Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ML on Kubernetes with Kubeflow #3 Kubeflow Pipe...
Search
Keita Watanabe
November 24, 2022
Technology
0
1.1k
ML on Kubernetes with Kubeflow #3 Kubeflow Pipelines: Part1
Kubernetes Meetup Tokyo #54
https://k8sjp.connpass.com/event/264501/
で発表したLT資料
Keita Watanabe
November 24, 2022
Tweet
Share
More Decks by Keita Watanabe
See All by Keita Watanabe
Scalable Infrastructure for Large-Scale AI Training with AWS Sagemaker Hyperpod @ Singapore AI Hour
keitaw
0
22
[AWS Summit Japan 2025] Optimizing Foundation Model Development with Amazon SageMaker HyperPod: Insights from Training the Amazon Nova Model
keitaw
0
24
Building foundation models on AWS
keitaw
0
400
[re:Invent2024 Chalktalk] Cost-effectively deploy PyTorch LLMs on AWS Inferentia using Amazon EKS
keitaw
0
99
AWS Summit New York 2024: CMP 301 Demystifying the ML software stack on Amazon EC2 accelerated instances
keitaw
0
420
re:Invent 2023 CMP319 Deploy LLMs with AWS Inferentia & Ray to optimize performance and cost
keitaw
0
45
re:Invent 2023: CMP332 De-mystifying ML software stack on Amazon EC2 accelerated instances
keitaw
1
210
AWS における LLM・GenAI 大規模学習への取り組み / Large scale GenAI・LLM training on AWS
keitaw
1
550
Amazon EC2 シリコン革命 / Amazon EC2 Silicon Innovation
keitaw
0
190
Other Decks in Technology
See All in Technology
重厚長大企業で、顧客価値をスケールさせるためのプロダクトづくりとプロダクト開発チームづくりの裏側 / Developers X Summit 2025
mongolyy
0
140
AI エージェントを評価するための温故知新と Spec Driven Evaluation
icoxfog417
PRO
0
130
Javaコミュニティの歩き方 ~参加から貢献まで、すべて教えます~
tabatad
0
130
ある編集者のこれまでとこれから —— 開発者コミュニティと歩んだ四半世紀
inao
5
3.3k
[CV勉強会@関東 ICCV2025 読み会] World4Drive: End-to-End Autonomous Driving via Intention-aware Physical Latent World Model (Zheng+, ICCV 2025)
abemii
0
230
生成AIではじめるテスト駆動開発
puku0x
0
120
技術広報のOKRで生み出す 開発組織への価値 〜 カンファレンス協賛を通して育む学びの文化 〜 / Creating Value for Development Organisations Through Technical Communications OKRs — Nurturing a Culture of Learning Through Conference Sponsorship —
pauli
5
400
AI時代の戦略的アーキテクチャ 〜Adaptable AI をアーキテクチャで実現する〜 / Enabling Adaptable AI Through Strategic Architecture
bitkey
PRO
5
760
「もっと正確に、もっと効率的に」ANDPADの写真書き込み機能における、 現場の声を形にしたエンハンス
andpad
0
110
ステートレスなLLMでステートフルなAI agentを作る - YAPC::Fukuoka 2025
gfx
8
1.3k
re:Invent完全攻略ガイド
junjikoide
1
370
クレジットカードの不正を防止する技術
yutadayo
17
7.6k
Featured
See All Featured
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Mobile First: as difficult as doing things right
swwweet
225
10k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
Rails Girls Zürich Keynote
gr2m
95
14k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
253
22k
Why Our Code Smells
bkeepers
PRO
340
57k
Building an army of robots
kneath
