Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Concurrency Basics for Elixir
Search
Maciej Kaszubowski
August 02, 2018
Programming
0
110
Concurrency Basics for Elixir
Slides from internal presentation at
https://appunite.com
Maciej Kaszubowski
August 02, 2018
Tweet
Share
More Decks by Maciej Kaszubowski
See All by Maciej Kaszubowski
Error-free Elixir
mkaszubowski
0
310
Modular Design in Elixir (ElixirConf EU 2019)
mkaszubowski
2
710
The Big Ball of Nouns
mkaszubowski
0
93
Modular Design in Elixir
mkaszubowski
1
370
Our three years with Elixir
mkaszubowski
0
230
Distributed Elixir
mkaszubowski
0
140
Software Architecture
mkaszubowski
0
130
Let it crash - fault tolerance in Elixir/OTP
mkaszubowski
0
440
CRDTs - The science behind Phoenix Presence
mkaszubowski
2
250
Other Decks in Programming
See All in Programming
ソフトウェア品質特性、意識してますか?AIの真の力を引き出す活用事例 / ai-and-software-quality
minodriven
18
5.5k
オープンソースコントリビュート入門
_katsuma
0
150
ts-morph実践:型を利用するcodemodのテクニック
ypresto
1
140
事業KPIを基に価値の解像度を上げる
nealle
0
160
TypeScript製IaCツールのAWS CDKが様々な言語で実装できる理由 ~他言語変換の仕組み~ / cdk-language-transformation
gotok365
6
230
インプロセスQAにおいて大事にしていること / In-process QA Meetup
medley
0
190
CursorとDevinが仲間!?AI駆動で新規プロダクト開発に挑んだ3ヶ月を振り返る / A Story of New Product Development with Cursor and Devin
rkaga
5
1.5k
Live Coding: Migrating an Application to Signals
manfredsteyer
PRO
0
130
エンジニア向けCursor勉強会 @ SmartHR
yukisnow1823
3
13k
rbs-traceを使ってWEARで型生成を試してみた After RubyKaigi 2025〜ZOZO、ファインディ、ピクシブ〜 / tried rbs-trace on WEAR
oyamakei
0
270
generative-ai-use-cases(GenU)の推しポイント ~2025年4月版~
hideg
1
450
MySQL初心者が311個のカラムにNot NULL制約を追加していってALTER TABLEについて学んだ話
hatsu38
2
150
Featured
See All Featured
Code Reviewing Like a Champion
maltzj
523
40k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
32
5.8k
Why Our Code Smells
bkeepers
PRO
336
57k
It's Worth the Effort
3n
184
28k
YesSQL, Process and Tooling at Scale
rocio
172
14k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
14
860
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Faster Mobile Websites
deanohume
307
31k
For a Future-Friendly Web
brad_frost
177
9.7k
A Modern Web Designer's Workflow
chriscoyier
693
190k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
122
52k
Transcript
Concurrency basics For Elixir-based Systems
None
So, what’s concurrency?
Sequential Execution (3 functions, 1 thread)
Sequential Execution (3 functions, 1 thread) Concurrent Execution (3 functions,
3 threads)
Sequential Execution (3 functions, 1 thread) Concurrent Execution (3 functions,
3 threads) Preemptive scheduling
Where’s the benefit?
Req1 Req2 Req3 Resp Sequential Execution time Waiting time
Req1 Req2 Req3 Resp Req1 Resp Req2 Req3 Sequential Concurrent
Execution time Waiting time
CPU bound Re Re Re Res Re Res Re Re
I/O bound
Concurrent or Parallel What’s the difference?
Concurrent Execution (3 functions, 3 threads)
Concurrent Execution (3 functions, 3 threads) Parallel Execution (3 functions,
3 threads, 2 cores) core 1 core 2
root@kingschat-api-c8f8d6b76-4j65j:/app# nproc 12 root@tahmeel-api-prod-b5979bdc6-q5wz6:/# nproc 1 How many cores?
