Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
生成AIで加速するテスト実装 - ロリポップ for Gamersの事例と 生成AIエディタの活用
Search
kinosuke01
February 16, 2025
Programming
0
290
生成AIで加速するテスト実装 - ロリポップ for Gamersの事例と 生成AIエディタの活用
https://tech.pepabo.com/2025/02/13/gamers-frontend-component-test/
より
kinosuke01
February 16, 2025
Tweet
Share
More Decks by kinosuke01
See All by kinosuke01
Playwright x GitHub Actionsで実現する「レビューしやすい」E2Eテストレポート
kinosuke01
0
950
AIを導⼊しても、 開発⽣産性は"爆増"していない なぜ?
kinosuke01
4
5.7k
長年続く手動E2Eテストを自動化で救いたい
kinosuke01
0
100
バックエンドエンジニアによるフロントエンドテスト拡充の具体的手法
kinosuke01
1
1.3k
カンファレンス登壇資料を毎日読む習慣
kinosuke01
0
230
Notionで作るWebサイト「MuuMuu Sites」の裏側
kinosuke01
0
2.5k
Other Decks in Programming
See All in Programming
AI 駆動開発ライフサイクル(AI-DLC):ソフトウェアエンジニアリングの再構築 / AI-DLC Introduction
kanamasa
11
3.6k
ELYZA_Findy AI Engineering Summit登壇資料_AIコーディング時代に「ちゃんと」やること_toB LLMプロダクト開発舞台裏_20251216
elyza
2
580
ZJIT: The Ruby 4 JIT Compiler / Ruby Release 30th Anniversary Party
k0kubun
0
260
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
280
堅牢なフロントエンドテスト基盤を構築するために行った取り組み
shogo4131
8
2.5k
perlをWebAssembly上で動かすと何が嬉しいの??? / Where does Perl-on-Wasm actually make sense?
mackee
0
120
Developing static sites with Ruby
okuramasafumi
0
320
実は歴史的なアップデートだと思う AWS Interconnect - multicloud
maroon1st
0
250
TestingOsaka6_Ozono
o3
0
170
大規模Cloud Native環境におけるFalcoの運用
owlinux1000
0
190
AtCoder Conference 2025「LLM時代のAHC」
imjk
2
570
tparseでgo testの出力を見やすくする
utgwkk
2
270
Featured
See All Featured
ラッコキーワード サービス紹介資料
rakko
0
1.8M
State of Search Keynote: SEO is Dead Long Live SEO
ryanjones
0
68
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
GraphQLとの向き合い方2022年版
quramy
50
14k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.2k
The Limits of Empathy - UXLibs8
cassininazir
1
190
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
80
Tell your own story through comics
letsgokoyo
0
750
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
190
From π to Pie charts
rasagy
0
90
Reality Check: Gamification 10 Years Later
codingconduct
0
1.9k
Designing for humans not robots
tammielis
254
26k
Transcript
1 ⽣成AIで加速するテスト実装 ロリポップ for Gamersの事例と⽣成AIエディタの活⽤ ホスティング事業部 kinosuke01 (⻄⽥貴之) 2025.02
⾃⼰紹介 2 • 名前: kinosuke01 (本名: ⻄⽥) • 所属: GMOペパボ
ホスティング事業部 • 職種: Webアプリケーションエンジニア • チームでわいわい仕事しています。 モノの構造を知ることが好きです。 Xでは⽇々学んだことをアウトプットしています。 ⾃⼰紹介
背景と課題 3 ロリポップ for Gamers を 2024年にリリース VPSをベースに「ゲームのマルチプレイが簡単にできる環境」を提供 背景と課題 (1)
背景と課題 4 • 急速なサービス⽴ち上げ • プロジェクト⽴ち上げから13営業⽇で初期リリース • フロントエンドテストの現状 • 単純なユニットテストのみ実装
• 不⾜していたテスト内容 • ユーザー操作(ボタンのクリックなど)で何が起こるか • APIリクエストの成功/失敗処理 • UIの更新状態 背景と課題 (2)
テスト戦略の再考 5 • コンポーネントテストへのシフト • メモリ上にコンポーネントをレンダリングし、イベントを発⽕することで、DOMにどの ような変化が発⽣したかをチェックするテスト • Testing Library
と Vitest を活⽤ • 重視すべきポイント • ユーザーのアクション検証 • API挙動のモックによるテスト • 画⾯表⽰のリアルタイムな確認 テスト戦略の再考
⽣成AIエディタの活⽤ 6 • ⽣成AIエディタを利⽤してテストコード⽣成を⾃動化 • 効率的にテストコードの拡充が可能に • 主な流れ • コンポーネントに
`data-testid` を付与 • 対象のコードと周辺情報(=コンテキスト)を提供 • プロンプトでテストコード⽣成を指⽰ • 補⾜ • この事例ではCursorを利⽤。 • おそらく、Github Copilotでも同じことができるはず..!! ⽣成AIエディタの活⽤
⽣成AIエディタ活⽤の具体プロセス 7 1. 前準備 • 前準備として data-testid(テストに⽤いるタグの識別⼦)を付与 • 以下のようなプロンプトで⽣成する ⽣成AIエディタ活⽤の具体プロセス
'@testing-library/react', 'vitest' を使⽤して、 コンポーネントのテストを書きたいです。 まずは xxx.tsx に data-testid を付与してください。
⽣成AIエディタ活⽤の具体プロセス 8 2. コンテキストの投⼊ • テスト対象となるコードと、 関連するコードを コンテキストとして追加する ⽣成AIエディタ活⽤の具体プロセス
⽣成AIエディタ活⽤の具体プロセス 9 3. プロンプトによる⽣成指⽰ • 以下のプロンプトを使ってテストコードを作成。 ⽣成AIエディタ活⽤の具体プロセス '@testing-library/react', 'vitest' を使⽤して、コンポーネントのテストを書いてくだ
さい。テストのファイルは xxx.test.tsx としてください。なお、hook は以下の例の ように、xxxApi のメソッドをモックするようにしてください。 // ここに例となるコードを記載 • 補⾜:例となるコードは直接プロンプトに書き込んだ⽅が、 意図したコードになりやすかった。
⽣成AIエディタ活⽤の具体プロセス 10 4. チューニング • ⽣成したテストケースが不⼗分だと感じるときもある。 • 以下のプロンプトを⽤いてチューニングする。 ⽣成AIエディタ活⽤の具体プロセス では、この出⼒を60点とします。60点とした時に100点とはどのようなものです
か? 100点にするために⾜りないものを列挙した後に、100点の答えを⽣成してく ださい。
成果と効果 11 迅速なテストコード⽣成 • ⼿直しがほとんど不要なコードが得られた • もりもりテストを⽣成できた 成果と効果
残された課題 12 • Cursorに与えるコンテキストを⼈⼒で選択している • これを⽣成AIがうまく拾えるようにしたい 残された課題
まとめ 13 • 課題:急速な開発によるテスト不⾜ • 対策:コンポーネントテストへのシフト • ⼿段:Cursorを活⽤したテストコード⾃動⽣成 • 成果:効率的なテスト構築と品質向上
• 展望:コンテキスト選択の⾃動化 まとめ
14 Thank you!