Upgrade to Pro — share decks privately, control downloads, hide ads and more …

論文解説 Mask2Former

koharite
June 15, 2022

論文解説 Mask2Former

Presentation for explaining the paper Mask2Former presented at CVPR2022.

koharite

June 15, 2022
Tweet

More Decks by koharite

Other Decks in Research

Transcript

  1. 2 論⽂情報 • タイトル:Masked-attention Mask Transformer for Universal Image Segmentation

    • 論⽂: https://arxiv.org/abs/2112.01527 • コード: https://github.com/facebookresearch/Mask2Former • 投稿学会: CVPR2022 • 著者: Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar • 所属:Facebook AI Research (FAIR), University of Illinois at Urbana-Champaign (UIUC) 選んだ理由: • Transformerを使ったユニバーサルなアーキテクチャを提案し、セグメンテーション タスクについてSemantic, Instance, Panopticの違いによらず使える • Semantic, Instance, PanopticそれぞれでこれまでのSOTAを超える性能を達成した。
  2. 3 論⽂概要 Panoptic Instance Semantic Transformer DecoderにMasked Attentionを導⼊する Transformer decoderをMulti-scaleにする。

    学習で得られたMask領域におけるMasked Attentionにより 局所的な特徴を精度良く捉える。 Panoptic: COCO Panopnic val2017 Instance: COCO val2017 Semantic: ADE20K SOTAを達成 Ground Truth Prediction Ground Truth Prediction
  3. 5 関連論⽂ DETR( Detection Transformer) : Object DetectionでTransformerを導⼊ MaskFormer: SegmentationでTransformerによるMaskを作り出し、推定する

    FAIR (Facebook AI Research)が出しているTransformerを使った画像認識に 関する⼀連の論⽂の流れ DETR MaskFormer TransformerでGlobalな特徴や関係を抽出できる が、⼩さい物体の認識は若⼲苦⼿だったことや ⼤きな計算リソースが必要だった点を改良する。
  4. 15 DETR ⾼解像度の近傍Pixel(領域) の特徴はCNNネットワーク でエンコードして取得(W, H は1/32, Cは2048) CNNから取り出された画像の特徴量からAttentionを⽤い て各物体の位置や種類の情報に変換

    事前に決められた個数Nの物体を予測する 他の予測内容を考慮して⾃⾝の予測するEncoder-Decoder ネットワーク Transformerの出⼒を物体の位置座 標・クラスラベルにデコードする ネットワーク
  5. 17 MaskFormer Per-Pixel Classification is Not All You Need for

    Semantic Segmentation Binary mask predictionsを取得する transformer decoderでN個のclass predictionsと mask embeddingsを取得 Binary MaskにたいしてPixelごとのmask lossを算出 Maskごとにクラス推定のlossを算出 Segmentation TaskをMask classificationとして、 (1) 画像からN個のbinary mask 領域を作成 (2) 各マスク領域をK個の認識 カテゴリそれぞれに所属 する確率をだす
  6. 18 Mask2Former MaskFormerの弱点を改良 • ⼩さな対象の精度が悪い • ⼤きなコンピュータリソース • ⻑い学習時間 panoptic

    segmentation (57.8 PQ on COCO) instance segmentation (50.1 AP on COCO) Semantic segmentation (57.7 mIoU on ADE20K). SOTAを達成
  7. 19 Masked Attention Masked attention 画像全体から学習されるcross-attentionに変わり、 オブジェクトクエリの予測に基づいて⽣成され たマスクを使って特定領域内でAttentionをとる。 通常のcross attention

    Masked attention ⼩物体や物体境界などの細部の認識が改善さ れるのではないか。 We hypothesize that local features are enough to update query features and context information can be gathered through self-attention.
  8. 20 Multi-scale high-resolution features Pixel Decoderで元画像の1/32, 1/16, 1/8の Feature Pyramidを作り、Transformer

    Decoder もそれぞれに対応する Transformer Decoder 3 x L layers 画像系ではよく使われる解像度のPyramid構造を採⽤ ⼩さなオブジェクトの認識性能を上げる
  9. 21 Optimization improvements 通常のTransformer Decoder layerはquery featuresを⽣み出すのにself-attention module, cross- attention,

    feed-forward networkを順に送るが、 SelfとMasked(Cross) -attentionの順番を 変え、query featuresを学習可能にした。 Dropoutをなくした。 (これまではresidual connectionsと attention mapsに適応していた)
  10. 22 Computer resource reduction MaskFormerでは1つの画像で32GメモリのGPUが必要だった。 PointRendやImplicit PointRendから着想を得て、mask lossを計算するのに、mask全体でなく、 K(=12544=112 x112)個のランダムサンプルされた点で計算する。

    推論とground truthとのfinal lossはimportance samplingで別にとったK個のサンプルされた点で⾏う。 最終的に、Mask2Formerでは1つの画像で必要なメモリが18GBから6GBまで削減された。 ⾼解像のMask predictionのため
  11. 30 参考資料 DETR https://arxiv.org/abs/2005.12872 https://github.com/facebookresearch/detr MaskFormer https://arxiv.org/abs/2107.06278 https://github.com/facebookresearch/MaskFormer Panoptic Segmentation

    https://arxiv.org/abs/1801.00868 Transformerの最前線 (オムロンサイニックエックス ⽜久⽒) https://www.slideshare.net/SSII_Slides/ssii2022-ts1-transformer