Concurrent Execution (3 functions, 3 threads) Parallel Execution (3 functions,
3 threads, 2 cores) core 1 core 2 (by default) One erlang scheduler per core
:observer_cli.start()
None
Req1 Req2 Req3 Resp Req1 Resp Req2 Req3 Sequential Concurrent
Execution time Waiting time Req1 Resp Req2 Req3 Parallel
Sequential execution
Phoenix Request Req 1
Phoenix Request Resp
Phoenix Request Req 2
Phoenix Request Resp
Phoenix Request Req 3
Phoenix Request Resp
Concurrent execution
Phoenix Request
Phoenix Request Task 1 Task 2 Task 3
Phoenix Request Task 1 Task 2 Task 3 Req 1
Req 2 Req 3
Phoenix Request Task 1 Task 2 Task 3 Resp Resp
Resp
Phoenix Request Task 1 Task 2 Task 3
R1 APP Server DB Server (3 cores) R2 R1 R2
Time Execution time Waiting time
R1 APP Server DB Server (3 cores) Send resp R2
R3 R1 R2 R3 Time Execution time Waiting time
How much can we gain?
Amdahl’s Law
Amdahl’s Law
Amdahl’s Law in a nutshell The more synchronisation, the less
benefit from multiple cores
R1 APP Server Send resp R2 R3 R1 R2 R3
Time Execution time Waiting time Almost 100% parallel (almost no synchronisation) DB Server (3 cores)
But…
R1 APP Server Send resp R2 R3 R1 R2 R3
Time Execution time Waiting time This is not constant DB Server (3 cores)
R1 APP Server Send resp R2 R3 R1 R2 R3
Time Execution time Waiting time This is not infinite DB Server (3 cores)
R1 APP Server R2 R3 R1 R2 R3 R4 Time
Execution time Waiting time DB Server (3 cores)
R1 APP Server R2 R3 R1 R2 R3 R4 Time
Execution time Waiting time DB Server (3 cores)
R1 APP Server R2 R3 R1 R2 R3 R4 R4
Time Execution time Waiting time DB Server (3 cores)
R1 APP Server R2 R3 R1 R2 R3 R4 R4
Time Execution time Waiting time DB Server (3 cores)
R1 APP Server R2 R3 R1 R2 R3 R4 R4
Time Execution time Waiting time DB Server (3 cores)
R1 APP Server Send resp R2 R3 R1 R2 R3
R4 R4 Time Execution time Waiting time DB Server (3 cores)
R1 APP Server R2 R3 R1 R2 R3 R4 R4
Time Execution time Waiting time R5 R6 R7 R5 R6 R7 DB Server (3 cores)
Phoenix Request Task 1 Task 2 Task 3 Req 1
Req 2 Req 3 Remember this?
This isn’t exactly true
None
Connection pool (Prevents from overworking the DB)
Pool Manager (Blocks until a free worker is available)
None
Pool Manager (Blocks until a free worker is available)
None
It gets worse
Pool Manager Mailbox Has to be synchronised
Pool Manager Message Passing Is just copying data in shared
memory
Pool Manager Remember semaphores?
Logger Metrics Sentry
Network stack
Network stack
Network stack
Network stack Sentry Metrics
OS Threads (Garbage Collection) Data Bus Virtual Machines Memory characteristics
(e.g. processor caches) … Other synchronisation points
That’s hard
That’s REALLY hard
That’s REALLY hard Seriously, people spend their entire careers on
this
So, what to do?
Measure
Measure Measure
Measure Measure Measure
Measure ON PRODUCTION
Measure ON PRODUCTION You WILL get false results on staging/locally
Measure Entire system You WILL get false results for single
functions
Measure ONLY IF YOU HAVE TRAFFIC
“premature optimization is the root of all evil”
If something takes X ms, it will always take X
ms.
Async execution cannot “remove” this time It can only hide
it
BACK PRESSURE
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer Stop
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer OK, give me more
Producent Consumer Consumer
None
Back pressure
Thanks!