Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
LangFlowではじめるRAG・マルチエージェントシステム構築
Search
西岡 賢一郎 (Kenichiro Nishioka)
March 22, 2025
Technology
0
210
LangFlowではじめるRAG・マルチエージェントシステム構築
機械学習の社会実装勉強会第45回 (
https://machine-learning-workshop.connpass.com/event/348547/
) の発表資料です。
西岡 賢一郎 (Kenichiro Nishioka)
March 22, 2025
Tweet
Share
More Decks by 西岡 賢一郎 (Kenichiro Nishioka)
See All by 西岡 賢一郎 (Kenichiro Nishioka)
Conductor: Git Worktreeで実現する並列AIコーディング
knishioka
0
67
ローカルLLMでファインチューニング
knishioka
0
420
自作MCPサーバ入門
knishioka
0
23
成功と失敗の実像と生成AI時代の展望
knishioka
0
56
MCPが変えるAIとの協働
knishioka
1
200
DeepSeekを使ったローカルLLM構築
knishioka
0
220
業務ツールをAIエージェントとつなぐ - Composio
knishioka
1
250
LangGraphを使ったHuman in the loop
knishioka
0
320
AIシステムの品質と成功率を向上させるReflection
knishioka
0
61
Other Decks in Technology
See All in Technology
Serverless Meetup #21
yoshidashingo
1
130
Autonomous Database Serverless 技術詳細 / adb-s_technical_detail_jp
oracle4engineer
PRO
18
52k
テストを実行してSorbetのsigを書こう!
sansantech
PRO
1
130
MCP認可の現在地と自律型エージェント対応に向けた課題 / MCP Authorization Today and Challenges to Support Autonomous Agents
yokawasa
5
2.5k
生成AIによるデータサイエンスの変革
taka_aki
0
3k
GCASアップデート(202506-202508)
techniczna
0
180
サイボウズフロントエンドの横断活動から考える AI時代にできること
mugi_uno
2
450
[OCI Technical Deep Dive] OCIで生成AIを活用するためのソリューション解説(2025年8月5日開催)
oracle4engineer
PRO
0
120
Foundation Model × VisionKit で実現するローカル OCR
sansantech
PRO
1
410
工業高校で学習したとあるエンジニアのキャリアの話
shirayanagiryuji
0
120
マルチプロダクト×マルチテナントを支えるモジュラモノリスを中心としたアソビューのアーキテクチャ
disc99
1
650
Amazon Q と『音楽』-ゲーム音楽もAmazonQで作成してみた感想-
senseofunity129
0
170
Featured
See All Featured
Done Done
chrislema
185
16k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.3k
The Cost Of JavaScript in 2023
addyosmani
53
8.8k
For a Future-Friendly Web
brad_frost
179
9.9k
The Language of Interfaces
destraynor
159
25k
Designing for humans not robots
tammielis
253
25k
Documentation Writing (for coders)
carmenintech
73
5k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
21k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.4k
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
Testing 201, or: Great Expectations
jmmastey
45
7.6k
Statistics for Hackers
jakevdp
799
220k
Transcript
LangFlowで じめる RAG・マルチエージェントシステム構築 2025/03/22 第45回勉強会
自己紹介 • 名前: 西岡賢一郎 10年以上にわたり、データ分析や機械学習 分野でスタートアップ 経営に携わる。現在 、日本とマレーシアを拠点に活動中 • SNS