306
46k
GraphQLとの向き合い方2022年版
quramy
49
14k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1k
Transcript
Keita Watanabe 2022/11/24 Kubernetes Meetup Tokyo # 54 LT KubeflowͰ͡ΊΔ
ML on Kubernetes #3 Kube fl ow Pipelines: Part 1
Keita Watanabe Machine Learning Solutions Architect ▶ AWS JapanͰSelf-managedͳMachine Learning
ͷҊ݅Λ୲͍ͯ͠ΔSolutions Architect ▶ લ৬ͰDatascientist/ML Researcherͱͯ͠ ECαΠτ্ͷը૾ݕࡧػೳͷ։ൃʹैࣄ ▶ Twitter: keitaw09 ▶ Linkedin: keitawatanabe αϯσΟΤΰͰग़ձͬͨτϦ झຯ
ͪ͜ΒͷLTγϦʔζͷͰ͢ KubeflowͰ͡ΊΔML on Kubernetes • #1 Kube fl owͷ֓ཁͱηοτΞοϓ •
#2 Kube fl ow Notebooks • #3 Kube fl ow Pipelines (ࠓճʂ)
ࠓճͷςʔϚɿ Kubeflow Pipelines ʢͷಋೖʣ
Kubeflow Pipelines ʢKFPʣͱ KFPͷߏཁૉ • Pipelineͷ֬ೝɾ࣮ߦʹ༻͍ΔUI • Pipeline࣮ߦΛεέδϡʔϦϯά͢ΔEngine • ύΠϓϥΠϯͷఆٛɺϏϧυɺσϓϩΠ͕Մೳͳ
Python SDK • SDKͰͷύΠϓϥΠϯ։ൃɺ͓Αͼ࣮ߦʹؔ͢Δ Notebook αϙʔτ Componentͱͯ͠ɺ֤εςοϓΛ࣮͠ɺͦΕΒΛPipelineͱͯ͠Ұ࿈ͷॲཧʹ· ͱΊΔ͜ͱͰMLύΠϓϥΠϯΛߏங͢Δπʔϧ UI: pipeline graph view Ұ෦ൈਮ
KFP SDKͷόʔδϣϯʹ͍ͭͯ • 2022/11/24ݱࡏɺKFP SDKʹҎԼͷ̎ͭͷVersion͕ଘࡏ͢Δ v1ʢStable Statusʣ/ v2ʢBeta Statusʣ •
KFP SDK v2ɺݱࡏPre-release stageͷKFP v2ͷίΞػೳΛ KFP v1্Ͱಈ࡞Մೳͱͨ͠ͷ • ͜͜ͰKFP SDK v2Λ༻͍Δ • KFP SDK v2ͷར༻ʹKFP 1.6Ҏ߱ ͕ඞཁʢࠓճ1.8.4Λ༻ʣ https://www.kube fl ow.org/docs/components/pipelines/v1/sdk-v2/v2-compatibility/
SDKΛ༻͍ͨγϯϓϧͳPipelineͷ࣮ྫ (1) ίϯϙʔωϯτͷఆٛ ͜͜Ͱ͠ࢉΛ”python:3.9”Πϝʔδ্Ͱ ࣮ߦ͢ΔίϯϙʔωϯτΛఆٛ͢Δ (2) ύΠϓϥΠϯͷఆٛ ύΠϓϥΠϯͰ༻͍Δίϯϙʔωϯτ܈ͱ ͦͷؔΛఆٛ͢Δ (3)
ύΠϓϥΠϯͷ࣮ߦ ύΠϓϥΠϯʹೖྗΛ༩͑ɺ࣮ߦ͢Δ (1) (2) (3)
͜ͷίʔυΛ࣮ߦͯ͠ΈΔͱ… • “/var/run/secrets/kube fl ow/pipelines/token” ͕ແ͍ͱౖΒΕɺ࣮ߦʹࣦഊ͢Δ • ࣮ϚϧνϢʔβʔڥͰSDKΛ࣮ߦ͢Δࡍ ʹɺServiceAccount token͕
”KF_PIPELINES_SA_TOKEN_PATH”ʹଘࡏ͢ Δඞཁ͕͋Δ ʢ͜ͷڥมͷσϑΥϧτͷύε͕ “/var/run/secrets/kube fl ow/pipelines/token”ʣ • σϑΥϧτͷNotebookڥʹ͜ͷτʔΫϯ ͕ઃఆ͞Ε͍ͯͳ͍ˠ PodDefaultΛ༻͍Δ https://www.kube fl ow.org/docs/components/pipelines/v1/sdk/connect-api/#full-kube fl ow-subfrom-inside-clustersub
PodDefault • KubernetesʹPodʹରͯ͠ɺ ڥมVolumeͷใͳͲ Λ͋ͱ͔ΒՃ͢ΔPodPreset ͱ͍͏Ϧιʔεʢݱࡏ Alpha stageʣ͕ଘࡏ͢Δ • PodDefaultPodPreset૬ͷ
ػೳΛKube fl owଆͰ ࣮ͨ͠ͷ https://github.com/kube fl ow/kube fl ow/blob/master/components/admission-webhook/README.md
PodDefaultͷ͍ํ ৽نNotebook࡞࣌ͷ ”Con fi gurations”ΑΓ࡞ͨ͠ PodDefaultΛબ͢Δ͜ͱ͕Ͱ͖Δ
τʔΫϯ͕Ϛϯτ͞Ε͍ͯΔ͜ͱ ͕֬ೝͰ͖Δ ύΠϓϥΠϯͷ࣮ߦʹޭ͠ɺ ExperimentͱRunͷৄࡉͷϦϯΫ ͕දࣔ͞Εͨ
Run details
࣍ճ… ࣮ફతͳPipelinesߏஙͷΛ͠·͢
ࢀߟࢿྉ • https://techblog.zozo.com/entry/aip-pipelines-impl#Kube fl ow-Pipelines • https://www.kube fl ow.org/docs/components/pipelines/v1/sdk/connect-api/ #full-kube
fl ow-subfrom-inside-clustersub • https://www.kube fl ow.org/docs/components/notebooks/overview • https://github.com/aws-samples/aws-do-kube fl ow • https://www.kube fl ow.org/docs/components/pipelines/v1/sdk-v2/v2- compatibility/ • https://www.kube fl ow.org/docs/components/pipelines/v1/sdk/connect-api/ #full-kube fl ow-subfrom-inside-clustersub