Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
フリーランスだらけの ML基盤開発 / ML Infra Development with F...
Search
Kengo Miyakawa
December 12, 2019
Technology
3
2.8k
フリーランスだらけの ML基盤開発 / ML Infra Development with Freelance
Kengo Miyakawa
December 12, 2019
Tweet
Share
Other Decks in Technology
See All in Technology
著者と読み解くAIエージェント現場導入の勘所 Lancers TechBook#2
smiyawaki0820
12
5.8k
形式手法特論:CEGAR を用いたモデル検査の状態空間削減 #kernelvm / Kernel VM Study Hokuriku Part 8
ytaka23
2
430
regrowth_tokyo_2025_securityagent
hiashisan
0
110
ログ管理の新たな可能性?CloudWatchの新機能をご紹介
ikumi_ono
0
310
シンプルを極める。アンチパターンなDB設計の本質
facilo_inc
2
1.7k
エンジニアリングマネージャー はじめての目標設定と評価
halkt
0
240
エンジニアとPMのドメイン知識の溝をなくす、 AIネイティブな開発プロセス
applism118
4
520
日本Rubyの会の構造と実行とあと何か / hokurikurk01
takahashim
4
820
Playwrightのソースコードに見る、自動テストを自動で書く技術
yusukeiwaki
12
4.6k
バグハンター視点によるサプライチェーンの脆弱性
scgajge12
3
890
Uncertainty in the LLM era - Science, more than scale
gaelvaroquaux
0
760
21st ACRi Webinar - Univ of Tokyo Presentation Slide (Ayumi Ohno)
nao_sumikawa
0
120
Featured
See All Featured
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
700
Faster Mobile Websites
deanohume
310
31k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
54k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
4 Signs Your Business is Dying
shpigford
186
22k
Building Adaptive Systems
keathley
44
2.9k
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Transcript