◦ X: @ken_nishi ◦ LinkedIn: https://www.linkedin.com/in/kenichiro-nishi oka/ ◦ Facebook: https://www.facebook.com/kenichiro.nishio ka ◦ note: https://note.com/kenichiro ◦ YouTube: https://www.youtube.com/@kenichiro-nishi oka 経歴 • 東京大学で位置予測アルゴリズムを研究し博 士 (学術) を取得 • 東京大学 博士課程在学中にデータサイエン スをもとにしたサービスを提供する株式会社ト ライディアを設立 • トライディアを別 IT会社に売却し、CTOとして 3年半勤め、2021年10月末に退職 • 株式会社データインフォームド (CEO)・株式会 社ディースタッツ (CTO)・CDP スタートアップ (Sr. SA) • 自社および他社 プロダクト開発チーム・デー タサイエンスチーム 立ち上げ経験
本日 アジェンダ • LLMアプリケーション開発 現状 • Langflow 基本機能と特徴 • 導入方法と使い方
• デモ • まとめ
LLMアプリケーション開発 現状
LLMアプリケーション開発 現状 • ChatGPT ような大規模言語モデル(LLM) 登場により、AIアプリケーション開発 が活性化 • 様々な業界でLLMを活用したアプリケーション 需要が急増
• LangChainなど フレームワークが開発 標準になりつつある • しかし、これら ツール 主にプログラマー向けに設計されている
開発 課題と障壁 • LLMアプリケーション開発に 専門的なプログラミング知識が必要 • LangChainなど AIフレームワーク パワフルだが、学習曲線が急 •
既存 LLMフレームワーク 主にコードベースで 開発を前提としている • プロトタイピングに時間がかかり、アイデア 検証が難しい • 多く 組織で 技術者不足が障壁になっている
どうすれ 効率的に開発できるか? • プログラミングスキルがなくても、LLMアプリケーションを構築できないか? • 複雑なコードを書かずに、直感的にアイデアを形にできないか? • 迅速にプロトタイプを作成し、テストできる方法 ないか? •
開発 民主化と効率化を両立させる方法 あるか?
Langflowによる解決策 Langflow 、コードを書かずにLangChainベース アプリケーションを構築できるビジュアル開発プラット フォーム • ノーコード開発: ドラッグ&ドロップ 操作でAIアプリケーションを構築 •
直感的インターフェース: 視覚的に要素を配置し接続 • 即時テスト: 内蔵チャットインターフェースでリアルタイムにテスト可能 • 拡張性: 作成したフロー APIとして公開可能 • 共有・再利用: フロー JSONとしてエクスポート・インポート可能
コードベース開発とノーコード開発 比較
Langflow 基本機能と特徴
ビジュアル開発環境 • キャンバス上でコンポーネントをドラッグ&ド ロップ • コンポーネント間を線で接続してワークフロー を構築 • パラメータ 調整がUIから簡単に可能
主要コンポーネント Langflow 以下 LangChainコンポーネントをサ ポート: • LLM: OpenAI、Hugging Faceなど 言語モ
デル • プロンプト: テンプレートやチェーンプロンプト • エージェント: 自律的に動作するAIエージェント • チェーン: 複数 コンポーネントを連結 • ツール: 検索、計算など 外部ツール • メモリ: チャット履歴 保持機能 • ベクターストア: 埋め込みベクトル 保存と検 索
プロトタイピングと実験 • 内蔵チャットインターフェースでリアルタイムテ スト • パラメータを変更してすぐに効果を確認可能 • フロー 動作を視覚的に追跡可能 •
迅速な反復開発が可能
エクスポートと統合 • フローをJSONファイルとしてエクスポート • APIを通じて外部から利用可能 • 他システムと 連携が容易
導入方法と使い方
インストール方法 • Pythonパッケージとして pip install langflow langflow run • uvを使用
uvx langflow run • Dockerを使用 docker run -it --rm \ -p 7860:7860 \ --env-file .env \ langflowai/langflow:latest • ブラウザで http://localhost:7860 にアクセス
基本的な使い方 • サイドバーからコンポーネントを選択 • キャンバスにドラッグ&ドロップ • コンポーネント間を接続 • パラメータを設定 •
「Build」ボタンでフローを構築 • チャットインターフェースでテスト
デモ • Langflow 基本的な使い方 • マルチエージェントシステム 雛形 • RAG(検索拡張生成)システム 雛形
まとめ • Langflow 、コードを書かずにLLMアプリケーションを開発するため 強力なツー ル • ビジュアルインターフェースにより、開発 民主化と効率化を実現 •
特にRAGやマルチエージェントシステム 構築に適している • 初期プロトタイピングから本格的なアプリケーション開発まで幅広くサポート • 技術的知識 ない人でも、AI 力を活用できる環境を提供