Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Concurrency Basics for Elixir
Search
Maciej Kaszubowski
August 02, 2018
Programming
0
100
Concurrency Basics for Elixir
Slides from internal presentation at
https://appunite.com
Maciej Kaszubowski
August 02, 2018
Tweet
Share
More Decks by Maciej Kaszubowski
See All by Maciej Kaszubowski
Error-free Elixir
mkaszubowski
0
280
Modular Design in Elixir (ElixirConf EU 2019)
mkaszubowski
2
660
The Big Ball of Nouns
mkaszubowski
0
88
Modular Design in Elixir
mkaszubowski
1
370
Our three years with Elixir
mkaszubowski
0
210
Distributed Elixir
mkaszubowski
0
110
Software Architecture
mkaszubowski
0
120
Let it crash - fault tolerance in Elixir/OTP
mkaszubowski
0
400
CRDTs - The science behind Phoenix Presence
mkaszubowski
2
250
Other Decks in Programming
See All in Programming
プログラミング言語学習のススメ / why-do-i-learn-programming-language
yashi8484
0
130
GitHub Actions × RAGでコードレビューの検証の結果
sho_000
0
270
ARA Ansible for the teams
kksat
0
150
富山発の個人開発サービスで日本中の学校の業務を改善した話
krpk1900
5
390
Kubernetes History Inspector(KHI)を触ってみた
bells17
0
230
How mixi2 Uses TiDB for SNS Scalability and Performance
kanmo
38
14k
PHPカンファレンス名古屋2025 タスク分解の試行錯誤〜レビュー負荷を下げるために〜
soichi
1
210
苦しいTiDBへの移行を乗り越えて快適な運用を目指す
leveragestech
0
650
法律の脱レガシーに学ぶフロントエンド刷新
oguemon
5
740
Boost Performance and Developer Productivity with Jakarta EE 11
ivargrimstad
0
350
負債になりにくいCSSをデザイナとつくるには?
fsubal
10
2.4k
CI改善もDatadogとともに
taumu
0
120
Featured
See All Featured
Designing Experiences People Love
moore
140
23k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.2k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
21
2.5k
Agile that works and the tools we love
rasmusluckow
328
21k
Making the Leap to Tech Lead
cromwellryan
133
9.1k
Why You Should Never Use an ORM
jnunemaker
PRO
55
9.2k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
40
2k
[RailsConf 2023] Rails as a piece of cake
palkan
53
5.2k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
29
1k
Being A Developer After 40
akosma
89
590k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
175
51k
Transcript
Concurrency basics For Elixir-based Systems
None
So, what’s concurrency?
Sequential Execution (3 functions, 1 thread)
Sequential Execution (3 functions, 1 thread) Concurrent Execution (3 functions,
3 threads)
Sequential Execution (3 functions, 1 thread) Concurrent Execution (3 functions,
3 threads) Preemptive scheduling
Where’s the benefit?
Req1 Req2 Req3 Resp Sequential Execution time Waiting time
Req1 Req2 Req3 Resp Req1 Resp Req2 Req3 Sequential Concurrent
Execution time Waiting time
CPU bound Re Re Re Res Re Res Re Re
I/O bound
Concurrent or Parallel What’s the difference?
Concurrent Execution (3 functions, 3 threads)
Concurrent Execution (3 functions, 3 threads) Parallel Execution (3 functions,
3 threads, 2 cores) core 1 core 2
root@kingschat-api-c8f8d6b76-4j65j:/app# nproc 12 root@tahmeel-api-prod-b5979bdc6-q5wz6:/# nproc 1 How many cores?
Concurrent Execution (3 functions, 3 threads) Parallel Execution (3 functions,
3 threads, 2 cores) core 1 core 2 (by default) One erlang scheduler per core
:observer_cli.start()
None
Req1 Req2 Req3 Resp Req1 Resp Req2 Req3 Sequential Concurrent
Execution time Waiting time Req1 Resp Req2 Req3 Parallel
Sequential execution
Phoenix Request Req 1
Phoenix Request Resp
Phoenix Request Req 2
Phoenix Request Resp
Phoenix Request Req 3
Phoenix Request Resp
Concurrent execution
Phoenix Request
Phoenix Request Task 1 Task 2 Task 3
Phoenix Request Task 1 Task 2 Task 3 Req 1
Req 2 Req 3
Phoenix Request Task 1 Task 2 Task 3 Resp Resp
Resp
Phoenix Request Task 1 Task 2 Task 3
R1 APP Server DB Server (3 cores) R2 R1 R2
Time Execution time Waiting time
R1 APP Server DB Server (3 cores) Send resp R2
R3 R1 R2 R3 Time Execution time Waiting time
How much can we gain?
Amdahl’s Law
Amdahl’s Law
Amdahl’s Law in a nutshell The more synchronisation, the less
benefit from multiple cores
R1 APP Server Send resp R2 R3 R1 R2 R3
Time Execution time Waiting time Almost 100% parallel (almost no synchronisation) DB Server (3 cores)
But…
R1 APP Server Send resp R2 R3 R1 R2 R3
Time Execution time Waiting time This is not constant DB Server (3 cores)
R1 APP Server Send resp R2 R3 R1 R2 R3
Time Execution time Waiting time This is not infinite DB Server (3 cores)
R1 APP Server R2 R3 R1 R2 R3 R4 Time
Execution time Waiting time DB Server (3 cores)
R1 APP Server R2 R3 R1 R2 R3 R4 Time
Execution time Waiting time DB Server (3 cores)
R1 APP Server R2 R3 R1 R2 R3 R4 R4
Time Execution time Waiting time DB Server (3 cores)
R1 APP Server R2 R3 R1 R2 R3 R4 R4
Time Execution time Waiting time DB Server (3 cores)
R1 APP Server R2 R3 R1 R2 R3 R4 R4
Time Execution time Waiting time DB Server (3 cores)
R1 APP Server Send resp R2 R3 R1 R2 R3
R4 R4 Time Execution time Waiting time DB Server (3 cores)
R1 APP Server R2 R3 R1 R2 R3 R4 R4
Time Execution time Waiting time R5 R6 R7 R5 R6 R7 DB Server (3 cores)
Phoenix Request Task 1 Task 2 Task 3 Req 1
Req 2 Req 3 Remember this?
This isn’t exactly true
None
Connection pool (Prevents from overworking the DB)
Pool Manager (Blocks until a free worker is available)
None
Pool Manager (Blocks until a free worker is available)
None
It gets worse
Pool Manager Mailbox Has to be synchronised
Pool Manager Message Passing Is just copying data in shared
memory
Pool Manager Remember semaphores?
Logger Metrics Sentry
Network stack
Network stack
Network stack
Network stack Sentry Metrics
OS Threads (Garbage Collection) Data Bus Virtual Machines Memory characteristics
(e.g. processor caches) … Other synchronisation points
That’s hard
That’s REALLY hard
That’s REALLY hard Seriously, people spend their entire careers on
this
So, what to do?
Measure
Measure Measure
Measure Measure Measure
Measure ON PRODUCTION
Measure ON PRODUCTION You WILL get false results on staging/locally
Measure Entire system You WILL get false results for single
functions
Measure ONLY IF YOU HAVE TRAFFIC
“premature optimization is the root of all evil”
If something takes X ms, it will always take X
ms.
Async execution cannot “remove” this time It can only hide
it
BACK PRESSURE
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer Stop
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer
Producent Consumer Consumer OK, give me more
Producent Consumer Consumer
None
Back pressure
Thanks!