ϑϦʔϥϯεͩΒ͚ͷ MLج൫։ൃ ٶ݈ޗ @MLPP#5 2019/12/12 1
ٶ ݈ޗ (@N30nnnn) ࣗݾհ • ܦӦֶ - ౷ܭֶઐ߈ • ݸਓࣄۀओ
• σʔλੳ → ը૾ܥML → EM + MLOps • ݱࡏ2ࣾͰ MLOps 2
৬ྺ • ࠂཧళ (σʔλੳ) • ਓೳडୗ։ൃ1 (ML) • ਓೳडୗ։ൃ2 (ML,
EM) • (ݱ৬) גࣜձࣾΫϥϏε (MLOps, EM) ᵋ ձܭܥը૾ॲཧ • (ݱ৬) גࣜձࣾϨΞδϣϒ (MLOps) ᵋ ΦϯϥΠϯӳձ EM: HowͱWho EM: HowͱWho 3 ※ڐՄΛड͚ͯެ։ ※2019/12 ݱࡏ
MLνʔϜͷϝϯόʔߏ • (ݱ৬) גࣜձࣾΫϥϏε (MLOps, EM) ᵋ ձܭܥը૾ॲཧ • (ݱ৬)
גࣜձࣾϨΞδϣϒ (MLOps) ᵋ ΦϯϥΠϯӳձ ਖ਼ࣾһ: 2ਓ ϑϦʔ: 7ਓ ਖ਼ࣾһ: 2ਓ ϑϦʔ: 5ਓ 4 ※ڐՄΛड͚ͯެ։ ※2019/12 ݱࡏ
Agenda • ࠷ۙ࡞͍ͬͯΔϓϩμΫτͷߏ • Fargateϕʔε • EKSϕʔε • ϑϦʔϥϯε͕ଟ͍ϓϩδΣΫτͷΈ •
ਓࡐαΠΫϧͷ͞ • ઐྖҬͷҧ͍ • ͞ΕͨMLίʔυཧ • ߨͨ͡ղܾࡦ • ΠϯλʔϑΣʔεͷపఈ - ؔ৺ͷ 5
Fargateͷࣄྫ 6
ϓϩμΫτ: Fargate - ਪڥ • 1API - 1ϦϙδτϦ • gitflowͰ
develop/master → ։ൃ/ຊ൪ • ΠϝʔδϏϧυͱ devσϓϩΠCircleCIͰࣗಈԽ • ΠϯϑϥTerraform 7 ※ڐՄΛड͚ͯެ։
ϓϩμΫτ: Fargate - ࠶ֶशػߏ 8 • ֶशσʔλRDSʹ. • ఆظతʹֶशΛτϦΨ. •
Dynamoʹֶश݁Ռอଘ • Dynamoࢀর͠࠷ྑͷϞσ ϧΛऔಘ • RDSʹཷΊΔͷΈͰɺ ੑೳ্/มԽΛଊ͑ ͍ͨ ※ڐՄΛड͚ͯެ։
ϓϩμΫτ: Fargate - ࠶ֶशػߏ 9 • ֶशσʔλRDSʹ. • ఆظతʹֶशΛτϦΨ. •
Dynamoʹֶश݁Ռอଘ • Dynamoࢀর͠࠷ྑͷϞσ ϧΛऔಘ • RDSʹཷΊΔͷΈͰɺ ੑೳ্/มԽΛଊ͑ ͍ͨ ※ڐՄΛड͚ͯެ։
ϓϩμΫτ: Fargate - ࠶ֶशػߏ 10 • ֶशσʔλRDSʹ. • ఆظతʹֶशΛτϦΨ. •
Dynamoʹֶश݁Ռอଘ • Dynamoࢀর͠࠷ྑͷϞσ ϧΛऔಘ • RDSʹཷΊΔͷΈͰɺ ੑೳ্/มԽΛଊ͑ ͍ͨ ※ڐՄΛड͚ͯެ։
ϓϩμΫτ: Fargate - ࠶ֶशػߏ 11 • ֶशσʔλRDSʹ. • ఆظతʹֶशΛτϦΨ. •
Dynamoʹֶश݁Ռอଘ • Dynamoࢀর͠࠷ྑͷϞσ ϧΛऔಘ • RDSʹཷΊΔͷΈͰɺ ੑೳ্/มԽΛଊ͑ ͍ͨ ※ڐՄΛड͚ͯެ։
EKSͷࣄྫ 12
ϓϩμΫτ: EKS - ਪڥ • ෳͷೖྗΛ·ͱΊͯਪఆ ΩϡʔܗࣜͷAPI • ࠶ֶशݕ౼த •
develop/master → ։ൃ/ຊ൪ • ΠϝʔδϏϧυ CircleCIͰࣗಈԽ • ΠϯϑϥTerraform 13 ※ڐՄΛड͚ͯެ։
