Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
パラメータ探索を効率化するベイズ最適化入門
Search
Keishu
August 13, 2025
Programming
2
43
パラメータ探索を効率化するベイズ最適化入門
Keishu
August 13, 2025
Tweet
Share
More Decks by Keishu
See All by Keishu
スマートフォンで実現する次世代の足形計測と靴選び
keishu
0
20
Other Decks in Programming
See All in Programming
GISエンジニアから見たLINKSデータ
nokonoko1203
0
190
【卒業研究】会話ログ分析によるユーザーごとの関心に応じた話題提案手法
momok47
0
160
LLMで複雑な検索条件アセットから脱却する!! 生成的検索インタフェースの設計論
po3rin
4
1.1k
HTTPプロトコル正しく理解していますか? 〜かわいい猫と共に学ぼう。ฅ^•ω•^ฅ ニャ〜
hekuchan
2
580
AI Agent Tool のためのバックエンドアーキテクチャを考える #encraft
izumin5210
5
1.5k
ELYZA_Findy AI Engineering Summit登壇資料_AIコーディング時代に「ちゃんと」やること_toB LLMプロダクト開発舞台裏_20251216
elyza
2
890
Claude Codeの「Compacting Conversation」を体感50%減! CLAUDE.md + 8 Skills で挑むコンテキスト管理術
kmurahama
1
700
クラウドに依存しないS3を使った開発術
simesaba80
0
210
「コードは上から下へ読むのが一番」と思った時に、思い出してほしい話
panda728
PRO
39
26k
Canon EOS R50 V と R5 Mark II 購入でみえてきた最近のデジイチ VR180 事情、そして VR180 静止画に活路を見出すまで
karad
0
140
AIによるイベントストーミング図からのコード生成 / AI-powered code generation from Event Storming diagrams
nrslib
1
150
生成AIを利用するだけでなく、投資できる組織へ
pospome
2
430
Featured
See All Featured
WCS-LA-2024
lcolladotor
0
400
Marketing to machines
jonoalderson
1
4.5k
Public Speaking Without Barfing On Your Shoes - THAT 2023
reverentgeek
1
280
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Exploring anti-patterns in Rails
aemeredith
2
220
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Taking LLMs out of the black box: A practical guide to human-in-the-loop distillation
inesmontani
PRO
3
2k
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
180
GraphQLの誤解/rethinking-graphql
sonatard
74
11k
Typedesign – Prime Four
hannesfritz
42
2.9k
SEOcharity - Dark patterns in SEO and UX: How to avoid them and build a more ethical web
sarafernandez
0
98
Transcript
パラメータ探索を効率化する ベイズ最適化入門 ~MATLAB実装~ 元記事:https://qiita.com/kepr/items/adacf7678cf4e9a6a1b8 Keishu X: @Keishu_te
直感的なパラメータ探索の課題 機械学習モデルを利用する際に、「パラメータ探索」を行う機会は多い。しかし、実 際のところは経験や直感に依存したり、パラメータを一つずつ手動で調整している ケースも少なくない そのような手法の課題 • 最適解に到達できない(交互作用、局所最適解) • 時間的、人的リソースがかかる •
プロセスの俗人化、技術資産として残らない イントロ
賢いハイパーパラメータ探索へ • Grid Search: 格子状にパラメータの組を網羅する • Random Search: 運がよければ少ない回数で最適解に到達 •
Bayesian Optimization: 最適解が存在しそうな場所を集中的に探索。一回の 試行に時間がかかる場合、特に効果的。 イントロ
ベイズ最適化の基本的な仕組み 概要 1.パラメータ 試行 2. 関数の 予測 3. 有望な パラメータ
判断 2. 予測 3. 判断 ガウス過程回帰 獲得関数
ガウス過程回帰:予測値と不確かさ 予測平均 (μ): 最も確からしい値 不確かさ (σ): 予測の自信度 • 観測点付近: 不確かさ
↓ (自信あり) • 未知の領域: 不確かさ ↑ (自信なし) 【予測】
類似度に基づく「重み付き平均」 予測したい点(x=2)に近い点ほど、予測への影響力が大きい。 【予測】 この点は近いから影響大 この点は遠いから影響小
類似度を測るカーネル関数 カーネル関数の役割 • この「似ている」の度合い(類似度)を計算する 予測曲線の"設計図" • カーネル関数が、全ての点の組み合わせの「類似度」を計算 • この「類似度の一覧表」により、予測する関数の形を決まる 【予測】
予測平均の式 【予測】 予測値のxと観測値のxが どれだけ類似しているか 予測値のy座標 観測値のy座標 観測値のy座標を補正
次の一手を決める獲得関数 μ(x) →予測平均 σ(x) → 予測分散 κ: 活用 vs 探索のバランス調整
【判断】
問題設定(Irisデータセット) • Data: fisheriris (アヤメ) • Task: 3クラス分類 • Model:
SVM (RBF Kernel) • Goal: 分類誤差を最小化するBoxConstraintとKernelScaleを発見する。 実践例 特徴量 分類
MATLABによる実装コード 実践例 探索するハイパーパラメータ設定 最小化する目的関数の設定 実行
結果:代理モデルと獲得関数 実践例
結果:分類誤差の推移 実践例 • 最初の数回の試行で最小誤差が急 激に低下し、その後も少しずつ最小 誤差が低下している • 少ない試行で質の高い解に到達、 その後より良い解を探している
まとめ • 直感に基づくパラメータ探索では、時間、再現性、精度に課題 • パラメータ探索手法には、グリッドサーチ、ランダムサーチなども存在するが、 試行に時間がかかる問題にはベイズは最適化が特に有効 • ベイズ最適化の仕組みとしては、試行、予測、判断のサイクル • 予測の直感的なイメージは、類似度に基づく重み付き平均
• MATLABにおける実践例を紹介 まとめ ぜひ研究やプロジェクトで、ベイズ最適化を使ってみてください