Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Concurrency Basics for Elixir
Search
Maciej Kaszubowski
August 02, 2018
Programming
0
120
Concurrency Basics for Elixir
Slides from internal presentation at
https://appunite.com
Maciej Kaszubowski
August 02, 2018
Tweet
Share
More Decks by Maciej Kaszubowski
See All by Maciej Kaszubowski
Error-free Elixir
mkaszubowski
0
340
Modular Design in Elixir (ElixirConf EU 2019)
mkaszubowski
2
740
The Big Ball of Nouns
mkaszubowski
0
100
Modular Design in Elixir
mkaszubowski
1
380
Our three years with Elixir
mkaszubowski
0
240
Distributed Elixir
mkaszubowski
0
150
Software Architecture
mkaszubowski
0
130
Let it crash - fault tolerance in Elixir/OTP
mkaszubowski
0
480
CRDTs - The science behind Phoenix Presence
mkaszubowski
2
270
Other Decks in Programming
See All in Programming
サイトを作ったらNFCタグキーホルダーを爆速で作れ!
yuukis
0
400
コンテキストエンジニアリング Cursor編
kinopeee
1
640
GitHub Copilotの全体像と活用のヒント AI駆動開発の最初の一歩
74th
8
3k
kiroでゲームを作ってみた
iriikeita
0
180
技術的負債で信頼性が限界だったWordPress運用をShifterで完全復活させた話
rvirus0817
1
1.9k
UbieのAIパートナーを支えるコンテキストエンジニアリング実践
syucream
2
620
Scale out your Claude Code ~自社専用Agentで10xする開発プロセス~
yukukotani
9
2.4k
AIレビュアーをスケールさせるには / Scaling AI Reviewers
technuma
2
210
AWS Serverless Application Model入門_20250708
smatsuzaki
0
110
DynamoDBは怖くない!〜テーブル設計の勘所とテスト戦略〜
hyamazaki
1
200
大規模FlutterプロジェクトのCI実行時間を約8割削減した話
teamlab
PRO
0
490
「リーダーは意思決定する人」って本当?~ 学びを現場で活かす、リーダー4ヶ月目の試行錯誤 ~
marina1017
0
230
Featured
See All Featured
The Power of CSS Pseudo Elements
geoffreycrofte
77
5.9k
Done Done
chrislema
185
16k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
50
5.5k
What's in a price? How to price your products and services
michaelherold
246
12k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
Visualization
eitanlees
146
16k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
31
2.2k
Six Lessons from altMBA
skipperchong
28
4k
A designer walks into a library…
pauljervisheath
207
24k
Agile that works and the tools we love
rasmusluckow
329
21k
How to train your dragon (web standard)
notwaldorf
96
6.2k
Transcript
Concurrency basics For Elixir-based Systems
None
So, what’s concurrency?
Sequential Execution (3 functions, 1 thread)
Sequential Execution (3 functions, 1 thread) Concurrent Execution (3 functions,
3 threads)
Sequential Execution (3 functions, 1 thread) Concurrent Execution (3 functions,
3 threads) Preemptive scheduling
Where’s the benefit?
Req1 Req2 Req3 Resp Sequential Execution time Waiting time
Req1 Req2 Req3 Resp Req1 Resp Req2 Req3 Sequential Concurrent
Execution time Waiting time
CPU bound Re Re Re Res Re Res Re Re
I/O bound
Concurrent or Parallel What’s the difference?
Concurrent Execution (3 functions, 3 threads)
Concurrent Execution (3 functions, 3 threads) Parallel Execution (3 functions,
3 threads, 2 cores) core 1 core 2
root@kingschat-api-c8f8d6b76-4j65j:/app# nproc 12 root@tahmeel-api-prod-b5979bdc6-q5wz6:/# nproc 1 How many cores?
