Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Distributed Elixir
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Maciej Kaszubowski
July 07, 2018
Programming
0
180
Distributed Elixir
Presentation about some of the tools for distributed programming in Elixir
Maciej Kaszubowski
July 07, 2018
Tweet
Share
More Decks by Maciej Kaszubowski
See All by Maciej Kaszubowski
Error-free Elixir
mkaszubowski
0
420
Modular Design in Elixir (ElixirConf EU 2019)
mkaszubowski
2
880
The Big Ball of Nouns
mkaszubowski
0
120
Modular Design in Elixir
mkaszubowski
1
400
Our three years with Elixir
mkaszubowski
0
260
Concurrency Basics for Elixir
mkaszubowski
0
140
Software Architecture
mkaszubowski
0
150
Let it crash - fault tolerance in Elixir/OTP
mkaszubowski
0
510
CRDTs - The science behind Phoenix Presence
mkaszubowski
2
290
Other Decks in Programming
See All in Programming
Package Management Learnings from Homebrew
mikemcquaid
0
200
なぜSQLはAIぽく見えるのか/why does SQL look AI like
florets1
0
440
20260127_試行錯誤の結晶を1冊に。著者が解説 先輩データサイエンティストからの指南書 / author's_commentary_ds_instructions_guide
nash_efp
0
890
余白を設計しフロントエンド開発を 加速させる
tsukuha
7
2.1k
humanlayerのブログから学ぶ、良いCLAUDE.mdの書き方
tsukamoto1783
0
180
Apache Iceberg V3 and migration to V3
tomtanaka
0
150
15年続くIoTサービスのSREエンジニアが挑む分散トレーシング導入
melonps
2
170
開発者から情シスまで - 多様なユーザー層に届けるAPI提供戦略 / Postman API Night Okinawa 2026 Winter
tasshi
0
190
ZJIT: The Ruby 4 JIT Compiler / Ruby Release 30th Anniversary Party
k0kubun
1
400
カスタマーサクセス業務を変革したヘルススコアの実現と学び
_hummer0724
0
620
登壇資料を作る時に意識していること #登壇資料_findy
konifar
3
920
AIフル活用時代だからこそ学んでおきたい働き方の心得
shinoyu
0
130
Featured
See All Featured
The Curious Case for Waylosing
cassininazir
0
230
Have SEOs Ruined the Internet? - User Awareness of SEO in 2025
akashhashmi
0
270
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Between Models and Reality
mayunak
1
180
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.2k
The Mindset for Success: Future Career Progression
greggifford
PRO
0
230
The Art of Programming - Codeland 2020
erikaheidi
57
14k
Visualization
eitanlees
150
17k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
750
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
End of SEO as We Know It (SMX Advanced Version)
ipullrank
3
3.9k
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
60
42k
Transcript
It’s scary out there
Organisational Matters
None
We’re 1 year old!
Summer break (probably)
We’re looking for speakers!
It’s scary out there Distributed Systems in Elixir Poznań Elixir
Meetup #8
None
Pid 1 Pid 2
Pid 1 Pid 2 Node A Node B
The basics
iex --name
[email protected]
--cookie cookie -S mix
Node.connect(:’
[email protected]
')
(DEMO)
#PID<0.94.0>
#PID<0.94.0> node identifier (relative to current node)
#PID<0.94.0> node identifier (relative to current node) 0 =a local
process
#PID<0.94.0> Process id node identifier (relative to current node)
How does it work?
Pid 1 Node A Pid 2 Node B
Pid 1 Node A Pid 2 Node B TCP Connection
send(pid2, msg) Pid 1 Node A Pid 2 Node B
TCP Connection
send(pid2, msg) Pid 1 Node A Pid 2 Node B
destination_node = node(pid) TCP Connection
send(pid2, msg) Pid 1 Node A Pid 2 Node B
destination_node = node(pid) :erlang.term_to_binary(msg) TCP Connection
send(pid2, msg) Pid 1 Node A Pid 2 Node B
destination_node = node(pid) :erlang.term_to_binary(msg) TCP Connection
send(pid2, msg) Pid 1 Node A Pid 2 Node B
destination_node = node(pid) :erlang.term_to_binary(msg) TCP Connection :erlang.binary_to_term(encode)
send(pid2, msg) Pid 1 Node A receive msg Pid 2
Node B destination_node = node(pid) :erlang.term_to_binary(msg) TCP Connection :erlang.binary_to_term(encode)
Distributed Systems?
