Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AIシステムの品質と成功率を向上させるReflection
Search
西岡 賢一郎 (Kenichiro Nishioka)
November 30, 2024
Technology
0
90
AIシステムの品質と成功率を向上させるReflection
機械学習の社会実装勉強会第41回 (
https://machine-learning-workshop.connpass.com/event/336915/
) の発表資料です。
西岡 賢一郎 (Kenichiro Nishioka)
November 30, 2024
Tweet
Share
More Decks by 西岡 賢一郎 (Kenichiro Nishioka)
See All by 西岡 賢一郎 (Kenichiro Nishioka)
仕様書駆動AI開発の実践: Issue→Skill→PRテンプレで 再現性を作る
knishioka
0
62
Claude Codeを使った情報整理術
knishioka
20
12k
Claude Skillsで"仕事の型"を配布する
knishioka
0
300
Claude Agent SDKで始める実践的AIエージェント開発
knishioka
0
140
AIがAIを拡張する時代へ ~Claude Codeで実現する高品質文書作成~
knishioka
0
170
MLflow × LLM 生成AI時代の実験管理とリスク低減
knishioka
0
160
Conductor: Git Worktreeで実現する並列AIコーディング
knishioka
0
130
ローカルLLMでファインチューニング
knishioka
0
2.3k
自作MCPサーバ入門
knishioka
0
150
Other Decks in Technology
See All in Technology
Embedded SREの終わりを設計する 「なんとなく」から計画的な自立支援へ
sansantech
PRO
2
1.1k
20260129_CB_Kansai
takuyay0ne
1
250
2026年はチャンキングを極める!
shibuiwilliam
8
1.8k
GCASアップデート(202510-202601)
techniczna
0
230
Mosaic AI Gatewayでコーディングエージェントを配るための運用Tips / JEDAI 2026 新春 Meetup! AIコーディング特集
genda
0
140
開発メンバーが語るFindy Conferenceの裏側とこれから
sontixyou
2
460
SREの仕事を自動化する際にやっておきたい5つのポイント
jacopen
6
1.2k
ZOZOにおけるAI活用の現在 ~開発組織全体での取り組みと試行錯誤~
zozotech
PRO
3
2.1k
名刺メーカーDevグループ 紹介資料
sansan33
PRO
0
1k
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
110
GSIが複数キー対応したことで、俺達はいったい何が嬉しいのか?
smt7174
3
120
AIと新時代を切り拓く。これからのSREとメルカリIBISの挑戦
0gm
0
440
Featured
See All Featured
Leadership Guide Workshop - DevTernity 2021
reverentgeek
1
190
How to build an LLM SEO readiness audit: a practical framework
nmsamuel
1
630
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
75
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
420
We Are The Robots
honzajavorek
0
150
The Language of Interfaces
destraynor
162
26k
More Than Pixels: Becoming A User Experience Designer
marktimemedia
3
310
What does AI have to do with Human Rights?
axbom
PRO
0
2k
Java REST API Framework Comparison - PWX 2021
mraible
34
9.1k
Ecommerce SEO: The Keys for Success Now & Beyond - #SERPConf2024
aleyda
1
1.8k
A designer walks into a library…
pauljervisheath
210
24k
Information Architects: The Missing Link in Design Systems
soysaucechin
0
750
Transcript
AIシステムの品質と成功率を向上させるReflection 機械学習の社会実装勉強会 第41回 (2024/11/30) 1
自己紹介 名前: 西岡 賢一郎 X: @ken_nishi LinkedIn: https://www.linkedin.com/in/kenichiro-nishioka/ Facebook: https://www.facebook.com/kenichiro.nishioka
note: https://note.com/kenichiro YouTube: https://www.youtube.com/@kenichiro-nishioka 経歴 東京大学で位置予測アルゴリズムを研究し博士 (学術) を取得 東京大学の博士課程在学中にデータサイエンスをもとにしたサービスを提供する株式会社トライディアを 設立 トライディアを別のIT会社に売却し、CTOとして3年半務め、2021年10月末にCTOを退職 株式会社データインフォームド (CEO)・株式会社ディースタッツ (CTO)・CDPのスタートアップ (Sr. CSM) 自社および他社のプロダクト開発チーム・データサイエンスチームの立ち上げ経験 2
本日の課題認識 1. 通常のAIの課題 単一の応答に依存 回答の修正に人間が介入 2. 解決の方向性 人間の学習プロセスからヒントを得る 振り返り(Reflection)の重要性 システマティックな改善プロセス
3
人間の学習プロセスに学ぶ 1. 行動のみする人の特徴 とにかく行動するが、振り返りをしないタイプ 結果:アウトプットは早いが品質が低い 2. 自己反省をして改善する人の特徴 行動後に結果を振り返り、次に活かすタイプ 結果:徐々に改善・成長を実現 AIにもこの能力を実装することが重要
4
なぜAIにReflectionが必要か? AIの自己評価による品質向上 AIが自信の生成した回答を評価し,それを元に修正 人間が介入せずに回答を修正することができる 回答に応じて評価を柔軟に修正可能 初期プロンプトにすべての条件を書く必要がない 生成された回答に応じて評価・修正が可能 5
Reflection Agentのアーキテクチャ 生成された回答をLLMに評価させ修正する 6
エッセイ改善の例 初期エッセイ(抜粋) 環境保護は私たちの未来にとって重要です。 地球温暖化は深刻な問題です。 私たちは行動を起こす必要があります。 Reflectionプロセス 1. 評価:具体性不足、データ欠如 2. 改善案:統計データ追加、具体例提示
改善後 環境保護は、人類の持続可能な未来に不可欠です。 IPCC の2023 年報告によると、過去10 年で世界の平均気温は1.1 ℃上昇し、生態系に深刻な影響を及ぼしています。 例えば、北極圏の氷床面積は年間約13% の割合で減少し... 7
デモ: ビジネスアイディア生成Agent Reflection Agentのやること テーマに沿ってビジネスアイティアを生成 投資家目線で批評・修正点の提示 投資家からのフィードバックを元にビジネスアイディアを修正 ソースコード https://github.com/knishioka/machine-learning- workshop/blob/main/langchain/reflection_agent.ipynb
8
Reflection Agentの実務活用例 1. カスタマーサポート Before: 一般的な応答 After: 過去の類似ケース参照による最適解提示 2. 技術文書作成
Before: 基本的な仕様書 After: エッジケースを考慮した包括的文書 3. コードレビュー Before: 表面的なチェック After: セキュリティ面も含めた多角的レビュー 9
今後の展望:Reflectionの進化 1. 現在のReflection(反省者型) 行動後の振り返りと改善 エラー検出と修正 品質向上の実現 2. 将来の発展(戦略的行動者型) 事前の仮説設定と計画立案 結果予測に基づく最適化
自律的な意思決定と改善 10
結論:ReflectionがもたらすAIの進化 1. 品質向上 エラー率の低減や一貫性の向上や文脈理解の深化が期待できる 2. 効率化 人間が介入する必要がなくなり,作業時間の短縮ができる 3. 発展の可能性 戦略を練る高度な自己改善能力などを設けることにより,より人間に近いシステ
ムとなる 11
お問い合わせ お仕事の依頼・機械学習・LLMの実装のご相談は、X, LinkedIn, Facebookなどで DMをください 機械学習を社会実装する仲間も募集中!! 12