortality") > > text ## [1] "Because I could not stop for Death -" "He kindly stopped for me -" ## [3] "The Carriage held but just Ourselves -" "and Immortality" What do we mean by tidy text?
  2. > library(dplyr) > text_df <- data_frame(line = 1:4, text =

    text) > > text_df ## # A tibble: 4 × 2 ## line text ## <int> <chr> ## 1 1 Because I could not stop for Death - ## 2 2 He kindly stopped for me - ## 3 3 The Carriage held but just Ourselves - ## 4 4 and Immortality What do we mean by tidy text?
  3. > library(tidytext) > text_df %>% unnest_tokens(word, text) ## # A

    tibble: 20 × 2 ## line word ## <int> <chr> ## 1 1 because ## 2 1 i ## 3 1 could ## 4 1 not ## 5 1 stop ## 6 1 for ## 7 1 death ## 8 2 he ## 9 2 kindly ## 10 2 stopped ## # ... with 10 more rows What do we mean by tidy text?
  4. > library(tidytext) > text_df %>% unnest_tokens(word, text) ## # A

    tibble: 20 × 2 ## line word ## <int> <chr> ## 1 1 because ## 2 1 i ## 3 1 could ## 4 1 not ## 5 1 stop ## 6 1 for ## 7 1 death ## 8 2 he ## 9 2 kindly ## 10 2 stopped ## # ... with 10 more rows • Other columns have been retained • Punctuation has been stripped • Words have been converted to lowercase What do we mean by tidy text?
  5. Tidying the works of Jane Austen > library(janeaustenr) > library(dplyr)

    > library(stringr) > > original_books <- austen_books() %>% group_by(book) %>% mutate(linenumber = row_number(), chapter = cumsum(str_detect(text, regex("^chapter [\\divxlc]", ignore_case = TRUE)))) %>% ungroup()
  6. Tidying the works of Jane Austen > original_books # A

    tibble: 73,422 × 4 text book linenumber chapter <chr> <fctr> <int> <int> 1 SENSE AND SENSIBILITY Sense & Sensibility 1 0 2 Sense & Sensibility 2 0 3 by Jane Austen Sense & Sensibility 3 0 4 Sense & Sensibility 4 0 5 (1811) Sense & Sensibility 5 0 6 Sense & Sensibility 6 0 7 Sense & Sensibility 7 0 8 Sense & Sensibility 8 0 9 Sense & Sensibility 9 0 10 CHAPTER 1 Sense & Sensibility 10 1 # ... with 73,412 more rows
  7. Tidying the works of Jane Austen > tidy_books <- original_books

    %>% unnest_tokens(word, text) > > tidy_books # A tibble: 725,054 × 4 book linenumber chapter word <fctr> <int> <int> <chr> 1 Sense & Sensibility 1 0 sense 2 Sense & Sensibility 1 0 and 3 Sense & Sensibility 1 0 sensibility 4 Sense & Sensibility 3 0 by 5 Sense & Sensibility 3 0 jane 6 Sense & Sensibility 3 0 austen 7 Sense & Sensibility 5 0 1811 8 Sense & Sensibility 10 1 chapter 9 Sense & Sensibility 10 1 1 10 Sense & Sensibility 13 1 the # ... with 725,044 more rows
  8. REMOVING STOP WORDS > data(stop_words) > > tidy_books <- tidy_books