Distributed Systems? Solved!
Well, not exactly…
Difficulties
Node A Node B
Node A Node B Node C
Node A Node B Node C Node D
None
A lot of messages
us-east-1 us-west-2
8 fallacies of distributed computing
fallacies of distributed computing 1. The network is reliable 2.
Latency is zero 3. Bandwidth is infinite 4. The network is secure 5. Topology doesn’t change 6. The is one administrator 7. Transport cost is zero 8. The network is homogenous
CAP THEOREM
CAP THEOREM us-west-2 us-east-1
CAP THEOREM us-west-2 us-east-1 Set X=5
CAP THEOREM us-west-2 us-east-1 Set X=5 Read X
CAP THEOREM us-west-2 us-east-1 Set X=5 Set X = 7
Consistency or Availability (under network partition)
Consistency or Speed In practice
Guarantees
Pid 1 Pid 2 Pid3 Guarantees m1, m2, m3 m4,
m5, m6 send(pid2, m1) send(pid2, m2) send(pid2, m3) send(pid2, m4) send(pid2, m5) send(pid2, m6)
Pid 1 Pid 2 Pid3 Guarantees m1, m2, m3 m4,
m5, m6 send(pid2, m1) send(pid2, m2) send(pid2, m3) send(pid2, m4) send(pid2, m5) send(pid2, m6) Ordering between two processes is preserved
Pid 1 Pid 2 Pid3 Guarantees m4, m5, m6 send(pid2,
m1) send(pid2, m2) send(pid2, m3) send(pid2, m4) send(pid2, m5) send(pid2, m6) m1, m2, m3 Delivery is not guaranteed
Pid 1 Pid 2 Pid3 Guarantees m1, m2, m3 m4,
m5, m6 send(pid2, m1) send(pid2, m2) send(pid2, m3) send(pid2, m4) send(pid2, m5) send(pid2, m6) Ordering between different processes is not guaranteed
[m1, m2, m3, m4, m5, m6]
[m1, m2, m3, m4, m5, m6] [m4, m5, m6, m1,
m2, m3]
[m1, m2, m3, m4, m5, m6] [m4, m5, m6, m1,
m2, m3] [m1, m4, m2, m5, m3, m6]
[m1, m2, m3, m4, m5, m6] [m4, m5, m6, m1,
m2, m3] [m1, m4, m2, m5, m3, m6] [m1, m2, m3]
[m1, m2, m3, m4, m5, m6] [m4, m5, m6, m1,
m2, m3] [m1, m4, m2, m5, m3, m6] [m1, m2, m3] [m1, m3, m5, m6]
[m1, m2, m3, m4, m5, m6] [m4, m5, m6, m1,
m2, m3] [m1, m4, m2, m5, m3, m6] [m1, m2, m3] [m1, m3, m5, m6] []
[m1, m2, m3, m4, m5, m6] [m4, m5, m6, m1,
m2, m3] [m1, m4, m2, m5, m3, m6] [m1, m2, m3] [m1, m3, m5, m6] [] [m1, m3, m2, m4, m5, m6]
[m1, m2, m3, m4, m5, m6] [m4, m5, m6, m1,
m2, m3] [m1, m4, m2, m5, m3, m6] [m1, m2, m3] [m1, m3, m5, m6] [] [m1, m3, m2, m4, m5, m6] [M3, M3]
Phoenix Request A User Logged In
Phoenix Request A Phoenix Request B User Logged In User
Logged OUT
Phoenix Request A Phoenix Request B User Logged In User
Logged OUT This Can arrive first
Unfortunately, things tend to work fine locally
The Tools
:global
Pid 1 Node A Node B Pid 2
Pid 1 Node A Node B Pid 2 :global.register_name(“global”, self())
Pid 1 Node A Node B Pid 2 :global.register_name(“global”, self())
Register PId1 as “global”
Pid 1 Node A Node B Pid 2 :global.register_name(“global”, self())
Register PId1 as “global” Sure
Pid 1 Node A Node B Pid 2 :global.register_name(“global”, self())
Register PId1 as “global” Sure :global.whereis_name(“global”) = pid1
Pid 1 Node A Node B Pid 2 :global.register_name(“global”, self())
:global.register_name(“global”, self()) ?