ϓϩμΫτ: EKS - ਪڥ • ෳͷೖྗΛ·ͱΊͯਪఆ ΩϡʔܗࣜͷAPI • ࠶ֶशݕ౼த •
develop/master → ։ൃ/ຊ൪ • ΠϝʔδϏϧυ CircleCIͰࣗಈԽ • ΠϯϑϥTerraform 14 ※ڐՄΛड͚ͯެ։
ϓϩμΫτ: EKS - ਪڥ • ෳͷೖྗΛ·ͱΊͯਪఆ ΩϡʔܗࣜͷAPI • ࠶ֶशݕ౼த •
develop/master → ։ൃ/ຊ൪ • ΠϝʔδϏϧυ CircleCIͰࣗಈԽ • ΠϯϑϥTerraform 15 ※ڐՄΛड͚ͯެ։
ϓϩμΫτ: EKS - ਪڥ • ෳͷೖྗΛ·ͱΊͯਪఆ ΩϡʔܗࣜͷAPI • ࠶ֶशݕ౼த •
develop/master → ։ൃ/ຊ൪ • ΠϝʔδϏϧυ CircleCIͰࣗಈԽ • ΠϯϑϥTerraform 16 ※ڐՄΛड͚ͯެ։
• ͳΔ͘γϯϓϧͳ࡞Γ • δϣΠϯίετݮ • ຊ࣭తͳ։ൃʹઐ೦ • ҰํͰͳΔ͘Ϟμϯʹ • ৽͍ؒ͠ʹདྷͯͨ͘Ίͷڥ࡞Γ
17
ϑϦʔϥϯε͕ଟ͍PJͷΈ 18 • ਓࡐαΠΫϧͷ͞ • ઐྖҬͷҧ͍ • ͞ΕͨMLίʔυཧ
ϑϦʔϥϯε͕ଟ͍PJͷΈ1 • ਓࡐαΠΫϧͷ͞ • 3ϲ݄, 6ϲ݄Ͱ͍ͳ͘ͳΔ͜ͱ • ࠾༻ଆ߹ɾΤϯδχΞଆ߹ ΩϟονΞοϓͷ͕࣌ؒπϥ͍ 19
ϑϦʔϥϯε͕ଟ͍PJͷΈ2 • ઐྖҬͷҧ͍ • ඞͣ͠ML / αʔόʔαΠυ྆ํͷ͕ࣝ༗ΔΘ͚Ͱͳ͍ • αʔόʔαΠυͷ͠͞(e.g. APIपΓ,
ฒߦॲཧ) • MLͷ͠͞(e.g. ੑೳࢦඪ, Train,Validation,Test…) • ඇઐྖҬʹੵۃతͱݶΒͳ͍ ίϛϡχέʔγϣϯίετ͕πϥ͍ 20
ϑϦʔϥϯε͕ଟ͍PJͷΈ3 • ͞ΕͨMLίʔυཧ • લఏͱ͞ΕΔσΟϨΫτϦߏ / ਖ਼ղϥϕϧܗࣜ • ୯ҰͷࣈԽͮ͠Β͍ੑೳධՁ MLͷཧ͕πϥ͍
21
ΠϯλʔϑΣʔεͷపఈ 22
ؔ৺ͷ • Pythonʹଘࡏ͠ͳ͍ΠϯλʔϑΣʔε • σʔλͷࡏΓॲμϯϩʔυͳͲʹؔ༩ͨ͘͠ͳ͍ML • Ϟσϧͷൺֱํ๏લॲཧޙॲཧͳͲʹؔ༩ͨ͘͠ͳ͍αʔό • ͞Εͨίʔυͷ࣮ଶѲΛ؆ૉԽ͍ͨ͠ཧऀ ΠϯλʔϑΣʔεΛݻΊͯίϛϡχέʔγϣϯΛݮΒ͢
23
e.g. ਪఆॲཧͷ߹ 24 αʔόʔαΠυ ML
e.g. ਪఆॲཧͷ߹ 25 αʔόʔαΠυ σʔλͷॴࡏ, औಘํ๏ΛML͔Β ฦ٫࣌ͷܗΛ αʔό͔Β ML σʔλͷॴࡏΛML͕
ؾʹ͢Δඞཁ͕ͳ͍
e.g. ࠶ֶशػߏ αʔόʔαΠυ ML αʔόʔαΠυ 26 ݺͼग़͠
e.g. ࠶ֶशػߏ αʔόʔαΠυ ML αʔόʔαΠυ σʔλͷॴࡏ, औಘํ๏ΛML͔Β σʔλͷॴࡏ, औಘํ๏ΛML͔Β ੑೳൺֱͷ
Ϟσϧબͷ໌ࣔ 27 Ϟσϧաڈใͷॴࡏ, औಘ,هΛ Ϟσϧաڈใͷॴࡏ, औಘ,هΛ
e.g. ࠶ֶशػߏ αʔόʔαΠυ ML αʔόʔαΠυ ࠶ֶश༻σʔλϕʔε •ը૾ྨςʔϒϧ •จࣈྻݕςʔϒϧ •OCRςʔϒϧ •……
நԽ 28
• ݸʑਓͷઐྖҬੌ͍ • ϑϦʔϥϯεͷੜ໋ઢ • ؔ৺֎ʹؔ༩ͯ͠ΒΘͳͯ͘ྑ͍ߏ • ҟͳΔઐؒͰͷίϛϡχέʔγϣϯݮ͠ෛ୲ݮ • αʔόʔαΠυͷΈͳΒͣMLϑϦʔϥϯεͰՄೳʹ
29 ·ͱΊ