Concurrent Execution (3 functions, 3 threads) Parallel Execution (3 functions,
3 threads, 2 cores) core 1 core 2 (by default) One erlang scheduler per core
:observer_cli.start()
None
Req1 Req2 Req3 Resp Req1 Resp Req2 Req3 Sequential Concurrent
Execution time Waiting time Req1 Resp Req2 Req3 Parallel
Sequential execution
Phoenix Request Req 1
Phoenix Request Resp
Phoenix Request Req 2
Phoenix Request Resp
Phoenix Request Req 3
Phoenix Request Resp
Concurrent execution
Phoenix Request
Phoenix Request Task 1 Task 2 Task 3
Phoenix Request Task 1 Task 2 Task 3 Req 1
Req 2 Req 3
Phoenix Request Task 1 Task 2 Task 3 Resp Resp
Resp
Phoenix Request Task 1 Task 2 Task 3
R1 APP Server DB Server (3 cores) R2 R1 R2
Time Execution time Waiting time
R1 APP Server DB Server (3 cores) Send resp R2
R3 R1 R2 R3 Time Execution time Waiting time
How much can we gain?
Amdahl’s Law
Amdahl’s Law
Amdahl’s Law in a nutshell The more synchronisation, the less
benefit from multiple cores
R1 APP Server Send resp R2 R3 R1 R2 R3
Time Execution time Waiting time Almost 100% parallel (almost no synchronisation) DB Server (3 cores)
But…
R1 APP Server Send resp R2 R3 R1 R2 R3
Time Execution time Waiting time This is not constant DB Server (3 cores)
R1 APP Server Send resp R2 R3 R1 R2 R3
Time Execution time Waiting time This is not infinite DB Server (3 cores)
R1 APP Server R2 R3 R1 R2 R3 R4 Time
Execution time Waiting time DB Server (3 cores)
R1 APP Server R2 R3 R1 R2 R3 R4 Time
Execution time Waiting time DB Server (3 cores)
R1 APP Server R2 R3 R1 R2 R3 R4 R4
Time Execution time Waiting time DB Server (3 cores)
R1 APP Server R2 R3 R1 R2 R3 R4 R4
Time Execution time Waiting time DB Server (3 cores)
R1 APP Server R2 R3 R1 R2 R3 R4 R4
Time Execution time Waiting time DB Server (3 cores)
R1 APP Server Send resp R2 R3 R1 R2 R3
R4 R4 Time Execution time Waiting time DB Server (3 cores)
R1 APP Server R2 R3 R1 R2 R3 R4 R4
Time Execution time Waiting time R5 R6 R7 R5 R6 R7 DB Server (3 cores)
Phoenix Request Task 1 Task 2 Task 3 Req 1
Req 2 Req 3 Remember this?
This isn’t exactly true
None
Connection pool (Prevents from overworking the DB)
Pool Manager (Blocks until a free worker is available)
None
Pool Manager (Blocks until a free worker is available)
None
It gets worse
Pool Manager Mailbox Has to be synchronised
Pool Manager Message Passing Is just copying data in shared
memory
Pool Manager Remember semaphores?
Logger Metrics Sentry
Network stack
Network stack
Network stack
Network stack Sentry Metrics
OS Threads (Garbage Collection) Data Bus Virtual Machines Memory characteristics
(e.g. processor caches) … Other synchronisation points
That’s hard
That’s REALLY hard
That’s REALLY hard Seriously, people spend their entire careers on
this
So, what to do?
Measure
Measure Measure
Measure Measure Measure
Measure ON PRODUCTION
Measure ON PRODUCTION You WILL get false results on staging/locally
Measure Entire system You WILL get false results for single
functions
Measure ONLY IF YOU HAVE TRAFFIC
“premature optimization is the root of all evil”
If something takes X ms, it will always take X
ms.
Async execution cannot “remove” this time It can only hide
it
BACK PRESSURE
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer Stop
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer OK, give me more
Producent Consumer Consumer
None
Back pressure
Thanks!