    %>% anti_join(stop_words) > > tidy_books %>% count(word, sort = TRUE)
  9. Sentiment analysis > get_sentiments("afinn") # A tibble: 2,476 × 2

    word score <chr> <int> 1 abandon -2 2 abandoned -2 3 abandons -2 4 abducted -2 5 abduction -2 6 abductions -2 7 abhor -3 8 abhorred -3 9 abhorrent -3 10 abhors -3 # ... with 2,466 more rows > get_sentiments("bing") # A tibble: 6,788 × 2 word sentiment <chr> <chr> 1 2-faced negative 2 2-faces negative 3 a+ positive 4 abnormal negative 5 abolish negative 6 abominable negative 7 abominably negative 8 abominate negative 9 abomination negative 10 abort negative # ... with 6,778 more rows > get_sentiments("nrc") # A tibble: 13,901 × 2 word sentiment <chr> <chr> 1 abacus trust 2 abandon fear 3 abandon negative 4 abandon sadness 5 abandoned anger 6 abandoned fear 7 abandoned negative 8 abandoned sadness 9 abandonment anger 10 abandonment fear # ... with 13,891 more rows
  10. > library(tidyr) > > janeaustensentiment <- tidy_books %>% inner_join(get_sentiments("bing")) %>%

    count(book, index = linenumber %/% 100, sentiment) %>% spread(sentiment, n, fill = 0) %>% mutate(sentiment = positive - negative) Sentiment analysis
  11. TF-IDF > book_words <- austen_books() %>% unnest_tokens(word, text) %>% count(book,

    word, sort = TRUE) %>% ungroup() > > total_words <- book_words %>% group_by(book) %>% summarize(total = sum(n)) > > book_words <- left_join(book_words, total_words)
  12. > book_words # A tibble: 40,379 × 4 book word

    n total <fctr> <chr> <int> <int> 1 Mansfield Park the 6206 160460 2 Mansfield Park to 5475 160460 3 Mansfield Park and 5438 160460 4 Emma to 5239 160996 5 Emma the 5201 160996 6 Emma and 4896 160996 7 Mansfield Park of 4778 160460 8 Pride & Prejudice the 4331 122204 9 Emma of 4291 160996 10 Pride & Prejudice to 4162 122204 # ... with 40,369 more rows TF-IDF
  13. TF-IDF > book_words <- book_words %>% bind_tf_idf(word, book, n) >

    book_words # A tibble: 40,379 × 7 book word n total tf idf tf_idf <fctr> <chr> <int> <int> <dbl> <dbl> <dbl> 1 Mansfield Park the 6206 160460 0.03867631 0 0 2 Mansfield Park to 5475 160460 0.03412065 0 0 3 Mansfield Park and 5438 160460 0.03389007 0 0 4 Emma to 5239 160996 0.03254118 0 0 5 Emma the 5201 160996 0.03230515 0 0 6 Emma and 4896 160996 0.03041069 0 0 7 Mansfield Park of 4778 160460 0.02977689 0 0 8 Pride & Prejudice the 4331 122204 0.03544074 0 0 9 Emma of 4291 160996 0.02665284 0 0 10 Pride & Prejudice to 4162 122204 0.03405780 0 0 # ... with 40,369 more rows
  14. > book_words %>% + select(-total) %>% + arrange(desc(tf_idf)) # A

    tibble: 40,379 × 6 book word n tf idf tf_idf <fctr> <chr> <int> <dbl> <dbl> <dbl> 1 Sense & Sensibility elinor 623 0.005193528 1.791759 0.009305552 2 Sense & Sensibility marianne 492 0.004101470 1.791759 0.007348847 3 Mansfield Park crawford 493 0.003072417 1.791759 0.005505032 4 Pride & Prejudice darcy 373 0.003052273 1.791759 0.005468939 5 Persuasion elliot 254 0.003036207 1.791759 0.005440153 6 Emma emma 786 0.004882109 1.098612 0.005363545 7 Northanger Abbey tilney 196 0.002519928 1.791759 0.004515105 8 Emma weston 389 0.002416209 1.791759 0.004329266 9 Pride & Prejudice bennet 294 0.002405813 1.791759 0.004310639 10 Persuasion wentworth 191 0.002283132 1.791759 0.004090824 # ... with 40,369 more rows TF-IDF
  15. • As part of the NASA Datanauts program, I am

    working on a project to understand NASA datasets • Metadata includes title, description, keywords, etc