(DEMO)
:global • single process registration (if everything works OK) •
Favours availability over consistency • Information stored locally (reading is fast) • Registration is blocking (may be slow)
:PG2
Pid1 Pid3 Pid2 [] [] []
Pid1 Pid3 Pid2 :pg2.create(“my_group”) [] [] []
Pid1 Pid3 Pid2 [] [] [] join join :pg2.join(“my_group”, self()
Pid1 Pid3 Pid2 [] [pid1] [] Monitor Monitor :pg2.join(“my_group”, self()
Pid1 Pid3 Pid2 [pid1] [pid1] [pid1] Monitor Monitor :pg2.join(“my_group”, self()
Pid1 Pid3 Pid2 [pid1] [pid1] [pid1]
Pid1 Pid3 Pid2 :pg2.join(“my_group”, self() [pid1] [pid1, pid2] [pid1]
Pid1 Pid3 Pid2 join :pg2.join(“my_group”, self() join [pid1, pid2] [pid1,
pid2] [pid1, pid2]
Pid1 Pid3 Pid2 [pid1] [pid2] [pid1]
Pid1 Pid3 Pid2 [pid1] [pid2] [pid1]
Pid1 Pid3 Pid2 [pid1] [pid2] [pid1]
Pid1 Pid3 Pid2 [pid1, pid2] [pid1, pid2] [pid1, pid2]
It will heal, but the state in inconsistent for some
time
What does it matter?
Node A Pg2 Pg2 Pg2 Node B Node C
Node A Pg2 Pg2 Pg2 Node B Node C Phoenix
Channels
Node A Pg2 Pg2 Pg2 Node B Node C Phoenix
Presence
Node A Pg2 Pg2 Pg2 Node B Node C Phoenix
Channels
:pg2 • Process groups • Favours availability over consistency •
Information stored locally (reading is fast) • Registration is blocking (may be slow)
Strongly consistent Solutions
Strongly consistent Solutions • Consensus - Raft, Paxos, ZAB •
Two-phase commit/THree-phase commit (2PC/3PC) • Read/Write quorums • Single database as a source of truth
Summary
Distributed Systems
Well, not exactly…
Asynchronous messages Distributed systems are all about
Really, there’s no magic
Just asynchronous messages between nodes
Just asynchronous messages between nodes & node failures
Just asynchronous messages between nodes & node failures & Communication
failures
Just asynchronous messages between nodes & node failures & Communication
failures & Network partitions
Tradeoffs Distributed systems are all about
Where to go next
Worth looking at • Riak_core • RAFT • Two-Phase Commit
(2PC) / Three-Phase Commit (3PC) • CRDTs • LASP and Partisan
Free online (click!) Elixir / Erlang
Free PDF (Click!) Distributed Systems
Theory (The hard stuff)
• https://raft.github.io/ (Raft Consensus) • http://learnyousomeerlang.com/distribunomicon • https://www.rgoarchitects.com/Files/fallacies.pdf (Fallacies of
distributed computing) • https://dzone.com/articles/better-explaining-cap-theorem (CAP Theorem) • https://medium.com/learn-elixir/message-order-and-delivery-guarantees-in-elixir- erlang-9350a3ea7541 (Elixir message delivery guarantees) • https://lasp-lang.readme.io/ (LASP) • https://arxiv.org/pdf/1802.02652.pdf (Partisan Paper) • https://bravenewgeek.com/tag/three-phase-commit/ (3PC)
We’re looking for speakers!
Thank You! Poznań Elixir Meetup #8